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1 Introduction

Following the discovery of the Higgs boson in 2012 [1, 2], it has become a primary focus of

the experimental program of the Large Hadron Collider (LHC) to measure its properties

and in particular its couplings to itself and to the other Standard Model particles [3].

One of the key channels for studying the Higgs boson is the Vector-Boson Fusion (VBF)

production mode, where the Higgs boson is produced together with two (typically) hard

and forward jets. This process has been the focus of several recent fixed order theoretical

calculations [4–10].

A common point between all these calculations is that they are performed in the fac-

torised approximation, which corresponds to the limit where partons from the two colliding

protons are treated as coming from two identical copies of QCD that interact exclusively

through the electroweak sector. When all emissions are integrated over, this approxima-

tion is referred to as the structure function approach [11]. Due to colour conservation,

this approach is exact up to NLO, but starts to be violated from NNLO onwards, where

colour-singlet two-gluon exchanges between the incoming partons are neglected. Since

these non-factorisable contributions are colour suppressed compared to their factorisable
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counterparts, it has generally been assumed that they can also safely be neglected [5].

Recently it has been shown that the impact of the non-factorisable corrections at NNLO

can be estimated in the so-called eikonal approximation [12]. Although this calculation

confirms that their impact is moderate, it was found that these contributions also receive

a π2-enhancement due to their connection to the Glauber scattering phase, which partially

overcomes the effects of colour suppression.

Given these findings, the purpose of this paper is two-fold. Firstly, we investigate

the validity of the approximation employed in ref. [12] for single Higgs production outside

of tight VBF cuts, in order to estimate the leading non-factorisable corrections on the

inclusive VBF cross section. We then conduct an in-depth phenomenological study of the

factorisable and non-factorisable corrections, and establish the relative impact of the latter

for a range of selection cuts and observables. Secondly, we extend the calculation of ref. [12]

to study the impact of non-factorisable corrections to the production of a pair of Higgs

bosons in VBF. In this case, contrary to single Higgs, it is well known that the rather small

LO cross-section is the result of delicate cancellations of more than one order of magnitude

between the different Feynman diagrams that contribute to the process, shown in figure 5.

While QCD radiative corrections in the factorisable approximation affect equally all Born

diagrams and are not expected to spoil this cancellation, the same cannot be expected a

priori for the non-factorisable ones. Indeed, as we will demonstrate in this paper, a modest

difference in the relative radiative corrections can potentially lead to an enhancement of the

total NNLO corrections both inclusively and at the differential level. This, together with

the Glauber π2-enhancement discussed above, can make the non-factorisable corrections of

the same order or even dominant with respect to the factorisable ones.

In figure 1, we provide a summary of the impact of O(α2
s) corrections to single Higgs

VBF production as a function of the selection cuts on the rapidity separation ∆yjj and

the invariant mass mjj . Figure 1a shows the ratio of the factorisable corrections to the

LO cross section. The corrections have only a mild dependence on the cuts, decreasing

from roughly −4% at low cuts to around −3% at larger cut values. The non-factorisable

corrections shown in figure 1b on the other hand show a stronger dependence on the cuts.

They increase in size with an increase in the ∆yjj cut, and decrease as the mjj cut increases

until they become positive but still small at very large mjj cut values. In general they are

suppressed by an order of magnitude compared to the factorisable corrections. In figure 2

we show the same comparison but for di-Higgs production. As can be seen in figure 2a the

factorisable corrections have a more complicated dependence on the cut values compared

to single Higgs VBF production, first decreasing with an increase in both cuts and then

finally increasing in size as both cuts become large. The non-factorisable corrections shown

in figure 2b decrease with the ∆yjj cut and increase with the mjj cut. In most of the

plotted phase space they are larger in magnitude than their factorisable counterpart, and

of opposite sign. In the phase space of experimental relevance where both cuts are large

they are of the same size as the factorisable corrections.

We note that in addition to the non-factorisable corrections studied in this paper, a

number of known perturbative corrections to VBF Higgs production are usually neglected.
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(a) Factorisable corrections
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(b) Non-factorisable corrections

Figure 1. Single Higgs VBF production: ratio of the factorisable (a) and non-factorisable (b)

NNLO corrections relative to LO for fiducial cross sections with two R = 0.4 anti-kt jets satisfying

pt > 25 GeV and |yj | < 4.5, as a function of the mjj and ∆yjj selection cut.
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(a) Factorisable corrections
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(b) Non-factorisable corrections

Figure 2. Double Higgs VBF production: ratio of the factorisable (a) and non-factorisable (b)

NNLO corrections relative to LO for fiducial cross sections with two R = 0.4 anti-kt jets satisfying

pt > 25 GeV and |yj | < 4.5, as a function of the mjj and ∆yjj selection cut.

These include t/u-channel interference and s-channel contributions [13], single-quark line

contributions [14], and loop induced interferences between VBF and gluon-fusion Higgs

production [15]. These corrections are small within typical VBF cuts and we do not

consider them here. The NLO corrections in the electroweak coupling have also been

studied in ref. [13].

The rest of the paper is structured as follows: in section 2 we provide a review of the

known QCD corrections to VBF single Higgs production, and describe how to perform a

similar estimate of the non-factorisable corrections to di-Higgs production in the eikonal

approximation. In section 3 we compare factorisable and non-factorisable corrections for

VBF single Higgs production in a realistic setup. In section 4 we discuss the impact of

the non-factorisable corrections to VBF di-Higgs production. In section 5 we give our

conclusions.
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Figure 3. Born diagram for the production of n Higgs bosons in VBF (a) and representative 2-loop

factorisable corrections (b).

2 QCD corrections in VBF Higgs production

2.1 Factorisable corrections

Both in single and double Higgs production via VBF, the Higgs bosons are emitted by the

electroweak vector bosons exchanged between the two scattering partons. Schematically,

the Born process for the emission of an arbitrary number of Higgs bosons can be depicted

as in figure 3a.

In the factorised approximation, the VBF cross section is then expressed as a double

deep inelastic scattering (DIS) process, see figure 3b, for which the cross section is given

by [11]

dσ =
∑
V

4
√

2G3
Fm

8
V

s
∆2
V (Q2

1)∆2
V (Q2

2) dΩVBF

×WV
µν(x1, Q

2
1)MV,µρMV ∗,νσWV

ρσ(x2, Q
2
2) . (2.1)

Here V = W±, Z corresponds to the mediating boson with mass mV and squared

propagator ∆2
V , GF is Fermi’s constant,

√
s is the collider centre-of-mass energy, Q2

i = −q2
i

and xi = Q2
i /(2Pi · qi) are the usual DIS variables, WV

µν is the hadronic tensor and dΩVBF

is the VBF phase space. The matrix element of the vector-boson fusion sub-process is

denoted as MV,µν .

The hadronic tensor can be expressed as

WV
µν(xi, Q

2
i ) =

(
− gµν +

qi,µqi,ν
q2
i

)
F V1 (xi, Q

2
i )

+
P̂i,µP̂i,ν
Pi · qi

F V2 (xi, Q
2
i ) + iεµνρσ

P ρi q
σ
i

2Pi · qi
F V3 (xi, Q

2
i ) , (2.2)

where we have defined P̂i,µ = Pi,µ− Pi·qi
q2i

qi,µ and F Vi (x,Q2) are the standard DIS structure

functions with i = 1, 2, 3.

For single Higgs production, given by the diagram T in figure 4, MV,µν can be writ-

ten as

MV,µν = gµν . (2.3)
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Figure 4. Born diagram T for single Higgs VBF production.

By using the known DIS coefficient functions up to order α3
s [16–20], this can be used to

evaluate the inclusive VBF cross section to single Higgs production up to N3LO in the

factorised approximation. By combining an inclusive NNLO calculation with the corre-

sponding fully differential NLO prediction for electroweak Higgs production in association

with three jets [6], one can obtain fully differential results at NNLO through the projection-

to-Born method [7] or the antenna subtraction method [8].

The factorisable QCD corrections to the di-Higgs process can be calculated in the same

way as for its single Higgs analog, expressing the cross section in the form of eq. (2.1), but

with M now referring to the di-Higgs matrix element. The Higgs pair production process

differs from the single Higgs case only at the interaction between the vector and Higgs

bosons, where an additional Higgs can arise from an intermediate vector or Higgs boson, or

from the hhV V quartic coupling. The V V → hh sub-process at LO can be expressed as [21]

MV,µν =

[(
1 +

4m2
V

∆V
+

6νλ

∆H

)
gµν +

m2
V

∆V

(2kµ1 + qµ1 )(kν2 − kν1 − qν1 )

m2
V − iΓVmV

]
+ (k1 ↔ k2) , (2.4)

where we have defined the propagators

∆V = (q1 + k1)2 −m2
V + iΓVmV ,

∆H = (k1 + k2)2 −m2
H + iΓHmH

(2.5)

and k1, k2 are the momenta of the final state Higgs bosons and λ and ν are the trilinear Higgs

self-coupling and the vacuum expectation value of the Higgs field respectively. The matrix

element arises from the four Feynman diagrams shown in figure 5, which we label T1, T2, B1

and B2. We stress here that, while we are including the bosons’ widths for completeness,

they play no role for the estimation of QCD corrections to Higgs production in VBF.

2.2 Non-factorisable corrections

The factorisable approach described above, which includes diagrams such as the one rep-

resented in figure 3b, is exact up to NLO due to colour conservation. At NNLO this is no

longer true, as in particular two gluons in a colour singlet state can be emitted between

the two quark lines, as shown in figure 6. As the gluons have to be in a colour singlet state,
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Figure 5. Diagrams for Higgs pair production. (a) The T1 topology. (b) The T2 topology. (c)

The B1 topology. (d) The B2 topology.

these diagrams will be colour suppressed compared to their factorisable counterparts. For

this reason it has long been argued that they can be neglected when considering NNLO

corrections to VBF [5].

Due to the complexity involved in computing the two-loop non-factorisable corrections,

very little has been known about them beyond the fact that they are colour suppressed.

However, very recently [12] significant progress was made, when it was shown that the

corrections can be estimated within the eikonal approximation [22–25]. This calculation

exploits the fact that when typical VBF cuts are applied, the VBF cross section can be

expanded in the ratio of the leading jet transverse momentum over the total partonic

centre-of-mass energy

ξ =
pt,j1√
s
. (2.6)

In this kinematical configuration, the authors of ref. [12] conclude that the non-factorisable

corrections receive a π2-enhancement connected to the presence of a Glauber phase, which

can partially compensate their colour suppression. Indeed, it turns out that for VBF

single Higgs production, the non-factorisable corrections can contribute up to 1% in certain

regions of phase space, making them larger than the factorisable N3LO corrections. In what

follows we will use the same approximation to estimate the impact of non-factorisable

corrections for the case of double Higgs production as well.

In order to see how the NNLO non-factorisable corrections can be estimated in the

eikonal approximation both for single and double Higgs production, let us consider a generic

VBF Born diagram, which we will call D, for the production of an in principle arbitrary

number of Higgs bosons, see figure 3a. In what follows this diagram will represent either the

Born diagram for VBF single Higgs production T of figure 4, or any of the Born diagrams

for double Higgs production T1, T2, B1 or B2 in figure 5.

It is important to stress here that, somewhat counterintuitively, we will be consider-

ing QCD corrections on each single diagram separately, and not on the full Born matrix

element. Since we are interested in computing the NNLO QCD corrections to this class of

processes, we imagine dressing the diagram D with 1-loop or 2-loop QCD corrections, as

depicted in figure 6, where we provide two representative diagrams for illustration only.
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Figure 6. Generic form of non-factorisable 1-loop (a) and 2-loop (b) corrections to the production

of n Higgs boson.

It turns out that, at least up to two loops in QCD, we can limit ourselves to diagrams

where the gluons are in a colour-singlet configuration, i.e. exchanged between the two

quark lines. All other configurations do not contribute to the cross-section due to colour

conservation. Therefore, the calculation of the one- and two-loop QCD corrections in the

eikonal approximation reduces effectively to the corresponding calculation in QED, with

the colour-averaged effective coupling

α̃s =

(
N2
c − 1

4N2
c

)1/2

αs . (2.7)

Following ref. [12], let us consider the process

q(p1) + q(p2)→ q(p3) + q(p4) +X(P ) (2.8)

where X(P ) can represent one or multiple Higgs bosons produced in vector-boson fusion.

At leading order, we call the momenta flowing in the two vector bosons respectively

q1 = p1 − p3 , q2 = p2 − p4 . (2.9)

The leading term in the eikonal approximation can then easily be obtained by employ-

ing light-cone coordinates, which make transparent the separation between the dynamics

in the plane spanned by the momenta of the incoming quarks and the plane transverse to

them [22–25]. For a momentum kµ we indicate by k± the light-cone coordinates and by k

those in the transverse plane, i.e. we write

kµ = (k+, k−,k) , k± =
k0 ± k3

√
2

, k = (k1, k2) , (2.10)

and we choose a reference frame such that the incoming quark momenta have each one

light-cone component different from zero

pµ1 = (0, p−1 ,0) , pµ2 = (p+
2 , 0,0) .

It turns out that both at one and two loops, at leading order in the eikonal approxi-

mation, the quark propagators coupled to the soft gluons simplify and, after summing over

– 7 –
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Figure 7. Non-factorisable 1-loop (a) and 2-loop (b) corrections in the eikonal approximation.

Notice that these are two-dimensional euclidean diagrams in the plane transverse to the incoming

quark momenta.

all permutations of the gluons and the vector bosons, the quark propagators recombine in

terms of delta functions of the light-cone components of the loop momenta. This allows one

to decouple the light-cone dynamics from the one in the two-dimensional plane transverse

to the momenta of the incoming quarks and one is left with the calculation of the effective

two-dimensional loop diagrams shown schematically in figure 7.

With this, one can easily write the one- and two-loop QCD corrections in the eikonal

approximation in a rather compact form. By calling q1 and q2 the transverse components of

the momenta q1 and q2 in (2.9), and indicating schematically with {q} the set of transverse

momenta of the Higgs bosons produced, we can write for the generic Born diagram D

M(1)
D = +iα̃sχ

(1)
D (q1, q2, {q})M(0)

D , (2.11)

M(2)
D = − α̃

2
s

2!
χ

(2)
D (q1, q2, {q})M(0)

D , (2.12)

where M(n)
D are the corrections to the Born diagram D coming from the exchange of n

gluons, χ
(n)
D (q1, q2, {q}) are functions which depend on the (transverse) kinematics of the

corresponding Born diagram and the effective coupling α̃s was defined in eq. (2.7). Finally,

the factor 1/2! comes from the symmetrisation of the two identical gluons [12]. We stress

once more that, if we are interested in double Higgs production, this happens separately

for each of the Born diagrams in figure 5. We also remind the reader that this is true as

long as we limit ourselves to colour-singlet gluon exchange.

Given the considerations above, it is easy to see that QCD corrections to the Born

diagram of single Higgs production T , or to T1,2 for double Higgs, reduce to the computation

of a two-dimensional one- or two-loop triangle-like integral, while the corrections to B1,2,

involve the computation of more complicated box-like loop integrals. Moreover, it should

also be clear that for T , T1 and T2, the QCD corrections only depend on the momenta q1,

q2 and are therefore equal in all three cases. Putting everything together, we find similarly
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to ref. [12]

χ
(1)
T (q1, q2) =

1

π

∫
d2k

k2 + λ2

q2
1 +M2

V

(k − q1)2 +M2
V

q2
2 +M2

V

(k + q2)2 +M2
V

(2.13)

χ
(2)
T (q1, q2) =

1

π2

∫ ( 2∏
i=1

d2ki

k2
i + λ2

)
q2

1 +M2
V

(k12 − q1)2 +M2
V

q2
2 +M2

V

(k12 + q2)2 +M2
V

, (2.14)

where we defined k12 = k1 + k2 and have introduced a fictitious gluon mass λ to regulate

the residual IR divergences. Also, we have removed the dependence on the momenta {q}
since for these diagrams q1 + q2 = q.

Let us consider now the two box-like topologies, which have a non-trivial dependence

on the momenta of the two Higgs bosons. Calling their momenta q3 and q4 and using

q4 = −q1 − q2 − q3 (all momenta are incoming), we find

χ
(1)
B1

(q1, q2, q3) =
1

π

∫
d2k

k2 + λ2

q2
1 +M2

V

(k − q1)2 +M2
V

q2
2 +M2

V

(k + q2)2 +M2
V

t+M2
V

(k − q13)2 +M2
V

χ
(2)
B1

(q1, q2, q3) =
1

π2

∫ ( 2∏
i=1

d2ki

k2
i + λ2

)

× q2
1 +M2

V

(k12 − q1)2 +M2
V

q2
2 +M2

V

(k12 + q2)2 +M2
V

t+M2
V

(k12 − q13)2 +M2
V

χ
(j)
B2

(q1, q2, q4) = χ
(j)
B1

(q1, q2, q3)
∣∣∣ q3↔q4
t↔u

, j = 1, 2 . (2.15)

where we put qij = qi + qj and defined in addition the “transverse-plane” Mandelstam

variables s = (q1 + q1)2 , t = (q1 + q3)2 , u = (q1 + q4)2. Similarly to the previous case, we

regulated the residual IR divergences with a gluon mass λ.

The integrals above can be computed in many different ways, most notably making

use of the reduction of all 1-loop and certain 2-loop n-point functions, with n ≥ 3, in d = 2

space-time dimension, to lower-point topologies. Also a direct computation of the integrals

using their Feynman parameter representation can be attempted, which turns out to be

particularly simple for the triangle integrals χ
(1)
T (q1, q2) and χ

(2)
T (q1, q2), see ref. [12]. While

the analytic computation is conceptually straightforward, the result, in particular for what

concerns the box-type integrals, can become very cumbersome due to their dependence on

a large number of scales and are not particularly illuminating.

Nevertheless, since we are dealing with two-dimensional euclidean integrals, it turns

out to be entirely straightforward to produce very compact one-fold integral representations

for them by extracting the logarithmic divergences as λ → 0 and integrating directly on

the 2-dimensional loop momenta in polar coordinates. This remains true at two loops,

where one can first integrate out the gluonic one-loop sub-bubble, and then proceed in the

very same way as for the one-loop integrals. This allows us to get all results as one-fold

integrals over simple algebraic functions and at most powers of logarithms.
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We write down the results for the one- and two-loop triangles as

χ
(1)
T (q1, q2) = − ln

(
λ2

M2
V

)
+ f

(1)
T

χ
(2)
T (q1, q2) = ln2

(
λ2

M2
V

)
− 2 ln

(
λ2

M2
V

)
f

(1)
T + f

(2)
T (2.16)

and similarly for the boxes

χ
(1)
B1

(q1, q2, q3) = − ln

(
λ2

M2
V

)
+ f

(1)
B

χ
(2)
B1

(q1, q2, q3) = ln2

(
λ2

M2
V

)
− 2 ln

(
λ2

M2
V

)
f

(1)
B + f

(2)
B (2.17)

where the function f
(j)
T and f

(j)
B depend on the corresponding transverse momenta and χ

(j)
B2

can be obtained from χ
(j)
B1

by swapping q3 ↔ q4 as in eq. (2.15). In order to write their

analytic expression, we start off by parametrising the kinematics in the two-dimensional

transverse plane as

q1 = (q1x, 0) , q2 = (q2x, q2y) , q3 = (q3x, q3y) (2.18)

with q4 = −q1 − q2 − q3, and we introduce the shorthand notation

∆1 = (q2
1 +M2

V ) , ∆2 = (q2
2 +M2

V ) , ∆t = (t+M2
V )

The functions can then be written as follows

f
(1)
T = −

∫ 2π

0

dξ

π

∆1∆2

r13

(
ln(r̄1)

r1r12r14
+

ln(r̄3)

r3r23r34

)
+

(
r1 ↔ r2

r3 ↔ r4

)
(2.19)

f
(2)
T = −2

∫ 2π

0

dξ

π

∆1∆2

r13

(
ln2(r̄1)

r1r12r14
+

ln2(r̄3)

r3r23r34

)
+

(
r1 ↔ r2

r3 ↔ r4

)
+

4π2

3
(2.20)

f
(1)
B = −

∫ 2π

0

dξ

π

∆1∆2∆t

r13r15r35

(
r35 ln(r̄1)

r1r12r14r16
+

r15 ln(r̄3)

r3r23r34r36
+

r13 ln(r̄5)

r5r25r45r56

)
+

 r1 ↔ r2

r3 ↔ r4

r5 ↔ r6

 (2.21)

f
(2)
B = −2

∫ 2π

0

dξ

π

∆1∆2∆t

r13r15r35

(
r35 ln2(r̄1)

r1r12r14r16
+
r15 ln2(r̄3)

r3r23r34r36
+
r13 ln2(r̄5)

r5r25r45r56

)
+

 r1 ↔ r2

r3 ↔ r4

r5 ↔ r6

+
4π2

3

(2.22)

with rij = ri − rj , r̄j = −rj/M2
V and the six roots read

r1 = q1x cos ξ − iR1√
2
, r2 = r∗1 ,

r3 = −(q2x cos ξ + q2y sin ξ)− iR2√
2
, r4 = r∗3 ,

r5 = ((q1x + q3x) cos ξ + q3y sin ξ)− iR3√
2
, r6 = r∗5 , (2.23)
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where r∗j indicates complex conjugation and

R1 =
√

2M2
V + q2

1(1− cos 2ξ)

R2 =
√

2(M2
V + q2

2)− 2(q2x cos ξ + q2y sin ξ)2

R3 =
√

2(M2
V + t)− 2((q1x + q3x) cos ξ + q3y sin ξ)2 . (2.24)

The complex arguments and the three square-roots above might seem somewhat un-

appealing, in particular because lengthy but fully analytic representation can be obtained

for all these functions in terms of polylogarithms. In fact, if we limit ourselves to one-loop,

the expressions are rather compact and we report them in appendix A. Nevertheless, our

results involve only integrals of logarithms and exhibit a very high degree of symmetry,

both moving from one to two loops and going from 3- to 4-point functions. Moreover it

is straightforward to rewrite the integrals to make them explicitly real, at the price of

introducing inverse trigonometric functions. Finally, as a curiosity, it turns out that per-

forming the calculation in this way the results can be effortlessly generalised to higher-point

integrals, i.e. for an arbitrary number of Higgs bosons in the final state.

With the definitions above, the non-factorisable QCD corrections to the total amplitude

for single and double Higgs production can be written, respectively, as

MH =
∑
j

M(j)
H , MHH =

∑
j

M(j)
HH , (2.25)

where for single Higgs we have simply

M(j)
H =M(j)

T , (2.26)

while for double Higgs we find

M(j)
HH =M(j)

T1
+M(j)

T2
+M(j)

B1
+M(j)

B2
, (2.27)

which of course implies a much richer interference pattern. More explicitly, we find for the

cross-section for single Higgs production

dσNNLO
H,nf = α̃2

s χ
H
nf(q1, q2) dσLO (2.28)

where dσLO is the leading-order cross section given in (2.1), α̃s is the effective coupling in

eq. (2.7), and the NNLO non-factorisable contributions only depend on the functions f
(j)
T

through

χHnf(q1, q2) =
[
χ

(1)
T (q1, q2)

]2
− χ(2)

T (q1, q2)

=
[
f

(1)
T

]2
− f (2)

T . (2.29)

As an illustration, and in order to compare this case to di-Higgs production, it is useful to

compute the corrections in the limit where all transverse scales become small compared to
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the vector-boson mass, i.e. q2
1,2 � M2

V . In that limit, all integrals become trivial and we

find [12]

χHnf(q1, q2) = 1− π2

3
. (2.30)

In the case of double Higgs production, the form of the corrections is rather cumber-

some but still entirely straightforward and we prefer to avoid writing down the formulas

explicitly. On the other hand, if we consider the same limit as above, ie q2
1,2 ∼ q2

3,4 �M2
V ,

formulas simplify considerably. In order to present the result, we divide the LO cross-

section in three contributions as

dσLO
HH = dσLO

TT + dσLO
BB + dσLO

TB, (2.31)

where dσLO
TT is the contributions stemming solely from diagrams T1 and T2, σLO

BB from B1

and B2 and σLO
TB from the interference of the two classes of diagrams, see figure 5. With

this, we find that the non-factorisable corrections at NNLO take the suggestive form

dσNNLO
HH,nf ∼ α̃2

s

[(
1− π2

3

)(
dσLO

TT + dσLO
TB

)
+

(
5

4
− π2

3

)
dσLO

BB

]
. (2.32)

Eq. (2.32) shows that the three contributions to the Born cross-section for di-Higgs produc-

tion can receive radiative corrections which are different at the 10% level. The cross-section

for HH production at LO is the result of delicate cancellations of more than one order of

magnitude between the three different contributions in eq. (2.31), as can be seen in ta-

ble 1. These cancellations are a well known manifestation of the role that the Higgs boson

has in restoring unitarity in the Standard Model. Since we are working in the eikonal

approximation, one could therefore wonder whether this approximation could spoil these

cancellations and induce in this way artificially large NNLO QCD corrections on the di-

Higgs cross-section. As a matter of fact, eq. (2.32) suggests that QCD corrections do

affect differently the various contributions to the di-Higgs cross-section enough to mod-

ify the cancellation pattern. Interestingly though, eq. (2.32) is valid in the limit of very

small transverse momenta, where one expects the eikonal approximation to work well and

the cross-section to be insensitive to any unitarisation issues. We are therefore lead to

conclude that non-factorisable QCD corrections do have a potentially large impact on di-

Higgs production and that this does not appear to be only a result of the approximation

considered.

In figure 8, we show the α̃2
s coefficient of each of the TT , TB and BB contributions as

a function of a cut on the maximum transverse momentum, max(pt,j1 , pt,H1) < pt,max. At

small values of pt,max we can observe a convergence of these coefficients to the analytic ex-

pression given in eq. (2.32). Above pt,max ∼MZ there is a transition to different numerical

values of the coefficients, leading to an even larger spoliation of the cancellation present

in the LO cross section. It is therefore clear that the conclusions drawn from eq. (2.32)

remain true away from the small transverse momentum limit considered here.

Another interesting limit to study is the case where the Higgs bosons’ transverse mo-

menta are small, i.e. q2
3, q

2
4 � M2

V which implies that q2
1 ∼ q2

2. In this limit, it is easy to
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Figure 8. α̃2
s coefficient of the TT , TB and BB contributions to the NNLO non-factorisable

corrections, normalised to the corresponding LO term, as a function of a cut on the maximum

transverse momentum, max(pt,j1 , pt,H1) < pt,max.

show that the cross section becomes

dσNNLO
HH,nf∼ α̃2

s

{[
1

4

(
x4+8x3+10x2−12x+5

)
+(x+1)(x+3) log(x+1)−2Li2(−x)−π

2

3

]
dσLO

BB

+

[
1

2

(
x3 + 3x2 − 4x+ 2

)
+

1

2
(x+ 1)(x+ 5) log(x+ 1)− 2Li2(−x)− π2

3

]
dσLO

TB

+

[
(x− 1)2 + 2(x+ 1) log(x+ 1)− 2Li2(−x)− π2

3

]
dσLO

TT

}
. (2.33)

where x = q2
1/M

2
V = q2

2/M
2
V . First we notice that this result reproduces eq. (2.32) when

x → 0, as expected. As x grows the radiative corrections to the three contributions differ

widely and in particular we see that as x→∞ the cross section takes the form

dσNNLO
HH,nf ∼ α̃2

s

[
x2dσLO

TT +
1

2
x3dσLO

TB +
1

4
x4dσLO

BB

]
. (2.34)

In the limit where q2
1 ∼ q2

2 ∼M2
V , ie when x = 1 we obtain

dσNNLO
HH,nf ∼ α̃2

s

[(
4 log(2)− π2

6

)
dσLO

TT +

(
1 + 6 log(2)− π2

6

)
dσLO

TB

+

(
3 + 8 log(2)− π2

6

)
dσLO

BB

]
, (2.35)

which numerically reads

dσNNLO
HH,nf ∼ α̃2

s

[
1.13 dσLO

TT + 3.51 dσLO
TB + 6.90 dσLO

BB

]
, (2.36)
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and leads us to conclude that the non-factorisable corrections can grow very rapidly with

x, ie with the transverse momentum of the jets. We note that the eikonal approximation is

strictly speaking only valid when x ∼ 0 and that the rapid growth could be seen (at least

in part) as a consequence of the breakdown of the approximation.

Before concluding this section, it is worth noting that at O(α2
s) there are both loop-

induced and real emission diagrams that contribute to the non-factorisable corrections

discussed above. Nevertheless, it is well known that real emission diagrams do not con-

tribute to leading order in the eikonal approximation, and the whole cross-section in this

limit stems from the virtual contributions only. This is also demonstrated by the fact

that IR divergences cancel between the two-loop and the one-loop squared amplitudes.

We stress here that the real emission diagrams have been computed for the single Higgs

case in [26], and could be used to compute non-factorisable corrections beyond the leading

eikonal approximation, once the full two-loop amplitudes become available.

3 Results for single Higgs VBF production

3.1 Setup

In order to investigate the size of the various QCD corrections, we study 13 TeV proton-

proton collisions, in a setup identical to ref. [7]. We use a diagonal CKM matrix, full

Breit-Wigners for the W , Z and the narrow-width approximation for the Higgs boson.

We take the NNPDF 3.0 parton distribution functions at NNLO with αs(MZ) = 0.118

(NNPDF30 nnlo as 0118) [27], as implemented in LHAPDF-6.1.6 [28]. We consider five light

flavours and ignore contributions with top quarks in the final state or internal lines. We set

the Higgs mass to MH = 125 GeV, compatible with the experimentally measured value [29].

Electroweak parameters are set according to known experimental values and tree-level

electroweak relations. As inputs we use MW = 80.398 GeV, MZ = 91.1876 GeV and GF =

1.16637 × 10−5 GeV−2. For the widths of the vector bosons we use ΓW = 2.141 GeV and

ΓZ = 2.4952 GeV. The central factorisation, µF, and renormalisation, µR, scales are set to

µ2
0(pt,H) =

MH

2

√(
MH

2

)2

+ p2
t,H , (3.1)

when computing factorisable corrections. We compute the residual scale uncertainties by

varying this scale up and down by a factor 2 keeping µR = µF, which was shown in ref. [7]

to encompass almost the same scale uncertainty bands as a full 7-point scale variation

(i.e. where µR and µF are varied independently by a factor 2 with 1
2 ≤

µR
µF
≤ 2). For

the purpose of comparing these effects, we compute the non-factorisable corrections using

the same central scale, which differs from the renormalisation scale choice µR =
√
pt,j1pt,j2

in ref. [12]. The residual scale uncertainties for these last predictions have been obtained

using the full 7-point scale variation.

In the following we will discuss results both fully inclusively in the VBF jets, and under

a set of representative VBF selection cuts. To pass our VBF selection cuts, events should

have at least two jets with transverse momentum pt > 25 GeV; the two hardest (i.e. highest
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Figure 9. (left) The normalised integrated cross section as a function of ξ fully inclusively (purple)

and under the VBF cuts of section 3.1 (green) for single Higgs production through VBF. (right)

The average of ξ as a function of yH and pt,H .

pt) jets should have absolute rapidity |y| < 4.5, be separated by a rapidity ∆yj1,j2 > 4.5,

have a dijet invariant mass mj1,j2 > 600 GeV and be in opposite hemispheres (yj1yj2 < 0).

We define jets using the anti-kt algorithm [30], as implemented in FastJet v3.1.2 [31],

with radius parameter R = 0.4.

We compute all QCD corrections within the proVBFH framework [7, 9] which is based

on results presented in refs. [6, 16–20, 32–34]. As of version 1.2.0, the non-factorisable

corrections of ref. [12] have also been implemented in proVBFH. We evaluate the integrals

of eqs. (2.19)–(2.22) using fourth order Runge-Kutta methods.

3.2 Validity of the eikonal approximation

The calculation of the non-factorisable NNLO corrections in VBF given in ref. [12] is carried

out as an expansion in ξ truncated to lowest order in ξ, see eq. (2.6). The authors argue

that this ratio is typically of the order 1
6 , based on experimental measurements of the pt,j1

and mjj spectra [35, 36], and hence that the relative error associated with truncating the

power expansion at the leading order is roughly 1
36 . This analysis is performed under the

VBF cuts given in section 3.1 which guarantee large
√
s because of the requirement on the

invariant mass of the di-jet system.

In this section we investigate in some detail how robust this approximation remains

when no cuts are applied to the jets. Although such an inclusive setup is not of much

phenomenological interest, it is of theoretical interest, given that not only the factorisable

NNLO corrections are known fully inclusively, but also the N3LO ones [9].

In the left panel of figure 9 we show the normalised VBF cross section integrated in ξ,

defined as

Σ(ξ) =
1

σ

∫ ξ

0

dσ

dξ′
dξ′ . (3.2)
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We show the cross section fully inclusively and under VBF cuts. Under VBF cuts the

cross section clearly lives below ξ ∼ 0.2, whereas the fully inclusive cross section receives

contributions all the way up to ξ ∼ 0.4. However almost 85% of the events have ξ < 0.2

implying that the approximation used in ref. [12] is valid in a large region of the inclusive

VBF phase space. In fact, the average value of ξ is below 0.12 for all values of the rapidity

of the Higgs Boson and for moderate transverse momenta, pt,H , as can be seen in the two

right panels of figure 9. At large pt,H , the average value of ξ increases almost linearly with

pt,H and hence the eikonal approximation starts to break down. This is not unexpected as

pt,H is balanced by the jet transverse momenta, which by definition have to take moderate

values in order to keep ξ small.

In the region of phase space where the eikonal approximation breaks down, i.e. when

ξ becomes large, (2.28) is no longer valid. However, in this region the non-factorisable

corrections are not expected to receive a Glauber phase enhancement partially mitigating

the colour suppression, as this enhancement arises only in the eikonal limit.

3.3 Fiducial results

In this section, we provide results for both factorisable and non-factorisable corrections on

differential and fiducial cross sections. Although they have been presented separately in

refs. [7, 12], we show here for the first time the combined factorisable and non-factorisable

NNLO prediction to VBF Higgs production.

3.3.1 With VBF cuts

In figures 10 and 11 we compare the size of the factorisable and non-factorisable corrections

to VBF Higgs production under the selection cuts of section 3.1. In the upper panels we

show the NLO prediction. The lower panels show various predictions normalised to the

NLO prediction. In blue we show the factorisable NNLO prediction with its associated

scale uncertainty band. The red curve shows the combined NNLO factorisable and non-

factorisable prediction. In the bulk of the phase space, the non-factorisable corrections

are small and within the scale uncertainty bands. However, it is interesting to observe

that for large pt,j2 and pt,H the corrections can in certain regions become larger than the

factorisable scale uncertainty. This makes the non-factorisable corrections of potential

relevance in boosted Higgs boson searches. On the other hand it is clear from figure 9 that

the eikonal approximation is not reliable at very high values of pt,H , and the corrections

should therefore be applied with care. A summary of the impact of O(α2
s) corrections on the

fiducial cross section is shown in figure 1a as a function of the ∆yjj and mjj selection cuts,

requiring also two R = 0.4 anti-kt jets with pt > 25 GeV and |yj | < 4.5. The corrections

have only a mild dependence on the cuts, decreasing from roughly −4% at low cuts to

around −3% at larger cut values. The non-factorisable corrections shown in figure 1b on

the other hand show a stronger dependence on the cuts. In general they are suppressed by

an order of magnitude compared to the factorisable corrections. They increase in size with

an increase in the ∆yjj cut, and decrease as the mjj cut increases. The first effect is related

to the Glauber enhancement which grows with the separation of the jets. The decrease

of the non-factorisable corrections as the mjj cut increases is consistent with figure 11,
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Figure 10. Upper panel: NLO prediction for VBF production with cuts for the transverse mo-

mentum of the two leading jets and the Higgs boson. Lower panel: ratio of the factorisable NNLO

prediction to NLO (blue) and of the full NNLO prediction to NLO (red). The blue bands represent

the scale uncertainty of the NNLO factorisable prediction.

where we observe that these corrections change sign around 2.5 TeV. It is important to

keep in mind that these results will strongly depend on the choice of jet radius. Beyond

LO the VBF cross section is well-known to be affected by real radiation escaping the

tagging jets [37], while the NNLO non-factorisable corrections are independent of the jet

radius. Therefore, one should compare the non-factorisable contribution not only to their

factorisable counter-part, but also to the size of the scale uncertainty bands, particularly

for large R values when the NNLO factorisable corrections become numerically small but

their scale uncertainty remains large.

3.3.2 Without selection cuts

As discussed in section 3.2 the eikonal approximation is only formally valid when consid-

ering fiducial VBF production. It can however still provide a useful estimate of the size of

the non-factorisable corrections in inclusive production. This is of particular interest, as

the inclusive factorisable N3LO corrections are available for comparison in this regime.

In figure 12 we show in the lower panels for pt,H and |yH | in blue the factorisable

NNLO prediction, and in green the factorisable N3LO prediction, both normalised to the

NLO curve shown in the upper panel. We also show the combined factorisable and non-

factorisable NNLO prediction in two setups: the non-factorisable corrections computed

according to eq. (2.28) everywhere in phase space (red) and the non-factorisable corrections

computed according to eq. (2.28) when ξ < 0.2 and set to 0 otherwise (dashed-orange).

This last procedure is used to verify that differential observables do not receive significant
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Figure 11. Upper panel: NLO prediction for VBF production with cuts for the invariant mass

and rapidity separation of the tagging jets, as well as for the rapidity of the Higgs boson. Lower

panel: ratio of the factorisable NNLO prediction to NLO (blue) and of the full NNLO prediction to

NLO (red). The blue bands represent the scale uncertainty of the NNLO factorisable prediction.

contributions from the large ξ region. We observe that in the bulk of the phase space

the numerical difference between the red and the dashed-orange curves is very small —

of the order of a few percent. It is therefore clear that the bulk of the non-factorisable

corrections in the eikonal approximation come from the ξ < 0.2 region, even without VBF

cuts. This is consistent with figure 9 which shows that the mean value of ξ is typically

below 0.2. We observe that the non-factorisable NNLO corrections are typically larger than

the factorisable N3LO ones, and that they are not covered by the NNLO scale variation

uncertainties. In fact, the non-factorisable NNLO corrections are almost O(40%) of the

factorisable ones at this order. However we stress again that the non-factorisable corrections

computed in the eikonal approximation do not necessarily provide reliable predictions in

the full VBF phase space, as subleading terms can become relevant. It should also be noted

that this large effect stems not from an enhancement of the non-factorisable effects, but

rather from an order of magnitude decrease in the factorisable corrections when no cuts

are applied.

4 Results for di-Higgs VBF production

We will now investigate the impact of non-factorisable contributions to the VBF Higgs

pair production process. The electroweak parameters are set identically to the previous

single Higgs study detailed in 3.1, with a width ΓH = 4.030 MeV for the internal Higgs

propagator, while the final state Higgs bosons remain in the narrow-width approximation.
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Figure 12. Upper panel: NLO prediction for inclusive VBF production for the transverse mo-

mentum and rapidity of the Higgs boson. Lower panel: ratio of the factorisable NNLO prediction

to NLO (blue) and of the full NNLO prediction to NLO (red). The blue bands represent the scale

uncertainty of the NNLO factorisable prediction. The orange dashed curve shows the full NNLO-

prediction after applying a cut ξ < 0.2 on the non-factorisable component. The factorisable N3LO

prediction is shown in green.

For the factorisable corrections the central renormalisation and factorisation scales are now

set to

µ2
0(pt,HH) =

mH

2

√(mH

2

)2
+ p2

t,HH , (4.1)

and uncertainties from missing higher orders are again estimated by varying the scales

symmetrically up and down by a factor two, as was discussed in section 3.1. For the non-

factorisable corrections we pick the same central scales, but when showing the residual scale

uncertainty envelope, we perform the full 7-point scale variation, i.e. varying independently

µR and µF by a factor 2 but keeping the ratio to the interval 1
2 ≤

µR
µF
≤ 2. The NNLO

corrections are calculated with proVBFHH v1.1.0 [38, 39].

4.1 Validity of the eikonal approximation

Similarly to what we did for single Higgs production, we start by examining the validity

of the eikonal approximation. We expect the eikonal approximation to be valid when

all transverse scales are small compared to the total centre-of-mass energy. To test this

statement quantitatively, we define

ξHH =
max{pt,j1 , t, u}√

s
. (4.2)
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Figure 13. Left: the normalised integrated cross section as a function of ξ fully inclusively (purple)

and under the VBF cuts of section 3.1 (green) for di-Higgs production through VBF. Right: the

average of ξHH as a function of yHH and pt,HH .

where t and u are defined as below eq. (2.15). In figure 13, we show in the left panel the

normalised di-Higgs VBF cross section integrated in ξHH , both fully inclusively and under

VBF cuts. Here we see that compared to the single Higgs process, the ξHH distribution

with no cuts is contained to lower values below ξHH ∼ 0.25. With VBF cuts the two

distributions are very similar, and we therefore expect the eikonal approximation to be

valid also in the di-Higgs process. In particular, from the right panel of figure 13, it is clear

that the approximation only starts to break for very large transverse momentum values of

the Higgs pair.

4.2 Fiducial results

In this section we discuss the impact of the non-factorisable NNLO corrections to di-Higgs

VBF production computed in section 2.2. As was discussed there, the non-factorisable

corrections are characterised by an interesting interference pattern which is not present in

the single Higgs process. In table 1 we exemplify this by showing the LO fiducial cross

section under the cuts of section. 3.1 and their NNLO non-factorisable corrections. We split

the cross section into the contribution coming from only the T1 and T2 topologies, σTT ,

only the B1 and B2 topologies, σBB and their interference, σTB, cf. figure 5. As one can

see, the di-Higgs cross section at LO is the result of cancellations spanning several orders of

magnitude. For the individual sets of diagrams, the non-factorisable corrections are below

1% and one can show that the combined 1- and 2-loop contribution in each case is always

negative. However, the total correction turns out to be positive and above 1%, since

the negative non-factorisable corrections on top of the already negative LO interference

dominate slightly over the other two contributions. Indeed, since QCD corrections affects

the four Born diagrams differently, the delicate cancellations which characterise the LO

cross-section get spoiled and the total correction ends up being more than four times larger

in magnitude than any of the individual ones. It is interesting to note that the relative

correction to σTT of−0.327% is very close to the correction found in the single Higgs process
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λ = MV σTT σBB σTB Σ

Born 10.393 fb 14.172 fb −23.904 fb 0.662 fb

1-loop NF 0.339% 0.518% 0.399% 2.03%

2-loop NF −0.667% −0.658% −0.666% −0.50%

Full NF −0.327% −0.139% −0.267% 1.52%

Table 1. Fiducial cross section for vector-boson fusion di-Higgs production at 13 TeV under the cuts

of section 3.1. The first row indicates the Born contribution in femtobarn of the triangle diagrams,

box diagrams and their interference. The second row shows the 1-loop squared non-factorisable

(1-loop NF) correction in percent of the Born results for the same three contributions. The third

row shows the same but for the 2-loop times tree-level non-factorisable (2-loop NF) contribution.

The last row shows the same breakdown but for the sum of both contributions. The last column

shows the sum of the contributions across each row.
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Figure 14. Kinematic distributions for Higgs pair production through VBF under the cuts of

section 3.1. (a) transverse momentum of the hardest jet (b) transverse momentum of the second

hardest jet. In red we show the non-factorisable α2
s correction and in blue we show the factorisable

one. Both are normalised to the NLO cross section.

of −0.32% under identical cuts (cf figure 1b), and hence that the enhancement in the total

correction is not a consequence of the different kinematics of the di-Higgs system itself.

At the level of distributions this effect can become even more sizeable. To put the

size of the NNLO non-factorisable corrections into context, we compare them to the fac-

torisable NNLO corrections. In figure 14 we show the corrections to the two hardest jets,

normalised to the NLO cross section. For low to moderate jet transverse momenta the non-

factorisable corrections are at the few percent level and typically smaller in size than their
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Figure 15. Same as figure 14 for (a) transverse momentum of the hardest Higgs boson (b)

transverse momentum of the di-Higgs system.

factorisable counterparts. They can however grow to become significantly larger than the

factorisable corrections when the jet transverse momenta become large, reaching O(40%)

level for pt,j2 ∼ 160 GeV, see figure 14. Once more, we can trace this back to the same

mechanism described above: the corrections to the individual Born contributions are not

very large in this region, but the cancellation pattern between them is modified by QCD

radiation, leading to very large corrections. We also note here that a similar growth of

the NNLO non-factorisable corrections in the jet pt distributions can be observed also in

single Higgs production, see figure 10. Nevertheless, due to the lack of interference to

enhance the corrections, these remain much more moderate than for double Higgs below

pt,j2 ∼ 160 GeV. We should also stress here that, as the jet transverse momenta grow, the

eikonal approximation becomes less reliable and hence one should use the results in this

region with caution.

In figure 15 we show the transverse momentum distribution of the Higgs with larger

transverse momentum and of the di-Higgs system. Similar to the jet transverse momenta,

we see an increase of the non-factorisable corrections when the Higgs bosons become hard.

However, the corrections remain moderate, and tend to be of the same order of magnitude

as the factorisable corrections.

Finally, in figure 16 we show the dijet rapidity separation and invariant mass. The

non-factorisable corrections tend again to be small to moderate in both observables, and

of the same order as the factorisable corrections.
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Figure 16. Same as figure 14 for (a) dijet rapidity separation (b) dijet invariant mass.

VBF σ(NLO fact.) δσ(fact.) δσ(non-fact.)

Hjj 0.876 −0.032 +0.008
−0.008 −0.0030 +0.0006

−0.0009 [pb]

HHjj 0.607 −0.012 +0.003
−0.001 +0.010 +0.005

−0.003 [fb]

Table 2. Fiducial cross sections for single and double Higgs VBF production at NLO, along with

the corresponding NNLO corrections. The quoted uncertainties correspond to scale dependence,

while statistical errors at NNLO are about 0.5h. For details on the scale variation see sec 3.1.

5 Conclusions

In this paper we have studied the relative sizes of factorisable and non-factorisable QCD

corrections to both single and double VBF Higgs production. A summary of the results

is given in table 2, which shows the NLO fiducial cross section of single and di-Higgs

production and the corresponding NNLO corrections. This study was made possible by

recent advances in estimating the non-factorisable terms contributing to the NNLO cross

section [12], which we extended to the di-Higgs process. We have presented the combined

factorisable and non-factorisable NNLO corrections, as implemented in the public code

proVBFH v1.2.0 (https://provbfh.hepforge.org/) for single Higgs VBF production. We find

that for typical selection cuts the non-factorisable NNLO corrections are small and mostly

contained within the factorisable scale uncertainty bands. For large jet and Higgs transverse

momenta, the non-factorisable corrections can become comparable to the factorisable ones.

In this region, it is however not clear that the eikonal approximation used to estimate the

corrections remains valid.
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We also showed that the corrections computed in ref. [12] can be used to provide

an estimate for the non-factorisable corrections for the fully inclusive VBF phase space.

In this case we find that the non-factorisable NNLO corrections are of the same order

as the NNLO factorisable corrections, and moderately larger than the factorisable N3LO

corrections. This is in contrast with the usual statement that non-factorisable corrections

can be neglected at this order [5] for inclusive quantities. We stress that this estimate

comes from an extrapolation of the eikonal approximation into a regime beyond where it is

expected to remain valid, and should therefore only be taken as an estimation of the true

size of non-factorisable NNLO corrections to fully inclusive VBF.

Finally, we have implemented the non-factorisable correction to the Higgs pair produc-

tion process in VBF, which is available in proVBFHH v1.1.0 (https://provbfh.hepforge.org/).

In di-Higgs production, we found that the non-factorisable corrections are sizable. This

enhancement of the non-factorisable corrections comes from a delicate cancellation of the

various Born diagrams, which is spoiled by the radiative corrections. Because the fac-

torisable corrections to the di-Higgs process are smaller than in the single Higgs process,

this leads to the non-factorisable corrections being of the same order of magnitude or even

dominant compared to the NNLO factorisable ones. For the fiducial volume studied here

the two corrections have opposite sign and partially cancel each other.

Public versions of the codes used in this article are available online [40]. These results

pave the way for precision measurements of the Higgs sector at the LHC and HL-LHC, as

well as for further studies of non-factorisable effects and their interplay with the choice of

jet radius.
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A Analytic results for one-loop integrals

In this appendix we report, for completeness, analytic results for the one-loop functions

defined in eqs. (2.16), (2.17) and in eqs. (2.19), (2.21).

We recall here that we are dealing with two-dimensional (euclidean) integrals. As it is

well known, at one-loop any n-point function with n ≥ 3 can be reduced to bubbles and
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tadpoles, such that the finite piece of every one-loop integral close to d = 2 dimensions

can always be expressed in terms of logarithms only. We stress that, obviously, for this

reduction to be true, one needs to work with explicitly two-dimensional kinematics. As in

the main text, we parametrise the momenta q1, q2 and q3 as

q1 = (q1x, 0) , q2 = (q2x, q2y) , q3 = (q3x, q3y) (A.1)

such that the usual Mandelstam invariants are not independent and can be written as

s = (q1x + q2x) 2 + q2
2y , t = (q1x + q3x) 2 + q2

3y , (A.2)

u = (q2x + q3x) 2 + (q2y + q3y)
2 , (A.3)

q2
1 = q2

x , q2
2 = q2

2x + q2
2y , q2

3 = q2
3x + q2

3y, (A.4)

q2
4 = (qx + q2x + q3x) 2 + (q2y + q3y)

2 . (A.5)

In what follows, we will use interchangeably either the Mandelstam invariants or their

parametrisation above, depending on which of the two is more convenient.

In order to present the results below, we introduce a one-loop box family of finite,

two-dimensional integrals

In1,n2,n3,n4 =
1

π

∫
d2k

1

Dn1
1 Dn2

2 Dn3
3 Dn4

4

(A.6)

with
∑

j nj ≥ 2 and

D1 = k2 + λ2 , (A.7)

D2 = (k − q1)2 +M2
V , (A.8)

D3 = (k + q2)2 +M2
V , (A.9)

D4 = (k − q13)2 +M2
V . (A.10)

With this notation we see that

χ
(1)
T (q1, q2) = I1,1,1,0 , χ

(1)
B1

(q1, q2, q3) = I1,1,1,1 .

It is very easy to reduce the box-integral I1,1,1,1 to triangle integrals by noticing that, for

strictly two-dimensional kinematics, the four propagators Dj are not linearly independent

and one can write

1 =
1

∆B

[
(2q2yq3x − (q3y(q1x + 2q2x))D1 + q1xq2y(D4 −D2) + q1xq3yD3

]
(A.11)

with

∆B = M2
V q1xq3y + λ2 (2q3xq2y − q1xq3y − 2q2xq3y)

+ q1x

(
q2

2xq3y + q2
3xq2y + 2q1xq3xq2y + q2yq

2
3y + q2

2yq3y

)
. (A.12)

Using this equation in the numerator of I1,1,1,1 one easily finds

I1,1,1,1 =
1

∆B

[
(2q2yq3x − (q3y(q1x + 2q2x)) I0,1,1,1

+ q1xq2y(I1,1,1,0 − I1,0,1,1) + q1xq3yI1,1,0,1

]
, (A.13)

– 25 –



J
H
E
P
1
0
(
2
0
2
0
)
1
3
1

which reduces the box to a combination of four triangles. We stress here that eq. (A.11) is

actually a reduction at the integrand level. In other words, it only assumes two-dimensional

kinematics but does not require any conditions on the dimensions of the loop momentum

k. Indeed, the relation can be used to reduce the box-integral I1,1,1,1 to triangles exactly

even if the loop integration were to be performed in d dimensions.

As it is well known, in d = 2 triangles are also not independent and can in turn be

reduced to bubbles. Contrary to eq. (A.13), the reduction of triangles to bubbles is only

true at the integral level, i.e. it assumes that also the loop momentum is two-dimensional.

To proceed, let us first notice that since I1,0,1,1 and I1,1,0,1 can be obtained from I1,1,1,0

simply by permuting the external invariants, we only need to study I1,1,1,0 and I0,1,1,1.

We start with I1,1,1,0, whose integrand depends on the three momenta q1, q2,k. If

the loop momentum is also two-dimensional, then it is immediate to see that the Gram

determinant of the three vectors G(k, q1, q2) must be zero. We can then write down the

identity ∫
d2k

G(k, q1, q2)

Dn1
1 Dn2

2 Dn3
3

= 0 (A.14)

which is identically true for every n1, n2, n3 ∈ N such that the integral converges. After

reducing all integrals to triangles and bubbles and using λ = 0 for simplicity,1 can be

inverted to give

I1,1,1,0 =
1

∆T,1

[
s
(
q2

1 + q2
2−s−2M2

V

)
I0,1,1,0 +

(
q2

2

(
M2
V +q2

1 +s
)
− q4

2 −M2
V

(
q2

1−s
))
I1,0,1,0

+
(
M2
V

(
q2

1 − q2
2 + s

)
− q2

1

(
q2

1 − q2
2 − s

))
I1,1,0,0

]
(A.15)

where

∆T,1 = 2
[
M4
V s+M2

V

(
q2

1

(
2q2

2 + s
)

+ q2
2

(
s− q2

2

)
− q4

1

)
+ q2

1q
2
2s
]
. (A.16)

Repeating the very same steps for I0,1,1,1, using instead the Gram determinant

G(k, q3, q4) one finds

I0,1,1,1 =
1

∆T,2

[
q2

3

(
s− q2

3 + q2
4

)
I0,1,0,1 + q2

4

(
s+ q2

3 − q2
4

)
I0,0,1,1 + s

(
q2

3 + q2
4 − s

)
I0,1,1,0

]
(A.17)

with

∆T,2 = 2
[
M2
V

((
s− q2

4

)2
+ q4

3

)
+ q2

3q
2
4s− 2q2

3

(
q2

4 + s
) ]
. (A.18)

We stress once more that in d = 2 the 6 Mandelstam invariants s, t, q2
1, q

2
2, q

2
3, q

2
4 are not

independent and therefore the relations above are not unique.

1We are interested in the value of the integral in the limit λ→ 0, where we know that it can only develop

a logarithmic singularity.
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Finally, we are left with the computation of the one-loop bubbles, which is entirely

straightforward. We report here the results for completeness

I1,1,0,0 =
1

∆1

[
2 ln

(
∆1

M2
V

)
− ln

(
λ2

M2
V

)]
(A.19)

I0,1,1,0 =
2√

s(s+ 4M2
V )

ln


√
s+ 4M2

V +
√
s√

s+ 4M2
V −
√
s

 (A.20)

I1,0,1,0 = I1,1,0,0

∣∣∣
∆1→∆2

, I1,0,0,1 = I1,1,0,0

∣∣∣
∆1→∆t

(A.21)

I0,1,0,1 = I0,1,1,0

∣∣∣
s→q2

3

, I0,0,1,1 = I0,1,1,0

∣∣∣
s→q2

4

(A.22)

where we recall the definitions

∆1 = q2
1 +M2

V , ∆2 = q2
2 +M2

V , ∆t = t+M2
V . (A.23)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] ATLAS collaboration, Observation of a new particle in the search for the Standard Model

Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1

[arXiv:1207.7214] [INSPIRE].

[2] CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS

Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

[3] J. Alison et al., Higgs Boson Pair Production at Colliders: Status and Perspectives, in

Double Higgs Production at Colliders, B. Di Micco, M. Gouzevitch, J. Mazzitelli and

C. Vernieri eds., Chicago U.S.A. (2018) [arXiv:1910.00012] [INSPIRE].

[4] T. Figy, C. Oleari and D. Zeppenfeld, Next-to-leading order jet distributions for Higgs boson

production via weak boson fusion, Phys. Rev. D 68 (2003) 073005 [hep-ph/0306109]

[INSPIRE].

[5] P. Bolzoni, F. Maltoni, S.-O. Moch and M. Zaro, Higgs production via vector-boson fusion at

NNLO in QCD, Phys. Rev. Lett. 105 (2010) 011801 [arXiv:1003.4451] [INSPIRE].
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