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1 Introduction

Recently there have been renewed interest and relevant progress in calculating overlaps

between periodic multiparticle states and integrable boundary states. They appear in

quite distinct parts of theoretical physics including statistical physics and the gauge/string

duality.

In statistical physics there are significant activities in analyzing the behavior of both

integrable and non-integrable systems after a quantum quench [1]. In a typical situation a

parameter of the Hamiltonian is suddenly changed implying that the ground-state of the

pre-quenched Hamiltonian is no longer an eigenstate of the post-quench Hamiltonian. The

after quench time evolution can be fully described once the overlaps of this initial state

with the eigenstates of the post-quench Hamiltonian are known. Integrable quenches are

those when the initial state is an integrable boundary state [2–4].

In the AdS/CFT correspondence there are at least two places where overlaps appeared

so far. Recently a new class of three-point functions were investigated in the AdS5/CFT4

correspondence involving a local gauge invariant single trace operator and two determinant

operators dual to maximal giant gravitons [5, 6]. The authors showed that the three-point

function can be calculated as an overlap between the finite volume multiparticle state and

a finite volume integrable boundary state.

In the other, much more investigated, application a codimension one defect is intro-

duced in the gauge theory, which breaks part of the gauge symmetry of the model. As

a result some scalar fields develop vacuum expectation values and one-point functions of

local gauge invariant operators can be non zero. Their space-time dependence is fixed by

the unbroken conformal symmetry up to an operator dependent normalization constant.
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As the operators are normalized by their two point functions far away from the defect this

coefficient is a physical quantity. Since in the integrable description of the AdS/CFT corre-

spondence local gauge-invariant operators are related to finite volume multiparticle states

their one-point functions can be interpreted as finite volume overlaps with a boundary

state created by the defect. Much progress has been achieved so far which included D3-D5

defects [7–9] and D3-D7 defects [10, 11]. Most of the analysis is restricted however for the

leading order results in the coupling and only subsectors for the whole theory, although

some partial one-loop results are also available in a diagonal subsector [12, 13]. In [14] the

authors proposed an all loop formula for the one point functions in the su(2) sector in the

asymptotic domain, i.e. neglecting wrapping corrections. One of the aim of our paper is

to go beyond these results and try to bootstrap the overlaps to be valid for any couplings

and any sectors in the asymptotic domain.

Motivated by the above mentioned applications there were already significant activ-

ities and progress in calculating the matrix elements of integrable boundary states and

eigenstates of the transfer matrix for integrable spin chains. The calculations of these

on-shell overlaps have been already performed for various setups. In [15, 16] the authors

investigated the Neél state in the XXZ spin chain and derived that the on-shell overlaps are

non-vanishing only when the Bethe roots are paired and they can be written as the prod-

uct of one particle overlap functions and a ratio of Gaudin-like determinants. This finding

turned out to be true for several other models when the boundary states were integrable.

The integrability condition in the XXZ spin chain was proposed in [2]. In [17] the author

proposed a same type of formula for arbitrary states, built from solutions of the boundary

Yang Baxter equation (two-site states), and proved its validity numerically. For matrix

product states it was proposed that the on-shell overlap formulas cannot be written in the

previous product form, rather a sum of those and this claim was verified numerically for

the XXX spin chain [8]. The integrability condition can be generalized to nested systems

and there are some known overlap formulas for integrable states in these cases. In [3, 4, 18]

there are numerically verified formulas for two-site and matrix product states in the su(3)

spin chain. The authors found that the non-vanishing overlaps require pair structures for

the two types of Bethe roots. In [9, 11] there are numerically verified overlap formulas for

so(6) spin chains and each type of Bethe roots have their pair structure for non-vanishing

overlaps. In [5] the authors investigated a different boundary state of the so(6) spin chain

and found a novel pair structure which was different from what had been found so far.

All of these results are in specific low rank models and are not exactly derived1. Another

aim of our paper is to perform a systematic study of higher rank spin chains, derive the

pair structure of their Bethe roots and develop a nesting procedure which could provide

the factorizing overlaps. In doing so we found that the unbroken symmetries play a crucial

role. This residual symmetries together with the original symmetry must form a symmetric

pair and the nature of these maximal subalgebras are intimately related to the nature of

the pair structures whose knowledge is essential in formulating the right nesting.

1In a recent paper [19] derived some overlap formulas for non-nested system but it is not obvious whether

this can be generalized to the nested ones.

– 2 –



J
H
E
P
1
0
(
2
0
2
0
)
1
2
3

Keeping both the spin chain and AdS/dCFT applications in mind we try to be as

general as required. In order to make the presentations lighter new notions and methods

are demonstrated in various examples.

The rest of the paper is organized as follows: in the next section we introduce inte-

grable boundary states and their relations to boundary reflections emphasizing that for

non-crossing invariant theories they are not equivalent. We then turn to analyze overlaps

between integrable boundary states and periodic states. Periodic states are the eigen-

states of the transfer matrices, which can be constructed from scattering- or spin chain

R-matrices. We first recall the eigenvalues and Bethe root structures for su(N), so(4),

so(6) and su(2|2)c chains, as they will be relevant in what follows. We then analyze the

consequences of the integrability requirement for the root structure and conclude that for

algebras with a nontrivial Dynkin diagram symmetry roots can be paired in a chiral and

an achiral way. In the next section we investigate integrable two sites boundary states

related to solutions of the KYBE, the YBE for boundary states. We observe that there are

two types of solutions of the KYBE with quite distinct symmetries, which we relate to the

chirality/achirality of the overlaps. Keeping also the AdS/dCFT applications in mind we

derive the most general bosonic solution of the KYBE for the centrally extended su(2|2)c
algebra, and identify its symmetries. In the next section we invent a version of the nesting,

which enables us to calculate the overlaps in various spin chains including the su(2|2)c sym-

metric ones, relevant for AdS/dCFT. Symmetry argumentations combined with nesting

and the selection rules for roots can be used to investigate the possible K-matrices for the

AdS/dCFT correspondence. We close this section with an all-loop asymptotic proposal

for the simplest D3-D5 1-point functions. Finally we conclude and provide a list of open

problems. Technical details are relegated to appendices.

2 Boundary states, K- and boundary Yang-Baxter equations

There are two ways to place an integrable boundary in a two dimensional system: it can be

placed either in space or in time. We formulate these two cases at such a level of generality

which can cover both the AdS/CFT scattering matrix and all rational spin chains.

2.1 Boundary states and KYBE

If the boundary is placed in time it serves as an initial or finite state. The final state

annihilates pairs of particles, while the initial state creates those. In a QFT an integrable

boundary state is annihilated by the infinitely many parity odd charges of the theory [20].

This in particular implies that both the initial and the final boundary states can be de-

scribed by the two particle K-matrix and one is related to the other by conjugation. We

will focus on a final state, which can be depicted on the left of figure 1.

The K-matrix Kαβ

aḃ
(p) is the amplitude of annihilating a pair of particles with labels a, ḃ

and momenta p,−p and having boundary degrees of freedom α and β on the two ends. To

keep the discussion on a general level we allowed that particles with momentum p and −p
transform w.r.t. different representations (of the same dimension) which we differentiated

by a dot on the index.
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Figure 1. Graphical representation of the K-matrix and its crossing property. The boundary state

might have an inner degree of freedom, which is labeled by Greek letters. It might also annihilate

particles from different representations, which is indicated by straight and dashed lines and by a dot

on the indices of the dashed particles. One typical example is when it annihilates a pair consisting

of a particle and an anti-particle, which transform w.r.t. a representation and its contragradient

representation, respectively. Such a case can appear for instance in su(N) spin chains.

Figure 2. K-matrix YBE from shifting particle lines. Dashed lines and dotted indices might

transform w.r.t. different representations. If they are different the KYBE is called twisted, otherwise

it is called untwisted.

In integrable theories particle-trajectories can be shifted without altering the ampli-

tudes, see figure 1. As a consequence, the K-matrix satisfies the crossing equation

Kαβ

aḃ
(p) = Scḋ

aḃ
(p,−p)Kαβ

ḋc
(−p) ; K12̇(p) = S12̇(p,−p)K2̇1(−p) (2.1)

where we also introduced a compact notation by indicating only in which place and rep-

resentation the scattering S- and K-matrices act, i.e (p → 1,−p → 2) and suppressed to

write out explicitly the boundary degrees of freedom.

Two pairs of particles can be annihilated in two different ways, see figure 2 leading to

the Yang-Baxter equation for the K-matrix (KYBE):

Srnab (p1, p2)Kαβ
nṁ(p2)Ssṁrċ (p1,−p2)Kβγ

sḋ
(p1) = Kαβ

aṡ (p1)Snṡbṙ (p2,−p1)Kβγ
nṁ(p2)Sṁṙ

ċḋ
(−p2,−p1)

(2.2)

or alternatively

K34̇(p2)K12̇(p1)S14̇(p1,−p2)S13(p1, p2) = K12̇(p1)K34̇(p2)S32̇(p2,−p1)S4̇2̇(−p2,−p1) (2.3)

where again for each particle we associated a vector space as (p1 → 1,−p1 → 2, p2 →
3,−p2 → 4). If the dotted representation is really different from the undotted one the

KYBE is called twisted. If the two representations are the same, the dots can be neglected

and the KYBE is called untwisted.
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Thanks to integrability the general multiparticle annihilation process can be written in

terms of the two particle annihilation amplitudes and the two particle scattering matrices.

In particular, in terms of the ZF operators, the boundary state has an exponential form

〈B| = 〈0| exp

{∫ ∞
−∞

dp

4π
KAB(p)ZA(−p)ZB(p)

}
(2.4)

where ZA(p) is the operator, which annihilates a particle of type A and momentum p, and

these operators form the ZF algebra

ZA(p1)ZB(p2) = SABCD(p1, p2)ZD(p2)ZC(p1) (2.5)

The boundary state contains the contributions of all possible particles, which we indicated

by summing over indices of all types. Typically either Kαβ
ab = 0 = Kαβ

ȧḃ
or Kαβ

aḃ
= 0 =

Kαβ
ȧb , which is related to the fact that S ċd

aḃ
= 0. Consistency of the boundary state, i.e.

invariance for p → −p and uniqueness of the exponentials, implies the crossing property

and the KYBE.

2.2 Reflection matrices and BYBE

Alternatively, we can place the boundary in space and characterize it by specifying how

particles scatter off it. Integrable boundaries have infinitely many parity even conserved

charges. As a consequence, multiparticle reflections factorize into one-particle reflections

and pairwise scatterings, thus it is enough to determine the one-particle reflections. This

reflection amplitude is not independent from the K-matrix above. Indeed, one can per-

form a rotation in exchanging the role of space and time, which gives rise to the mirror

theory. In non-relativistic theories the mirror dispersion relation Ẽ(p̃), obtained by ana-

lytical continuation, can be different from the original one E(p). Here and from now on

we indicate mirror quantities by tilde. Typically we parametrize the dispersion relation

with a generalized rapidity parameter p(z), E(z), and then the scattering matrix depends

on these rapidities S(z1, z2). For a properly chosen rapidity parameter the mirror rapidity,

z̃ is simply the shifted version of the original one z = z̃ + ω
2 . The notation indicates that

z → z + ω is the crossing transformation which maps E → −E and p → −p and replaces

particles with antiparticles2. Thus going from the original theory to the mirror theory is

half of a crossing transformation. The mirror dispersion relation is Ẽ(z̃) = −ip(z̃ + ω
2 ),

p̃(z̃) = −iE(z̃ + ω
2 ), while the mirror scattering matrix is S̃(z̃1, z̃2) = S(z̃1 + ω

2 , z̃2 + ω
2 ). In

the following we show that the KYBE is equivalent to the boundary YBE (BYBE) for the

reflection matrix in this mirror theory. In doing so we suppress to write out the spectator

boundary degrees of freedom. The index form of the KYBE, (2.2), can be rewritten by in-

troducing the charge conjugation matrix C and its inverse Cnm̄Cm̄k = δnk which intertwine

between the particle and antiparticle representations, as

Srnab (z1, z2)Cm̄ṁKnṁ(z2)Ssṁrċ (z1,−z2)Cṁm̄Ksḋ(z1)C c̄ċC d̄ḋ = (2.6)

C c̄ċC d̄ḋKaṡ(z1)C ṡs̄Cs̄ṡS
nṡ
bṙ (z2,−z1)Knṁ(z2)Cṁm̄Cm̄ṁS

ṁṙ
ċḋ

(−z2,−z1)

2In relativistic theories z is the rapidity and ω = iπ, while for the AdS5/CFT4 integrable model z is a

torus variable and ω = ω2 [21]. For physical processes both in the theory and its mirror version the rapidity

variables are real. Since ω is imaginary the z → z̃ + ω
2
transformation involves an analytical continuation.
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Let us introduce the matrix K(z) with indices: C d̄ḋKsḋ(z) = K d̄
s (z). It connects particles to

twisted antiparticles labeled by bar, i.e. to the contragradient representation of the dotted

representation. In terms of these quantities the KYBE takes a form

S12(z1, z2)K2(z2)C2S
t2
12̇

(z1,−z2)C−1
2 K1(z1) = K1(z1)C1S

t1
21̇

(z2,−z1)C1K2(z2)S2̄1̄(−z2,−z1)

(2.7)

Using the crossing symmetry of the S-matrix C−1
1 St1

12̇
(z1, z2)C1 = S2̄1(z2, z1 +ω) and parity

invariance S21(−z2,−z1) = S12(z1, z2) the equation takes the form:

S12(z1, z2)K2(z2)S2̄1(−z2 + ω, z1)K1(z1) = K1(z1)S1̄2(−z1 + ω, z2)K2(z2)S1̄2̄(z1, z2) (2.8)

We now use analytical continuation to go to the mirror theory, together with relabeling

and a parity transformation z1 → ω
2 − z̃2 and z2 → ω

2 − z̃1, to reach

S̃12(z̃1, z̃2)R̃1(z̃1)S̃21̄(z̃2,−z̃1)R̃2(z̃2) = R̃2(z̃2)S̃12̄(z̃1,−z̃2)R̃1(z̃1)S̃2̄1̄(−z̃2,−z̃1) (2.9)

where the mirror S-matrix was used (which is also parity invariant) and we introduced a

mirror reflection matrix R̃(z̃) = K(ω2 − z̃), see also figure 3:

R̃b̄a(z̃) = C b̄ḃKaḃ

(ω
2
− z̃
)

(2.10)

Thus we can conclude that if the K-matrix satisfies the KYBE, (2.3), then the mirror

reflection factor defined by (2.10) satisfies the BYBE. If the representation with the bar

is different from the one without the bar, the BYBE is called twisted, otherwise it is

called untwisted. Let us point out that the mirror BYBE is not always equivalent to the

BYBE in the original theory. It can differ in two ways. For AdS/CFT, particles and

antiparticles are in the same representation but the dispersion relation and the scattering

matrix is not relativistic invariant, thus S̃ and S are different. For rational spin chains

and corresponding quantum field theories particles and antiparticles can transform w.r.t.

different representations, thus an untwisted KYBE can results in twisted BYBE and vica

versa. We elaborate on the possible cases in section 5.

We obtained the mirror BYBE from the KYBE by a mirror and a parity transforma-

tion: z → ω
2 − z̃. Graphically the resulting equation can be depicted as on figure 4.

The mirror reflection matrix satisfies the unitarity relation

R̃ji (z̃)R̃kj (−z̃) = δki ; R̃1(z̃)R̃1(−z̃) = I. (2.11)

In summarizing, in quantum field theories the boundary state in the physical theory

can be represented by the K-matrix, which satisfies the crossing equation and the KYBE.

It is related to a reflection matrix of the mirror theory as (2.10), which satisfies unitarity.

Let us finally note that we have exactly the same equations for integrable spin chains,

where the R-matrix plays the role of the scattering matrix and the K-matrix, solution of

the boundary YBE is the reflection amplitude.

So far our considerations were in the infinite volume setting. In practical applications,

however the boundary states are in finite volume and we are interested in the overlap of the

finite volume boundary state and the finite volume multiparticle states. In the following

we recall the finite volume periodic spectrum in various models we need.
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Figure 3. Reflection matrix in the mirror theory as obtained by a mirror (rotation by π/2) and a

parity transformation: z → ω
2 − z̃. The K-matrix connects the a representation and a dotted one,

while the mirror reflection connects the same representation and the contragradient of the dotted

one.

Figure 4. Boundary Yang Baxter equation in the mirror model. Dashed line indicates that the

representation of the reflected particle can be different from the original one. If it is different, the

BYBE is called twisted, otherwise it is called untwisted.

3 Spin chains and asymptotic spectrum

Integrable spin chains are interesting in their own rights, but they also have a direct

connection to integrable QFTs. For any integrable QFT with inner degrees of freedom the

scattering matrix has a scalar factor S0 and a matrix part, R:

S(z1, z2) = S0(z1, z2)R(z1, z2) (3.1)

The matrix part satisfies the YBE and can be considered as an R-matrix of an integrable

spin chain. The large volume (asymptotic) spectrum of the QFT, neglecting exponentially

small volume corrections, is simply the infinite volume spectrum En(L) =
∑

iE(zi) only

the momenta are quantized. This momentum quantization can be determined from the

eigenvalues of the transfer matrix of the spin chain t(z, {zi}), which is the trace of the

monodromy matrix, built from the R-matrices as

t(z, {zi}) = Tr0(T0(z)) ; T0(z) = R0L(z, zL) . . . R01(z, z1) (3.2)

– 7 –
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Here 0 labels an auxiliary particle with rapidity z, whose representation space is traced

over. This space can carry the same representation as the physical particle or some different

representations. Transfer matrices for different representations and spectral parameters

commute with each other and can be diagonalized in a spectral parameter independent

basis.

In the following we recall the results of the nested Bethe ansatz for the rational su(N),

so(4) and so(6) spin chains, together with the centrally extended su(2|2)c, which will be

relevant for the later investigations. In spin chains the spectral parameter is traditionally

denoted by u, which is not necessarily the rapidity, it might be some non-trivial function

of it u(z).

In the AdS5/CFT4 correspondence spin chains appear also on the Yang-Mills side.

Indeed, the one-loop dilatation operator of the scaling dimensions of local operators can be

related to an su(2, 2|4) nearest neighbors spin chain [22]. At higher loops the interaction

range in the spin chain gets extended and spoils the su(2, 2|4) structure. What carries over

is the nested Bethe ansatz obtained by choosing a pseudo vacuum. This pseudo vacuum

breaks the su(2, 2|4) symmetry to su(2|2)c⊕su(2|2)c, which gets central extended at higher

loop orders.

3.1 Spectrum of the su(N) spin chain

In the su(N) symmetric spin chains the R-matrix is a function of the differences of the

spectral parameters and has the form

R(u1, u2) ≡ R(u1 − u2) = 1 +
1

u1 − u2
P (3.3)

where 1 is the identity and P is the permutation operator acting on N -dimensional spaces,

carrying the fundamental representations. The eigenvectors of the transfer matrix can

be parametrized by Bethe roots |u(a)
1 , . . . u

(a)
na 〉 ≡

∣∣u(a)
〉
, with a = 1, . . . , N − 1 and the

eigenvalues can be built up from the elementary building blocks zk:

t(u)
∣∣u(a)

〉
= Λ(u)

∣∣u(a)
〉

; Λ(u) =
N∑
k=1

Q
[k+1]
k−1 (u)

Q
[k−1]
k−1 (u)

Q
[k−2]
k (u)

Q
[k]
k (u)

(3.4)

where f [k](u) = f(u + k
2 ) [23]. The blocks, zk, contribute also to the eigenvalues of the

transfer matrices, where the auxiliary representation corresponds to a rectangular Young

diagram and can be written in terms of the Q-functions which encode the Bethe roots

Q0(u) = uL , Qk(u) =

nk∏
i=1

(
u− u(k)

i

)
, k = 1, . . . , N − 1, ; QN (u) = 1. (3.5)

Bethe roots can be obtained from the Bethe Ansatz equations, which arise by demanding

the regularity of the transfer matrix at u = u
(k)
i .

3.2 Spectrum of the so(4) spin chain

The R-matrix in the so(4) spin chain can be written as

R(u) = 1 +
1

u
P− 1

1 + u
K. (3.6)

– 8 –
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where K is the trace operator, Kkl
ij = δijδ

kl. As the so(4) Lie algebra can be written as

so(4) ≡ su(2)⊕ su(2) the R-matrix has a factorized form

R(u) ∼=
u

u+ 1

(
1 +

1

u
P

)
⊗
(

1 +
1

u
P

)
. (3.7)

which carries over to the transfer matrix and the Bethe roots

t(u) =

(
u

u+ 1

)L
t+(u)⊗ t−(u),

∣∣u+,u−
〉

=
∣∣u+

〉
⊗
∣∣u−〉, (3.8)

such that the eigenvalues can be written in terms of the su(2) Q-functions as

Λ(u) =

(
u

u+ 1

)L
Λ+(u)Λ−(u) ; Λ±(u) =

(
u+ 1

u

)L Q[−1]
± (u)

Q
[1]
± (u)

+
Q

[3]
± (u)

Q
[1]
± (u)

(3.9)

3.3 Spectrum of the so(6) spin chain

The so(6) symmetric R-matrix can be written as

R(u) = 1 +
1

u
P− 1

2 + u
K. (3.10)

The eigenvalue of the transfer matrix with the fundamental representations of so(6) can

be written in terms of three types of Bethe roots with Q1, Q± as follows [24]:

Λ(u) =
Q

[2]
0

Q0

Q
[−1]
1

Q
[1]
1

+
Q

[3]
1

Q
[1]
1

Q+

Q
[2]
+

Q−

Q
[2]
−

+
Q+

Q
[2]
+

Q
[4]
−

Q
[2]
−

+
Q

[2]
0

Q
[4]
0

Q
[5]
1

Q
[3]
1

+
Q

[1]
1

Q
[3]
1

Q
[4]
+

Q
[2]
+

Q
[4]
−

Q
[2]
−

+
Q

[4]
+

Q
[2]
+

Q−

Q
[2]
−

(3.11)

where Q0 = uL and we did not write out explicitly their argument, which is u.

3.4 Spectrum of the su(2|2)c ⊕ su(2|2)c spin chain

This is the spin chain which appears in the asymptotic limit of the spectral problem in

the AdS5/CFT4 correspondence. The R-matrix is invariant under the centrally extended

su(2|2)c algebra. Details about notations and conventions can be found in appendix A. As

this is a superalgebra the transfer matrix is the supertrace of the product of graded R-

matrices. The full R-matrix is the tensor product of two copies of the su(2|2)cR-matrices,

thus the transfer matrix has a factorized form

t(u) = t+(u)t−(u) (3.12)

Each transfer matrix is related to an su(2|2)c symmetry and their eigenvectors and eigen-

values can be written in terms of y-roots {yk}k=1...N and w-roots {w}l=1...M

t±(u)|y±,w±〉 = Λ±(u)|y±,w±〉 (3.13)

These are usually referred to as the left and the right wings. Focusing only on one of them

the eigenvalue on a 2L long chain with inhomogeneities {pi}i=1...2L takes the form [25]

Λ(u) = e−i
p(u)
2

(N−2L) R(+)[1]

R(+)[−1]

{
R(−)[1]R[−1]

y

R(+)[1]R[1]
y

− R
[−1]
y Q

[2]
w

R[1]
y Qw

− B
[1]
y Q

[−2]
w

B[−1]
y Qw

+
B(+)[−1]B[1]

y

B(−)[−1]B[−1]
y

}
(3.14)
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where

Ry(u) =
N∏
j=1

(x(u)− yj) ; Qw(u) =
M∏
l=1

(u− wl) ; R(±)(u) =
2L∏
i=1

(x(u)− x±(pi))

(3.15)

and the B quantities can be obtained from the R-s by replacing x(u) with 1/x(u):

By(u) =
N∏
j=1

(1/x(u)− yj) ; B(±)(u) =
2L∏
i=1

(1/x(u)− x±(pi)) (3.16)

Shifts are understood as x[±1](u) ≡ x±(u) = x(u ± i
2g ) and we assumed that the total

momentum vanishes:
∑

i pi = 0. Bethe ansatz equations for the roots can be obtained

from the regularity of the transfer matrix at x+(u) = yj and u = wl, see (6.38).

4 Selection rules for integrable overlaps

Boundary states can be analyzed by computing the overlaps with bulk states. Nonzero

overlaps require a pair structure and in the following we elaborate on the possible struc-

tures. In particular, we analyze the su(N), so(4), so(6) and su(2|2)c⊕ su(2|2)c spin chains.

Similarly to the large volume QFT spectrum the large volume overlaps are basically the

overlaps in the corresponding spin chains, i.e. the matrix element of a boundary state 〈Ψ|
with the eigenstates of the transfer matrix. By generalizing the notion of integrable bound-

aries from QFT to spin chains the authors of [2] came up with the definition of an integrable

boundary state. This is a state which is annihilated by the odd conserved charges of the

theory. Since the transfer matrix t(u) generates the conserved charges the integrability

requirement translates into

〈Ψ| t(u) = 〈Ψ|Πt(u)Π (4.1)

where Π is the space reflection operator [26].

In the following we refine this definition and analyze its consequences for the allowed

pair structures appearing in the spin chains introduced above.

4.1 Pair structure in the su(N) spin chain

The parity transformation Πt(u)Π reverses the order in the product of R-matrices in the

definition of the transfer matrix:

Πt(u)Π = Tr0R01(u) . . . R0L(u).

Since the R-matrix with fundamental and with anti-fundamental representations are related

by crossing symmetry

R̄01(u) = Rt001(−u−N/2) = Rt101(−u−N/2) (4.2)

where t0 and t1 denote transposition in spaces 0 and 1, respectively, the parity transformed

transfer matrix can be related to the transfer matrix where the auxiliary space is the anti-

fundamental representation

Πt(u)Π = Tr0R̄0L(−u−N/2) . . . R̄01(−u−N/2) = t̄(−u−N/2) (4.3)
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The eigenvalues of the anti-fundamental transfer matrix has the same structure as the

fundamental one and can be written in terms of the same Q-functions:

t̄(u)
∣∣u(a)

〉
= Λ̄(u)

∣∣u(a)
〉

; Λ̄(u) =
N∑
k=1

Q
[N−k−1]
k−1 (u)

Q
[N−k+1]
k−1 (u)

Q
[N−k+2]
k (u)

Q
[N−k]
k (u)

, (4.4)

We now investigate the overlap of an integrable boundary state and the Bethe state. In

doing so we insert the transfer matrices into the overlap

Λ(u)
〈
Ψ
∣∣u(a)

〉
=
〈
Ψ
∣∣t(u)

∣∣u(a)
〉

=
〈
Ψ
∣∣t̄(−u−N/2)

∣∣u(a)
〉

= Λ̄(−u−N/2)
〈
Ψ
∣∣u(a)

〉
, (4.5)

Thus the non-vanishing overlap requires Λ(u) = Λ̄(−u − N/2). This actually implies the

same relation for the fused transfer matrices and leads to similar relations to each building

block, zk. This is equivalent to Qk(u) = Qk(−u), which implies that each type of root

must have the following pair structure:

u(a) =
{
u

(a)
1 ,−u(a)

1 , . . . , u
(a)
na/2

,−u(a)
na/2

}
, for all a = 1, . . . , N − 1. (4.6)

where here and from now on it is understood that for odd na we have a zero rapidity. In

the following we show that in the other models the pair structure can be even richer.

4.2 Pair structure in the so(4) spin chain

The integrability condition involves the space reflected transfer matrix, which can be related

by the crossing symmetry to the original transfer matrix as

Πt(u)Π = t(−u− 1). (4.7)

Inserting the transfer matrix into the matrix element 〈Ψ
∣∣u+,u−

〉
we can easily conclude

that the non-vanishing overlap requires that

Λ(u) ≡
(

u

u+ 1

)L
Λ+(u)Λ−(u) = Λ(−u− 1). (4.8)

Now this integrability requirement (4.7) can be satisfied in two different ways:

Q± (u) = Q± (−u) or Q+ (u) = Q− (−u) (4.9)

Accordingly, we can have two different pair structures, what we call chiral and achiral :

1. Chiral pair structure, where

u(±) =
{
u

(±)
1 ,−u(±)

1 , . . . , u
(±)
n±/2

,−u(±)
n±/2

}
. (4.10)

2. Achiral pair structure, where (n+ = n− = n)

u(+) = {+u1,+u2, . . . ,+un−1,+un} = −u(−) = −{−u1,−u2, . . . ,−un−1,−un} .
(4.11)
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Thus the naive generalization of the integrability condition is too ”weak” since it does not

fix the pair structure uniquely. The reason is that we did not use the “elementary” transfer

matrix, rather the product of two elementary ones. Based on the “elementary” transfer

matrices t±(u), we can define two types of integrable states:

chiral integrable state: 〈Ψ| t±(u) = 〈Ψ|Πt±(u)Π. (4.12)

achiral integrable state: 〈Ψ| t+(u) = 〈Ψ|Πt−(u)Π. (4.13)

After a simple calculation one can check that the non-vanishing overlaps of chiral and

achiral integrable states require chiral and achiral pair structures, respectively.

4.3 Pair structure in the so(6) spin chain

From the naive integrability condition (4.1), one can derive the following requirement for

the eigenvalues of the Bethe states with non-vanishing overlaps

Λ(u) = Λ(−u− 2). (4.14)

Similarly to the so(4) model the integrability condition (4.14) can be satisfied in two

alternative ways:

1. Chiral pair structure, where

u(1) =
{
u

(1)
1 ,−u(1)

1 , . . . ,u
(1)
n1/2

,−u(1)
n1/2

}
; u(±) =

{
u

(±)
1 ,−u(±)

1 , . . . ,u
(±)
n±/2

,−u(±)
n±/2

}
,

(4.15)

2. Achiral pair structure, where (n+ =n−=n)

u(1) =
{
u

(1)
1 ,−u(1)

1 , . . . ,u
(1)
n1/2

,−u(1)
n1/2

}
; u(+) = {+u1,+u2, . . . ,+un−1,+un}=−u(−),

(4.16)

The reason why the integrability condition did not fix completely the pair structure is

similar to the so(4) case. Namely, we did not use the elementary transfer matrices to relate

the transfer matrix and the parity transformed one. The “elementary” transfer matrices

t(±)(u) corresponds to auxiliary spaces carrying the spinor representations of the SO(6)

group. Let us define these transfer matrices as

t(±)(u) = Tr0R
(±)
0L (u) . . . R

(±)
01 (u) ; R(+)(u) = 1 +

1

u+ 1− 1
2

eij ⊗ Eji (4.17)

R(−)(u) = 1− 1

u+ 1 + 1
2

eij ⊗ Eij (4.18)

where eij and Eij are the defining and the six dimensional representations of gl(4). The two

representations, and such a way the two R-matrices, are connected by crossing symmetry

R(+)t(−u− 2) = R(−)(u) (4.19)

which implies the connection between the space reflected transfer matrices

Πt(±)(u)Π = Tr0R
(±)t
01 (u) . . . R

(±)t
0L (u) = t(∓)(−u− 2) (4.20)
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The eigenvalues of t(±)(u) can be written in terms of the Q-functions as

Λ(+) =
Q

[3]
0

Q
[1]
0

Q
[−1]
+

Q
[1]
+

+
Q

[3]
0

Q
[1]
0

Q1

Q
[2]
1

Q
[3]
+

Q
[1]
+

+
Q

[5]
−

Q
[3]
−

+
Q

[4]
1

Q
[2]
1

Q
[1]
−

Q
[3]
−

;

Λ(−) =
Q

[1]
0

Q
[3]
0

Q
[5]
+

Q
[3]
+

+
Q

[1]
0

Q
[3]
0

Q
[4]
1

Q
[2]
1

Q
[1]
+

Q
[3]
+

+
Q

[−1]
−

Q
[1]
−

+
Q1

Q
[2]
1

Q
[3]
−

Q
[1]
−

(4.21)

Using these formulas, together with the chiral/achiral pair structures, we can define two

types of integrable initial states3:

chiral integrable state: 〈Ψ| t(±)(u) = 〈Ψ|Πt(±)(u)Π. (4.22)

achiral integrable state: 〈Ψ| t(+)(u) =

(
u+ 3

2

u+ 1
2

)L
〈Ψ|Πt(−)(u)Π. (4.23)

Let us finally note that the su(4) and so(6) spin chains are equivalent. The only

difference between the model of this paragraph and the above investigated su(4) model is

that the quantum spaces are in different representations.

4.4 Pair structure in the su(2|2)c ⊕ su(2|2)c spin chain

Similarly to the previous spin chains we can define two types of integrable states based on

how we relate the transfer matrices of the two wings t±(u) to each other:

chiral integrable state: 〈Ψ| t±(u) = 〈Ψ|Πt±(u)Π. (4.24)

achiral integrable state: 〈Ψ| t+(u) = 〈Ψ|Πt−(u)Π. (4.25)

For the achiral integrable state roots of the left wing are opposite to the roots of the right

wing:

y+ = −y− ; w+ = −w− (4.26)

while for chiral integrable states we have within each wing the following root structure:

y = {y1,−y1, . . . , yN/2,−yN/2} ; w = {w1,−w1, . . . , wM/2,−wM/2} (4.27)

4.5 General structures

Let us summarize our observations in the previous cases. We have seen that there exist

two types of pair structures, chiral and achiral and for both integrability conditions can

be defined. Based on these examples it is a natural assumption that the achiral structure

is related to an outer automorphism of the symmetry algebra, i.e. to a symmetry of the

Dynkin diagram. Non-trivial Dynkin diagram symmetries exist only for the sl(N) and

so(2N) algebras, and for algebras being the direct sum of two identical copies. Therefore

we expect that achiral pair structures can exist only for these cases. In the following we

show how the chirality of the overlap can be read off from the symmetries of the K-matrices.

A more detailed explanation in the case of rational spin chains can be found in appendix B.

3The particular prefactor is related to our normalization of the R(±)-matrices. Clearly by renormalizing

them the prefactor can be eliminated.
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5 Integrable states from K-matrices and their symmetries

In the previous section we defined chiral and achiral integrable states, but it is not clear if

they are realized at all. In [27] it was shown that a large class of integrable boundary states

can be obtained from the solution of the KYBE as two-site and matrix product states

〈Ψ|= 〈ψ1|⊗〈ψ2|⊗· · ·⊗
〈
ψL/2

∣∣ , 〈MPS|= Tr[ωi1ωi2 . . .ωiL ]
∑

i1,...,iL

〈i1|⊗〈i2|⊗· · ·⊗〈iL| ,

(5.1)

where 〈ψk| ∈ H ⊗H and 〈i| ∈ H, ωi ∈ End(V ), H being a one site Hilbert space and V is

the boundary vector space. For two site states we can take

〈ψi| = 〈a| ⊗ 〈b|Kab(ui) (5.2)

where K(u) is the solution of the KYBE. Indeed, the integrability condition is satisfied

since from the KYBE equation 〈Ψ|K0(u)T t00 (u) = 〈Ψ|ΠT0(u)ΠK0(u) follows, which after

inverting K0 and tracing over the auxiliary space provides the required equation (4.1).

Matrix product states can be obtained from specific solutions of the KYBE with inner

degrees of freedom. Indeed if Kαβ
ab factorizes as Kαβ

ab = ωαγa ωγβb then the MPS is integrable

due to a similar argument.

In the following we classify the solutions of the KYBE or BYBE and reveal how the

unbroken symmetry can be related to the chirality of the overlap. In rational spin chains

when the boundary breaks the original symmetry algebra g to h then integrability requires

that (g, h) has to be a symmetric pair [28]. Thus the residual symmetry algebra has to

form an invariant sub-algebra for a Lie algebra involution α i.e. h := {X ∈ g|α(X) = X}.
The residual symmetry h is called regular if α is an inner involution, while special if it

is an outer one. They are also related to an isometry of the Dynkin diagram. For inner

involutions the symmetry is the identity, while for outer it acts non-trivially.

In the analysis of rational spin chains it was found that for regular residual symme-

tries the BYBEs are always untwisted. For special residual symmetries one can always

find particles which reflect back into a different representation, such that their BYBE is

twisted [28]. In this sense boundaries with regular residual symmetries can be called un-

twisted, while those with special symmetries as twisted. This so far concerned the BYBE.

The chirality of the overlap, however is determined by the nature of the K-matrix and the

twistedness of the KYBE. In order to understand this we analyze some examples.

5.1 K-matrices in the so(4) spin chain

For the so(4) ∼= su(2) ⊕ su(2) spin chain, there are two types of solutions of the KYBE,

which by their nature can be called factorizing and non-factorizing. For the factorizing

solutions, the K-matrix is factorized in the spinor basis as

Kab,a′b′(u) = σiaa′σ
j
bb′Kij(u) = K

(+)
ab (u)K

(−)
a′b′ (u) (5.3)

where K(±)(u) are solutions of the su(2) KYBE see in (6.7) and σi-s are the Pauli matrices

for i = 1, 2, 3 and σ4 = iI. The two-site state built from this K-matrix satisfy the chiral
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so(5) so(3)⊕ so(3) so(2)⊕ so(4) u(3)

special special regular regular

a 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





b c 0 0 0 0

−c b 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





d u 0 0 0 0

−u d 0 0 0 0

0 0 d u 0 0

0 0 −u d 0 0

0 0 0 0 d u

0 0 0 0 −u d


sp(4) so(4) su(2)⊕ su(2)⊕ u(1) su(3)⊕ u(1)

chiral chiral achiral achiral

Table 1. Nontrivial solutions of the KYBE for the so(6) spin chain. The first line is the unbroken

part of so(6), together with the nature of their remaining symmetries. The parameters in the

solutions are a = u−1
u+1 , b =

1
2+d2−u2

d2+( 1
2+u)

2 , c = du

d2+( 1
2+u)

2 and d is a constant. In the third line the

symmetries in the su(4) language is shown, while the forth line reflects the type of the overlap.

integrability condition (4.12) thus factorizing K-matrices correspond to chiral overlaps.

The residual symmetries of these K-matrices are factorized H+ × H− where H± can be

independently either u(1) or su(2). The corresponding residual symmetry algebras are all

regular.

The non-factorizing K-matrix reads as

Kab,a′b′(u) = K0
ad′K

0
bc′R

c′d′
a′b′(2u) (5.4)

where K0 ∈ End(C2). The two-site state built from this K-matrix satisfies the achiral

integrability condition and the residual symmetry of K is the diagonal su(2)D ∼= so(3),

which is a special sub-algebra.

For the so(4) algebra representations and conjugate representations are equivalent,

thus the twisted nature of the BYBE and KYBE equations are equivalent, too. Here we

found that regular residual symmetry algebras correspond to chiral, while special ones to

achiral overlaps.

5.2 K-matrices in the so(6) spin chain

For the so(6) spin chain, there are five types of solutions of the KYBE [29]. They can

be classified according to their symmetries. Since the unbroken symmetry together with

s0(6) has to form a symmetric pair we have the following possibilities for the residual

symmetry: so(6), so(5), so(2) ⊕ so(4), so(3) ⊕ so(3) or u(3). The regular subalgebras

are so(6), so(2) ⊕ so(4), u(3) while the special ones are so(5) and so(3) ⊕ so(3). The full

symmetry is preserved by the identity, while the rest of the explicit K/R-matrices can be

found in table (1).

In order to decide whether these K-matrices define chiral or achiral integrable states,

we have to switch to the su(4) description as we know that chiral boundary states connects

the su(4) fundamental representations to themselves, but achiral boundary states involves

a conjugation. Since for su(4) models particles and anti-particles transform in different

representations there are two types of BYBE or KYBE, depending on how particles reflect
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Symmetry algebra Type of sub-algebra Explicit subalgebras conjugation Pair structure

gl(N |M)
untwisted gl(n|m)⊕ gl(N − n|M −m) non-trivial achiral

twisted osp(N |M) non-trivial chiral

so(4k)
untwisted so(2l)⊕ so(4k − 2l), u(2k) trivial chiral

twisted so(2l + 1)⊕ so(4k − 2l − 1) trivial achiral

so(4k + 2)
untwisted so(2l)⊕ so(4k + 2− 2l), u(2k + 1) non-trivial achiral

twisted so(2l + 1)⊕ so(4k + 1− 2l) non-trivial chiral

Table 2. Regular/special and chiral/achiral classification together with the conjugation properties.

back off the boundary or annihilated by the boundary state. If the particle reflects back

as an antiparticle the boundary BYBE is a twisted one, with a special residual symmetry,

but the KYBE is an untwisted one with a chiral overlap. If however the particle reflects

back as a particle then the KYBE is a twisted one, it involves a conjugation and leads to

achiral overlaps.

5.3 General Lie algebras

We have seen that the twisted nature of the residual symmetry, which is the same for the

reflection matrix and the K-matrix is purely determined by the type of the BYBE, while the

chiral nature of the overlap by the type of the KYBE. For algebras such as so(2n+ 1) and

sp(2n) the Dynkin diagram has no nontrivial symmetry, all residual symmetries are regular.

Both the BYBEs and the KYBEs are untwisted and the overlaps are chiral. For algebras

su(n) and so(2n) the BYBE has the same nature as the symmetry. When switching to

the KYBE we have to introduce a charge conjugation. This charge conjugation correspond

also to a symmetry of the Dynkin diagram. For su(n) and so(4n + 2) this is the same

symmetry which defined the twisted BYBE. As a consequence the nature of the KYBE is

just the opposite to that of the BYBE. This happens when the dotted representation is the

contragradient in the boundary state. In case of so(4n), however the charge conjugation is

trivial and the nature of the BYBE and KYBE are the same. This is summarized in the

table 2. We elaborate further on this in appendix B.

5.4 K-matrices in the su(2|2)c ⊕ su(2|2)c spin chain

Similarly to the so(4) case the symmetry algebra is the direct sum of two identical algebras.

As a consequence there are two types of solutions of the KYBE.

The general non-factorizing K-matrix was found in [5, 6] and involves the scattering

matrix:

Kab,ȧḃ(u) = K0
aḋ
K0
bċR

ċḋ
ȧḃ

(u,−u) (5.5)

where K0 ∈ End(C4) is related to the choice of the basis and R is the su(2|2)c invariant

R-matrix. The two-site state built from this K-matrix satisfies the achiral integrability

condition and the residual symmetry is the diagonal su(2|2)c.

The other type of solutions are the factorizing ones

Kab,ȧḃ(z) = K0(z)Kab(z)Kȧḃ(z) (5.6)
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where Kab(z) solves the su(2|2)c KYBE

K34(z2)K12(z1)S14(z1,−z2)S13(z1, z2) = K12(z1)K34(z2)S32(z2,−z1)S42(−z2,−z1) (5.7)

here we used the rapidity variable instead of the spectral parameter, but they can be

used interchangeably. In the following we solve this equation and classify all solutions.

Motivated by the results for su(2|2) without central extension we search the solutions in

the bosonic form

K(z) = K0(z)


k1(z) k2(z) 0 0

k3(z) k4(z) 0 0

0 0 h1(z) h2(z)

0 0 h3(z) h4(z)

 (5.8)

5.4.1 Leading order solution

Plugging back the ansatz into the KYBE and making a small g expansion one finds two

classes of solutions, differing in which 2 by 2 block is nontrivial:

K(z) =


0 1 0 0

−1 0 0 0

0 0 ei
p(z)
2 h1 e

i
p(z)
2 h2

0 0 ei
p(z)
2 h3 e

i
p(z)
2 h4

 ; K(z) =


k1 k2 0 0

k3 k4 0 0

0 0 0 ei
p(z)
2

0 0 −ei
p(z)
2 0

 (5.9)

where h1, h2 = h3, h4 or k1, k2 = k3, k4 are arbitrary constants. Let us analyze the symme-

tries of these solutions.

5.4.2 Leading order symmetry

In the weak coupling, g → 0, limit the AdS/CFT S-matrix is gauge-equivalent to the

rational su(2|2) S-matrix:

S(u) = uIg + P (5.10)

where Ig and P are the graded unity and permutation operators and the rapidity is u =

x+ + 1
x+
− i

2g . The KYBE is equivalent to the twisted BYBE (or representation changing

reflection equation). Our solutions are consistent with the solutions classified in [30], which

consist of constant matrices of the form

K =

(
Va 0

0 Vs

)
or K =

(
Vs 0

0 Va

)
(5.11)

where Vs and Va are arbitrary symmetric and anti-symmetric 2 by 2 matrices. In order

to determine the symmetry of the K-matrix we assume that Vs and Va are invertible and

focus on the first case. The symmetry transformations should commute with the scattering

matrix and annihilate the K-matrix

[∆(M), S(u)] = 0 ; ∆(M)K(u) = 0 ; ∆(M) = (M ⊗ I + I ⊗M) (5.12)

where ⊗ denotes the graded tensor product for which (a⊗ b) (c⊗ d) = (−1)[b][c] ac ⊗ bd.
Transformations commuting with the S-matrix (5.10) form the gl(2|2) algebra, while those
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which leave the K-matrix invariant form a super Lie sub-algebra h. In order to identify its

defining relations we elaborate (5.12)

[(M ⊗ I + I ⊗M)K]ij =
∑
k

MikKkj +
∑
l

(−1)[i][j]+[i][l]MjlKil = (5.13)

=
∑
k

MikKkj +
∑
l

(−1)[l][j]+[l]MjlKil =
[
MK +KM st

]
ij

where we used that K is bosonic as a matrix and the super transpose reads as
[
M st

]
ij

=

(−1)[i][j]+[i]Mji. Therefore the symmetry algebra is the osp(2|2) algebra, which is usually

defined by the relation

M +KM stK−1 = 0 ; M =

(
R S

Q L

)
(5.14)

and, in the particular parametrization, looks like

R+ VsR
tV −1
s = 0 ; L+ VaL

tV −1
a = 0 ; Q− VaStV −1

s = 0 (5.15)

From these relations it is obvious that the two bosonic sub-algebras of osp(2|2) are so(2)

and sp(2) ∼= su(2).

5.4.3 All loop solutions

In order to find the all loop solutions one starts with the one-loop form and promotes

the constants to non-trivial functions at higher orders in g. We no longer demand that

k2(z) = k3(z) at higher orders. Equations having particles only with bosonic labels fixes

the ratio of k1(z) and k4(z) to be a constant. One then selects simple looking equations

including k1(z1), k1(z2) and k3(z1), k3(z2). These equations can be evaluated at any z2

leading to equations for k1(z1) and k3(z1). Particularly simple choice is z2 = 0, although

one should be careful as both x±(z) go to 0 for z → 0, with the ratio being 1. Similar

equation can be derived for k2(z1) including k3(z1) and k1(z1), which finally can be solved

leading to the most general 3 parameter family of solutions

k1,4(z) = k1,4
x+(z)(1 + x−(z)x+(z))

x−(z)(A+ x+(z)2)
; A = k1k4 − k2

2 (5.16)

k2(z) =
x+(z)(k2 − x+(z) + x−(z)(A+ k2x

+(z))

x−(z)(A+ x+(z)2)
;

k3(z) =
x+(z)(k2 + x+(z) + x−(z)(−A+ k2x

+(z))

x−(z)(A+ x+(z)2)

We can use the bosonic sl(2) symmetries of the S-matrix to bring the solution into some

canonical form. The three parameter family of such symmetries transform the solutions

as k1 → eak1; k4 → e−ak4, or as k1 → a(2k2 + ak4); k2 → k2 + ak4 or finally as k2 →
k2 + ak1; k4 → k4 + a(2k2 + ak1) and leaves A invariant. These transformations can be

used to arrange k1 = k4 = 0 or k2 = 0; k1 = k4. We can thus observe that basically we

have only one free parameter in the solution.
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In order to completely fix this solution one has to fix the overall scalar factor, which,

from the unitarity and crossing unitarity equations, satisfies the equations

K0

(
z+

ω2

2

)
K0

(
−z+

ω2

2

)
= eip(z+

ω2
2

) ; K0(z) =S0(z,−z)K0(−z)e−2ip(z)

(
A+x+(z)2

A+x−(z)2

)2

(5.17)

Shifting variables in the first equation we might use K0(z + ω2)K0(−z) = 1 instead. For

the moment we cannot see how these equations could be easily solved for generic A.

The other type of solution takes the form

h1,4(z) = h1,4
x−(z)(1 + x−(z)x+(z))

x+(z)(A+ x+(z)2)
; A = h1h4 − h2

2 (5.18)

h2(z) =
x−(z)(h2 + x−(z) + x+(z)(−A+ h2x

−(z))

x+(z)(A+ x+(z)2)
;

h3(z) =
x−(z)(h2 − x−(z) + x+(z)(A+ h2x

−(z))

x+(z)(A+ x+(z)2)

Let us now identify the symmetries of these solutions.

5.4.4 All loop symmetry

In the following we show that the solutions above can be obtained from a centrally extended

osp(2|2)c symmetry. In doing so we generalize the osp(2|2) embedding to the centrally

extended version of su(2|2). See the appendix for the details of the defining relation of the

centrally extended su(2|2)c algebra. Following (5.15) we define the fermionic generators of

osp(2|2)c as

Q̃ a
α = Q a

α + εαβs
abQ† βb (5.19)

where sab is any symmetric invertible matrix. These generators have the following anti-

commutation relations{
Q̃a
α,Q̃b

β

}
=
{
Qa
α+εαγs

acQ†γc ,Qb
β+εβδs

bdQ†δd
}

=

= εαβ

(
sacRb

c−sbdRa
d

)
+sab

(
εβδLδα+εαγLγβ

)
+εαβε

abC+εαβs
acsbdεcdC†=

= εαβε
abR̃+sab

(
εβδLδα+εαγLγβ

)
+εαβε

abC̃.

(5.20)

where

R̃ = sabR c
b εac ; C̃ = C + det(sab)C† (5.21)

Therefore the generators R̃,L β
α , Q̃ a

α , C̃ form a centrally extended osp(2|2)c algebra:[
R̃,Q̃a

α

]
=−sabεbcQ̃c

α ;
[
Lβα ,Jγ

]
= δβγ Jα−

1

2
δβαJγ ;

[
Lβα ,Jγ

]
=−δγαJβ+

1

2
δβαJγ , (5.22){

Q̃a
α,Q̃b

β

}
= εαβε

abR̃+sab
(
εβδLδα+εαγLγβ

)
+εαβε

abC̃. (5.23)

Notice that V(p) ⊗ V(−p) is a representation of the non centrally extended osp(2|2) since

C̃ · V(p)⊗ V(−p) = 0.
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The fundamental S-matrix S(p1, p2) : V(p1) ⊗ V(p2) → V(p2) ⊗ V(p1) commutes with

the conserved charges

∆(J)S(p1, p2) = S(p1, p2)∆op(J) (5.24)

for all J ∈ su(2|2)c. Let us assume that the K-matrix K(p) ∈ V(p) ⊗ V(−p) has osp(2|2)

symmetry i.e.

K(p)∆op(J) = 0. (5.25)

For simplicity, we fix the embedding as

sab =

(
0 s

s 0

)
. (5.26)

By using bosonic generators the equation (5.25) fixes the tensor structure of K(p) as

K(p) = e(p)
〈
e1

∣∣⊗ 〈e2

∣∣+ f(p)
〈
e2

∣∣⊗ 〈e1

∣∣+
〈
e3

∣∣⊗ 〈e4

∣∣− 〈e4

∣∣⊗ 〈e3

∣∣. (5.27)

The fermionic generators completely fix e(p) and f(p) as follows: by applying Q̃ 1
3 =

Q 1
3 + sQ† 4

2 we obtain

K(p)∆op
(
Q 1

3

)
= e−ip/4

[
(e(p)b(−p)− a(p))

〈
e1

∣∣⊗ 〈e4

∣∣+ (f(p)b(p)− a(−p))
〈
e4

∣∣⊗ 〈e1

∣∣]
(5.28)

K(p)∆op
(
Q† 4

2

)
= eip/4

[
(e(p)d(−p)− c(p))

〈
e1

∣∣⊗ 〈e4

∣∣+ (f(p)d(p)− c(−p))
〈
e4

∣∣⊗ 〈e1

∣∣]
(5.29)

where we used that it is a graded tensor product in moving the fermionic generators through

|e3〉 and |e4〉. Therefore

e(p) =
s−1a(p)e−ip/4 + c(p)eip/4

−s−1b(p)e−ip/4 + d(p)eip/4
, f(p) =

s−1a(p)e−ip/4 − c(p)eip/4

s−1b(p)e−ip/4 + d(p)eip/4
(5.30)

where we further used that a(−p) = a(p) = d(p), b(−p) = −b(p) = −c(p). We obtain the

same relations for the other fermionic generators. Using the explicit forms of a(p) and b(p)

we obtain

e(p) = eip/2
s−1x− − 1

x+ + s−1
, f(p) = eip/2

1 + s−1x−

x+ − s−1
. (5.31)

These agree with the solution of the KYBE, once k1 = k4 = 0 and k2 = s−1 is chosen.

In summarizing, we found that the factorizing bosonic solutions of the KYBE must

have osp(2|2)c symmetry. The 3 parameters in the solutions are related how the boundary

osp(2|2)c symmetry is embedded into the centrally extended su(2|2)c bulk symmetry.

6 Asymptotic overlaps and nesting for K-matrices

In this section we demonstrate how K-matrices can be defined for various levels of the

nesting and how this ideas can be used to calculate factorizing overlaps.
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In calculating the spectrum of a spin chain with a higher rank symmetry we typically

use the nesting method. This means that we start with an R-matrix with symmetry

g and some representation where one site states can be labeled as i = 1, . . . , N . (For

simplicity we can assume an su(N) spin chain). In diagonalizing the transfer matrix we

first choose a pseudo vacuum, typically picking one of the indices say 1, assuming that

the state |0〉 = |1〉⊗L is an eigenstate of the transfer matrix. R11
11 describes the diagonal

scattering of these excitations. Then we introduce L1 excitations with labels j = 2, . . . , N

over this pseudovacuum with rapidity u(1)

∣∣u(1)
1 , . . . , u

(1)
L1

〉
j1...jN

; ji = 2, . . . , N (6.1)

These excitations propagate over the pseudo vacuum through a diagonal scattering, R1j
1j ,

but scatter on themselves non-trivially with a reduced R(1)-matrix, which we calculate

from the exchange relation∣∣u(1)
1 , u

(1)
2

〉
ab

= R
(1)dc
ab (u

(1)
1 − u

(1)
2 )
∣∣u(1)

2 , u
(1)
1

〉
cd

(6.2)

In the next step we repeat the procedure for this R(1)-matrix having symmetry g(1) ⊂ g, by

choosing a second level pseudo vacuum, say |2〉⊗L1 and diagonal scattering R
(1)22
22 among

themselves and second level excitations k = 3, . . . , N with diagonal propagation R
(2)2j
2j and

non-diagonal scatterings R(3). We then carry on this procedure until it terminates. As a

result the spectrum of the transfer matrix is described in terms of particles with rapidities

u
(a)
j of various nesting levels a = 1, . . . , N − 1, which scatter on each other diagonally as

obtained at each step of the nesting.

The aim of this section is to develop a similar procedure for K-matrices and overlaps.

Our procedure is a recursive one which can determine not only the nested K-matrices, but

also the generic overlaps if they are factorizing. In doing so we assume that the square of

the overlap4 has the following “factorizing” form

|〈Ψ|u(a)〉|2

〈u(a)|u(a)〉
=
∏
a,i

h(a)(u
(a)
i )

G+

G−
(6.3)

where the norm of the state is given by the Gaudin determinant, 〈u(a)|u(a)〉 = G which,

for states with a pair structure, can be written into a factorized form G = G+G− and

the overlap function of the nested excitations at level a are denoted by h(a). Let us note

that in the thermodynamic limit (number of sites goes to infinity) the ratio of determinant

cancels and we can calculate systematically the overlaps in this limit. As a first step we

normalize the K-matrix appearing in the boundary state 〈Ψ| for the pseudo vacuum by

dividing with K11 in order to ensure a normalized boundary state 〈Ψ(1)|0(1)〉 = 1, i.e. a

normalized overlap with the first level pseudo vacuum |0〉 ≡ |0(1)〉. Clearly we have to

choose the pseudo vacuum, such that it has a nonzero overlap with the boundary state.

We will comment on the importance of the choice of the pseudo vacuum later. Then the

4By the abuse of terminology sometimes we call the squares as overlaps.
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idea is to extract the nested level K-matrix in the limit as

K
(1)
ab (u(1)) = lim

L→∞

〈Ψ(1)|
∣∣u(1),−u(1)

〉
ab√

ab〈u(1),−u(1)
∣∣u(1),−u(1)

〉
ab

(6.4)

This K-matrix, by construction, satisfies the

K
(1)
ab (u(1)) = R

(1)cd
ab K

(1)
dc (−u(1)) (6.5)

crossing equation. The one-particle overlap of the first level magnon is simply

h(1)(u(1)) = k(1)(u(1))k(1)(u(1))∗ ; k(1)(u(1)) = K
(1)
22 (u(1)) (6.6)

By dividing K(1)(u(1)) with k(1)(u(1)) we can build up 〈Ψ(2)| which has a normalized overlap

with the second level pseudo vacuum 〈Ψ(2)|0(2)〉 = 1. We then can proceed with the nesting

at the second level. This procedure ends up with the nested K-matrices and overlaps h(a).

We demonstrate this method in the following on various models. We use coordinate space

Bethe vectors to calculate the overlap, while explicit formulas and technical details are

relegated to appendix C.

In the following we verify this method by reconstructing previously known results for

XXX, su(3) and so(6) spin chains [9, 17, 18]. After the verification, we propose a new

overlap formula for the su(2|2)c spin chain using our nesting method.

6.1 Overlaps in the XXX spin chain

Let us start with the general integrable two-site state of the XXX spin chain of size L. The

elements of the normalized boundary state, which solves the su(2) KYBE, are:

K11 = 1 ; K12 = −ie−θ(coshβ + 2α sinhβ) ; K21 = −ie−θ(coshβ − 2α sinhβ) ;

K22 = −e−2θ.
(6.7)

where α, β and θ are arbitrary parameters. We are interested in the overlap of the integrable

state 〈Ψ(1)| with a two magnon state, built over the pseudo-vacuum |1〉⊗L in the large L

limit. As we have only one nesting level we denote u(1) by u and the scalar R(1) by S. In

coordinate space Bethe ansatz the two magnon state is a plane wave of the form

|u,−u〉 =
L∑

n1=1

L∑
n2=n1+1

(
eip(n1−n2) + e−ip(n1−n2)S(2u)

)
|n1n2〉 (6.8)

where

p = −i log
u− i/2
u+ i/2

, S(u) =
u+ i

u− i
. (6.9)

and |n1n2〉 represents a state, in which sites n1 and n2 are in state 2. This state is not

symmetric in the rapidities, it satisfies |u,−u〉 = S(2u)| − u, u〉. It is also not normalized,
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the norm is proportional to L in the large L limit. In calculating the overlap we have to

analyze carefully the parity of n1 and n2 and their relations. The result from appendix C is

〈Ψ(1) |u,−u〉 = (Σ(p) + Σ(−p)S(2u))
(
K2

12 +K2
21 +

(
eip + e−ip

)
K12K21

)
+
L

2

(
e−ip + e+ipS(2u)

)
K22.

(6.10)

where in the asymptotic limit (L→∞), after proper regularization, Σ(p) can be written as

Σ(p) =
L

2

1

e2ip − 1
. (6.11)

By substituting into (6.10) and dividing by the norm of the state in the L → ∞ limit we

obtain that

K(1)(u) = k(u) =
1

L
〈Ψ |u,−u〉 = e−2θ sinh(β)2 u2 + α2

u(u− i/2)
. (6.12)

We can calculate the normalized overlap square leading to

h(u) = k(u)k∗(u) = e−4θ sinh(β)4 (u2 + α2)2

u2(u2 + 1
4)

(6.13)

which is the known one particle overlap function of the XXX spin chain [17]. Thus we

provided an alternative calculation of those results. In the following we check how nesting

works. For this we first analyze an su(3) spin chain with so(3) symmetry.

6.2 Overlaps in su(3) spin chains with so(3) symmetry

We analyze a two site state and a matrix product state for this model.

6.2.1 Two-site state

We take the integrable two-site state to be

〈Ψ| = (〈1| ⊗ 〈1|+ 〈2| ⊗ 〈2|+ 〈3| ⊗ 〈3|)⊗L/2 (6.14)

We choose the pseudo-vacuum as |1〉⊗L and introduce excitations with labels 2 and 3. We

would like to calculate the two-site K-matrix, K(1)(u(1)) of these su(2) excitations. We

read off the K(1)-matrix from an overlap with a two magnon state in appendix C

K
(1)
ab (u(1)) :=

1

L
〈Ψ
∣∣∣u(1),−u(1)

〉
=

1

2

(
e−ipδab + eipR

(1)cc
ab (2u(1))

)
=

u(1)

u(1) − i/2
δab (6.15)

By defining

k(1)(u) := K
(1)
11 (u) =

u

u− i/2
(6.16)

we can see that it is related as h(1)(u) = k(1)(u)k(1)(u∗)∗ = u2

u2+1/4
to the one particle

overlap function of the u(1) magnons which agrees with [3, 4]. By normalizing with this

factor the second level state

ψ
(2)
ab :=

K
(1)
ab (u)

k(1)(u)
= δab (6.17)
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is an SU(2) integrable initial state with α = 0 and β = θ = iπ/2 from which the k-function

turns out to be k(2)(u(2)) = u(2)

(u(2)−i/2)
(see (6.13)). Notice that h(2)(u) = k(2)(u)k(2)(u∗)∗ =

u2

u2+1/4
is the one particle overlap function of the u(2) magnons, see [3, 4].

6.2.2 Matrix product state with Pauli matrices

Here we show that similar ideas can be used also for boundaries with inner degrees of

freedom. Let the MPS be

α,β 〈MPS| =
[
(〈1|σ1 + 〈2|σ2 + 〈3|σ3)⊗L

]α,β
(6.18)

where α, β = 1, 2 are the “inner” indexes of the Pauli matrices. The pseudo vacuum is

|1〉⊗L and we calculate the overlap α,β 〈MPS|u,−u〉ab. From the results of the appendix C

we can see that the overlap is diagonal in α and β:

1,1 〈MPS
∣∣∣u(1),−u(1)

〉
a,b

= K
(1)+
ab (u(1)) ; 2,2 〈MPS

∣∣∣u(1),−u(1)
〉
a,b

= K
(1)−
ab (u(1))

(6.19)

with

K(1)±(u) =
1

u

(
u+ i

2 ±1
2

∓1
2 u+ i

2

)
; k(1)(u) = K

(1)±
11 (u). (6.20)

Notice again that h(1)(u) = u2+1/4
u2

and ψ
(2)±
ab s are integrable SU(2) states for inhomoge-

neous spin chains. Taking the homogeneous limit, we obtain an integrable two site state

with the parameters

θ± = i
π

2
, β± = i

π

2
, α± = ±1

2
(6.21)

therefore h(2)(u) = u2+1/4
u2

. We can see that h(1)(u) and h(2)(u) agree with [18].

6.3 Overlaps in so(6) spin chains with so(3)⊕ so(3) symmetry

This model is relevant for the weak coupling limit of AdS/dCFT. The six dimensional one

site Hilbert space is parametrized by φi, i = 1, . . . , 6 and we introduce the notation

Z =
1√
2

(φ5 + iφ6) , Z̄ =
1√
2

(φ5 − iφ6) (6.22)

We are going to analyze a two site state and a matrix product state and point out the

importance of the right choice for the pseudovacuum.

6.3.1 Two-site state

Let the two-site state be

〈Ψ| =
(
Z ⊗ Z + Z̄ ⊗ Z̄ + φ1 ⊗ φ1 − φ2 ⊗ φ2 + φ3 ⊗ φ3 − φ4 ⊗ φ4

)⊗L/2
(6.23)
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We choose the pseudo vacuum as Z⊗L and excitations are labeled with a, b = 1, 2, 3, 4. The

excitations have an so(4) = su(2)⊕ su(2) symmetry. The overlap with a two magnon state∣∣u(1),−u(1)
〉
ab

is calculated in the appendix C to be

K
(1)
ab (u(1)) =

1

L
〈Ψ
∣∣∣u(1),−u(1)

〉
ab

=
u(1)

u(1) − i/2
Fab ; F = diag(1,−1, 1,−1) (6.24)

This K-matrix satisfies the KYBE and has a factorized form in the spinor basis

K(1)(u) ∼=
u

u− i/2

(
1 0

0 1

)
⊗

(
1 0

0 1

)
= k(1)(u)ψ(L) ⊗ ψ(R). (6.25)

Notice that h(1)(u) = u2

u2+1/4
is the one particle overlap function of the u(1) magnons and

ψ(L/R) are su(2) integrable initial states for which the k-functions are k(L/R)(u) = u
(u−i/2)

(see (6.13)). Clearly h(L/R)(u) = k(L/R)(u)k(L/R)(u∗)∗ = u2

u2+1/4
is the one particle overlap

function of the u(L/R) magnons. We can see that h(1)(u) and h(2)(u) agree with [11].

Let us emphasize that the choice of the direction of the pseudo vacuum is crucial in

obtaining and integrable K-matrix in the nesting. Indeed, the boundary state has the

symmetry so(3)⊕so(3), which is broken to so(2)⊕so(2) by choosing the pseudo vacuum as

Z⊗L and so(4) excitations over it. Since so(2)⊕so(2) is an integrable residual symmetry of

the so(4) model the excitation K-matrix satisfies the KYBE. Rotating the pseudovacuum

or equivalently the two site state as

φ3 → cos(α)φ3 + sin(α)φ5 ; φ5 → − sin(α)φ3 + cos(α)φ5

the full symmetry of the boundary state so(3)⊕so(3) is unchanged, however the excitation

symmetry becomes only so(2) which is no longer an integrable residual symmetry of the

so(4) model. The excitation K-matrix also has an so(2) symmetry only, therefore it cannot

be a solution of the KYBE, which can be checked by an explicit calculation.

Thus the excitation K-matrix is meaningful only with the proper pseudo vacuum.

This is not at all surprising from the boundary nested BA point of view, since the correct

choice of pseudo vacuum was important when the boundary was in space. For reflections in

space, the excitation reflection matrices can be defined only when the labels of the pseudo

vacuum reflects to themselves on the boundary. In [31] it was shown that the nesting of

the so(3)⊕ so(3) symmetric reflection matrix was related to following symmetry breaking

(so(6), so(3)⊕ so(3)) −→ (so(4), so(3)) .

These two integrable symmetries are related to special residual symmetries. In contrast,

we have just seen above that when the boundary is in time then the nesting of the residual

symmetries is

(so(6), so(3)⊕ so(3)) −→ (so(4), so(2)⊕ so(2))

which are both related to chiral overlaps. In this example, for space boundaries and reflec-

tions nesting preserves the regular/special residual symmetries, while for time boundaries

and overlaps the chiral/achiral nature of the pairings. This indicates that the nesting of

the K-matrix can be different when the boundaries are in time or in space.
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6.3.2 Matrix product state with Pauli matrices

Let the MPS be

α,β 〈MPS| =
[(√

2φ1σ1 +
√

2φ3σ2 +
√

2φ5σ3

)⊗L]α,β
=

[(√
2φ1σ1 +

√
2φ3σ2 + (Z + Z̄)σ3

)⊗L]α,β
.

(6.26)

We take the pseudo vacuum and the excitations as before. The overlaps, calculated in the

appendix C, turns out to be diagonal in α and β with non-vanishing components

1,1 〈MPS |n1n2〉a,b = K
(1)+
ab (u) ; 2,2 〈MPS |n1n2〉a,b = K

(1)−
ab (u) (6.27)

where the K-matrices can be written as

K(1)±(u) =


u2+iu−1/2
u(u+i/2) 0 ∓ 1

u 0

0 − u+i
u+i/2 0 0

± 1
u 0 u2+iu−1/2

u(u+i/2) 0

0 0 0 − u+i
u+i/2

 (6.28)

It is factorized in the spinor basis:

K(1)±(u) =
u+ i/2

u

(
1 ± 1

2u+i

∓ 1
2u+i 1

)
⊗

(
1 ± 1

2u+i

∓ 1
2u+i 1

)
. (6.29)

showing that it is an integrable K-matrix. We can define the k-function and the su(2)

two-site states as

k(1)(u) =
u+ i/2

u
; ψ

(L/R)±
ab =

(
1 ± 1

2u+i

∓ 1
2u+i 1

)∣∣∣∣∣
u=0

=

(
1 ∓i
±i 1

)
(6.30)

Notice that h(1)(u) = u2+1/4
u2

is the one particle overlap function for the u(1) magnons

and ψ
(2)±
ab s are integrable initial states for which the k-function is (see (6.13)) k(2)(u) =

k(2)±(u) = (u+i/2)
u . Clearly h(2)(u) = u2+1/4

u2
is the one particle overlap function for the u(2)

magnons. We can see that h(1)(u) and h(2)(u) agree with [9].

6.4 Overlaps in su(2|2)c spin chains

We would like to analyze an all loop two-site integrable state which in the weakly coupled

limit reproduces the result in the previous section (6.30). This can be obtained from

K(p) =


k1(p) k2(p) 0 0

k3(p) k4(p) 0 0

0 0 0 ei
p
2

0 0 −ei
p
2 0

 (6.31)
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by choosing k1 = k4 = s(g) = g−1 + . . . and k2 = 0. One can indeed check that the weak

coupling expansion of K(p) reproduces ψ
(L/R)
ab (u) in the upper 2 by 2 block and gives zero

elsewhere. The all coupling integrable boundary state for 2L sites then takes the form

〈Ψ| = 〈K(p1)| ⊗ · · · ⊗ 〈K(pL)| ; 〈K(p)| = Kij(p) 〈i| ⊗ 〈j| Ig. (6.32)

The pseudo-vacuum is going to be |1〉⊗2L and excitations are labeled by 3, 4 and 2. States

of the nested Bethe ansatz are labeled by |y,w〉 or |p,y,w〉 if we want to emphasize

the dependence on the inhomogeneities p. The normalized overlap square is assumed to

factorize as

|〈Ψ| p,y,w〉|2

〈p,y,w |p,y,w〉
=

L∏
i=1

hp(pi)

N/2∏
i=1

hy(vi)

M/2∏
i=1

hw(wi)
G+

G−
. (6.33)

As a first step we renormalize the boundary state by pulling out the overlap of the pseu-

dovacuum:

K(p)

K11(p)
; hp(p) = |K1,1(p)|2 (6.34)

The corresponding state is denoted by 〈Ψ(1)|. In the following let us use special inhomo-

geneities p2k−1 = p and p2k = p for k = 1, . . . L as the boundary overlaps does not depend

on the inhomogeneities. These inhomogeneities merely influence how the second level ex-

citations are propagating and do not effect the overlaps. Using these special momenta we

can calculate the two particle overlap in the asymptotic limit. Using the explicit form of

the two-particle coordinate space Bethe vectors [32] we obtain in appendix C that

K
(1)
αβ (y) =

∣∣∣〈Ψ(1) |y,−y〉α,β
∣∣∣2

αβ 〈y,−y |y,−y〉α,β
=

4g2

s2

(y2 + s2)2

y2 + 4g2(y2 + 1)2
εαβ (6.35)

Observe that we obtained a Dimer state, θ = 0, β = iπ
2 , α → ∞, for the inhomogeneous

su(2) model at the second level of the nesting. For this state the overlap can be written as

(the number of magnons has to equal to the half length of the spin chain i.e. N = 2M) [33]

|〈Dimer |y,w〉|2

〈y,w |y,w〉
= (−1)N/2

N/2∏
i=1

(v2
i +

1

4g2
)

bN/4c∏
i=1

1

w2
i

(
w2
i + 1

4g2

) Ĝ+

Ĝ−
, vi = yi+y

−1
i (6.36)

with the determinant corresponding to the subchains. Using the results above, the proposed

overlap formula is

|〈Ψ| p,y,w〉|2

〈p,y,w |p,y,w〉
=

L∏
i=1

|K1,1(pi)|2
N/2∏
i=1

−(y2
i + s2)2

s2y2
i

bN/4c∏
i=1

1

w2
i

(
w2
i + 1

4g2

)G+

G−
. (6.37)
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where the determinants G± can be written in terms of the roots as follows. Let us

parametrize the Bethe Ansatz equations as

eiφvj = 1 =
2L∏
i=1

e−ipi/2
yj − x+

i

yj − x−i

M∏
k=1

vj − wk + i
2g

vj − wk − i
2g

, for all j = 1, . . . , N, (6.38)

eiφwj = 1 =
N∏
i=1

wj − vi + i
2g

wj − vi − i
2g

M∏
l = 1

l 6= j

wj − wl − i
g

wj − wl + i
g

, for all j = 1, . . . ,M, (6.39)

where vi = yi + y−1
i . Using the rescaled Bethe roots v̂i = gvi and ŵi = gwi, one can define

the Gaudin determinant as

G =

∣∣∣∣∣
(
∂v̂iφvj

)
N×N

(
∂v̂iφwj

)
N×M(

∂ŵiφvj
)
M×N

(
∂ŵiφwj

)
M×M

∣∣∣∣∣ = G+G−. (6.40)

For the definition of G+ and G−, we have to separate two cases.

M is even. For even M, the pair structure is

p =
{
p+,p−

}
, v =

{
v+,v−

}
, w =

{
w+,w−

}
, (6.41)

where p+
i = −p−i , v+

i = −v−i and w+
i = −w−i . The Gaudin-like determinants can be

written as

G± =

∣∣∣∣∣∣∣
(
∂v̂+i

φv+j
± ∂v̂+i φv−j

)
N/2×N/2

(
∂v̂+i

φw+
j
± ∂v̂+i φw−j

)
N/2×M/2(

∂ŵ+
i
φv+j
± ∂ŵ+

i
φv−j

)
M/2×N/2

(
∂ŵ+

i
φw+

j
± ∂ŵ+

i
φw−j

)
M/2×M/2

∣∣∣∣∣∣∣ . (6.42)

where ∂v = y2

y2−1
∂y. The Gaudin matrix is factorized as G = G+G−.

M is odd. For odd M, the pair structure is

p =
{
p+,p−

}
, v =

{
v+,v−

}
, w =

{
w+,w−, w0

}
, (6.43)

where p+
i = −p−i , v+

i = −v−i , w+
i = −w−i and w0 = 0. The Gaudin-like determinants can

be written in this case as

G+ =

∣∣∣∣∣∣∣∣∣∣

(
∂v̂+

i
φv+

j
+∂v̂+

i
φv−

j

)
N/2×N/2

(
∂v̂+

i
φw+

j
+∂v̂+

i
φw−

j

)
N/2×bM/2c

2
(
∂v̂+

i
φw0

)
N/2×1(

∂ŵ+
i
φv+

j
+∂ŵ+

i
φv−

j

)
bM/2c×N/2

(
∂ŵ+

i
φw+

j
+∂ŵ+

i
φw−

j

)
bM/2c×bM/2c

2
(
∂ŵ+

i
φw0

)
bM/2c×1(

∂v̂+
i
φw0

)
1×N/2

(
∂ŵ+

i
φw0

)
1×bM/2c

∂ŵ0φw0

∣∣∣∣∣∣∣∣∣∣
(6.44)

and G− is the same as above. The Gaudin determinant is again factorized as G = G+G−.

We extensively tested these formulas for various sizes 2L = 4, 6, 8 and M = 2N = 2, 4,

numerically, by specifying p and keeping s generic. In all the cases we found perfect

agreement.
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6.5 Summary

So far we have conjectured K-matrices for nested excitation from two particle states. The

question is how we can generalize the ideas for more excitations and whether the obtained

K-matrices are integrable. We elaborate on this in the following.

Let us assume we start the nesting with the top level excited Bethe states and denote

them as ∣∣u1, . . . , uN
〉
a1...aN

. (6.45)

This state satisfies the following exchange relation∣∣. . . , ui, ui+1, . . .
〉
...aiai+1...

= Sbcaiai+1
(u1 − u2)

∣∣. . . , ui+1, ui, . . .
〉
...cb...

(6.46)

where S(u) is the scattering matrix of the excitations which satisfy the YBE and the

unitarity relation and derives from the R-matrix of the spin chain. We can define the

N -particle K-matrix as the matrix element

Ka1b1...aN/2bN/2(u1, . . . , uN/2) =
〈
Ψ
∣∣u1,−u1, . . . , uN/2,−uN/2

〉
a1b1...aN/2bN/2

. (6.47)

From the exchange relation (6.46) we can derive that the four-particle K-matrix automat-

ically satisfy the following equation

S13(u1 − u2)S14(u1 + u2)K3412(u2, u1) = S42(u1 − u2)S32(u1 + u2)K1234(u1, u2). (6.48)

In order to connect to the previous investigations we take the L → ∞ limit. From equa-

tion (6.48), we can see that if the N -particle K-matrix factorizes into the product of

two-particle K-matrices in the L→∞ limit as

Ka1b1...aN/2bN/2(u1, . . . , uN/2) = Ka1b1(u1) . . .KaN/2bN/2(uN/2) (6.49)

then the two-particle K-matrix automatically satisfies the KYBE. From the integrabil-

ity point of view, naively one could think that the question is whether the four-particle

K-matrices satisfy the KYBE or not. However, we can see that this comes from the con-

struction of the Bethe states and the real question is whether the N -particle K-matrix

factorizes into two-particle K-matrices in the L → ∞ limit or not. This question is not

easy to decide and it is not obvious at all how it is connected to the integrability of the

state
〈
Ψ
∣∣.

We have already seen that the proper direction of the pseudo vacuum in the nesting

is relevant, which can be supported by symmetry arguments. Thus we can formulate

necessary requirements for the existence of integrable nested K-matrices.

Recall that an integrable state can be labeled by a symmetric pair (g, h) where g is

the symmetry algebra of the spin chain and h is the residual symmetry which annihilates

the state. For the top-level excitations, these symmetries are reduced to (g(1), h(1)). If the

excitation K-matrix satisfies the KYBE (i.e. it is factorized, then (g(1), h(1)) has to be a

symmetric pair, too. The consistency of the pair structures requires that both symmetries

(g, h) and (g(1), h(1)) have to belong to the same chiral or achiral pair structures. Since the

pair (g(1), h(1)) depends on the choice of the pseudo-vacuum the factorizability depends on

the choice of the pseudo vacuum, too. We can repeat the analysis for each next nesting

level.
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 symmetries

D3     

D5       osp(4|4)

D7         so(2, 3)× so(5)

Table 3. Various brane structures on AdS5 × S5 and their symmetries.

7 Application to one-point functions in AdS/CFT

In culminating all the investigations in the previous sections we investigate the defect

N = 4 SYM with the aim of providing all loop asymptotic one-point functions for local

gauge invariant operators. There are two types of defects which are integrable for the scalar

sector at tree level. Their gravity duals belong the following D-brane configurations:

1. D5-brane which wraps around AdS4 and S2 (see table 3).

2. D7-brane which wraps around AdS4 and S4 (see table 3).

The symmetry of the D5 brane is osp(4|4) while that of the D7 brane is so(2, 3) × so(5).

Since in the integrability argumentations the Lorentzian signature is irrelevant we do not

write it out explicitly, i.e. we write su(2, 2) ≡ su(4) and so(2, 3) ≡ so(5). At week coupling

the spectrum of single trace operators can be described by an gl(4|4) spin chain. The tree

level one-point functions can be obtained from overlaps between one-loop Bethe states and

boundary states. Since integrable states belong to symmetric pairs we can easily decide

which configurations can be integrable. The pair (gl(4|4), osp(4|4)) is a symmetric pair but

(gl(4|4), so(5)⊕ so(5)) is not, therefore this argument suggests that the D7 configuration

may be not integrable for the full spectrum. In the following we investigate only the D5

defect configuration.

Since the D5 defect corresponds to the symmetric pair (gl(4|4), osp(4|4)) it must have

chiral pair structures. As a consequence the excitation K-matrix must have the same

chiral pair structure, too. For the AdS5/CFT4 S-matrix, there are factorisable and non-

factorisable K-matrices which have chiral and achiral pair structures, respectively. Thus we

have to use the factorisable K-matrix which have residual symmetry osp(2|2) ⊕ osp(2|2).

This is exactly what we determined in section 5. This argument is used the integrabil-

ity requirement only. Let us continue now with the explicit symmetries of the top level

excitations.

The bosonic symmetries of the D5 defect are so(5)⊕ so(3)⊕ so(3), where so(5) comes

form the conformal while so(3) ⊕ so(3) from the R-symmetry. Let us continue with the

symmetries of the excitations over the pseudo-vacuum TrZL. This pseudo-vacuum breaks

the conformal symmetry to Lorentz symmetry so(1, 3) ≡ so(4) and the R-symmetry to

so(4). The D5 defect breaks the Lorentz symmetry to so(1, 2) ≡ su(2) which is the diagonal

algebra of the Lorentz algebra so(1, 3) ≡ su(2)⊕ su(2). The residual R-symmetry depends

on the orientation D-brane. It can be so(2)⊕so(2), so(3) or so(2). Clearly only the residual

R-symmetry so(2)⊕so(2) is consistent with the symmetry algebra osp(2|2)⊕osp(2|2) which
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is obtained from the integrability argument. We can see however that the residual Lorentz

symmetry, the diagonal su(2), is not factorized as it is required. This problem is similar to

choosing a pseudo vacuum with a non-proper direction (see subsection 6.3.1). The problem

can be cured by global conformal transformations. From symmetry argumentations we

saw that if and integrable K-matrix exists then the defect must respect the full Lorentz

symmetry, therefore we have to use a symmetry transformation which transforms the plane

defect to a spherical one. This can be done by using special conformal transformations.

Now let us focus on the tree level overlaps. In the SYM theory with defects some of

the scalar fields require nonzero vacuum expectation values. In the simplest case they are

φi(x) =
σi
x4

; i = 1, 2, 3 φi(x) = 0 ; i = 4, 5, 6. (7.1)

At tree level the excitation K-matrix in the so(2, 4) sector is zero and the K-matrix of the

so(6) sector is given in (6.29). In the inner boundary space in which the Pauli matrices

act it is diagonal, thus a direct sum of two scalar K-matrices. In order to get these scalar

K-matrices we have to put together the so(2, 4) and so(6) subsectors. This means we

have to find rational scalar su(2|2) K-matrices with bosonic symmetry su(2)⊕ u(1). This

symmetry constrains the matrix structure as
1 B 0 0

−B 1 0 0

0 0 0 A

0 0 −A 0

 ;
A = 0

B = c
i−2u

. (7.2)

Since the tree level K-matrix is zero at the so(2, 4) sector, we have to choose A = 0.

Substituting to the KYBE, we obtain that B(u) = c
i+2u is the most general solution. From

comparing to (6.29) we have to choose c = ±1, where the signs are related to the inner

degrees of freedom. In extending this tree level K-matrix for AdS/dCFT at all loops we

have to choose a solution of the KYBE equation of the form:

K(p) =


k1(p) k2(p, s) 0 0

k2(p) k4(p, s) 0 0

0 0 0 ei
p
2

0 0 −ei
p
2 0

 ;

k1 = k4 = sx+(1+x+x−)
x−(s2+(x+)2)

k2 = x+(s2x−−x+)
x−(s2+(x+)2)

k3 = x+(x+−s2x−)
x−(s2+(x+)2)

(7.3)

Indeed, choosing s = ±1
2g
−1 +O(1) and expanding at weak coupling we reproduce the tree

level result. Unfortunately we cannot see at the moment how the function s(g) could be

fixed from some symmetry argumentations. One possible way is to compare the all loop

asymptotic overlaps with explicit string theory or higher loop YM calculations.

The full su(2|2)c ⊕ su(2|2)c scalar K-matrix can be written as a tensor product of two

identical copies of (7.3) as written in (5.6). The full transfer matrix also has a factorized

form (3.12) and each factor can be diagonalized independently. The eigenvalues can be

written in terms of Bethe roots (3.13). We denote the Bethe roots of the left wing by

y(1),w(1), while that of the right wing by y(2),w(2). Within each wing they all satisfy

their own Bethe ansatz equations (6.38). The full transfer matrix eigenvalue depends
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additionally on the physical momenta which connect the Bethe roots on the two sides by

the middle node BA equation

eiφpj = 1 = eipj(L−N+
M1+M2

2
+1)

N∏
i=1;i 6=j

eipi
x+
j − x

−
i

x−j − x
+
i

1− 1
x+j x

−
i

1− 1
x−j x

+
i

σ(pj,pi)
2

2∏
ν=1

M1∏
k=1

x−j − y
(ν)
k

x+
j − y

(ν)
k

,

for all j = 1, . . . , N.

(7.4)

where the number of p, y(α), w(α) variables are N,Mα,Kα, respectively [25]. Let us denote

the eigenvector of the full transfer as |p,y(α),w(α)〉. Based on the overlap formula we

obtained in the previous section (6.37) we conjecture the overlap for the full spectrum to

take the form∣∣〈Ψ| p,y(α),w(α)
〉∣∣2〈

p,y(α),w(α)
∣∣p,y(α),w(α)

〉 (7.5)

=

N/2∏
i=1

|K0(p1)|2 |k1(pi)|4
2∏

ν=1

Mν/2∏
i=1

−((y
(ν)
i )2 + s2)2

s2(y
(ν)
i )2

bMν/4c∏
i=1

1

(w
(ν)
i )2

(
(w

(ν)
i )2 + 1

4g2

)G+

G−

where the new determinants involve differentiation w.r.t. the momenta, too:

G± =
(
∂Û+

i
φU+

j
± ∂Û+

i
φU−j

)
(7.6)

Here U+ =
{
p+,v(α)+,w(α)+

}
collects all the variables and Û =

{
u+, ŵ(α)+, ŵ(α)+

}
is the

collection of the properly normalized rapidities. In particular ui is the rapidity parameter

belonging to pi. For simplicity we assumed that K1,K2 are even.

This is the contribution of the scalar K-matrices, out of which we have two in the

simplest case. If their s-parameter is the opposite of each other their contributions just

double.

8 Conclusions

In this paper we analyzed integrable boundary states, overlaps, nesting and their applica-

tions in bootstrapping the simplest asymptotic all loop 1-point functions in AdS/dCFT.

We started by formulating the YBE for the boundary state (KYBE) which can annihilate

pairs of particles corresponding to different representations. We called this boundary state

twisted in order to distinguish from the one which annihilates particles in the same repre-

sentation, which is called untwisted. This twisting is related to a symmetry of the Dynkin

diagram of the full symmetry, which can be charge conjugation (exchanging representation

with contragradient representation) or some other involutions of the algebra. We then

showed that for each solution of the KYBE one can associate a reflection matrix in the

mirror theory, which solves the boundary YBE. Since the crossing involves a charge con-

jugation the BYBE is untwisted only if the conjugated twisted transformation is a trivial

one, otherwise it is twisted.
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We then turned to the investigation of the overlap of the finite size boundary state

with a periodic multiparticle state, which is an eigenstate of the transfer matrix. Eigenval-

ues and eigenvectors can be formulated in terms of Bethe roots, which satisfy the Bethe

equations, following from the regularity of the transfer matrix. The usual definition of the

integrable finite size boundary states demands that the difference of the transfer matrix

and the parity transformed transfer matrix annihilates the boundary state. We used this

definition to derive a pair structure between Bethe roots. In doing so we observed that the

definition does not fix uniquely the type of the pair structure. For theories with extra sym-

metries, corresponding to symmetries of the Dynkin diagram, two different pair structures

are allowed. If the Bethe roots are paired within each type we called the overlap chiral. If

however, different Bethe roots, related by the Dynkin symmetry were paired, we called the

overlap achiral.

We then focused on boundary states which are built up from K-matrices, solutions

of the KYBE. We could relate the chirality of the overlap to the twisted nature of the

KYBE, i.e. twisted KYBE leads to achiral overlaps, while untwisted equations to chiral

ones. The chirality property of the overlap can be related to the unbroken symmetries.

These symmetries are the same for K-matrices and the corresponding mirror reflections,

and has been classified for spin chains. It was found that the residual symmetry of the

BYBE together with the symmetry of the bulk theory must form a symmetric pair. These

symmetric pairs are classified and they all are related to involutions of the algebra. It

was found that for inner involutions the BYBE equations are not twisted, while for outer

involutions they are twisted and the twist is related to a nontrivial symmetry of the Dynkin

diagram. We then analyzed in detail how the twisted nature of the BYBE, can be related

to the twisted nature of the KYBE. As a result we could relate the chirality of the overlap

to the type of the unbroken symmetry. This was all crucial for formulating the nesting

program for overlaps. This analysis was for spin chains, but we wanted also to see how

it extends to AdS/CFT. For this reason we determined the most general solution of the

KYBE for the centrally extended su(2|2)c scattering matrix. We found that it has three

parameters, out of which two can be transformed away. The corresponding solution had

an os(2|2)c symmetry, which together with su(2|2)c formed a symmetric pair, the only one

of this kind.

The next step was the calculation of the overlap formulas. In doing so we suggested a

completely new and original way how nesting could be used for overlaps and K-matrices.

The framework was the nested Bethe ansatz, in which at each step a pseudo vacuum is

chosen and excitation with smaller symmetry and reduced scattering matrix is identified.

We followed the same idea and defined the nested K-matrices by the overlap of the infinite

volume two particle state with the boundary state. This two particle state was a coordinate

space BA eigenstate of the nested excitations. In choosing the right pseudo vacuum and

excitations the residual symmetries played a crucial role. Indeed, the boundary state

determines the symmetries of the problem, which fixes the chirality of the overlaps. At

each step we have to choose such a pseudo vacuum whose symmetry is in the same chirality

class. We tested these ideas for various spin chains relevant also for 1-point functions for

D5 branes in AdS/dCFT. We then carried out this program for the newly calculated

su(2|2)c K-matrix.
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As an application of our results we investigated the symmetries of various D-branes in

the AdS/dCFT setting. We found that the D5 brane have the chance to be integrable at

leading order in the coupling for the whole theory, not only for a subsector. We identified

the leading order K-matrix, in case of the simplest defect with matrix product states of

Pauli matrices. The symmetry investigations suggested that in order the whole theory be

integrable at finite couplings the symmetry related to the Lorentz transformations has to

be enhanced. We speculated about a mechanism, how this can happen. If it happens our

proposal describes the asymptotic 1-point functions for any couplings and any sector of

the theory. We thus spelled out our conjectured overlaps corresponding to this K-matrix

in terms of the Bethe roots of the su(2|2)c algebra together with the ratio of Gaudin de-

terminants. We tested this formula for various sizes and Bethe roots and found convincing

evidence of its correctness.

Our solution for the K-matrix and overlaps is just the first step in solving completely

the 1-point functions in AdS/dCFT. First of all we found a free parameter in the solution

which should be related to some physical data. Also we did not calculate the prefactor

of the solution, which should be fixed from unitarity of the mirror reflection factor and

crossing symmetry of the K-matrix. In order to perform these tasks many new data are

needed for AdS/dCFT both from the weak and strong coupling type. They should extend

the available overlaps both in the coupling and also for larger sectors of the theory.

The situation we analyzed was the simplest possible boundary state as far as the

boundary degrees of freedom was concerned. It would be interesting to understand how it

could be extended for higher dimensional representations and boundary spaces. Particu-

larly interesting problem is the calculation of the overlaps from the CFT side. Especially

the D7 brane, which seems to be integrable at 1 loop for the subsector considered so far,

but does not seem to be integrable from our point of view.

Our analysis provides an asymptotic overlap, which does not include finite size wrap-

ping effects. These finite size effects are due to virtual particles and can be dealt with using

the thermodynamic Bethe ansatz [5, 6]. Recent works [34–37] on excited state g-functions

can help to include such corrections also in our case.

Our developments are relevant also for spin chains. The new nesting procedure we

initiated was tested only in a few examples. It would be very nice to extend systematically

the calculations for any algebras and for all boundary conditions.

Note added. While our draft was finalized the paper [38] appeared on the arxiv, with

partially overlapping results. The paper [38] has two parts: the first calculates the 1-

point functions of BPS operators for the D5 system using supersymmetric localization.

The second deals with non-BPS operators in the bootstrap setting. By identifying the

unbroken symmetries the authors calculate the solution of the KYBE, which is relevant

for the defect problem and use crossing symmetry and unitarity to fix the scalar factor. In

order to apply for AdS/dCFT and to fix the CDD ambiguity they analyze the asymptotic

overlaps in the su(2) sector. By comparing with 1-loop calculations they fix the scalar factor

and use excited boundary states to describe su(2) overlaps for a large class of defects.

Our paper analyzed AdS/dCFT and spin chains in the same time, and formulated

a nesting program how the generic overlaps can be calculated. We found two types of
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solutions of the KYBE, and calculated the generic asymptotic overlaps for all sectors,

which is relevant for the simplest AdS/dCFT setting.

We are overlapping with [38] with the calculation of the K-matrix from symmetries.

Indeed our K-matrix (5.31) is equivalent to their (4.30), once we change the sign of the

momentum originating from a different definition of the S-matrix and take into account

that their S-matrix uses a different phase factor for bosons.

All other results we obtained are independent. Actually their results nicely extends

ours by determining the scalar factor and by fixing our free parameter in the solution.

By combining the two results the asymptotic all loop 1-point functions for all sectors are

available now.
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A Notations and conventions for su(2|2)c

In this appendix we summarize in a selfcontained way the notations and convention we used

for the AdS5/CFT4 integrable model thorough the paper. This model has an su(2|2)c ⊕
su(2|2)c symmetry, where the centrally extended su(2|2)c algebra is defined by the relations[

R b
a , Jc

]
= δbcJa −

1

2
δbaJc,

[
L β
α , Jγ

]
= δβγ Jα −

1

2
δβαJγ ,[

R b
a , Jc

]
= −δcaJb +

1

2
δbaJc,

[
L β
α , Jγ

]
= −δγαJβ +

1

2
δβαJγ ,{

Q a
α ,Q b

β

}
= εαβε

abC,
{
Q† αa ,Q† βb

}
= εabε

αβC†,{
Q b
α ,Q† βa

}
= δβαR b

a + δbaL β
α +

1

2
δβαδ

b
aH (A.1)

and the central charges are related to the worldsheet momenta as C=C†= ig
(
e−iP/2−eiP/2

)
.

The algebra form a bialgebra with the following co-product:

∆(J) = J⊗ U−[J] + U[J] ⊗ J (A.2)

where U = eiP/4 and
[
R b
a

]
=
[
L β
α

]
= [H] = 0, [Q a

α ] = 1,
[
Q† βa

]
= −1, [C] = 2,

[
C†
]

= −2.

Let us choose the parameterization of the defining representation V(p) as

Q a
α |eb〉 = a(p)δab |eα〉 , Q† αa |eb〉 = c(p)εabε

αβ |eβ〉 ,
Q a
α |eβ〉 = b(p)εαβε

ab |eb〉 , Q† αa |eβ〉 = d(p)δαβ |ea〉 (A.3)

where bosonic labels are a, b = 1, 2, fermionic ones are α, β = 3, 4 and we take the symmetric

choice

a(p) = d(p) = η(p) =
√
ig(x−(p)− x+(p)),

b(p) = − 1

x−(p)
e−ip/2η(p) = c(p) = − 1

x+(p)
eip/2η(p)

(A.4)
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with

x±(p) = e±i
p
2

1 +
√

1 + 16g2 sin2 p
2

4g sin p
2

(A.5)

and g is related to the t’ Hooft coupling of the N = 4 SYM theory as g =
√
λ

4π . The

dispersion relation follows from the algebra

eip =
x+(p)

x−(p)
; E(p) = ig

(
x−(p)− 1

x−(p)
− x+(p) +

1

x+(p)

)
=

√
1 + 16g2 sin2 p

2
(A.6)

By demanding that the fundamental S-matrix S(p1, p2) : V(p1) ⊗ V(p2) → V(p2) ⊗ V(p1)

commutes with the conserved charges

∆(J)S(p1, p2) = S(p1, p2)∆op(J) (A.7)

for all J ∈ su(2|2)c we can obtain [21]:

Saaaa =
x−2 −x

+
1

x+
2 −x

−
1

η1η2

η̃1η̃2
; Sbaab =−(x−1 −x

+
1 )(x−2 −x

+
2 )(x−2 +x+

1 )

(x−1 −x
+
2 )(x−1 x

−
2 −x

+
1 x

+
2 )

η1η2

η̃1η̃2
; Sabab =Saaaa−Sbaab

Sαααα =−1; Sβααβ =−(x−1 −x
+
1 )(x−2 −x

+
2 )(x−1 +x+

2 )

(x−1 −x
+
2 )(x−1 x

−
2 −x

+
1 x

+
2 )

; Sαβαβ =Sαααα−S
βα
αβ (A.8)

Saαaα =
x−2 −x

−
1

x+
2 −x

−
1

η1

η̃1
; Sαaaα =

x−2 −x
+
2

x+
2 −x

−
1

η1

η̃2
; Saααa =

x−1 −x
+
1

x+
2 −x

−
1

η2

η̃1
; Sαaαa =

x+
2 −x

+
1

x+
2 −x

−
1

η2

η̃2

Sαβab =−εabεαβ
ix−1 x

−
2 (x+

2 −x
+
1 )η1η2

x+
1 x

+
2 (x+

2 −x
−
1 )(1−x−1 x

−
2 )

; Sabαβ =−εαβεab
i(x+

1 −x
−
1 )(x−2 −x

+
2 )(x+

1 −x
+
2 )

(x+
2 −x

−
1 )(1−x−1 x

−
2 )η̃1η̃2

where a, b = 1, 2; a 6= b, while α, β = 3, 4; α 6= β and we have streamlined the notations

as Saaaa ≡ Saaaa(p1, p2), x±i = x±(pi) and η1 = eip1/4eip2/2η(p1), η2 = eip2/4η(p2), η̃1 =

eip1/4η(p1) and η̃2 = eip1/2eip2/4η(p2).

The energy and momentum can be parametrized in terms of the torus variable z using

Jacobi elliptic functions:

p(z) = 2am(z, k) ; E(z) = dn(z, k) ; k = −16g2 (A.9)

where the rapidity torus has two periods 2ω1 = 4K(k) and 2ω2 = 4iK(1 − k) − 4K(k),

with K(k) being the elliptic K function. Crossing transformation and reflections are easy

to implement on the torus:

x±(z + ω2) =
1

x±(z)
; x±(−z) = −x∓(z) (A.10)

where explicitly

x±(z) =
1

2g

(cnz

snz
± i
)

(1 + dnz) (A.11)

In the weak coupling limit the spectral parameter is also useful. It is defined as

u = x+ +
1

x+
− i

2g
= x− +

1

x−
+

i

2g
(A.12)
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su(N) so(2N)

residual symmetry type reflection residual symmetry type reflection

su(M)⊕ su(N −M)⊕ u(1) regular untwisted so(2m)⊕ so(2N − 2m) regular untwisted

so(N) special twisted u(N) regular untwisted

sp(N) special twisted so(2m+ 1)⊕ so(2N − 2m− 1) special twisted

Table 4. Classification of the solution of the BYBEs together with their symmetries.

Thus we can define x(u) such that

x±(u) = x

(
u± i

2g

)
(A.13)

All of the three: the momentum, p, the spectral parameter u or the torus rapidity z can

be used to label the particle’s representation.

B KYBE, symmetries and selection rules for spin chains

In this appendix we focus on rational spin chains of type su(N) and so(2N) and investigate

the relations between the type of the residual symmetries, YBE and chirality of the overlaps.

The R-matrix of the su(N) model involves the identity and the permutation (3.3), while

that of the so(2N) contains additionally the trace operator (3.10). There are two types of

BYBEs: the untwisted one

R12(u− v)K1(u)R12(u+ v)K2(v) = K2(v)R12(u+ v)K1(u)R12(u− v) (B.1)

which exist both for su(N) and so(2N) and the twisted one

R12(u− v)K1(u)R̄12(u+ v)K2(v) = K2(v)R̄12(u+ v)K1(u)R12(u− v) (B.2)

which exist only for the su(N) R-matrix. Here R̄12(u) = R1̄2(u) = R12̄(u) describes

the scattering of the fundamental representation and the antifundamental and R12(u) =

R1̄2̄(u). The classification of the solutions of these equations together with the type of the

residual symmetry is shown in table 4.

In the following we investigate the boundary states belonging to these BYBEs.

B.1 Connection between the reflection and KYBE for rational spin chains

The K-matrices can be used to define integrable two-site states:

〈Ψ| = 〈ψ|⊗L/2 ; 〈ψ| = 〈a| ⊗ 〈b|Kab(0). (B.3)

If the K- matrix is not twisted the KYBE ensures that the boundary state satisfies the

following requirement

〈Ψ|K0(u)T0(u) = 〈Ψ|ΠT0(u)ΠK0(u) ; T0(u) = R0L(u)R0,L−1(u) . . . R02(u)R01(u)

(B.4)
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Figure 5. The proof of (B.4).

If however, the K-matrix is a twisted one we have to introduce a spin chain with alternating

inhomogeneities. In this spin chain we can introduce two monodromy matrices

T0(u) = R̄0L(u)R0,L−1(u) . . . R̄02(u)R01(u), (B.5)

T̄0(u) = R0L(u)R̄0,L−1(u) . . . R02(u)R̄01(u), (B.6)

such that the boundary state satisfies the relation

〈Ψ|K0(u)T0(u) = 〈Ψ|ΠT̄0(u)ΠK0(u) (B.7)

The proof of (B.4) and (B.7) is shown in figure 5. From (B.4) and (B.7), the following

integrability conditions follow

untwisted: 〈Ψ| t(u) = 〈Ψ|Πt(u)Π ; twisted: 〈Ψ| t(u) = 〈Ψ|Πt̄(u)Π

The untwisted case is simpler. It is a natural assumption that the space reflection

exchanges the sign of the Bethe roots Π
∣∣u(a)

〉
=
∣∣−u(a)

〉
. This assumption was shown

in (4.1) from the explicit form of the transfer matrices’ eigenvalues. The non-vanishing

overlap implies that the eigenvalues satisfy

Λ
(
u|u(a)

)
= Λ

(
u| − u(a)

)
; t(u)

∣∣∣u(a)
〉

= Λ
(
u|u(a)

) ∣∣∣u(a)
〉
. (B.8)

The eigenvalue is symmetric in each type of Bethe roots therefore this equation implies

u(a) =
{
u

(a)
1 ,−u(a)

1 , . . . , u
(a)
Na/2

,−u(a)
Na/2

}
(B.9)

the chirality of the overlaps.

There can be other symmetries of the transfer matrix eigenvalue beyond the permu-

tation of the Bethe roots with the same type. These are the symmetries of the Dynkin

diagram which leave invariant the representations of the quantum and auxiliary spaces. It

can be illustrated with the Dynkin diagram which is decorated by the used representations.

We use only the fundamental representations which is identified to one of the Dynkin node.

The red note indicates the auxiliary representation. The additional black nodes are con-

nected to the Dynkin nodes of the quantum spaces. The first box in figure 6 shows the
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Figure 6. Decorated Dynkin diagrams.

decorated Dynkin diagrams of the untwisted cases. We can see that the su(N) and the

so(2n+ 1) cases has no additional symmetry therefore the symmetric pairs

(su(N), so(N)) ; (su(2n), sp(2n)) ; (so(2n+ 1), so(M)⊕ so(2n+ 1−M)) (B.10)

has pair structure (B.9) i.e. these are chiral symmetric pairs.

In the case of the decorated so(2n) diagram there is a symmetry which interchanges

the roots u+ and u−, therefore for the so(2n) spin chain there can be two types of pair

structures

• chiral pair structure for which

u(a) =
{
u

(a)
1 ,−u(a)

1 , . . . , u
(a)
ma/2

,−u(a)
ma/2

}
, for a = 1, . . . n− 2 ;

u(±) =
{
u

(±)
1 ,−u(±)

1 , . . . , u
(±)
m±/2

,−u(±)
m±/2

}
.

(B.11)

• achiral pair structure for which

u(a) =
{
u

(a)
1 ,−u(a)

1 , . . . , u
(a)
ma/2

,−u(a)
ma/2

}
, for a = 1, . . . n− 2 ; u(+) = −u(−)

(B.12)

Before we decide which pair structures belong to the concrete examples, let us continue with

the twisted case for the su(N) model, which belongs to the symmetric pair (su(N), su(M)⊕
su(N − M) ⊕ u(1)). In this case the quantum space is an alternate tensor product of

the particles and antiparticles and there are two transfer matrices t(u) and t̄(u) where

the auxiliary spaces are particle and antiparticle, respectively. They are diagonalizable

simultaneously and let
∣∣u(a)

〉
be a Bethe state for which

t(u)
∣∣∣u(a)

〉
= Λ

(
u|u(a)

) ∣∣∣u(a)
〉

; t̄(u)
∣∣∣u(a)

〉
= Λ̄

(
u|u(a)

) ∣∣∣u(a)
〉
. (B.13)

The eigenvalue of the transfer matrices can be written as [23]

Λ(u) =
N∑
k=1

Q
[k+1]
k−1 (u)

Q
[k−1]
k−1 (u)

Q
[k−2]
k (u)

Q
[k]
k (u)

; Λ̄(u) =

N∑
k=1

Q
[N−k−1]
k−1 (u)

Q
[N−k+1]
k−1 (u)

Q
[N−k+2]
k (u)

Q
[N−k]
k (u)

, (B.14)

– 39 –



J
H
E
P
1
0
(
2
0
2
0
)
1
2
3

where

Q0(u) = QN (u) = uL/2. (B.15)

Using this explicit form we can show that

t(u)Π
∣∣∣u(a)

〉
= Πt̄(−u−N/2)

∣∣∣u(a)
〉

= Λ̄
(
−u−N/2|u(a)

)
Π
∣∣∣u(a)

〉
= Λ

(
u|−u(a)

)
Π
∣∣∣u(a)

〉
(B.16)

therefore the parity transformation acts on the Bethe roots as Π
∣∣u(a)

〉
=
∣∣−u(a)

〉
. The

non-vanishing overlap implies that

Λ
(
u|u(a)

)
= Λ̄

(
u| − u(a)

)
. (B.17)

The extended Dynkin diagrams of these eigenvalues is in the first row of the second box of

figure 6. Now there are two additional black nodes since there are particles and antiparticles

in the quantum space. We can see that these Diagram is connected by the original Dynkin

diagram isomorphism which transforms the Bethe roots as ũ(a) = u(N−a) therefore it

implies that

Λ̄
(
u|u(a)

)
= Λ

(
u|ũ(a)

)
−→ Λ

(
u|u(a)

)
= Λ

(
u| − ũ(a)

)
. (B.18)

Since there is no symmetry of the extended diagram of Λ the sets u(a), −ũ(a) have to be

the same which means that the symmetric pair (su(N), su(M)⊕su(N−M)⊕u(1)) belongs

to an achiral pair structure i.e.

u(a) =
{

+u
(a)
1 ,+u

(a)
2 , . . . ,+u

(a)
ma−1,+u

(a)
ma

}
= −u(N−a), for a = 1, . . . ,

⌊
N − 1

2

⌋
(B.19)

and

u(N/2) =
{
u

(N/2)
1 ,−u(N/2)

1 , . . . , u
(N/2)
mN/2/2

,−u(N/2)
mN/2/2

}
. (B.20)

We can see that in the su(N) case we could decide which symmetric pair is chiral

or achiral because the auxiliary space representation breaks the symmetry of the original

Dynkin diagram. We can do the same so(2n) by choosing another auxiliary space, such as

the spinor representations, as they are not invariant under the Dynkin diagram symme-

try. The corresponding transfer matrices are denoted by t(+)(u) and t(−)(u). Using these

matrices, we can define two integrability conditions

〈Ψ| t(+)(u) = 〈Ψ|Πt(+)(u)Π, (B.21)

〈Ψ| t(+)(u) = 〈Ψ|Πt(−)(u)Π. (B.22)

From the previous argument, we can see that the conditions (B.21) and (B.22) lead to

chiral and achiral pair structures, respectively.

In figure 7 we can see the KYBEs for the K-matrices which solves the integrable

conditions (B.21) and (B.22). The red and blue lines belongs two the spinor representations.

The first line and second lines belong to (B.21) and (B.22), respectively. We recall that

switching from reflection to K-matrices we have to use a conjugation, which changes the

representations to their contragradients. We know that
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Figure 7. Reflection equations for so(2n) model. Black line: vector rep. Red and blue line: spinor

reps. Dashed lines: contragradient reps.

• For so(4n), the spinor representations are pseudo-reals therefore the dashed red line

is equivalent to the simple red line. Which means that the first and the second

lines describe non representation changing and representation changing reflections,

i.e. untwisted and twisted reflections, respectively.

• For so(4n+ 2), the spinor representations are contragradients of each other therefore

the dashed blue line is equivalent to the simple red line. Which means that the

first and the second lines describe representation changing and non representation

changing reflections, i.e. twisted and untwisted reflections, respectively.

The table 2 summarize the results of this section and naturally extends them for gl(N |M).

C Calculation of two particle overlaps

In this appendix we elaborate on the calculation of the overlaps in the L→∞ limit using

two particle coordinate Bethe ansatz state of section 6. Bethe ansatz states represent a

plane wave containing two particles with momentum p and −p. We are not going to impose

periodicity for the wave functions, thus our states are of-shell Bethe states. Actually in the

L→∞ limit off-shell and on-shell states become equivalent.

C.1 XXX spin chain

Let us start with the general integrable two-site state of the XXX spin chain of size L.

We take the boundary state with 〈Ψ| = 〈ψ11, ψ12, ψ21, ψ22| and calculate the overlap of the

integrable state 〈Ψ| with a two magnon state, built over the pseudo-vacuum |1〉⊗L in the

large L limit. In coordinate space Bethe ansatz the two magnon state is a plane wave of

the form

|u,−u〉 =
L∑

n1=1

L∑
n2=n1+1

(
eip(n1−n2) + e−ip(n1−n2)S(2u)

)
|n1n2〉 (C.1)
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wherep = −i log u−i/2
u+i/2 and S(u) = u+i

u−i . The state |n1n2〉 has excitation 2 at sites n1 and

n2. To obtain the overlap 〈Ψ |u,−u〉 we have to use the following elementary overlaps

〈Ψ |n1n2〉 =



ψ2
12 if n1, n2 are even

ψ2
21 if n1, n2 are odd

ψ12ψ21 if n1 is even and n2 is odd

ψ21ψ12 if n1 is odd and n2 is even and n2 − n1 > 1

ψ22 if n1 is odd and n2 is even and n2 − n1 = 1

(C.2)

By plugging back these into the overlap 〈Ψ |u,−u〉 we obtain

〈Ψ |u,−u〉 =

L/2∑
m1=1

L/2∑
m2=m1+1

(
eip(2m1−2m2) + e−ip(2m1−2m2)S(2u)

)
ψ2

12+

+

L/2∑
m1=1

L/2∑
m2=m1+1

(
eip(2m1−2m2) + e−ip(2m1−2m2)S(2u)

)
ψ2

21+

+

L/2∑
m1=1

L/2∑
m2=m1+1

(
eip(2m1−2m2+1) + e−ip(2m1−2m2+1)S(2u)

)
ψ12ψ21+

+

L/2∑
m1=1

L/2∑
m2=m1+1

(
eip(2m1−2m2−1) + e−ip(2m1−2m2−1)S(2u)

)
ψ21ψ12+

+

L/2∑
m=1

(
e−ip + e+ipS(2u)

)
ψ22. (C.3)

It is convenient to introduce the following quantity

Σ(p) =

L/2∑
m1=1

L/2∑
m2=m1+1

eip(2m1−2m2). (C.4)

with which the overlap (C.3) can be written as

〈Ψ |u,−u〉 = (Σ(p) + Σ(−p)S(2u))
(
ψ2

12 + ψ2
21 +

(
eip + e−ip

)
ψ12ψ21

)
+
L

2

(
e−ip + e+ipS(2u)

)
ψ22.

(C.5)

C.2 SU(3) spin chain with SO(3) symmetry

We analyze a two site state and a matrix product state for these models.

C.2.1 Two-site state

Let the two-site state be

〈Ψ| = (〈1| ⊗ 〈1|+ 〈2| ⊗ 〈2|+ 〈3| ⊗ 〈3|)⊗L/2 (C.6)
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We choose the pseudo-vacuum as |3〉⊗L and introduce excitations with labels 1 and 2. The

two magnon state can be written as

|u,−u〉ab =

L∑
n1=1

L∑
n2=n1+1

(
eip(n1−n2) |n1n2〉ab + e−ip(n1−n2)Scdab(2u) |n1n2〉cd

)
(C.7)

where |n1n2〉ab represent state a at site n1 and b at site n2, while a, b, c, d = 1, 2. The

scattering matrix of the top level Bethe ansatz excitations is

S(u) =
i

u− i
1 +

u

u− i
P (C.8)

with normalization S11
11 = 1. We have to calculate the following scalar product

〈Ψ |n1n2〉ab =

{
δab if n1 is odd and n2 is even and n2 − n1 = 1

0 otherwise
(C.9)

By dividing with the asymptotic norm of the states we obtain the K-matrix of the top level

excitations:

K
(1)
ab (u) :=

1

L
〈Ψ |u,−u〉ab =

1

2

(
e−ipδab + eipSccab(2u)

)
=

u

u− i/2
δab (C.10)

C.2.2 Matrix product state with Pauli matrices

Let the MPS be
α,β 〈MPS| =

[
(〈1|σ1 + 〈2|σ2 + 〈3|σ3)⊗L

]α,β
(C.11)

where α, β = 1, 2 are the “inner” indexes of the Pauli matrices. The pseudo vacuum is

|3〉⊗L and we calculate the overlap α,β 〈MPS|u,−u〉ab. The elementary overlaps with the

states |n1n2〉ab can be written as

α,β 〈MPS |n1n2〉a,b =


(σ3σaσ3σb)

αβ = − (σaσb)
αβ if n1, n2 are even

(σaσ3σbσ3)αβ = − (σaσb)
αβ if n1, n2 are odd

(σ3σaσbσ3)αβ = (σaσb)
αβ if n1 is even and n2 is odd

(σaσbσ3σ3)αβ = (σaσb)
αβ if n1 is odd and n2 is even

(C.12)

Let us introduce the following notation Fαβab = (σaσb)
αβ . The full overlap thus can be

written as

α,β 〈MPS |u,−u〉a,b =
(

Σ(p)Fαβab + Σ(−p)Scdab(2u)Fαβcd

) (
eip + e−ip − 2

)
+

+
L

2

(
e−ipFαβab + e+ipScdab(2u)Fαβcd

) (C.13)

This overlap is diagonal in α and β. The remaining components can be written after

normalizing with L−1 as

1,1 〈MPS |u,−u〉a,b = K
(1)+
ab (u) ; 2,2 〈MPS |u,−u〉a,b = K

(1)−
ab (u) (C.14)

with

K(1)±(u) =
1

u

(
u+ i

2 ±1
2

∓1
2 u+ i

2

)
= k(1)(u)ψ(2)± ; k(1)(u) = K

(1)±
11 (u). (C.15)
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C.3 so(6) spin chains with so(3)× so(3) symmetry symmetry

The six dimensional one site Hilbert space is parametrized by φi, i = 1, . . . , 6 and we

introduce the notation

Z =
1√
2

(φ5 + iφ6) , Z̄ =
1√
2

(φ5 − iφ6) (C.16)

We are going to analyze a two site state and a matrix product state.

C.3.1 Two-site state

Let the two-site state be

〈Ψ| =
(
Z ⊗ Z + Z̄ ⊗ Z̄ + φ1 ⊗ φ1 − φ2 ⊗ φ2 + φ3 ⊗ φ3 − φ4 ⊗ φ4

)⊗L/2
(C.17)

We choose the pseudo vacuum as Z⊗L and then the two magnon state can be written as

|u,−u〉ab =

L∑
n1=1

L∑
n2=n1+1

(
eip(n1−n2) |n1n2〉ab+e

−ip(n1−n2)Scdab(2u) |n1n2〉cd
)

+δabe(2u)
L∑
n=1

|n〉

(C.18)

where the excitations are labeled with a, b, c, d = 1, 2, 3, 4 and

S(u) =
i

u− i
1 +

u

u− i
P− i u

(u− i)(u+ i)
K, e(u) = − u

u+ i
, (C.19)

while |n〉 =
∣∣Z . . . ZZ̄Z . . . Z〉. We have to calculate the following elementary scalar prod-

ucts

〈Ψ |n1n2〉ab =

{
Fab if n1 is odd and n2 is even and n2 − n1 = 1

0 otherwise
(C.20)

where

F = diag(1,−1, 1,−1) (C.21)

Since 〈Ψ |n〉 = 0 the K-matrix of the top level so(4) excitations is

K
(1)
ab (u) =

1

L
〈Ψ |u,−u〉ab =

1

2

(
e−ipFab + eipScdab(2u)Fcd

)
=

u

u− i/2
Fab (C.22)

C.3.2 Matrix product state with Pauli matrices

Let the MPS be

α,β 〈MPS| =
[(√

2φ1σ1 +
√

2φ3σ2 +
√

2φ5σ3

)⊗L]α,β
=

[(√
2φ1σ1 +

√
2φ3σ2 + (Z + Z̄)σ3

)⊗L]α,β
.

(C.23)

We take the pseudo vacuum and the excitations as before. The overlaps with the states

|n1n2〉ab can be written similarly as (C.12) and for |n〉 we obtain

α,β 〈MPS |n〉 = δαβ (C.24)

– 44 –



J
H
E
P
1
0
(
2
0
2
0
)
1
2
3

The full overlap can be written as

α,β 〈MPS |u,−u〉a,b =
(

Σ(p)Fαβab + Σ(−p)Scdab(2u)Fαβcd

) (
eip + e−ip − 2

)
+

+
L

2

(
e−ipFαβab + e+ipScdab(2u)Fαβcd

)
+ Lδabδ

αβe(2u).
(C.25)

This overlap is diagonal in α and β. The remaining components can be written again as

1,1 〈MPS |n1n2〉a,b = K
(1)+
ab (u) ; 2,2 〈MPS |n1n2〉a,b = K

(1)−
ab (u) (C.26)

where the K-matrices can be written as

K(1)±(u) =


u2+iu−1/2
u(u+i/2) 0 ∓ 1

u 0

0 − u+i
u+i/2 0 0

± 1
u 0 u2+iu−1/2

u(u+i/2) 0

0 0 0 − u+i
u+i/2

 (C.27)

C.4 Two-site state in su(2|2)c with osp(2|2)c symmetry

Let the parameters of the K-matrix be k1 = k4 = s, k2 = 0 and the boundary state take

the form

〈B| = 〈K(p1)| ⊗ · · · ⊗ 〈K(pL)| ; 〈K(p)| = Ki,j(p) 〈i| ⊗ 〈j| Ig. (C.28)

The pseudovacuum is |1〉⊗2L and excitations are labeled with 3, 4 and 2. The two-particle

Bethe state in coordinate space can be written as [32]

|y1, y2〉α,β =
∑

1≤n1<n2≤2L

Ψn1(y1)Ψn2(y2) |n1, n2〉α,β −Ψn1(y2)Ψn2(y1)Rγδαβ(y1, y2) |n1, n2〉γ,δ

+ εαβ
∑

1≤n≤2L

Ψn(y1)Ψn(y2)gn(y1, y2) |n〉 (C.29)

where α, β=3,4, and R is the R-matrix of the XXX model

R(y1, y2) =
−i/g

v1 − v2 − i/g
1 +

v1 − v2

v1 − v2 − i/g
P ; vi = yi + 1/yi (C.30)

The basis vectors are

|n1, n2〉α,β = |1, . . . , 1, α, 1, . . . 1, β, 1 . . . , 1〉 , ; |n〉 = |1, . . . , 1, 2, 1, . . . 1〉 (C.31)

while the wave functions and S-matrices read as

Ψn(y) = ψn(y)
n−1∏
k=1

S(y, xk) ; S(y, xk) =
y − x+

k

y − x−k
e−ipk/2, (C.32)

gn(y1, y2) = e−ipn/2
y1y2 − x+

n x
−
n

y1y2x
−
n

y1 − y2

v1 − v2 − i/g
; ψn(y) = e−ipn/4

y
√
i(x−n − x+

n )

y − x−n
.

(C.33)
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where Ig is the graded identity: the product of the permutation and the graded permuta-

tion. Graded permutation picks up a minus sign, whenever two fermions are interchanged.

We normalize the K function as

〈K(p)| K(p)〉 = 1. (C.34)

Let us assume that the overlap with a general Bethe state looks in the L→∞ limit looks

like as5

|〈B| p,y,w〉|2

〈p,y,w |p,y,w〉
=

L∏
i=1

hp(pi)

N/2∏
i=1

hy(vi)

M/2∏
i=1

hw(wi) (C.35)

First we define the renormalized boundary state
〈
B̄
∣∣ for which the K-matrix is

K̄(p) =
K(p)

K1,1(p)
. (C.36)

For this boundary state the overlap with pseudo-vacuum is 1 therefore

hp(p) = |K1,1(p)|2 (C.37)

and the remaining overlap is∣∣〈K̄∣∣ p,y,w〉
∣∣2

〈p,y,w |p,y,w〉
=

N/2∏
i=1

hy(vi)

M/2∏
i=1

hw(wi). (C.38)

This is basically the nesting for the boundary states and overlaps. In the following let us

use special inhomogeneities

p2k−1 = p, p2k = −p, for k = 1, . . . , L. (C.39)

as the boundary overlaps does not depend on the inhomogeneities. Due to the special

form of the boundary state nonzero contributions comes only from states n1 = 2m− 1 and

n2 = 2m and n arbitrarily:

〈B̄ |y,−y〉α,β =−εαβLK34(p)

[
ψ2m−1(y)ψ2m(−y)S(−y,x2m−1)

+
2v+ i

g

2v− i
g

ψ2m−1(−y)ψ2m(y)S(y,x2m−1)

]
+εαβLK12(p)

[
ψ2m−1(y)ψ2m−1(−y)g2m−1(y,−y)

−ψ2m(−y)ψ2m(y)S(−y,x2m−1)S(y,x2m−1)g2m(y,−y)
]

(C.40)

here we used that

S(y, x2k−1)S(y, x2k)S(−y, x2k−1)S(−y, x2k) = 1 (C.41)

5One should actually put the ratio of Gaudin type determinant at each step of the nesting. In this

appendix we do not write them out as they are irrelevant for nested K-matrices.
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Dividing by the leading order norm of the state leads to∣∣〈B̄ |y,−y〉∣∣2
〈y1, y2 |y,−y〉α,β

=
4g2

s2

(y2 + s2)2

y2 + 4g2(y2 + 1)2
εαβ (C.42)

and the boundary state at the nested level is the SU(2) dimer state, what we already know.
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boundary conditions for the sl(N) and sl(M—N) open spin chains, J. Stat. Mech. 0408

(2004) P08005 [math-ph/0406021] [INSPIRE].

[31] T. Gombor, Nonstandard Bethe Ansatz equations for open O(N) spin chains, Nucl. Phys. B

935 (2018) 310 [arXiv:1712.03753] [INSPIRE].

[32] M. de Leeuw, Coordinate Bethe Ansatz for the String S-matrix, J. Phys. A 40 (2007) 14413

[arXiv:0705.2369] [INSPIRE].

– 48 –

https://doi.org/10.1103/PhysRevLett.119.261604
https://doi.org/10.1103/PhysRevLett.119.261604
https://arxiv.org/abs/1704.07386
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.07386
http://dx.doi.org/10.1088/1751-8113/47/14/145003
http://dx.doi.org/10.1088/1751-8113/47/34/345003
https://doi.org/10.1088/1742-5468/aabbe1
https://doi.org/10.1088/1742-5468/aabbe1
https://arxiv.org/abs/1801.03838
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.03838
https://doi.org/10.1016/j.physletb.2016.10.044
https://arxiv.org/abs/1607.03123
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.03123
https://doi.org/10.1007/JHEP06(2020)022
https://arxiv.org/abs/2002.12065
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.12065
https://doi.org/10.1142/S0217751X94001552
https://arxiv.org/abs/hep-th/9306002
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9306002
https://doi.org/10.1088/1126-6708/2007/12/024
https://doi.org/10.1088/1126-6708/2007/12/024
https://arxiv.org/abs/0710.1568
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0710.1568
https://doi.org/10.1007/s11005-011-0529-2
https://doi.org/10.1007/s11005-011-0529-2
https://arxiv.org/abs/1012.3982
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1012.3982
https://doi.org/10.1088/1742-5468/2005/02/P02007
https://doi.org/10.1088/1742-5468/2005/02/P02007
https://arxiv.org/abs/math-ph/0411021
https://inspirehep.net/search?p=find+EPRINT%2Bmath-ph%2F0411021
https://doi.org/10.1016/0550-3213(87)90146-5
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB280%2C225%22
https://doi.org/10.1016/j.nuclphysb.2007.05.021
https://arxiv.org/abs/hep-th/0703086
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0703086
https://doi.org/10.1088/0305-4470/31/37/001
https://doi.org/10.1088/0305-4470/31/37/001
https://arxiv.org/abs/hep-th/9808012
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9808012
https://doi.org/10.21468/SciPostPhys.6.5.062
https://arxiv.org/abs/1812.11094
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.11094
https://doi.org/10.1088/1751-8121/ab7602
https://arxiv.org/abs/1904.03044
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.03044
https://doi.org/10.1088/1751-8121/aa8205
https://arxiv.org/abs/1706.05221
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.05221
https://doi.org/10.1088/1742-5468/2004/08/P08005
https://doi.org/10.1088/1742-5468/2004/08/P08005
https://arxiv.org/abs/math-ph/0406021
https://inspirehep.net/search?p=find+EPRINT%2Bmath-ph%2F0406021
https://doi.org/10.1016/j.nuclphysb.2018.08.014
https://doi.org/10.1016/j.nuclphysb.2018.08.014
https://arxiv.org/abs/1712.03753
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.03753
https://doi.org/10.1088/1751-8113/40/48/008
https://arxiv.org/abs/0705.2369
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0705.2369


J
H
E
P
1
0
(
2
0
2
0
)
1
2
3

[33] Z. Bajnok, J.L. Jacobsen, Y. Jiang, R.I. Nepomechie and Y. Zhang, Cylinder partition

function of the 6-vertex model from algebraic geometry, JHEP 06 (2020) 169

[arXiv:2002.09019] [INSPIRE].

[34] I. Kostov, D. Serban and D.-L. Vu, Boundary TBA, trees and loops, Nucl. Phys. B 949

(2019) 114817 [arXiv:1809.05705] [INSPIRE].

[35] D.-L. Vu, I. Kostov and D. Serban, Boundary entropy of integrable perturbed SU (2)k
WZNW, JHEP 08 (2019) 154 [arXiv:1906.01909] [INSPIRE].

[36] I. Kostov, Effective Quantum Field Theory for the Thermodynamical Bethe Ansatz, JHEP

02 (2020) 043 [arXiv:1911.07343] [INSPIRE].

[37] J. Caetano and S. Komatsu, Functional Equations and Separation of Variables for Exact

g-Function, arXiv:2004.05071 [INSPIRE].

[38] S. Komatsu and Y. Wang, Non-perturbative defect one-point functions in planar N = 4

super-Yang-Mills, Nucl. Phys. B 958 (2020) 115120 [arXiv:2004.09514] [INSPIRE].

– 49 –

https://doi.org/10.1007/JHEP06(2020)169
https://arxiv.org/abs/2002.09019
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.09019
https://doi.org/10.1016/j.nuclphysb.2019.114817
https://doi.org/10.1016/j.nuclphysb.2019.114817
https://arxiv.org/abs/1809.05705
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.05705
https://doi.org/10.1007/JHEP08(2019)154
https://arxiv.org/abs/1906.01909
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.01909
https://doi.org/10.1007/JHEP02(2020)043
https://doi.org/10.1007/JHEP02(2020)043
https://arxiv.org/abs/1911.07343
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.07343
https://arxiv.org/abs/2004.05071
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.05071
https://doi.org/10.1016/j.nuclphysb.2020.115120
https://arxiv.org/abs/2004.09514
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.09514

	Introduction
	Boundary states, K- and boundary Yang-Baxter equations
	Boundary states and KYBE
	Reflection matrices and BYBE

	Spin chains and asymptotic spectrum 
	Spectrum of the su(N) spin chain
	Spectrum of the so(4) spin chain
	Spectrum of the so(6) spin chain 
	Spectrum of the su(2|2)(c) oplus su(2|2)(c) spin chain

	Selection rules for integrable overlaps
	Pair structure in the su(N) spin chain
	Pair structure in the so(4) spin chain
	Pair structure in the so(6) spin chain
	Pair structure in the su(2|2)(c) oplus su(2|2)(c) spin chain
	General structures

	Integrable states from K-matrices and their symmetries
	K-matrices in the so(4) spin chain
	K-matrices in the so(6) spin chain
	General Lie algebras 
	K-matrices in the su(2|2)(c) oplus su(2|2)(c) spin chain
	Leading order solution
	Leading order symmetry
	All loop solutions
	All loop symmetry


	Asymptotic overlaps and nesting for K-matrices
	Overlaps in the XXX spin chain
	Overlaps in su(3) spin chains with so(3) symmetry
	Two-site state
	Matrix product state with Pauli matrices

	Overlaps in so(6) spin chains with so(3) oplus so(3) symmetry
	Two-site state
	Matrix product state with Pauli matrices

	Overlaps in su(2|2)(c) spin chains
	Summary

	Application to one-point functions in AdS/CFT
	Conclusions
	Notations and conventions for su(2|2)(c)
	KYBE, symmetries and selection rules for spin chains
	Connection between the reflection and KYBE for rational spin chains

	Calculation of two particle overlaps
	XXX spin chain
	SU(3) spin chain with SO(3) symmetry
	Two-site state
	Matrix product state with Pauli matrices

	so(6) spin chains with so(3) x so(3) symmetry
	Two-site state
	Matrix product state with Pauli matrices

	Two-site state in su(2|2)(c) with osp(2|2)(c) symmetry


