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accounts for the formally power-suppressed but potentially large effect of recoil. An im-
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1 Introduction

Experimental studies at the Large Hadron Collider (LHC) impose restrictions on QCD

radiation in the final state, to stress test the Standard Model and search for New Physics.

If these restrictions are tight, they lead to large logarithms in the corresponding cross

section. For example, for Higgs plus one jet production with a veto on additional jets with

transverse momentum above pvetoT , the cross section takes the following form

σ
(
pvetoT

)
= σ0

[
1 +

∑
n≥1

2n≥m≥0

cn,m α
n
s lnm

(
mH

pvetoT

)
+O

(
pvetoT

mH

)]
, (1.1)

where σ0 is the leading-order cross section, and the coefficients cn,m are independent of

pvetoT . For a tight veto pvetoT � mH ∼ pjetT , the expansion in αs deteriorates due to the

large logarithms and resummation is crucial to improve convergence and reduce the the-

ory uncertainty. Resummation captures the dominant effect of higher-order corrections,

effectively treating ln(mH/p
veto
T ) ∼ 1/αs.
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Large logarithms arise because the cross section involves multiple scales that are widely

separated. Resummation of these logarithms can be achieved by factorizing the cross

section into components that each involve a single scale, using diagrammatic methods in

QCD, see e.g. [1–8], or Soft-Collinear Effective Theory (SCET) [9–13]. For exclusive Higgs

plus one jet production, discussed in eq. (1.1), this takes on the following (schematic)

form σ ∼ HSBBJ [14, 15]. The hard function H describes hard scattering, the soft

function S encodes the effect of soft radiation, and the beam functions B and jet function

J account for initial- and final-state collinear radiation. The structure of this factorization

not only depends on the process, but also on the observable and can involve convolutions

between ingredients (though it is simply a product in the above example). Because each

ingredient in the factorization involves a single scale, the large logarithms can be resummed

by evaluating each ingredient at its natural scale and using the renormalization group to

evolve them to a common scale. Alternatively, an automated approach to resummation

was pursued in refs. [16, 17].

In this paper we focus on calculating one-loop jet functions, which enter in resummed

cross sections starting at next-to-leading logarithmic (NLL′) accuracy. Resummation at

NLL′ includes the two-loop cusp anomalous dimension and one-loop (non-cusp) anomalous

dimensions. Jet functions have been calculated for a wide range of observables, including

the invariant mass [18–23], the family of e+e− event shapes called angularities with respect

to the thrust axis [24–26] or Winner-Take-All axis [27, 28], Sterman-Weinberg jets [29, 30],

the cone and the kT family of jet algorithms for exclusive [30, 31] and inclusive [32, 33]

jet production. Jet functions have also been considered for a range of jet substructure

observables, such as the jet shape [34–36]. In our calculations we treat quarks as massless

and restrict to infrared-safe observables. An example of a massive quark (initiated) jet

function is given in refs. [37, 38], and an example of an infrared-unsafe jet observable is the

electric charge of the jet [39, 40].

We briefly comment on the other ingredients in the factorization: A general approach

to calculating soft functions has been developed in refs. [41–44]. In particular, the Soft-

SERVE package [44] provides two-loop soft functions for processes with two collinear

directions (i.e. two jets in e+e− or 0 jets in pp collisions), and an extension to N jets is

in progress [45]. Hard functions can be obtained from the IR finite part of helicity ampli-

tudes, as long as the color of the initial (final) particles is not averaged (summed) over, see

e.g. ref. [46].

The difficulty in calculating jet functions lies in the phase-space integration, which de-

pends on the observable. When feasible, an analytic approach is superior. However, there

are observables for which even the one-loop jet function is highly nontrivial, such as jet

broadening [25] and the jet shape [36], for which fully analytic results are difficult to obtain

or have not been obtained yet. The numerical approach we develop here offers a promis-

ing alternative, addressing the collinear and soft divergences in a general way, thereby

automating the calculation of one-loop jet functions for a broad range of observables. At

minimum, our work provides a valuable cross check for analytic calculations.

The poles in the dimensional regulator are obtained analytically, possibly up to an

integral over the azimuthal angle, and depend on the collinear and soft behavior of
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the observable. This soft behavior is described by a power law, and therefore simply

characterized by the exponent and coefficient. Extracting these parameters may require

solving nontrivial algebraic equations, and we develop a procedure to simplify this step.

The full details/complications of the measurement only enter in the finite term, which

can be integrated numerically. We have implemented our approach in a Mathematica

package, Geometric One-loop Jet functions (GOJet), which accompanies this paper and

is available online at https://bitbucket.org/GOJet/gojet.. GOJet can handle a large

class of infrared-safe observables, including all the observables listed above.

Using GOJet we provide explicit examples of the method for the angularities with

respect to the Winner-Take-All axis, the cone and kT -clustering jet algorithms and the jet

shape. Furthermore we calculate for the first time the one-loop jet function for angularities

with respect to the thrust axis including recoil. We cross check our result against existing

results in the literature for the specific case of jet broadening [25] and for the case of no

recoil [24, 47].

The remainder of the paper is structured as follows: In section 2 we discuss how we use

geometric subtraction to calculate jet functions, including a simple example. The GOJet

package, which provides a Mathematica implementation, is discussed in section 3. In

section 4, we use our package to calculate several one-loop jet functions, and we conclude

in section 5.

2 General method

In section 2.1 we will discuss geometric subtraction and how we apply it to calculate one-

loop jet functions. Technical aspects related to the treatment of Heaviside theta functions

in our calculation and infrared safety are discussed in sections 2.2 and 2.3, respectively. We

illustrate our method by calculating the jet function for the e+e− angularity event shapes

in section 2.4, with further examples in section 4.

2.1 Subtraction scheme

The jet function depends on the flavor i = q, g of the initiating parton and the jet observ-

able, and has a perturbative expansion in αs

Ji,obs =
∑
n

(αs
2π

)n
J (n)
i,obs . (2.1)

At tree level the jet consists of a single quark or gluon, and in general J (0)
i = 1 in the

appropriate units.1 The one-loop contribution is given by the collinear limit of two final-

1An exception is the jet shape, discussed in section 4.3, which contains a theta function that sets it to

zero if the recoil from soft radiation is too large.
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state partons

J (1)
i,obs =

∫ π

0
dφ

∫ ∞
0

ds

∫ 1

0
dz Qi(s, z, φ)Mobs(s, z, φ) ,

Qi(s, z, φ) =
(µ2eγE )ε
√
π Γ(12 − ε)

(
ν

ω

)η Pi(z) (sinφ)−2ε

zε+η(1− z)ε+ηs1+ε
,

Pq(z) = CF

[
1 + z2

1− z
− ε(1− z)

]
,

Pg(z) = nfTR

[
1− 2z(1− z)

1− ε

]
+ CA

[
z

1− z
+

1− z
z

+ z(1− z)

]
. (2.2)

Here s denotes the invariant mass of the two partons, and z and 1 − z the momentum

fractions of the partons. The squared matrix element is contained in Qi(s, z, φ), with Pi(z)

the (sum of) splitting function(s). The calculation is performed in d = 4 − 2ε dimensions

and the MS-renormalization scheme with renormalization scale µ is employed. For certain

observables an additional rapidity regulator η and corresponding rapidity scale ν are re-

quired [48–53], which are included in eq. (2.2) for generality. This arises when the collinear

and soft functions have the same invariant mass scale µ, with transverse momentum mea-

surements being the typical example. We will use [49], but at one loop this is essentially

equivalent to almost all other choices. For the extension of eq. (2.2) to a two-loop example,

see ref. [54].

The measurement in a jet function can often be written as δ[O − f(s, z, φ)]. To avoid

distributions, we require the user to rewrite the measurement as a Heaviside theta function

by integrating, i.e. Θ[O − f(s, z, φ)], where we are now cumulative in O.2 We therefore

assume that the measurement Mobs(s, z, φ) is a Heaviside theta function, which cuts out a

certain region of the collinear phase space, as illustrated in figure 1 (suppressing φ depen-

dence). An advantage of cumulative distributions is that they involve logarithms rather

than plus distributions: ∫ tc

0
dt

[
θ(t) lnn t

t

]
+

=
1

n+ 1
lnn+1 tc . (2.3)

In section 2.2, a technical point related to rewriting measurement delta functions in terms

of theta functions will be discussed. There are also measurements that are naturally theta

functions. For example, the kT -family of jet algorithms requires both particles to be clus-

tered into a jet with radius parameter R, MkT (s, z) = Θ(s ≤ z(1 − z)p2TR
2), where pT is

the transverse momentum of the jet. In principle these phase-space constraints Mobs can

depend on the azimuthal angle φ as well, but since there is no singularity associated with

the φ integration, we will only include φ when needed.

The jet function in eq. (2.2) has divergences as s → 0 (collinear divergence), and

z → 0 and z → 1 (soft divergences), which occur at the phase-space boundaries in figure 1.

Infrared-safe observables must always either include or exclude the entire collinear diver-

gence (the red line in figure 1), as will be discussed more in section 2.3. From the point of

2Alternatively, one can consider a conjugate space, as was employed in automated calculations of soft

functions [42, 43].
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Figure 1. For an example of a generic observable the phase space can be constrained to several

representative regions (blue). The collinear singularity C (red line), soft singularities S0 and S1

(purple lines), and soft-collinear singularities (black dots) are indicated.

view of collinear subtraction, one can consider the jet function (as long as it contains the

collinear divergence) as a collinear counterterm. Different observables can then be viewed

as different schemes, differing in the extent that soft and soft-collinear divergences are

included in the observable. For instance, region 1 of the generic observable illustrated in

figure 1 only contains the collinear and part of the soft-collinear singularities. By contrast,

region 2 only contains part of the soft and none of the collinear divergence. Region 3 does

not contain any soft or collinear divergent parts of phase space and does therefore not have

to be regulated. Another possibility would be to consider an observable which corresponds

to the complement of region 1, which naively causes problems because it develops a loga-

rithmic singularity for s→∞. However, its one-loop jet function is given by minus the jet

function for region 1, because the integral over the full collinear phase space results in a

scaleless integral.

To define a general subtraction scheme for calculating jet functions for infrared-safe

observables, we follow the approach of geometric subtraction [55]. We would like to define

a finite part of the jet function as follows:

Finite
(
J (1)
i,obs

)
=

[∫ π

0
dφ

∫ ∞
Bµ2

ds

∫ 1−A

A
dz Qi→j(s, z, φ)Mobs(s, z, φ)

]
A,B→0

, (2.4)

where we introduced the dimensionless slicing parameters A and B, that remove the soft

and collinear divergence, and which we subsequently want to take to zero. The central idea

of geometric subtraction rests on the identity:[∫ 1

a
dx

f (x)

x

]
a→0

=

[∫ 1

0
dx

f (x)− f(x)Θ(x < a)

x

]
a→0

=

∫ 1

0
dx

f(x)− f(0)Θ(x < a)

x
, (2.5)

where we exploited that a is small on the second line to replace f(x) by f(0) in the second

term. However, the expression on the second line is now regulated for any 0 < a ≤ 1, leading
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to a duality between slicing and subtraction schemes. To obtain the full jet function from

the above finite part, counterterms need to be added to reinstate the part of the integral

that is removed by the cuts. The counterterms generated in this way are added back in

integrated form, regulated dimensionally and if needed also with a rapidity regulator, and

may give a finite contribution to the jet function. While a subtlety arises in general when

different limits do not commute, here we do not face this problem as the collinear and soft

singularities are factorized. For the small A limit in eq. (2.4) we can then straightforwardly

apply eq. (2.5). However for the parameter B nothing is gained from this procedure,

because the jet function is already in the limit of small s and the counterterm generated is

the original integral itself.

To obtain a simpler counterterm in the s < Bµ2 region, we can however use a simpler

observable, which we choose to be the jet mass, as a collinear counterterm. (This was

also used in the geometric subtraction scheme [55].) Since the region of the s-z plane

corresponding to the jet mass is box-shaped, we will refer to this collinear counterterm as

the box. A subtlety now appears due to the difference of soft and soft-collinear divergences

included in the box counterterm and the given observable Mobs, which as discussed above

may not be the same. To deal with this problem we introduce separate soft counterterms

for both the box counterterm and the Mobs term in the region s < Bµ2, as discussed in

detail below.

These considerations lead us to the following final decomposition of the jet function

into finite and divergent parts:

J (1)
i,obs = Gi,obs,1 +Gi,obs,2 +Gi,obs,3 ,

Gi,obs,1 ≡
∫ π

0
dφ

∫ 1

0
dz

∫ ∞
Bµ2

ds
[
QiMobs −Qi,0Mobs,0Θ(z < A)−Qi,1Mobs,1Θ(1− z < A)

]
+

∫ π

0
dφ

∫ 1

0
dz

∫ Bµ2

0
ds
[
Qi(Mobs − 1)−Qi,0(Mobs,0 − 1)Θ(z < A)

−Qi,1(Mobs,1 − 1)Θ(1− z < A)
]
,

Gi,obs,2 ≡
∫ π

0
dφ

∫ 1

0
dz

∫ ∞
0

ds
[
Qi,0Mobs,0Θ(z < A) +Qi,1Mobs,1Θ(1− z < A)

]
,

Gi,obs,3 ≡
∫ π

0
dφ

∫ 1

0
dz

∫ Bµ2

0
ds
[
Qi −Qi,0Θ(z < A)−Qi,1Θ(1− z < A)

]
, (2.6)

where the arguments s, z, φ are suppressed and A,B are positive real numbers with A ≤ 1.

The first term in Gi,obs,1 corresponds to the finite part defined in eq. (2.4), and the other

terms correspond to integrated counterterms. The box counterterm Gi,obs,3 leads toMobs →
(Mobs − 1) in the box region s < Bµ2 in Gi,obs,1. It is straightforward to check that the

sum of G1, G2 and G3 is equal to the original one-loop jet function.

The advantage of the above decomposition is that G3 is observable independent, G2

only depends on the soft limit of the observable (which can be encoded by a few parameters

at one-loop order, see eq. (2.8)) and G1 is finite. In eq. (2.6), Q0 and Q1 denote the soft

– 6 –
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z → 0 and z → 1 limit of Q. Explicitly,

Qq,0(s, z, φ) = Qq(s, z, φ)|z→0 = 0 ,

Qq,1(s, z, φ) = Qq(s, z, φ)|z→1 =
(µ2eγE )ε
√
π Γ(12 − ε)

( ν
ω

)η 2CF (sinφ)−2ε

(1− z)1+η+εs1+ε
,

Qg,1(s, z, φ) =
(µ2eγE )ε
√
π Γ(12 − ε)

( ν
ω

)η CA(sinφ)−2ε

(1− z)1+η+εs1+ε
= Qg,0(s, 1− z, φ) . (2.7)

Similarly, Mobs,0 and Mobs,1 denote the soft z → 0 and z → 1 limit of the measurement

Mobs. The soft limit can contain multiple boundary conditions on the phase space, which

we account for by writing Mobs,0 and Mobs,1 as a sum of Heaviside theta functions that

constrain the integration over s as a function of z. Moreover, they will follow a power-law

behavior parametrized by

Mobs(s, z, φ)|z→0 = Θ(Φ)
∑
r

M r
obs,0 = Θ(Φ)

∑
r

Θ

(
c+0r µ

2

zα
+
0r

− s
)

Θ

(
s− c−0rµ

2

zα
−
0r

)
, (2.8)

Mobs(s, z, φ)|z→1 = Θ(Φ)
∑
r

M r
obs,1 = Θ(Φ)

∑
r

Θ

(
c+1r µ

2

(1− z)α
+
1r

− s

)
Θ

(
s− c−1rµ

2

(1− z)α
−
1r

)
,

where the sum on r is over different regions (see figure 1), and the parameters ci, αi depend

on the observable, and can depend on φ as well.3 We also allow for a constraint Φ on the

azimuthal angle, as will be discussed in section 2.3. Depending on the observable, each

soft boundary condition will therefore follow one out of three distinct behaviors shown in

figure 1: the upper boundary of R1 corresponds to α < 0, the lower boundary of R2 to

α = 0, the upper boundary to α > 0 and R3 does not extend into the soft region. Finding

c0r, c1r, α0r and α1r can be nontrivial, and we will discuss a strategy to do so for an involved

example in section 4.2.

We will now discuss the decomposition in eq. (2.6) in more detail, using the graph-

ical representation in figure 2 for the kT algorithm. In order to get a finite G1 in fig-

ure 2a, we subtracted the collinear singularity and the soft singularities. The collinear

singularity is removed by the box, replacing Mobs by Mobs − 1 when s ≤ Bµ2, such that

Mobs(s = 0, z, φ) − 1 = 0. The soft singularities get accounted for by subtracting the

z → 0 and/or z → 1 limits of the integrand. Indeed, one can see that in figure 2a the

blue plusses and red minuses cancel as z → 1. The resulting integral G1 is now finite. For

general observables, G1 in eq. (2.6) may be hard to calculate analytically, and one has to

resort to numerical integration techniques. In the examples in section 4, we will use the

Cuba implementation of Vegas [56] to perform the integrations. Convergence problems

in the numerical integration may arise due to the mismatch of the observable and its soft

approximation, which generally can lead to integrable singularities. If these problems are

severe it can help to find an explicit remapping of the counterterm, which decreases the

mismatch between the observable and its soft limit. We present a method to achieve this

with a worked through example in appendix B.

3In general c0 = c1 and α0 = α1, but we will show examples where this is no longer true because the

observable depends on the azimuthal angle, which differs by π between the two partons.
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(a) G1: Numerical contribution. (b) G2: Soft counterterm. (c) G3: Box counterterm.

Figure 2. A graphical representation of our subtraction scheme in eq. (2.6). We have only included

the soft counterterms for z → 1 for legibility. Shown are the restrictions on the measurement

from the observable Mobs (blue line), the soft limit of the observable Mobs,1 (red line), the box

s < Bµ2 (green line) and the cut on z arising from A (pink line). Blue plus (minus) areas correspond

to positive (negative) contributions of the full integrand Qi, while red plus (minus) areas correspond

to positive (negative) contributions of Qi,1.

Let us now discuss the integrated counterterms. Due to their simplicity, the countert-

erms can be calculated analytically, which we discuss for a single region r in the sum in

eq. (2.8). Let us first focus on the soft counterterms, which are contained in G2 shown in

figure 2b. The soft limits of the integrand QiMobs are given by Qi,0Mobs,0 and Qi,1Mobs,1,

see eqs. (2.7) and (2.8). The constants ci and αi are user input in our code, see section 3.

For values α 6= 1, no rapidity regulator is needed and η can be set to 0, leading to the

following soft counterterm

Gq,2 =
2CF
ε2

eγEε
√
πΓ(12−ε)

∫ π

0
dφΘ(Φ)(sinφ)−2ε

[
(c+1 )−ε

(1−α+
1 )
A−ε(1−α

+
1 )− (c−1 )−ε

(1−α−1 )
A−ε(1−α

−
1 )

]
,

Gg,2 =
CA
ε2

eγEε
√
πΓ(12−ε)

∫ π

0
dφΘ(Φ)(sinφ)−2ε

[
(c+0 )−ε

(1−α+
0 )
A−ε(1−α

+
0 )− (c−0 )−ε

(1−α−0 )
A−ε(1−α

−
0 )

+
(c+1 )−ε

(1−α+
1 )
A−ε(1−α

+
1 )− (c−1 )−ε

(1−α−1 )
A−ε(1−α

−
1 )

]
. (2.9)

For α = 1 one needs a rapidity regulator and the corresponding expression is given in

appendix A. The box counterterm G3 in figure 2c is given by

Gq,3 =CF I(φ−,φ+;ε)
eγEεB−ε
√
πΓ(12−ε)

(
(4−ε)(1−ε)Γ2[1−ε]

2Γ[2−2ε]
−2A−ε

)
, (2.10)

Gg,3 = I(φ−,φ+;ε)
eγEεB−ε
√
πΓ(12−ε)

(
−
(

3

2
CA(3ε−4)+2ε nfTR

)
(1−ε)Γ2[1−ε]

(3−2ε)Γ[2−2ε]
−2CAA

−ε
)
.

The integral over φ has been carried out for Θ(Φ) = Θ(φ+ − φ)Θ(φ − φ−) leading to

the function

I(a, b; ε) =

∫ b

a
dφ sin−2ε φ . (2.11)

The evaluation of this integral and its expansion to order ε2 is presented in appendix C.

The chosen subtraction bears fruit in the simplicity of the integrated counterterms.

The corresponding Laurent series in ε can be expressed solely in terms of the Riemann zeta

– 8 –
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function at integer values, given that only pure Gamma functions appear. From an analytic

point of view, the potentially more complicated pieces are instead captured in the finite

part, which depends on the details of the observable and can be calculated numerically

to arbitrary high order in ε. Notice that the soft counterterm Gi,2 can give rise to more

complicated integrals if the coefficients c0r and c1r depend on the azimuthal angle φ. One

may be able to carry out this integral analytically in certain cases, but this can certainly

not be done in general. This is not a problem, because one can expand in ε and η before

integrating over φ.

2.2 Delta and theta functions

In our subtraction scheme we assume that the observables restrict the integration to certain

regions of phase space via Heaviside theta functions. However, many observables O are

naturally expressed in terms of Dirac delta functions, requiring one to rewrite it using

δ[O − f(s, z, φ)] = ± d

dO
Θ[±(O − f(s, z, φ))] , (2.12)

where f is a function of the kinematics of the collinear splitting, and possibly external

parameters. The sign ± should be chosen such that the theta function does not vanish

at tree-level, which ensures that the poles are included in the one-loop jet function. For

example, if O ≥ 0 and at tree-level O = 0, one needs to choose the plus sign in eq. (2.12).

In perturbative QCD one often works with the following convention for the Dirac

delta function,

g(0) =

∫ c

0
dx g(x)δ(x) for c > 0 . (2.13)

This differs from the definition given in standard math literature

g(0) =

∫ c

b
dx g(x)δ(x) for c > 0 > b , (2.14)

where the lower boundary b must be strictly less than zero. If the delta function that

encodes the measurement satisfies eq. (2.13), this has implications for the definition of the

Heaviside function on the right-hand side of eq. (2.12). In particular, one must demand

then that Θ(0) = 0. To see this, consider a function g(x) with 0 ≤ x ≤ 1. From

g(0) =

∫ 1

0
dx g(x)δ(x) =

∫ 1

0
dx g(x)

d

dx
Θ(x) = [g(x)Θ(x)]10 −

∫ 1

0
dx

d

dx
g(x)

= g(1)Θ(1)− g(0)Θ(0)− (g(1)− g(0)) = g(0)(1−Θ(0)) , (2.15)

we conclude that Θ(0) = 0. While this is not of much concern when a theta function

is integrated over, there are situations where it must be taken into account. As an ex-

ample, the jet shape calculation involves a jet function describing the energy fraction z

inside a cone, see section 4.3. Switching to a cumulant variable for z, we need to choose
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(a) (b)

Figure 3. IR unsafe observables that our code (a) can and (b) can’t handle.

δ(z − . . . ) = −d/dz[−(z − . . . )], because 0 ≤ z ≤ 1 and z = 1 at tree-level. If we now want

to calculate the average momentum fraction from the cumulant tree-level result

∫ 1

0
dz z δ(z − 1) = −

∫ 1

0
dz z

d

dz
θ(1− z) = −zθ(1− z)|10 +

∫ 1

0
dz θ(1− z) = 1− θ(0) = 1 ,

(2.16)

we have to take θ(0) = 0 to find agreement with the direct evaluation using the delta func-

tion.

2.3 Infrared safety and limitations on the observable

While so far our discussion was mostly based on the s-z plane, there are observables which

depend also on the azimuthal angle φ. The integration domain is then parametrized by

coordinates (s, z, φ) and IR safety requires the full s = 0 plane to be included or excluded

by the observable, i.e. the set of points

{(s, z, φ)|s = 0 , 0 ≤ z ≤ 1 , 0 ≤ φ ≤ π} . (2.17)

However, our method allows for a special class of IR-unsafe observables, where only sub-

domains of the collinear plane with the azimuthal angle bounded between constant values

are included/excluded by the observable, i.e.

{(s, z, φ)|s = 0 , 0 ≤ z ≤ 1 , φ− ≤ φ ≤ φ+} , (2.18)

with 0 ≤ φ− < φ+ ≤ π. This is illustrated in figure 3a. An IR-unsafe observable which is

not of this form, and currently not supported by GOJet, is illustrated in figure 3b. Here

φ± vary as functions of z across the collinear plane in such a way that not the full s = 0

plane is included in the integration domain. For s > 0 the bounds on φ can depend on z.

GOJet can also handle IR-unsafe observables that include just z = 0 and/or z = 1 of the

s = 0 plane, which only require soft counterterms.

– 10 –



J
H
E
P
1
0
(
2
0
2
0
)
1
1
8

2.4 Example: angularities with the Winner-Take-All axis

We will now illustrate our scheme by considering the family of e+e− event shapes called

angularities [57]

eb ≡
1

Q

∑
i

Ei(sin θi)
1−b(1− | cos θi|)b

θi�1
≈ 2−b

Q

∑
i

Eiθ
b+1
i , (2.19)

parametrized by b.4 Here Q is the center-of-mass energy, and the sum runs over all particles

i in the final state with energy Ei and angle θi with respect to some axis. The final

expression is only valid in the small-angle limit, which is appropriate for the jet function

calculation, highlighting that eb probes the angular distribution with exponent 1 + b > 0.

While angles were originally taken with respect to the thrust axis, we will here use the

Winner-Take-All axis [27]. For the one-loop jet function this axis is simply along the most

energetic particle in the jet, so the only non-zero contribution in the sum on i in eq. (2.19)

comes from the least energetic particle, with θi the angle between the two partons in the

jet. Noting that s = 2p1 · p2 = 1
2z(1 − z)(1 − cos θ)Q2 ≈ 1

4z(1 − z)θ2Q2, we obtain the

following measurement function for a cut on the angularity eb ≤ ecb,

Mb (s, z) = Θ

[
z (1− z) Q2

(
ecb

min[z, 1− z]

)2/(b+1)

− s

]
. (2.20)

For angularity exponent b < 1, the observable is unbounded from above, similar to the top

curve of region 2 in figure 1. In the notation of eq. (2.8), we see that the soft limit of the

observable is characterized by c0 = c1 = Q2(ecb)
2/(b+1)/µ2 and α0 = α1 = 2/(1 + b) − 1.

The one-loop contribution to the jet function is obtained by plugging in these constants in

eqs. (2.9) and (2.10) to calculate G2, performing the integration over s and z for G1, and

adding these contributions to the box G3. Performing the integration over s analytically

and the integration over z numerically for b = 2, we obtain using GOJet

J (1)
q,e2 =

αsCF
2π

(
µ2

Q2 (ec2)
2/3

)ε(
3

2ε2
+

3

2ε
− 1.909961286856877

)
, (2.21)

where we used µ = Q(ec2)
1/3 to calculate the constant contribution and reinstated the

logarithmic behaviour afterwards. Our result agrees with the expression in refs. [27, 28] up

to order 10−11.5 For b = 0 the rapidity regulator is required. In that case we find

J (1)
q,e0 =

αsCF
2π

(
2ν

Q

)η ( µ2

Q2 (ec0)
2

)ε(
2

εη
+

3− 4 log 2

2ε
− 1.8693096781349734

)
, (2.22)

in agreement with ref. [27].

4Our b is related to the parameter a in ref. [57] by b = 1 − a.
5Refs. [27, 28] both use β = 1 + b instead of b, and ref. [27] also removes the 2−b from the definition in

eq. (2.19) and takes Q to be the jet energy.
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3 GOJet program

The GOJet Mathematica-package automatically performs the subtraction, given the

observable and its soft limit (see eq. (2.8)) as input. One can either let Mathematica

perform the numerical integration or choose to export the integrand. The latter feature

may be useful if NIntegrate either has difficulty converging or is not fast enough. In such

cases it can be advantageous to use algorithms such as Vegas, that are faster due to their

implementation in C++ or Fortran. A general overview of the various functions included

in the package is given in section 3.1. A detailed description of their input is given in

section 3.2, with a worked-out example in section 3.3.

3.1 Functions

There are a total of 12 different functions, listed in section 3.2, which the user can access. As

indicated by their names half of these are for calculating gluon jet functions while the other

half are for calculating quark jet functions. Restricting to the former, PolesGluon returns

the pole terms in ε and η for the gluon jet function and GluonJet returns the integrand of

the finite terms, by which we here refer to the ε0η0-term. In addition, GluonJetN performs

the numerical integration over the cube 0 ≤ s, z, φ ≤ 1 of this integrand. This integration

domain is the result of mapping s → s/(1 − s) and φ → πφ, which also stabilizes the

integration over s. Note that GluonJet also contains the ε0η0-pieces of the counterterms

G2 and G3, which are already integrated over analytically. For the convenience of the user

these pieces are simply added in integrated form since they are not altered by the trivial

numerical integration over the unit cube.

Let us now discuss the arguments of the functions in general terms. The first arguments

encode the measurement O and its soft limit O0 and O1 corresponding to the limits z → 0

and z → 1, respectively. The observable should generally be IR safe, with some exceptions

discussed in section 2.3. Furthermore, we require certain restrictions on the form of the

soft limits. Specifically, it is not possible to restrict the φ-integration boundaries via O0

and O1, whose format is fixed. It is however possible to apply s, z-independent constraints

on the boundaries of the φ-integration through the separate argument Φ, which are the

same for the finite part as well as the counterterms.

The next set of arguments specify the regularization and IR scheme: the need of a

rapidity regulator or collinear regulator is controlled by the switches rr and box, respec-

tively. The explicit cut for the soft limits and box is specified by A and B (see eq. (2.6)).

The independence of the final result on these parameters provides a useful cross-check for

the calculation. A specific choice of these parameters can also be used to improve the

convergence of the numerical integration. For the gluon jet function, the number of quark

flavors is specified through the argument nf. The number of colors has been fixed to three,

but the full dependence on the Casimirs can be easily reconstructed from the answer. The

final set of arguments enables the user to specify the integration method or output format

for the integrand.

Finally, we also allow for more complicated observables, where the phase-space re-

striction due to the measurement breaks up into more than one region. The corresponding
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functions have “Regions” appended to their name, and contain additional arguments spec-

ifying possible dependence on external parameters in the regions.

3.2 Input format

Here we specify the syntax of each of the functions:

GluonJet[O, O0, O1, Φ, rr, box, A, B, s, z, φ, nf, format, file]

GluonJetRegions[R, O, R0, O0, R1, O1, Φ, rr, box, A, B, s, z, φ, nf, format, file]

GluonJetN[O, O0, O1, Φ, rr, box, A, B, s, z, φ, nf, method]

GluonJetRegionsN[R, O, R0, O0, R1, O1, Φ, rr, box, A, B, s, z, φ, nf, method]

PolesGluon[O0, O1, Φ, rr, box, A, B, φ, nf]

PolesGluonRegions[O0, O1, Φ, rr, box, A, B, φ, nf]

QuarkJet[O, O0, O1, Φ, rr, box, A, B, s, z, φ, format, file]

QuarkJetRegions[R, O, R0, O0, R1, O1, Φ, rr, box, A, B, s, z, φ, format, file]

QuarkJetN[O, O0, O1, Φ, rr, box, A, B, s, z, φ, method]

QuarkJetRegionsN[R, O, R0, O0, R1, O1, Φ, rr, box, A, B, s, z, φ, method]

PolesQuark[O0, O1, Φ, rr, box, A, B, φ]

PolesQuarkRegions[O0, O1, Φ, rr, box, A, B, φ]

The variables used to describe the input are:

• R: List of lists which contain arguments of Heaviside theta functions which depend

only on external parameters for each region. Regions that do not depend on external

parameters need {1} as input in their respective position in the list. The number of

regions should match with the lists for O below.

• O: The list of argument(s) of the Heaviside theta function encoding the bounds im-

posed by the measurement. More specifically, O contains the arguments of the Heav-

iside theta functions Mobs in eq. (2.2). For the case of a single region, the elements

of the list correspond to the arguments of Heaviside theta functions, whose product

constrain the region. In the case of multiple regions, O is a list of lists. The entries

of the outer list correspond to the different regions, each entry is again a list of con-

straints containing the arguments of the Heaviside theta functions M r
obs constraining

the particular region. This allows the user to implement arbitrary sums of products

of Heaviside theta functions.

• R1 (R0): List of lists which contain arguments of Heaviside theta functions which

depend only on external parameters for each region in the limit z → 1 (z → 0). The

length of this list is therefore equal to the number of soft regions that emerge in the

soft limit. Regions that do not depend on external parameters need {1} as input in

their respective position in the list. The number of soft regions can be less than the

number of regions, but should match with the lists for O0 and O1 below. In particular,
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regions may merge or disappear in the soft limit. R1 (R0) can also be used in cases

with just one region where there is dependence on external parameters in the soft

limits.

• O1 (O0): List {{c−1 , α
−
1 }, {c

+
1 , α

+
1 }} describing the lower and upper boundary of the

region in the limit where z → 1 (and similarly for z → 0), see eq. (2.8). If there is no

lower boundary, c−1 is just 0. When considering multiple regions, O1 (O0) is a list of lists

where each region has an upper and a lower boundary of the aforementioned format.

• Φ: List of arguments of the Heaviside theta functions that impose constraints on the

azimuthal angle φ, i.e., the input {φ+ − φ, φ − φ−} will constrain φ− < φ < φ+. In

the case of multiple regions that contain collinear and/or soft divergences we require

the range on φ to be the same for all regions. (Arbitrary constraints on φ can of

course be encoded in O; but these are not allowed to survive singular limits; meaning

they should match the boundaries imposed by Φ in these limits; see section 2.3 for

more details.)

• rr: Boolean variable specifying whether a rapidity regulator should be included,

which we implemented as

(2(1− z)z))−η . (3.1)

This corresponds to the more conventional factor (ν/((1− z)z ω))η, for the scale

choice ν = 1
2ω. The user can always reconstruct the full dependence on the scale ν a

posteriori, given the knowledge of the 1/η pole.

• box: Boolean controlling whether a box is needed to handle the collinear divergence.

It should be included when the region of phase space includes s = 0 and not otherwise

(in line with the restrictions outlined in section 2.3).

• A: Real number specifying the region where the soft counterterms are subtracted.

Explicitly, the z → 0 (z → 1) counterterms are subtracted in the phase-space region

where z < A (1− z < A), and therefore 0 < A ≤ 1.

• B: Postive real number specifying the size of the box.

• s: Variable used to describe the invariant mass of the parton that initiates the jet.

In the code we have made this variable dimensionless by rescaling with the renormal-

isation scale µ2, i.e., s = s
µ2

.

• z: Variable encoding the momentum fraction z of one of the partons in the

collinear splitting.

• φ: Variable corresponding to the azimuthal angle of the collinear splitting.

• nf: Variable specifying the number of (massless) quark flavors. This variable does

not need to be set to an integer, but can be left in symbolic form.
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• format: String specifying the output form of this function. One can choose between

“Mathematica”, “Fortran” and “C”. Note that when performing the numerical inte-

gration in Fortran or C, the user needs to provide a function HeavisideTheta that

satisfies Θ(0) = 0, as described in section 2.2. In addition, for exporting to C, one

needs to include the Mathematica header file mdefs.h provided by Mathematica

in the directory6 $InstallationDirectory/SystemFiles/IncludeFiles/C.

• file: String with the filename to which the integrand will be exported. For an empty

string the integrand will be printed to the screen.

• method: This string can specify which method NIntegrate uses in Mathematica,

and we refer the reader to the Mathematica documentation for the available op-

tions. For an empty string the default method of NIntegrate will be used.

3.3 Example: kT clustering algorithms

To illustrate the use of our code we now calculate the jet function for the family of kT
clustering algorithms. At one-loop order, where there are at most two particles in the final

state, they are clustered into a single jet if the angle between them is less than the jet

radius parameter R, which for the case of an e+e− collider corresponds to a single region7

s ≤ z(1− z)E2R2 , (3.2)

where E is the jet energy. The z → 0 and z → 1 limits of eq. (3.2) are described by

z → 0 : s = zE2R2 −→ c+0 = E2R2/µ2, α+
0 = −1,

z → 1 : s = (1− z)E2R2 −→ c+1 = E2R2/µ2, α+
1 = −1. (3.3)

There are no lower constraints, i.e. c−i = 0. Calculating this observable requires a box

because the s = 0 line is inside the domain of integration. Since αi 6= 1, a rapidity

regulator is not needed. The constraint in eq. (3.2) due to the measurement does not

depend on φ, and so we take Φ = {}.
We now calculate the quark jet function. As eq. (2.8) is a relatively simple expression,

for which the jet function can be easily calculated analytically, we will use Mathematica

to perform the numerical integration over the subtracted integral by using QuarkJetN with

the ‘LocalAdaptive’ integration method. In the following we set µ = ER for simplicity.

Note how this, since the variable s corresponds to s
µ2

, cancels the factor E2R2 in the

obsevable.

In[1]:= O = z(1 − z) − s;
O0 = {{0,0},{1,−1}};
O1 = {{0,0},{1,−1}};
method =“LocalAdaptive”;

box = True;

6The installation directory can be determined by running $InstallationDirectory in Mathematica.
7The corresponding result for pp collisions can be obtained by simply replacing the jet energy E by the

jet transverse momentum pT , and R then corresponds to a distance in (η, φ) instead of an angle.
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rr = False;

A=0.6;

B=20;

In[2]:= QuarkJetN[O,O0,O1, {}, rr, box,A,B, s, z, phi,method]

Out[2]= −1.2029367022′

In[3]:= PolesQuark[O0,O1, {}, rr, box,A,B, phi]

Out[3]=
4

3ε2
+

2

ε

From this answer it is straight forward to reconstruct that the full color-dependence

of the regulated one-loop quark jet function is given by:

J kTq = CF

(
1

ε2
+

3

2ε
− 0.9022033008

)
. (3.4)

The poles match exactly with the result by [31] and the finite term agrees up to order 10−6.

Similar agreement is found for the gluon jet function:

J kTg = CA

(
0.0422426 +

1

ε2
+

11

6ε

)
− nfTR

(
2

3ε
+ 2.55555

)
. (3.5)

The accompanying Mathematica notebook contains several hands-on examples to further

illustrate the use of the different functions.

4 Applications

To validate the method and corresponding code, the jet functions for several known ex-

amples have been checked. Some of these were used throughout the paper to explain our

approach, namely the kT family of clustering algorithms (section 3.3), and angularities with

respect to the WTA axis (section 2.4). In addition, we provide results in section 4.1 for the

cone algorithm and in section 4.3 for the jet shape. The latter is more challenging due to

its azimuthal-angular dependence, which arises because the jet axis is along the total jet

momentum and thus sensitive to recoil of soft radiation. In section 4.2 we present, for the

first time, the one-loop jet functions for angularities with respect to the thrust axis, taking

into account recoil. Although for b > 0 this recoil is formally power-suppressed, it can be

numerically large [47].

4.1 Cone jet

At one-loop order, the condition that both partons are within a cone jet in an e+e− collision

is that their angle with the jet axis is less than R (for pp7). Since the jet axis is along the

total jet momentum, one simply needs to consider the angle with the parton that initiates

the jet, leading to the following condition

s ≤ E2R2 min

[
1− z
z

,
z

1− z

]
. (4.1)

– 16 –



J
H
E
P
1
0
(
2
0
2
0
)
1
1
8

θ

⃗n⃗n̄

⃗q
⊥

⃗
p 1

2
′ 

⃗p
1

′ 

⃗p
2

′ 

ϕ′ 

|
⃗

p ⊥
′ |
∼

λ
|

⃗
p ⊥

′ |
∼

λ
⃗

n̄
′ 

Figure 4. The setup of our calculation. The recoil is quantified by θ.

As we focus on the finite term in the jet function, we fix µ = ER finding

J Cone
q = CF

(
1.46711 +

1

ε2
+

3

2ε

)
,

J Cone
g = CA

(
2.23477 +

1

ε2
+

11

6ε

)
− nfTR

(
2

3ε
+ 2.20197

)
, (4.2)

which agrees up to order 10−6 with ref. [31].

4.2 Angularities with recoil

In this section we determine, for the first time, the one-loop angularity jet function that

includes the recoil of the thrust axis due soft radiation. While this recoil is power-suppressed

for b > 0, ref. [47] noted that it has a numerically large effect and presented a factorization

framework to include it. The one-loop jet function we calculate here will start to contribute

at NLL′ accuracy. This should be contrasted with the calculation in section 2.4, where we

considered the angularity with respect to the WTA axis. To clearly distinguish these two

cases in the notation, we will use τn instead of eb, where n refers to the thrust axis.

The setup underpinning our calculation is illustrated in figure 4. Here θ is the angle

between the thrust axis ~n and the direction ~n′ of the initial collinear parton due to the

recoil from soft radiation, which is treated as an external parameter in our calculation.

The momenta of the two massless partons in the jet are denoted by ~p1 and ~p2, where we

use (un)primed coordinates to denote light-cone components with respect to the ~n′ (~n)
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direction. Explicitly,

p′µ1 = zQ
n′µ

2
+

(1− z)s

Q

n̄′µ

2
+ p′µ1⊥ ≡ p

′−
1

n′µ

2
+ p′+1

n̄′µ

2
+ p′µ1⊥,

pµ1 = p−1
nµ

2
+ p+1

n̄µ

2
+ pµ1⊥, p±1 = p01 ∓ p31 , (4.3)

and similarly for p2. Here we chose nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1), z is the momen-

tum fraction of the parton, s the invariant mass of the jet, and Q the center-of-mass energy

of the e+e− collision. The expression in the recoiled frame follows from the definition of

z and s through p′−1 = zQ and s = (p′1 + p′2)
2, as well as p′µ1⊥ = −p′µ2⊥ and the on-shell

condition p′21 = p′22 = 0. Note that |p′i⊥|2 = z(1− z)s.

The rotation between the two frames is described by

~p1 =

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 ~p1
′
, (4.4)

implying |p⊥|2 = |p′⊥|2 + θ2(p31)
2 − 2θ cosφ′|p′⊥||p31| in the small θ approximation, where φ′

is the azimuthal angle around the ~n′ axis. The large momentum components are the same

in both frames, p−i = p′−i . The expression for the angularity τn becomes

τn =
1

Q

∑
i

|pi⊥|
(
p+i
p−i

) b
2

=
1

Q

∑
i

(
|pi⊥|1+b

(p−i )b

)
(4.5)

=
1

(2Q)1+b
z−b

(
4z(1− z)s+ (θQ)2z2 − 4θ Q cosφ′ z

3
2

√
(1− z)s

) 1+b
2

+
1

(2Q)1+b
(1− z)−b

(
4z(1− z)s+ (θQ)2(1− z)2 + 4θQ cosφ′(1− z)

3
2
√
zs
) 1+b

2
,

where b > −1. Using the delta function trick (see section 2.2), we switch to a cumulative

measurement, writing the observable as

Mobs = Θ[τ cn − τn] . (4.6)

Unfortunately is it not possible to invert eq. (4.6) to obtain an analytic solution for s

and subsequently extract the soft limit z → 0. We can, however, use the power-law ansatz

in eq. (2.8) to find the soft behavior of the observable. Since the equation is symmetric in

z → 1− z, we focus on finding the soft behavior in the z → 0 limit. Using

s|z→0 = c0(φ)z−α0µ2 , (4.7)

in eq. (4.5) and taking the z → 0 soft limit, we find

τ cn

(2Q

µ

)1+b
= z−b

(
4 c0 z

1−α0 +
(θQ
µ

)2
z2 − 4

√
c0

(θQ
µ

)
cosφ′ z

3−α0
2

) 1+b
2

+

(
4 c0 z

1−α0 +
(θQ
µ

)2
+ 4
√
c0

(θQ
µ

)
cosφ′(z)

1−α0
2

) 1+b
2

. (4.8)
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There is a single solution for s in either of the soft limits and therefore this observable only

has an upper boundary over the full range of b, i.e. c−0 = 0. The leading terms in eq. (4.8)

are used to solve for α+
0 and c+0 , and differ for −1 < b < 0, b = 0 and b > 0. We will

analyze the last case in some detail and only provide the solutions for the others.

Assuming b > 0, the leading behavior in the z → 0 limit of eq. (4.8) is

τ cn

(2Q

µ

)1+b
= c

1+b
2

0 z−b+(1−α0)(1+b)/2 +

(
θ Q

2µ

)1+b

, (4.9)

and from this we infer

c+0 =
Q2(τ cn)2/(1+b)

µ2
(
1− k1+b

) 2
1+b , α+

0 =
1− b
1 + b

, (4.10)

where

k ≡ 1

2
θ (τ cn)−1/(1+b) . (4.11)

Similarly, for b = 0 we obtain

c+0 =
Q2(τ cn)2/(1+b)

µ2
1− k2

(2 + 2k cosφ)2
, α+

0 = 1 . (4.12)

For −1 < b < 0 the solution is a bit more difficult and reads

c+0 =
Q2(τ cn)2/(1+b)

µ2

[
1 + k2 cos 2φ− 2k| cosφ|

√
1− k2 sin2 φ

)]
,

α+
0 = 1 . (4.13)

In order to use GOJet, we rescale s and choose an energy scale µ. To be able to

smoothly turn off the recoil, we choose µ in terms of the angularity, µ = Q (τ cn)1/(1+b). The

only independent variable left is then given by k in eq. (4.11). To be complete we also give

the resulting observable input for GOJet:

O = 1− z−b
(
z(1− z)s+ k2z2 − 2k cosφ′ z

3
2

√
(1− z)s

) 1+b
2

− (1− z)−b
(
z(1− z)s+ k2(1− z)2 + 2k cosφ′(1− z)

3
2
√
zs
) 1+b

2
. (4.14)

The jet function for θ = 0 (without recoil) was calculated analytically in refs. [24, 47]

and we obtain the same results as can be seen in figure 5a. The error bars indicate the

uncertainty from our numerical integration. Ref. [47] includes a zero-bin subtraction [58]

to avoid double counting with the soft function in their factorization, which we do not

include. The zero-bin subtraction depends on the details of the factorization theorem

(indeed it vanishes in ref. [24]), so we do not offer this as a standard functionality of

GOJet. The numerical integration for small values of b is particularly challenging (as

can be seen for b = 1
8), because the sub-leading terms with respect to the leading soft

behavior of the observable in eq. (4.10) are particularly large in this case. A more detailed

discussion of this issue and a method to cope with it is presented in appendix B. In figure 5b

we reproduce the known results for b = 0 (broadening) and general recoil [52]. Our new

results for general b including the effect of recoil, are shown in figure 6. The error bars are

not shown in this plot as they are negligibly small.
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Figure 5. The offset between our results for (a) different values of b with θ = 0 and (b) different

values of the recoil parameter k with b = 0 and the known results from the literature is shown.
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Figure 6. The results for the finite part of J 1
q for different values of b as a function of k.

4.3 Jet shape

As another nontrivial example, we calculate the jet function for the classic jet shape ob-

servable, reproducing the one-loop result of ref. [36]. The jet shape describes the average

energy fraction zr inside a cone of angular size r around the jet axis. As in section 4.2,

recoil from soft radiation displaces the jet axis from the initial parton by an angle θ. This

breaks the azimuthal symmetry, requiring one to integrate over φ. We have checked that

our poles match exactly with the poles in [36] for all values of θ and r. The difference

between the finite terms is always below 0.5%. This has been illustrated in figure 7a for

gluon jets and figure 7b for quark jets. We note that run time is not an issue, as less pre-

cision is needed in phenomenological results and the distribution can be interpolated. Our

calculation represents the second independent calculation of this observable and thereby

delivers a useful cross check of the results of ref. [36].

5 Conclusions

In this paper we developed an automated approach for calculating one-loop jet functions,

and provide an implementation in the accompanying Mathematica package called GO-
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Figure 7. The offset between our finite result of the (a) gluon and (b) quark jet function and [36]

for several values of θ
r .

Jet. We use geometric subtraction [55] to isolate the soft and collinear singularities. The

collinear counterterm does not depend on the details of the observable, except that certain

observables do not require it. We find that the soft counterterm depends on the behavior

of the observable in the soft limits, which can be described by a power law. While the user

must provide GOJet with this power law as input, we present a strategy to extract this in

a highly nontrivial example. We employed cumulative distributions, such that observables

correspond to integrating over certain regions of phase space, and thereby avoiding plus

distributions. We have demonstrated our approach by reproducing the known one-loop jet

function for a range of observables, and calculating, for the first time, the jet function for

angularities including recoil. For broadening (b = 0 in our conventions) the effect of recoil

must be kept [25], while for b > 0 it is formally power suppressed but can be numerically

large [47]. For b close to 0, we encountered numerical convergence issues, due to an inte-

grable divergence. We addressed this problem by substantially improving the counterterm

through a remapping.

Our approach focusses on IR-safe observables, and we did not address the IR-unsafe

case. Jet functions containing IR divergences are sensitive to nonperturbative physics,

and our purely partonic calculation must be supplemented by a (universal) nonpertur-

bative function that subtracts these divergences. A prime example is initial-state jets,

which are described by beam functions [59]. Beam functions contain infrared divergences,

which are removed by matching onto parton distribution functions, leaving finite match-

ing coefficients.

The automated approach and code presented here provides a very useful tool, calcu-

lating jet functions at one-loop order. Very few two-loop jet functions are known, and an

automated approach would allow many resummation calculations to be extended to NNLL′

or N3LL accuracy. At this order the singular limits become more complicated, the order

of subtractions matters, and the parametrization of the observable in these limits will no

longer be a simple power law, complicating the counterterms.
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A G2 subtraction term for rapidity divergences

When the soft limit of the observable scales as 1/z, we need a rapidity regulator to control

the singularities. The resulting expressions for G2 with rapidity regulator are given by

Gq,2 =
2CF
ε

eγEε
√
π Γ(12 − ε)

(
ν

ω

)η ∫ π

0
dφΘ(Φ)(sinφ)−2ε[

(c+1 )−ε

η + ε(1− α+
1 )
A−η−ε(1−α

+
1 ) − (c−1 )−ε

η + ε(1− α−1 )
A−η−ε(1−α

−
1 )

]
,

Gg,2 =
CA
ε

eγEε
√
π Γ(12 − ε)

(
ν

ω

)η ∫ π

0
dφΘ(Φ)(sinφ)−2ε[

(c+0 )−ε

η + ε(1− α+
0 )
A−η−ε(1−α

+
0 ) − (c−0 )−ε

η + ε(1− α−0 )
A−η−ε(1−α

−
0 )

+
(c+1 )−ε

η + ε(1− α+
1 )
A−η−ε(1−α

+
1 ) − (c−1 )−ε

η + ε(1− α−1 )
A−η−ε(1−α

−
1 )

]
. (A.1)

B Counterterm mapping

In this appendix we discuss how to improve the convergence of the soft subtraction through

a mapping. For simplicity, we consider only the soft singularity at z = 0, for which the

finite term generated by the geometric subtraction is of the form:∫ 1

0
dz
[f(z)Θ(O(z))− f(0)Θ(O0(z))

z

]
. (B.1)

Here we suppressed the dependence (and integrals) over s and φ, extracting the 1/z singu-

larity from the integrand Q, i.e. f = zQ. While this integrand is by construction integrable,

poor numerical convergence may be caused by mismatch of the observable O and its soft

limit O0. This problem can become particularly severe if O(z) has a fractional power series

in z, as we illustrate below.

To improve the convergence of the integral, we apply the following mapping (to the

counterterm only):

G : z → z + g(z)

1 + g(z)
. (B.2)

This maps the interval 0 ≤ z ≤ 1 onto itself, as long as z + g(z) > 0, and the subtracted

integral will remain the same as long as the function g(z) decreases faster near z = 0 than

z itself, i.e., it satisfies

lim
z→0

g(z)

z
= 0 . (B.3)
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Figure 8. The plot shows the observable (blue), its soft approximation in eq. (B.7) (red) and the

remapped soft approximation in eq. (B.8) (orange).

Applying this map, we can replace eq. (B.1) with:

∫ 1

0
dz
[f(z)Θ(O(z))

z
− f(0)Θ(O0(G(z)))

G(z)

∣∣∣∂G(z)

∂z

∣∣∣]. (B.4)

One can now construct the function g(z) to map O0(G(z)) closer to O(z) in the re-

gion z → 0.

For the angularities with recoil in section 4.2, we encounter the following instructive

example

O(z) = 1/s− (z(1− z))
b−1
b+1

(zb + (1− z)b)
2

1+b

, (B.5)

which has poor convergence for small positive values of b. Already b = 1/10 yields a

sufficiently challenging scenario, for which the power series around z = 0 is given by:

O(z) = 1/s− z
9
11 +

20

11
z

101
110 +

90

121
z

56
55 − 60

1331
z

123
110 +

195

14641
z

67
55 − 936

161051
z

29
22

+
5460

1771561
z

78
55 − 35880

19487171
z

167
110 +

255645

214358881
z

89
55 − 1931540

2357947691
z

189
110

− 25922165435

25937424601
z

20
11 − 5136983395938

3138428376721
z

211
110 +O(z2) . (B.6)

It is thus apparent that the leading term approximation

O0(s, z, φ) = 1/s− z
9
11 (B.7)

gives only a poor approximation of the full result. Substituting z = G(z) with

g(z) = z

11∑
i=1

ci z
i
10 (B.8)
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into eq. (B.7) we can match eq. (B.6) by iteratively solving for the constants ci. This

procedure yields:

c1 =
20

9
, c2 =

110

81
, c3 =

220

2187
, c4 = − 385

19683
, c5 =

1232

177147
, c6 = − 15400

4782969
,

c7 =
74800

43046721
, c8 = − 402050

387420489
, c9 =

20906600

31381059609
, c10 = −345319185959

282429536481
,

c11 = −6338162484818

2541865828329
. (B.9)

The resulting curves are plotted in figure 8, highlighting the improvement due to the

remapping. A Vegas run using 5 · 109 points for the finite part of the quark jet function

of this observable yields −48.63(2) without the mapping, while we obtain −48.745(9) after

the mapping. The true value is −48.7731, indicating that the remapped counterterm yields

a result significantly closer to the true value. In both cases it becomes clear that the offset

is not completely covered by the uncertainty. While the remapping may thus improve

convergence, it may not completely solve the issue.

C Azimuthal integral

In this appendix we evaluate the integral

I(a, b; ε) =

∫ b

a
dφ (sinφ)−2ε . (C.1)

One can convert this integral into a Gauss-type hypergeometric integral using the trans-

formation cosφ = 1− 2x. However this leads to square roots in the denominator which do

not naively lead to a polylogarithmic expression. Instead, one can rewrite the integral as

a contour integral in the complex plane using the transformation z = eiφ, such that

sinφ =
z2 − 1

2iz
, (C.2)

leading to the following representation

I (a, b; ε) = −i

∫ eib

eia

dz

z

(
z2 − 1

2iz

)−2ε
. (C.3)

The integrand can be chosen to have branch cuts on the real axis for z < 0 and for z > 1.

For 0 < a, b < π, which is the range of physical interest, no branch cuts are ever crossed.

It is convenient to perform the integral on a contour along the real axis from 0 < z < A

with 0 < A < 1, i.e.,

F (A; ε) = −i22εe−iπε
∫ A

0

dz

z

(
1− z2

z

)−2ε
. (C.4)

The result can be analytically continued to the case of interest with A = eia. We then

obtain (in essence via the residue theorem)

I(a, b; ε) = F (eia; ε)− F (eib; ε) . (C.5)
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While the divergence at z = 0 requires careful treatment, this drops out in the differ-

ence of the two terms in eq. (C.5). We performed the integral using the Maple package

Hyperint [60], finding that the integral can performed order by order in ε in terms of har-

monic polylogarithms. This is to be expected, given that its singularities are located at

z = 0,−1, 1. Up to order ε2 we can express the result in terms of the classical polyloga-

rithms:

I(a, b; ε) =

∞∑
n=0

I(n)(a, b)εn (C.6)

with

I(0)(a, b) = b− a ,

I(1)(a, b) = 2i Li2(e
ia)− 2i Li2(e

ib) + 2i Li2(−eia)− 2i Li2(−eib) + i(a− b)(−a+ π − b)
+ (−2a+ 2b) ln 2 ,

I(2)(a, b) = −2

3
i ln3(eib + 1)− 2i ln2(eib + 1) ln(1− eib)− 4b ln(eib + 1) ln(1− eib)

+ 2i ln2(eia + 1) ln(1− eia) + 4a ln(eia + 1) ln(1− eia)− 2i ln(eib + 1) ln2 2

− 2i ln(1− eib) ln2 2 + 2i ln(eia + 1) ln2 2 + 2i ln(1− eia) ln2 2− 4i Li3(e
ia)

+ 4i Li3[−(−1 + eia)/(eia + 1)]− 4i Li3[−(−1 + eib)/(eib + 1)] + 2a ln2(eia + 1)

− 2b ln2(1− eib)− 2b ln2(eib + 1) + 4i Li3

(
1

2
+

1

2
eia
)
− 8i Li3[1/(e

ia + 1)]

+ 4i Li3

(
1

2
− 1

2
eia
)
− 8i Li3(1− eia) + 4i Li3(e

ib)− 4i Li3

(
1

2
− 1

2
eib
)

+ 8i Li3(1− eib) + 4i Li3(−eib) + 8i Li3(1/(e
ib + 1))− 4i Li3

(
1

2
+

1

2
eib
)

+ 2(b− a) ln2 2 + 2i(a− b)(−a+ π − b) ln 2− 4i ln(eia + 1) ln(1− eia) ln 2

+ (2π − 4a)Li2(−eia) +
1

3
iπ2 ln(1− eia) + 4i ln 2 Li2(−eia)

− 4i ln 2 Li2(e
ib) + 4i ln(eib + 1)Li2(e

ib) + 4i ln(1− eib)Li2(e
ib)

− 4i ln(eia + 1)Li2(e
ia)− 4i ln(1− eia)Li2(e

ia) + 4i ln 2 Li2(e
ia)

+
1

6
(a− b)(3π2 − 6πa− 6πb+ 4a2 + 4ab+ 4b2) +

2

3
i ln3(eia + 1)

+ (−2π + 4b)Li2(e
ib) + (2π − 4a)Li2(e

ia)− 1

3
iπ2 ln(1− eib)

+ 4i ln(eib + 1) ln(1− eib) ln 2 + 4i ln(eib + 1)Li2(−eib)
+ 4i ln(1− eib)Li2(−eib)− 4i ln 2 Li2(−eib) + iπ2 ln(eib + 1)

− iπ2 ln(eia + 1)− 4i ln(eia + 1)Li2(−eia)− 4i ln(1− eia)Li2(−eia)
+ 2a ln2(1− eia)− 4i Li3(−eia) + (−2π + 4b)Li2(−eib) . (C.7)

After this article was posted, we were informed that the azimuthal integral in ap-

pendix C was evaluated before in terms of so-called Log-sine functions, which were in-

troduced and studied in [61, 62] and have been implemented in a C++ library in [63].
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Relations can also be found in these references to convert them into Nielsen polyloga-

rithms, although not directly into classical polylogarithms (which is only possible up to

order ε2).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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