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1 Introduction and result

Asymptotic symmetries strongly constrain low energy physics of gauge theories [3–8]. Lead-

ing soft theorems are manifestations of asymptotic symmetries. Soft theorems are state-

ments about universal properties of amplitudes in the limit when energy of some of the

interacting massless particles is taken to be small [9–12].1 The equivalence between the two

was first demonstrated in the seminal paper [5]. Similar analysis was carried out for QED

in [6–8]; it was shown that leading soft photon theorem is equivalent to the Ward identity

of the so called large gauge transformations. Large gauge transformations constitute an

infinite dimensional subgroup of U(1) gauge transformations.

Analogous investigations have been carried out to understand the possible symmetry

origins of tree level subleading soft theorem. Ward identity corresponding to Low’s sub-

leading photon theorem has been studied in [14–16]. The symmetry underlying this Ward

identity or its relation to U(1) gauge group is not clear. In [17], the authors proved an in-

finite hierarchy of asymptotic conservation laws for classical electromagnetism and showed

1Interested readers can look up the references of [2] and [13] for recent literature on Soft theorems.
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that quantum version of the first of these laws is equivalent to Low’s subleading soft pho-

ton theorem. The authors also provide evidence that suggests that this entire hierarchy

is equivalent to the infinite hierarchy of tree level soft theorems proved in [18, 19]. Thus,

tree level subleading soft theorems in QED can be related to asymptotic conservation laws

though the question of existence of a well defined underlying symmetry still persists.

In this paper we are interested in studying the equivalence between soft theorems and

asymptotic conservation laws in presence of loop corrections. The leading soft theorem

is true to all loop orders and hence is an exact quantum statement. The Ward identity

corresponding to large gauge transformations is also exact. Beyond the leading order,

soft theorems receive non-trivial loop corrections in four spacetime dimensions as shown

in [20–22]. A part of these loop corrections are divergent. In [23], the authors showed that

these divergent terms can be absorbed by renormalising tree level Ward identity. In the

seminal paper [2], the authors extended the regulating technique introduced in [24] and

used it to show that loop effects lead to a new logarithmic soft theorem in four spacetime

dimensions. Thus, the subleading soft theorem for loop amplitudes is very different from

the tree level subleading soft theorem. This soft theorem is 1-loop exact.

A natural question arises at this point: is this soft theorem related to a new asymptotic

symmetry? The first step in this direction was taken in [1]. The authors have provided

evidence to show that the Sahoo-Sen soft theorem for massive scalar QED has an underlying

conservation law. This is quite a remarkable result given the fact that the loop level soft

factor has a very complicated structure [2]. The authors also established a correspondence

between the loop level soft factor and the Fadeev-Kulish dressing of massive particles [26].

It must be however noted that the nature or existence of a well defined symmetry associated

to this conservation law is not clear at this point.

In this paper, our aim is to show that the Sahoo-Sen soft photon theorem is equivalent

to the asymptotic conservation law given in (2.20) for massless scalar QED in presence of

dynamical gravity. Let us first quote the Sahoo-Sen soft photon theorem in presence of

gravitational couplings and massless complex scalars [2]:

Mn+1(pi, k) =
S0

ω
Mn(pi) + Slog logωMn(pi) + . . . ,

here, S0 =
∑

i ei
ε.pi
pi.q

is the leading soft factor and

Slog =
ig

4π

∑
i,j;i 6=j
ηiηj=1

ei
εµqρ
pi.q

(pρjp
µ
i − p

ρ
i p
µ
j )− ig

4π

∑
i

ei
ε.pi
pi.q

∑
j,ηj=1

q.pj

− 1

4π2

∑
i,j;i 6=j

ei
εµqρ
pi.q

[
eiej
pi.pj

(pρjp
µ
i − p

ρ
i p
µ
j ) + g(pρjp

µ
i − p

ρ
i p
µ
j ) log[pi.pj ]

]
2

+
g

4π2

∑
i

ei
ε.pi
pi.q

∑
j

q.pj log pj .q. (1.1)

In above expression, ε is the polarisation vector for the soft photon and k = ωq is the

2Similar to the first electromagnetic term in this line, there could be a potential gravitational term:

− 1

4π2

∑
i,j;i 6=j

gei
εµqρ
pi.q

(pρjp
µ
i − pρi p

µ
j )

that vanishes because of momentum conservation.
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soft momentum. The indices i, j take values from 1 to n, where n is the number of hard

particles. ei, pi denote the electric charge and momentum of ith hard particle respectively.

The momenta and charges are defined including η factors such that ηi = 1(−1) for outgoing

(incoming) particles. In above expression, we have introduced g to keep track of gravita-

tional terms. We later set g = 8πG=1. An important point to note is that the presence of

gravitational coupling modifies the soft photon theorem significantly.

We show that above soft theorem is equivalent to the asymptotic conservation law

given in (5.2):

Q+
1-loop[V A

+ ]|I+
−

= Q−1-loop[V A
− ]|I−+ . (1.2)

Q1-loop gets contribution from dressing of free fields due to long range forces.

• The leading order dressing of massless scalar field is given by (3.3):

φ(x) = − ie
ieA1

r(x̂) log r

8π2r

∫
dω

[
b(ω, x̂)e−iωueiω log r

h1
rr(x̂)

2 − d†(ω, x̂)eiωue−iω log r
h1
rr(x̂)

2

]
.

A1
r defined in (2.8) is the electromagnetic dressing and h1

rr defined in (2.9) is the grav-

itational dressing. The 1-loop charge receives contribution from both electromagnetic

and gravitational dressing of massless scalar field. This contribution (given in (7.2))

can be schematically written as Q1-loop ∼ Ŝ1[h1
rr + A1

r ], where Ŝ1 closely resembles

the tree level subleading soft operator.

• Photons also acquire gravitational dressing (4.10):

Aσ(x) = − i

8π2r

∫
dω

[
aσ(ω, x̂)e−iωueiω log(rω)

h1
rr(x̂)

2 − a†σ(ω, x̂)eiωue−iω log(rω)
h1
rr(x̂)

2

]
.

The leading order gravitational dressing factor i.e. the log r term is similar for both

photon field and massless scalar field. The photon field acquires additional log ω

dressing and this additional dressing term contributes to the charge. This contribu-

tion (given in (7.2)) can be schematically written as Q1-loop ∼ S0h
1
rr, where S0 is the

leading soft factor.

• The two terms in the first line of (1.1) constitute the classical soft factor. The

low energy expansion of classical radiative field is controlled by the classical soft

factors [2, 29]. The first term in the first line is related to the ‘Ŝ1

class

h1
rr ’3 term. This

part of the charge is directly related to the asymptotic acceleration of massless scalar

particles under the gravitational force. The second term in the first line is related to

the ‘S0

class

h1
rr ’ term. This part of the charge corresponds to the late time acceleration

of the soft photon under gravitational force. The last two lines are absent in soft

classical radiation and represent purely quantum effects.

3h1
rr =

class

h1
rr +

quan

h1
rr . Similarly A1

r =
class

A1
r +

quan

A1
r .

– 3 –
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• Let us switch off gravity for a moment and consider a purely electromagnetic setup.

In [1], the authors discuss massive scalar particles in this setup. An interesting

observation is that the classical part of the soft factor which is non zero for the

massive case is absent for the massless case. This result comes out naturally from the

charge perspective also. The expected classical contribution is ‘Ŝ1

class

A1
r ’. This classical

mode i.e.
class

A1
r given in (6.1) is trivial and there is no classical contribution to charge

(in absense of gravity).

• It was noted in [2] that if we assume the momenta of the hard particles is O(~0),

neither the classical nor the quantum soft factor has any power of ~. Thus, an

intriguing aspect of the ‘quantum’ terms is that these terms are independent of ~.

These terms do not trivially vanish in classical limit (~ → 0). In [1], the authors

pointed out that there is a discontinuity in the quantized photon field in the limit

ω → 0 and derived the ‘quantum’ part of log ω coefficient from this discontinuity.

Classical solutions are continous in ω → 0. In our case, discontinuities of the quantum

photon and graviton fields contribute to
quan

A1
r and

quan

h1
rr respectively. This discontinuity

is absent for massless scalar field. The last two lines of (1.1) are obtained from

Ŝ1[
quan

h1
rr +

quan

A1
r ] and S0

quan

h1
rr .

• For the massless case, the quantum contributions to the charge have divergent pieces

arising from collinear configurations. Gravitational dressings of both massless scalar

and photon fields have divergent pieces that cancel out in the total expression of the

charge. The divergent part of electromagnetic dressing does not contribute to the

charge. Thus, the charge is rendered finite.

2 Preliminaries

We consider a theory with a massless scalar φ minimally coupled to U(1) gauge field Aµ
and gravitational field gµν . So, our system is described by the action:

S = −
∫
d4x
√
−g
[

1

4
gµρgνσFµνFρσ + gµν (Dµφ)∗ (Dνφ) +

1

2
R

]
, (2.1)

where Dµφ = ∂µφ− ieAµφ and 8πG = 1.

We are interested in the asymptotic dynamics of above system. Massless particles end

up at future null infinity (r →∞ with t− r finite) which is represented as I+. To describe

late time dynamics of massless fields, we need to use retarded co-ordinate system. The flat

metric takes following form in this co-ordinate system (u = t− r):

ds2 = −du2 − 2dudr + r22γzz̄dzdz̄; γzz̄ =
2

(1 + zz̄)2
.

We use x̂ or (z, z̄) interchangeably to describe points on S2. An useful parametrisation

of a 4 dimensional spacetime point is given by (Greek indices will be used to denote 4d

– 4 –
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Cartesian components):

xµ = rqµ + utµ, qµ = (1, x̂), tµ = (1,~0). (2.2)

Here, qµ is a null vector that can be parameterised in terms of (z, z̄) as

q =
1

1 + zz̄
{1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄}.

Dynamics of scalar is given by

gµνDµDνφ(x) = 0. (2.3)

Solution to this equation can be expanded around future null infinity. Using stationary

phase approximation, we can obtain the leading order coefficient in asymptotic expansion

for massless scalars. It is given by [6]

φ(u, r, x̂) =
1

r
φ1(u, x̂) + . . . , (2.4)

where

φ1(u, x̂) =
−i
8π2

∫
dω[b(ω, x̂)e−iωu − d†(ω, x̂)eiωu]. (2.5)

Next we turn to the gauge field. Choosing the covariant Lorenz gauge ∇µAµ = 0, Maxwell’s

equations reduce to

�Aµ = −jµ + jgrav
µ , jµ = ie (φDµφ

∗ − φ∗Dµφ) . (2.6)

jgrav
σ represents the gravitational corrections and will be analysed in section 4. It should

be noted that Aµ is used to denote the full solution including the homogenous part and

inhomogenous terms coming from the U(1) current as well as gravitational coupling.

Using the fall offs given in (2.4) for massless scalars, we get following asymptotic

behaviour for the current components:

ju =
j2
u(u, x̂)

r2
+ . . . , jA =

j2
A(u, x̂)

r2
+ . . . , jr =

j4
r (u, x̂)

r4
+ . . . , (A = z, z̄). (2.7)

Above and henceforth, we denote the vector components on S2 by capital latin alpha-

bets. The asymptotic expansion of gauge field components that is consistent with above

sources is:

Ar =
A1
r(x̂)

r
+Alog

r (u, x̂)
log r

r2
+ . . . , Au = Alog

u (u, x̂)
log r

r
+
A1
u(u, x̂)

r
+ . . . ,

AA = A0
A(u, x̂) +Alog

A (u, x̂)
log r

r
+ . . . . (2.8)

Next let us consider the asymptotic behaviour of the gravitational field. We will

work in the perturbative linear gravity regime where gravitational dynamics is confined to

perturbations around flat space time: gµν = ηµν +hµν . In the de Donder gauge ∂µh̄
µν = 0,
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where h̄µν = hµν − 1
2ηµνh

σ
σ. The metric field satisfies �h̄µν = −2Tµν . The metric field

admits following expansion:4

hrr =
h1
rr(x̂)

r
+hlog

rr (u, x̂)
logr

r2
+. . . , hur =

h1
ur(u, x̂)

r
+hlog

ur (u, x̂)
logr

r2
+. . . ,

huu =hlog
uu (u, x̂)

logr

r
+
h1
uu(u, x̂)

r
+. . . , hrA =h0

rA(x̂)+hlog
rA(u, x̂)

logr

r2
+. . . ,

huA =h0
uA(u, x̂)+hlog

uA(u, x̂)
logr

r
+. . . , hAB = rh−1

AB(u, x̂)+logrhlog
AB(u, x̂)+. . . . (2.9)

There exists similar asymptotic expansion of fields at past null infinity (r →∞ with t+ r

finite) represented by I−.

2.1 Asymptotic conservation laws

Classical equations of motion can be used to derive conservation laws of the form:

Q+[λ+] | I+
−

= Q−[λ−] | I−+ . (2.10)

Here, I+
− is the u → −∞ sphere of I+ and I−+ is the v →∞ sphere of I−. The quantum

version of above statements can be related to soft theorems. Here, λ+ refers to an arbitrary

parameter defined at I+
− . The parameter at I−+ is related to it via antipodal map λ+(x̂) =

λ−(−x̂). Thus, we have a conservation law for every possible choice of λ. In this section,

we will review the leading conservation law for QED. (2.8) leads to following fall offs for

the field strength:

Fru =
F 2
ru(u, x̂)

r2
+ . . . , FuA = F 0

uA(u, x̂) + . . . ,

FAB = F 0
AB(u, x̂) + . . . , FrA

5 =
F 2
rA(u, x̂)

r2
+ . . . . (2.11)

The Maxwell’s equations given by∇νFσν = jσ imply following equations for the coefficients:

∂uF
2
ru + ∂uD

BA0
B = j2

u,

∂uF
2
rA −

1

2
∂AF

2
ru +

1

2
DBF 0

AB =
1

2
j2
A. (2.12)

Let us use above equations to the study the u-behaviour of the field strength components

F 2
ru and F 2

rA. Around |u| → ∞, the currents die stronger than any power law of u, so we

can ignore the currents and the large u behaviour of F 2
ru gets fixed by A0

A. Tree level soft

theorems6 dictate following behaviour for radiative data:

A0
A|I+
−

= A0,0
A (x̂)u0 + . . . . (2.13)

4Some of the coefficients are independent of u, this follows from the de Donder gauge condition itself.
5FrA actually starts at FrA = F log

rA (u, x̂) log r
r2

+ . . . due to presence of massless fields. Maxwell’s equations

imply ∂uF
log
rA = 0, so we set this mode to 0.

6At tree level, the soft expansion is given by: Ã0
A ∼

∑∞
m=−1 Smω

m.
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‘. . .’ denote terms that fall off faster than any power law in u. Hence, around u → −∞,

the field strength components admit following behaviour:

F 2
ru|I+

−
= u0F 2,0

ru (x̂) + . . . ,

F 2
rA|I+

−
= uF 2,−1

rA (x̂) + u0F 2,0
rA (x̂) + . . . . (2.14)

In [13], for specific physical processes, the author showed that following relation holds

between asymptotic values of the fields:

F 2,0
ru (x̂)|I+

−
= F 2,0

rv (−x̂)|I−+ . (2.15)

Above statement can be rewritten as conservation law for charges parameterized by a scalar

function λ:

Q+
lead[λ+]|I+

−
= Q−lead[λ−]|I−+ . (2.16)

Q+
lead[λ+] =

∫
d2zλ+(x̂)F 2,0

ru (x̂). Q−lead is defined analogously. And λ+(x̂) = λ−(−x̂).

Above conservation law was proved for generic processes in [27]. The Ward identity for

above charges is equivalent to the leading soft photon theorem [6, 13].

2.2 Outline of the paper

To study the log ω soft theorem we need to incorporate the effect of long range forces

on asymptotic dynamics. In absense of long range forces, asymptotic fields satisfy free

equations of motion. Including the correction to the asymptotic dynamics due to long

range interactions leads to dressing of the free fields.

• In sections 3 and 4, we discuss dressing of massless scalar field and photon field

respectively. We show that as a result of these dressings, (2.13) is corrected to

A0
A|I+
−

= A0,0
A (x̂)u0 +A0,1

A (x̂)
1

u
+ . . . . (2.17)

This shows that including the effect of long range forces changes the soft expansion of

the gauge field non-trivially. The exact contribution from scalar dressing to 1/u term

is given in (3.7). Similarly, the contribution from gravitational dressing of photon to

1/u term is given in (4.1).

Using (2.12), it can be shown that the 1/u leads to a log u term in (2.14). The exact

relation is given in (5.9). Thus, we get:

F 2
rA|u→−∞ = uF 2,−1

rA (x̂) + log(−u)F 2,log
rA (x̂) + . . . . (2.18)

We show in (A.14) of appendix A that expansion around the past null infinity is modified to:

FrA|v→∞ =
log r

r2

[
v0F log,0

rA (x̂) + . . .
]

+O
(

1

r2

)
. (2.19)

– 7 –
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Here, ‘. . .’ denote terms that fall off faster than power law in v. This log r mode was missed

in [1]. Hence, the conservation law proposed by [1] is not entirely correct.7 Let us propose

following conservation law for the logarithmic modes:8

F 2,log
rA (x̂)|I+

−
= F log,0

rA (−x̂)|I−+ . (2.20)

We have checked (2.20) explicitly for classical processes with no incoming radiation.

• In section 5, we start with above conservation law and identify the soft and hard

modes of the charge. We refer to it as 1-loop charge, since it is expected to be related

to the logω soft theorem which is 1-loop exact. The expression of soft charge is given

in (5.7). This operator isolates soft log ω mode of the photon field. The expression of

hard charge is given in (5.12) and (5.14). As discussed in section 1, the hard charge

is given in terms of h1
rr and A1

r .

• We find the expression of h1
rr and A1

r modes in section 6. Each of these modes has a

classical and a quantum part: h1
rr =

class

h1
rr +

quan

h1
rr and A1

r =
class

A1
r +

quan

A1
r . In section 6.1,

the classical modes are obtained by evolving the sources with retarded propagator.
class

A1
r given in (6.1) turns out to be trivial.

The quantum modes are slightly subtle. Discontinuity in ω → 0 leads to a log u term

in CAB as seen in (6.11) and (6.12). These modes contribute to
quan

h1
rr via (6.13).

quan

A1
r

is obtained similarly.

• In section 7, we finally write down the Ward identity for the 1-loop charge and show

its equivalence to the Sen-Sahoo soft theorem.

3 Dressing of massless scalar field

In this section we will study the dressing of free scalar fields under the effect of long range

forces and find the resultant correction to the asymptotic field. We will show that long

range forces produce a 1/u term in (2.13).

For massive fields the effect of long range forces can be obtained perturbatively by

studying asymptotic potential order by order around t→∞. This leads to the well known

Faddeev-Kulish dressing of massive scalars [26]. For massless scalars, the asymptotic states

live at null infinity. So, we will study the corrections to the free equation of motion at null

infinity. Massless scalars satisfy following equation:

gµνDµDνφ(x) = 0. (3.1)

Let us expand above equation around future null infinity. Using the fall offs given in (2.8)

and (2.9), we find that the leading order equation is (at O( 1
r2 )):

− 2∂u∂rφ−
2

r
∂uφ =

h1
rr(x̂)

r
∂2
uφ− 2ie

A1
r(x̂)

r
∂uφ. (3.2)

7We thank Arnab Priya Saha and Biswajit Sahoo for discussions about this point.
8We thank the authors of [1] for suggesting this new conservation law.
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Thus, the leading order effect of long range forces on the massless field is given by h1
rr and

A1
r . The solution of above equation is given by:

φ(x) = − ie
ieA1

r(x̂) log r

8π2r

∫
dω

[
b(ω, x̂)e−iωue

iω log r
r0

h1
rr(x̂)

2 − d†(ω, x̂)eiωue
−iω log r

r0

h1
rr(x̂)

2

]
,

(3.3)

where, b and d† are the free data for massless scalar. r0 depends on bulk interactions,

hence r0 � r. For our analysis we set r0 = 1. On quantisation, b can be interpreted as the

annihilation operator for free particles while d would become the annihilation operator for

free antiparticles (see (2.5)). From (3.3), we see that the leading order effect of long range

forces is to associate a cloud of photons and gravitons to a free massless scalar particle.

These dressing factors (h1
rr and A1

r) are analogous to the Fadeev-Kulish dressing of a free

massive scalar particle. Next we find the correction to the U(1) current. Dressing of scalar

field leads to a new logarithmic fall off in the current (2.7):

jA = jlog
A

log r

r2
+
j2
A

r2
+ . . . , (3.4)

where

jlog
A = −1

2
∂Ah

1
rrj

2
u + 2e2∂AA

1
r |φ1|2. (3.5)

Let us find the corrections to the gauge field due to these new logarithmic fall offs in the

current. In Lorenz gauge, we have �Aµ = −jµ. (This equation admits corrections due

to gravity; gravitational corrections will be analysed in section 4). Using the retarded

propagator, the solution to the gauge field is given by:

Aσ(x) =
1

2π

∫
d4x′δ((x− x′)2)Θ(t− t′)jσ(x′). (3.6)

We will substitute the new logarithmic modes of the current in above expression and find

the resultant contribution to the field. The details of the calculation have been relegated

to appendix A.

We show that the log modes give rise to a 1/u term in A0
A such that the coefficient is

given by (A.11):

A0,1
z̄ (x̂)|scal =

1

4π

√
2

1 + zz̄

∫ ∞
−∞

du′
∫
S2

d2z′
εµ−q

σ

q.q′
q′[µD

′Aq′σ]j
log
A . (3.7)

We have added a subscript ‘scal’ to highlight that this contribution arises from scalar field

dressing. In above expression we have used the following basis for polarisation vectors [6]:

εµ− =
1√
2

∂

∂z̄
[(1 + zz̄)qµ], εµ+ =

1√
2

∂

∂z
[(1 + zz̄)qµ]. (3.8)

The expression for Az can be obtained from the expression for Az̄ by replacing ε− by ε+.

The 1/u-term has been discussed in the context of scattering of point particles in [30].

Let us recall (2.13). The u0 term in this equation which is related to the leading soft

theorem is unchanged by long range forces. We see that including the effect of long range

forces introduces a new 1/u-term given in (3.7) that is absent in (2.13). The 1/u term is

O(e3) (or O(eG) for gravitational correction). Thus the soft expansion of the gauge field

changes non-trivially as we go to higher order in couplings.
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4 Dressing of gauge field

In this section, we study the effect of long range gravitational force on gauge fields. Before

delving into the calculation, we state our result. The leading order correction to (2.13) as

a result of coupling of photon with gravity is:

A0,1
z̄ (x̂)|grav dress = − 1

8π

√
2

1 + zz̄
h1
rr(x̂) lim

ω→0
ω
[
a−(ω, x̂)− a†−(−ω, x̂)

]
. (4.1)

For A0,1
z , we have to replace negative helicity operators with positive helicity operators.

Let us derive above expression. First we start with the homogenous equation

�Ahom
µ = 0. Asymptotically such a solution exhibits following form [6]:

Ahom
σ (u, r, x̂) = − i

8π2r

∫
dω
[
aσ(ω, x̂)e−iωu − a†σ(ω, x̂)eiωu

]
, (4.2)

where aσ =
∑

r=+,− ε
r
σar. Let us turn on the sources. Choosing the generalised Lorenz

gauge ∇µAµ = 0, Maxwell’s equations reduce to:

∇2Aµ = −jµ +Rµ
νAν . (4.3)

Rµν is the Ricci tensor. Above equation can be written as: (Ignoring the U(1) current here.)

�Aσ = jgrav
σ , (4.4)

where we have defined:

jgrav
σ = hµν∂µ∂νAσ + ηµνΓρµν∂ρAσ + 2ηµνΓρµσ∂νAρ + ηµνAλ∂µΓλνσ + [∂µΓµνσ − ∂νΓµµσ]Aν +O(G2).

Since we are working perturbatively, jgrav
σ can be evaluated on the zeroth order solution.

Using (2.9) and (4.2), we see that the source has following behaviour around future null

infinity:

jgrav
σ (x) =

1

r2
h1
rr∂

2
uA

1
σ +O

(
1

r3

)
. (4.5)

The O( 1
r3 ) terms in jgrav

σ (x′) produce subleading corrections, hence are not relevant for

our analysis. Analogous to the massless scalar equation (3.2), we get:

− 2∂u∂rAσ −
2

r
∂uAσ =

h1
rr(x̂)

r
∂2
uAσ. (4.6)

The solution to above equation is given by:

Aσ(u, x̂) = − i

8π2

∫
dω

[
aσ(ω, x̂)e−iωueiω log r

h1
rr(x̂)

2 − a†σ(ω, x̂)eiωue−iω log r
h1
rr(x̂)

2

]
. (4.7)

Thus, the log r dressing of photons is exactly similar to the log r dressing of massless

scalars. This dressing does not contribute to the loop level charge. The contribution to
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the loop level charge comes from 1/u term. So, we need to check if the source (4.5) induces

a 1/ru in Aµ. Using the Green’s function for D’Alembertian operator:

Agrav
σ (x) = − 1

2π

∫
d4x′δ+((x− x′)2)h1

rr(z
′)∂2

u′A
1
σ(u′, z′).

We have used a superscript ‘grav’ to highlight the fact that this mode arises due to

gravitational coupling. Taking the limit r →∞ with u < r:

Agrav
σ (u,r, x̂) =− 1

4πr

∫
du′dr′d2z′δ+(u′+r′−u−~x′.x̂)h1

rr(z
′)∂2

u′A
1
σ(u′,z′)+O

(
1

r2

)
,

=− 1

4πr
∂u

[∫ ∞
−∞

du′
∫ ∞

0
dr′
∫
S2

d2z′δ(u′+r′−u−~x′.x̂)h1
rr(z

′)∂u′A
1
σ(u′,z′)

]
.

∂u′A
0
σ vanishes for |u′| > u0 as to the zeroth order the particles are free for |u′| > u0,

where, u0 is some time scale that is set by short range interactions. We can use rotational

symmetry to align x̂ along z′-axis:

Agrav
σ (u,r, x̂) =− 1

2r
∂u

[∫ u0

−u0

du′
∫ ∞

0
dr′
∫ 1

−1
dcosθ′

1

r′
δ

(
cosθ′−1+

u−u′

r′

)
h1
rr(θ

′)∂u′A
1
σ(u′,θ′)

]
.

We will use the delta function to do the θ′ integral. cos θ′ε[−1, 1] leads to a bound on

other integration variables. There are two allowed ranges: u > u′, 2r′ > u − u′; u′ > u,

2r′ < −(u′ − u). The second range is inadmissible as r′ needs to be positive. Also,

r′-integral needs to be regulated with some IR cutoff.

Agrav
σ (u, r, x̂) = − 1

2r
∂u

[∫ u0

−u0

du′
∫ R

u−u′
2

dr′

r′
h1
rr(θ

′)∂u′A
1
σ(u′, θ′)|

cos θ′=1−u−u′
r′

]
.

Taylor expanding the integrand around cos θ′ = 1, we get the leading order contribution

in u→∞ limit to be:

Agrav
σ (u, r, x̂) =

1

2r

[∫ u0

−u0

du′
1

u− u′
h1
rr(θ

′)∂u′A
1
σ(u′, θ′)|cos θ′=1

]
. (4.8)

Above expression can be readily related to insertion of leading soft mode:

Agrav
σ (u, r, x̂)u→∞ =

1

2r

1

u
h1
rr(x̂)

∫ u0

−u0

du′∂u′A
1
σ(u′, x̂),

= − 1

8πr

1

u
h1
rr(x̂) lim

ω→0
ω
[
aσ(ω, x̂)− a†σ(−ω, x̂)

]
. (4.9)

This term is due to acceleration of outgoing photons under gravitational field h1
rr. We can

arrive at (4.1) by co-ordinate transformation.

We can combine above expression with (4.7), to write:

Aσ(u, r, x̂) = − i

8π2r

∫
dω

[
aσ(ω, x̂)e−iωueiω log(rω)

h1
rr(x̂)

2 − a†σ(ω, x̂)eiωue−iω log(rω)
h1
rr(x̂)

2

]
.

(4.10)

Thus, we have obtained the dressing of photon due to the presence of long range gravitaional

force. Similar to massless scalars, the dressing depends only on h1
rr.

– 11 –



J
H
E
P
1
0
(
2
0
2
0
)
1
1
0

5 The asymptotic charge

In this section we will obtain the explicit expression for the 1-loop asymptotic charge. We

start with the conservation equation (2.20):

F 2,log
rA (x̂) = F log,0

rA (−x̂). (5.1)

We recall that the l.h.s. is the coefficient of the log u
r2 -mode present at the future. Similarly

the r.h.s. is the coeffficient of the log r
r2 mode living at the past. We multiply above equation

with an arbitrary parameter V A and integrate over the sphere. We get∫
I+
−

d2zV A(x̂)F 2,log
rA (x̂) =

∫
I−+
d2zV A(−x̂)F log,0

rA (−x̂). (5.2)

The charge at the future is defined by Q+
1-loop[V A

+ ] = −
∫
d2zV A

+ F
log,0
rA |I+

−
. The past charge

is defined similarly. Our claim is that this conservation law reproduces the outgoing soft

photon theorem given in (1.1). In the most general scenario there exists a log v mode at

past. The log v mode corresponds to incoming soft photon and we have set these modes to

zero. Similar conservation law that relates log v mode at I−+ to log r mode at I+
− reproduces

the incoming soft theorem.

Let us study the future charge:

Q1-loop
+ [V ] = −

∫
d2zV AF 2,log

rA |I+
−
,

= u2∂2
u

∫
d2zV AF 2

rA|u→−∞.

The u-operator isolates the coefficient of the log u term of F 2
rA. We can rewrite the future

charge as an integral over entire future null infinity minus the term at I+
+ .

Q1-loop
+ [V ] = −

∫ ∞
−∞

du′
∫
d2zV A∂u[u2∂2

uF
2
rA]−

∫
d2zV AF 2,log

rA |I+
+
,

:= Qsoft
+ [V ] +Qhard

+ [V ]. (5.3)

This defines the soft and hard parts of asymptotic charge. We can simplify the soft charge

expression further. Using Maxwell’s equation (C.3) for ∂uF
2
rA, we get:

Qsoft
+ = −1

2

∫ ∞
−∞

du′
∫
d2z′V A∂u

[
u2∂u[∂AF

2
ru −DBF 0

AB + j2
A]
]

+ . . . . (5.4)

In above expression ‘. . .’ arise due to the gravity corrections to Maxwell’s equations. We

have studied these terms explicitly in appendix C and we show that these corrections

vanish. j2
A does not have a 1/u-term, so j2

A also drops out of above expression and we get:

Qsoft
+ =

∫ ∞
−∞

du′
∫
d2z′

[
V z(x̂′)∂u[u2∂uDzD

z̄A0
z̄(u, x̂

′)] + z′ ↔ z̄′
]
,

=

∫ ∞
−∞

du′
∫
d2z′

[
D′2z V

zγzz̄∂u[u2∂uA
0
z̄(u, x̂

′)] + z′ ↔ z̄′
]
. (5.5)
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The last line was derived using integration by parts. Next it is instructive to go to the

frequency space:

Qsoft
+ =

∫
d2z′

[
D′2z V

zγzz̄ lim
ω→0

ω∂2
ωωÃ

0
z̄(ω, x̂

′) + z′ ↔ z̄′
]
.

The gauge field can be expressed in terms of Fock operators as:

Ã0
z̄(ω, x̂) = −i

√
2
a−(ω, x̂)

4π(1 + zz̄)
. . . ω > 0, Ã0

z̄(ω, x̂) = i
√

2
a†+(−ω, x̂)

4π(1 + zz̄)
. . . ω < 0. (5.6)

Since, we have only outgoing radiation, the relevant part of the expression is:

Qsoft
+ = − i

4π

∫
d2z′

[
D′2z V

z
√
γ′zz̄ lim

ω→0
ω∂2

ωωa−(ω, x̂′) + z′ ↔ z̄′
]
. (5.7)

Thus, this operator is related to zero energy photon modes. The ω-derivatives in particular

isolate the coefficient of soft log ω mode.

Next let us turn to the expression of future hard charge:

Qhard
+ = −

∫
d2z′V AF 2,log

rA (x̂′).

Using (2.12), we have

∂2
uF

2
rA +

1

2
∂u∂AD

BA0
B +

1

2
∂uD

BF 0
AB =

1

2
∂uj

2
A. (5.8)

From above equation we get the precise relations:

F 2,log
rz = −γzz̄D2

zA
0,1
z̄ and F 2,log

rz̄ = −γzz̄D2
z̄A

0,1
z . (5.9)

We recall that A0,1
A (x̂) denotes following mode in the gauge field: AA(x) ∼ A0,0

A (x̂) +

A0,1
A (x̂) 1

u + . . .. Using (5.9) in the expression for the hard charge, it can be written as

Qhard
+ =

∫
d2z′V zγzz̄D2

zA
0,1
z̄ (x̂′) +

∫
d2z′V z̄γzz̄D2

z̄A
0,1
z (x̂′) (5.10)

To avoid unnecessary cluttering of equations we will work with V z̄ = 0. Then we can

integrate by parts to get following equation:

Qhard
+ =

∫
d2z′D′2z V

zγzz̄A0,1
z̄ (x̂′). (5.11)

We recall using (3.7), (3.5) and (4.1):

A0,1
z̄ (x̂) =

√
γzz̄

4π

∫ ∞
−∞

du′
∫
d2z′

qµεσ−
q.q′

q′[σ∂
′
qµ]

[
−1

2
h1
rr(x̂

′)j2
u(x̂′) + 2e2A1

r(x̂
′)|φ1(x̂′)2

]
−
√
γzz̄

8π
h1
rr(x̂) lim

ω→0
ωa−(ω, x̂). (5.12)

Equations (5.11) and (5.12) provide us the expression of the future hard charge.
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Let us turn to the expression of the past charge. We have:

Q1-loop
− [V ] = −

∫
d2zV AF log,0

rA |I−+ .

We know from (A.14) that F log,0
rA depends only on particle currents i.e. it has no contribution

from radiation. Thus, at past the charge is entirely made of hard modes.

Q1-loop
− [V ] = −

∫
d2zV AF log,0

rA |I−+ := Qhard
− [V ].

Thus as we had mentioned earlier we see that the conservation law that we have started with

in (5.2), reproduces outgoing soft theorem. An analogous conservation law that relates log v

mode at I−+ to log r (a purely hard mode) at I+
− will reproduce the incoming soft theorem.

Using (A.14), the charge at past can be recast as:

Qhard
− = −

∫
d2z′D′2z V

zγzz̄Blog(x̂′), (5.13)

where,

Blog(x̂) =
1

4π

√
2

1 + zz̄

∫ ∞
−∞

dv′
∫
S2

d2z′
qσεµ−
q.q′

q′[µ∂
′
qσ ]

[
−1

2
h1
rr(−x̂′)j2

u(−x̂′) + 2e2A1
r(−x̂′)|φ1(−x̂′)2

]
.

(5.14)

6 Expressions for h1
rr and A1

r

In the preceding section, we studied the expression of the 1-loop asymptotic charge. The

hard charges depend on h1
rr and A1

r via (5.12) and (5.14). In this section we will write

down the expressions for h1
rr and A1

r .

6.1 Classical part

We know that the solution for gauge field in Lorenz gauge is given by:

Aµ(xµ)|class =
1

2π

∫
d4x′δ

(
(x− x′)2

)
Θ(t− t′)jµ(x′),

where we have used the retarded propagator. The leading order term at large r is given by:

Aµ(u, r, x̂)|class = − 1

4πr

∫ ∞
−∞

du′
∫
d2z′

j2
µ(x̂′, u′)

q.q′
.

Above expression is consistent with the fall offs mentioned in (2.8). In particular we have:

class

A1
r (x̂) =

1

4πr

∫ ∞
−∞

du′
∫
d2z′j2

u(x̂′, u′). (6.1)

This part of A1
r(x) is just a constant (i.e. independent of u, x̂) hence does not contribute to

the hard charge. Thus, the classical electromagnetic dressing is trivial which is consistent

– 14 –



J
H
E
P
1
0
(
2
0
2
0
)
1
1
0

with the absence of classical log ω term in soft electromagnetic radiation (in absence of

gravitational coupling) [2].

Similarly, in De-Donder gauge, the metric perturbations satisfy �h̄µν = −2Tµν with

the solution given by:

h̄µν(xµ)|class =
1

π

∫
d4x′δ

(
(x− x′)2

)
Θ(t− t′)Tµν(x′).

The leading order solution around future null infinity is given by:

h̄µν(u, r, x̂)|class = − 1

2πr

∫ ∞
−∞

du′
∫
d2z′

T 2
µν(x̂′, u′)

q.q′
.

Above expression is consistent with the fall offs mentioned in (2.9). A key point about the

perturbations is that ∂uh̄
1
µν = 0. This kills off a lot of terms that would have otherwise

been present in (3.2). Finally we have:

class

h1
rr (x̂) = − 1

2πr

∫ ∞
−∞

du′
∫
d2z′q.q′T 2

uu(x̂′, u′). (6.2)

6.2 Quantum part

Next we want to check if there is a part of h1
rr, A

1
r that has not been captured by the

retarded propagator. Let us work in r, u → ∞ limit (u < r) where the sources have died

down and we can use the homogenous solution. We will use Herdegen-like representation

of hµν . Herdegen representation [28] for photon is a way to write a generic homogenous

solution for gauge field in Lorenz gauge in terms of free data A0
A. Similarly, here we write

a generic homogenous solution for metric field in De Donder gauge in terms of free data

CAB. (CAB = limr→∞
hAB(x)

r ). (See appendix D for details):

hom
hµν(x) = − 1

(4π)

∫
d2z′(1 + z′z̄′)2

[
ε−µ ε
−
ν Ċzz(u = −x · q′, q̂′) + ε+µ ε

+
ν Ċz̄z̄(u = −x · q′, q̂′)

]
,

(6.3)

q′µ is defined according to (2.2). From above expression it can be seen that Czz ∼
log

Czz log u

gives rise to a 1
r term in hµν . Let us find the h1

rr term by co-ordinate transformation

(xµ = rqµ +O(r0)). We will denote it with a ‘quan’ overtext. We have:

quan

h1
rr (x) =

1

4π

∫
d2z′(1 + z′z̄′)2 1

q′.q

[
ε−.qε−.q

log

Czz(x̂
′) + ε+.qε+.q

log

Cz̄z̄(x̂
′)

]
. (6.4)

Thus, we see that log u mode in CAB contributes to h1
rr. We will eventually see that the

leading soft theorem itself implies existence of a log u mode.

The behaviour of the free data around u→ ±∞ dictated by tree level soft theorems is:

CAB = D±AB(x̂)u0 + . . . , u→ ±∞. (6.5)

Here, ‘. . .’ denote any fall offs faster than power law fall off in u. Power law fall offs appear

in above equation when we consider the effect of long range forces but these do not affect our
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analysis. Just by Fourier transform one can quickly check that D±AB is related to the leading

soft factor or see [29] for details. We will show that there is an additional term in (6.5):

CAB =
log

CAB log |u|+D±AB(x̂)u0 + . . . , u→ ±∞, (6.6)

where,
log

CAB vanishes classically. An important point to note is that
log

CAB is not arbitrary

but is fixed in terms of the leading soft factor i.e. D±AB, hence the free data for classical

system is sufficient to describe the quantized system and we are not introducing new free

data in the quantum system.

In [1], authors discussed the discontinuity in ωÃA as ω → 0 that is non trivial at

quantum mechanical level. This discontinuity leads to a log |u| term in AA.9 We will

discuss the gravitational analogue of this purely quantum log |u| mode. For scalars, ωφ̃ as

ω → 0 is trivial. Hence there is no log |u| term for scalars.

Let us consider C+
zz(u, x̂) that has only positive frequencies. We know that around

ω ∼ 0, the behaviour of the radiative data is given by C̃+
zz = 1

ω C̃
+0
zz + . . .. This low energy

behaviour dictates the large-u behaviour. Hence:

C+
zz(u, x̂) =

1

2π

∫ ∞
0

dω

[
1

ω
C̃+0
zz (x̂) + . . .

]
e−iωu,

=
1

2π
log(u−1)C̃+0

zz (x̂) + . . . . (6.7)

Simlarly for negative frequencies, we have:

C−zz(u, x̂) = − 1

2π
log(u−1)C̃−0

zz (x̂) + . . . . (6.8)

Collecting the positve and negative frequency terms we get:

Czz(u, x̂) = − 1

2π

[
C̃+0
zz (x̂)− C̃−0

zz (x̂)
]

log |u|+ . . . ,

= − 1

2π
lim
ω→0+

[
ωC̃+

zz(ω, x̂) + ωC̃−zz(−ω, x̂)
]

log |u|+ . . . . (6.9)

To find classical radiation, we use retarded propagators. For such solutions, ωC̃zz is

continuous at ω = 0 [29] and the coefficient of log |u| term vanishes. It is important to note

that the coefficient does not carry any factor of ~. Hence, the log |u| coefficient does not

go to 0 just by taking ~→ 0. The coefficient vanishes when we demand retarded boundary

conditions. We will see that it is non-trivial quantum mechanically. This is because of

the fact that when we quantise the CAB field, the positive frequencies involve annihilation

operator while negative frequencies involve creation operator:

C̃zz(ω, x̂) =
−ic+(ω, x̂)

2π(1 + zz̄)2
. . . ω > 0, C̃zz(ω, x̂) =

ic†−(−ω, x̂)

2π(1 + zz̄)2
. . . ω < 0. (6.10)

Thus, we get:

Czz(u, x̂) =
i

4π2

1

(1 + zz̄)2
lim
ω→0

ω
[
c+(ω, x̂) + c†−(−ω, x̂)

]
log |u|+ . . . . (6.11)

9It is interesting to note that this log u mode has appeared in equation (A.2) of [31].
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Similarly, for Cz̄z̄ we have,

log

Cz̄z̄(x̂) =
i

4π2

1

(1 + zz̄)2
lim
ω→0

ω
[
c−(ω, x̂) + c†+(−ω, x̂)

]
. (6.12)

We will see that above operators have non-trivial action when inserted in the expression

for charge. Substituting for
log

C AB in the expression of
quan

h1
rr given in (6.4):

quan

h1
rr (x) =

1

4π

∫
d2z′(1 + z′z̄′)2 1

q′.q

[
ε−.qε−.q

log

Czz(x̂
′) + ε+.qε+.q

log

Cz̄z̄(x̂
′)

]
. (6.13)

Next we need to do the sphere integral. We have relegated this calculation to appendix B

and we will quote the results here. The finite part of the integral is:

< out|
quan

h1
rr (x)S|in > = − i

2π2

∑
j

(q.pj) log(q.pj). (6.14)

Next we repeat the calculation for gauge field and we get:

< out|
quan

A1
r (x̂)S|in > = − i

4π2

∑
j

ej log(q.pj). (6.15)

Finally, we have the complete expressions for h1
rr and A1

r which will be needed to evaluate

the action of hard charge in the next section.

7 The Ward identity

The Ward identity for S matrix for the 1-loop asymptotic charge can be written down as:[
Q1-loop , S

]
= 0,

⇒
(
Qsoft

+ S − SQsoft
−

)
= −

(
Qhard

+ S − SQhard
−

)
.

Using (5.11) and (5.13), we get(
Qsoft

+ S − SQsoft
−

)
= −

∫
d2z′D′2z V

zγzz̄
(
A0,1
z̄ (x̂′)S − SBlog(x̂′)

)
. (7.1)

Next we need to evaluate the action of above operators on a Fock state. From (5.12), we

get the expression of A0,1
z̄ .

A0,1
z̄ (x̂) =

√
γzz̄

4π

∫ ∞
−∞

du′
∫
d2z′

qµεσ−
q.q′

q′[σ∂
′
qµ]

[
−1

2
h1
rr(x̂

′)j2
u(x̂′) + 2e2A1

r(x̂
′)|φ1(x̂′)2

]
−
√
γzz̄

8π
h1
rr(x̂) lim

ω→0
ωa−(ω, x̂). (7.2)

It is interesting to note that the first line resembles tree level subleading soft operator

acting on h1
rr + A1

r . Similarly the second line is h1
rr times the leading soft operator. The
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action of (7.2) on an outgoing Fock state can be easily evaluated.

< out|Qhard
− =< out|4π

∑
iεout

Uσµ(qi)qi[σ∂qµi ]

[
ei
2
h1
rr(zi) + e2

i

A1
r(zi)

ωi

]

− < out|
∫
d2z′D′2z̄ V

z(z′)

√
γ′zz̄

8π

∑
i

eiε
−.pi
q′.pi

h1
rr(z

′), (7.3)

where we have defined

Uσµ(qi) =

∫
d2z′D′2z V

z(z, z′)

√
γ′zz̄

16π2

εσ−q
′µ

q′.qi
, (7.4)

to make the expressions compact. Similarly we can use (5.14) to get the action of the past

hard charge on an incoming state. Then we need to substitute for h1
rr and A1

r .

Classical part. Let us substitute the classical part of h1
rr and A1

r . As noted from (6.1),

the classical part of A1
r is trivial and does not contribute. Using (6.2) for h1

rr, we get:

< out|
[
Qhard , S

]
class
|in >

= −
∑

i,j;ηiηj=1

eiU
σµ(qi)qi[σ∂qµi ](pj .qi)Mn +

∑
i

eiqiσU
σµ

∑
j;ηj=1

pjµMn (7.5)

Here, we have Mn =< out|S|in >.

Quantum part. Next we will use the quantum part of h1
rr and A1

r from (6.14) and (6.15)

to get:

< out|
[
Qhard , S

]
quan
|in >

= − i
π

∑
i,j;i 6=j

eiU
σµ(qi)qi[σ∂qµi ]

[
pj .qi log

[
2(pj .qi)

m2
j

]
+
eiej
ωi

log

[
2(pj .qi)

m2
j

]]
Mn

+ i

∫
d2z′D′2z̄ V

z(z′)

√
γ′zz̄

16π3

∑
i

eiε
−.pi
q′.pi

∑
j

q′.pj log

[
2(pj .q

′)

m2
j

]
Mn (7.6)

The terms that depend on mj are the divergent pieces. The second divergent term in the

first line is killed by the derivative operator qi[σ∂qµi ]. The other two divergent terms cancel

each other. Thus, we get a finite action of the charge:

< out|
[
Qhard ,S

]
quan
|in>

=− i
π

∑
i,j;i 6=j

eiU
σµ(qi)qi[σ∂qµi ]

[
pj .qi log(pj .qi)+

eiej
ωi

log(pj .qi)

]
+
i

π

∑
i

eiqiσ
∑
j

Ũσµj pjµMn

(7.7)

here we have defined

Ũσµj (qi) =

∫
d2z′D′2z V

z(z, z′)

√
γ′zz̄

16π2

εσ−q
′µ

q′.qi
log(q′.pj). (7.8)
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Collecting together (7.5) and (7.7) we get the complete action of the hard charge and

we can write down the Ward identity. Thus, the S-matrix needs to satisfy following Ward

identity for a generic V z that lives on a sphere:[
Qsoft(V z) , S

]
= −Chard(V z)S. (7.9)

Qsoft(V ) defined in (5.7) inserts soft modes of photon. We have:

Chard(V z) =
∑
i

eiqiσU
σµ

∑
j;ηj=1

pjµ −
∑

i,j;ηiηj=1

eiU
σµ(qi)(pjµqiσ − pjσqiµ)

− i

π

∑
i,j;i 6=j

eiU
σµ(qi)

[
eiej
qj .qi

(qjµqiσ − qjσqiµ) + (pjµqiσ − pjσqiµ) log(−pj .pi)
]

10

+
i

π

∑
i

eiqiσ
∑
j

Ũσµj pjµ . (7.10)

Dependence on V z is via the U ’s defined in (7.4) and (7.8). Ward identity involving V z̄

can be written down similarly.

7.1 The Sahoo-Sen soft theorem

Let us derive the Sahoo-Sen soft theorem from above Ward identity. To derive negative

helicity soft theorem we choose [1]:

V z(z, z′) =
√

2(1 + z′z̄′)
z − z′

z̄ − z̄′
, V z̄ = 0. (7.11)

Performing the sphere (z′, z̄′) integral in (5.7), we get:

Qsoft
+ = −i lim

ω→0
ω∂2

ωωa−(ω, x̂). (7.12)

Next we will use (7.11) in the expression for hard charge (7.10). The sphere integral in the

expression for U (7.4) and for Ũ in (7.8) can be done easily. We get:

Chard =
1

4π

∑
i

ei
ε.pi
pi.k

∑
j;ηj=1

k.pj −
1

4π

∑
i,j;i 6=j ηiηj=1

ei
εµkρ
pi.k

(pρjp
µ
i − p

ρ
i p
µ
j )

− i

4π2

∑
i,j;i 6=j

ei
εµkρ
pi.k

[
eiej
pi.pj

(pρjp
µ
i − p

ρ
i p
µ
j ) + (pρjp

µ
i − p

ρ
i p
µ
j ) log[pi.pj ]

]
+

i

4π2

∑
i

ei
ε.pi
pi.k

∑
j

k.pj log pj .q . (7.13)

10The first term in (7.5) produces a term that vanishes due to conservation of momenta. This is the term

discussed in footnote 2.
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So, the Ward identity can be recast as:

lim
ω→0

ω∂2
ωωMn+1

=

[
− i

4π

∑
i

ei
ε.pi
pi.k

∑
j;ηj=1

k.pj +
i

4π

∑
i,j;i 6=j ηiηj=1

ei
εµkρ
pi.k

(pρjp
µ
i − p

ρ
i p
µ
j )

− 1

4π2

∑
i,j;i 6=j

ei
εµkρ
pi.k

[
eiej
pi.pj

(pρjp
µ
i − p

ρ
i p
µ
j ) + (pρjp

µ
i − p

ρ
i p
µ
j ) log[pi.pj ]

]

+
1

4π2

∑
i

ei
ε.pi
pi.k

∑
j

k.pj log pj .q

]
Mn. (7.14)

This is exactly the Sahoo-Sen soft theorem. So, we have derived the soft theorem from

the Ward identity. The Ward identity (with V z̄ = 0) can be derived from the soft theorem

by multiplying both sides of the statement of soft theorem with
∫
d2zD2

z̄V
z(z)

√
γzz̄

16π2 . Thus,

we can conclude that the Ward identity (7.9) is exactly equivalent to the Sahoo-Sen soft

photon theorem (1.1).

Soft theorems are expected to be related to asymptotic symmetries. It is well known

that QED amplitudes exhibit leading soft theorem that is equivalent to Ward identity of

large U(1) gauge transformations. In this paper we studied this equivalence for loop level

subleading soft theorem. This study was initiated in [1] for the case of massive scalar QED.

In this paper, we showed that the Sahoo-Sen soft photon theorem for massless scalar QED

coupled to gravity is equivalent to the conservation law in (5.2). It would be interesting to

understand the symmetry underlying this conservation law.
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A Calculating the 1/u mode in A0
A

Dressing of scalars under long range forces lead to logarithmic modes in the current:

jA = jlog
A

log r

r2
+
j2
A

r2
+ . . . .

We also have:

jr = jlog
r

log r

r4
+
j4
r

r4
+ . . . , ju =

j2
u

r2
+ jlog

u

log r

r3
+ . . . .

For the Cartesian components of the U(1) current we have:

jµ =
j2
µ

r2
+ jlog

µ

log r

r3
+ . . . . (A.1)
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We will substitute above current source in:

Aσ(x) =
1

2π

∫
d4x′δ((x− x′)2)Θ(t− t′)jσ(x′). (A.2)

Let us take the limit r →∞ keeping u finite:

Aσ(u,r, x̂)

=
1

4πr

∫ ∞
−∞

du′
∫ ∞

0
dr′
∫
S2

d2z′

−q.q′ δ
(
r′+

u−u′

q.q′

)[
j2
σ(u′,z′)+jlog

σ (u′,z′)
logr′

r′
+j3

σ(u′,z′)
1

r′
+. . .

]
,

=
1

4πr

∫ ∞
−∞

du′
∫
S2

d2z′

[
j2
σ(u′,z′)

−q.q′ +jlog
σ (u′,z′)

log(u−u′)
u−u′ +

[j3
σ(u′,z′)−jlog

σ (u′,z′) log(−q.q′)]
u−u′

]
.

(A.3)

We are interested in studying the u-behaviour in u → ∞ limit. In (A.3), the j2
σ term

contributes to u0 term as u → ∞. The next dominant fall off in u → ∞ limit is log u
u . It

comes from the region u′ � u. Thus, we have:

Aσ(u, r, x̂) =
1

4πr

∫ ∞
−∞

du′
∫
S2

d2z′

[
j2
σ(u′, z′)

−q.q′
+ jlog

σ (u′, z′)
log u

u
+ . . .

]
. (A.4)

First we rewrite the coefficient in retarded co-ordinates (Recalling that qµ = (1, x̂).):

jlog
σ = −qσjlog

u + γAB∂Bqσj
log
A . (A.5)

jlog
u can be eliminated using the conservation equation of current:

jlog
u = ∂uj

log
r −DAjlog

A . (A.6)

Substituting in the expression for jlog
σ :

jlog
σ = −qσ∂ujlog

r +DA[qσj
log
A ]. (A.7)

Thus, jlog
σ is a total derivative. When (A.7) is substituted in (A.4), the DA[qσj

log
A ] term

vanishes trivially due to sphere integral. Using the logarithmic fall off of the gauge field:

Ar = A1
r
r +Alog

r
log r
r2 + . . . in the expression of U(1) current we get

jlog
r = −2e2Alog

r |φ1|2. (A.8)

Using (A.8) let us study the behaviour of jlog
r as |u| → ∞. Following the logic of [14], we

know that φ ∼ 1
u1+ε as |u| → ∞. Now, let us find the u-fall off of Alog

r . Using the gauge

condition we have: ∂uA
log
r = −Alog

u . Then Alog
u can be related to the current by Maxwell’s

equation: 2∂uA
log
u = j2

u. Hence, Alog
r can have a O(u) term as |u| → ∞. Using these u-fall

offs in the expression (A.8) we get jlog
r → 0 as |u| → ∞. Thus, the first term in (A.7) also

gives a vanishing contribution. Hence the coefficient of log u
u vanishes.

The next term falls off as 1/u and this is the term that is relevant for loop level charge.

Let us rewrite the 1/u-term in a nice form. To start with, we have:

Aσ(u, r, x̂) =
1

4πru

∫ ∞
−∞

du′
∫
S2

d2z′
[
j3
σ(z′)− jlog

σ (z′) log(−q.q′)
]
.
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We manipulate j3
σ in similar fashion:

j3
σ = −qσj3

u + γAB∂Bqσj
2
A = −qσ∂uj4

r − qσjlog
u +DA[qσj

2
A], (A.9)

and we get:

Aσ(u,r, x̂) =
1

4πru

∫ ∞
−∞

du′
∫
S2

d2z′
[
−q′σ[jlog

u +∂′uj
4
r ]+

[
q′σ∂uj

log
r −D′A[q′σj

log
A ]
]
log(−q.q′)

]
.

We again substitute for jlog
u using (A.6). Upto total sphere derivative terms, above expres-

sion can be rewritten as:

Aσ(u,r, x̂) =
1

4πru

∫ ∞
−∞

du′
∫
S2

d2z′
[
q′σ[D′Ajlog

A +jlog
A D′A log(−q.q′)]−q′σ∂′u[jlog

r +j4
r−jlog

r log(−q.q′)]
]
.

The last term drops out as j4
r → 0 as |u| → ∞ (proved in [14]) and we have already checked

that jlog
r → 0 as |u| → ∞. We can rewrite the first term as

Aσ(u, r, x̂) =
1

4πru

∫ ∞
−∞

du′
∫
S2

d2z′qµ
q′[σD

′Aq′µ]

q.q′
jlog
A , (A.10)

where, q[µD
Aqν] = qµD

Aqν − qνDAqµ. Finally we perform a co-ordinate transformation

(using (2.2)) to get:

A0
z̄(u, x̂) =

1

4πu

√
2

1 + zz̄

∫ ∞
−∞

du′
∫
S2

d2z′
εσ−q

µ

q.q′
q′[σD

′Aq′µ]j
log
A . (A.11)

At past null infinity. Next let us repeat above calculation at past null infinity. We have:

Aσ(x) =
1

2π

∫
d4x′δ((x− x′)2)Θ(t− t′)

[
j2
µ

r2
+ jlog

µ

log r

r3
+ . . .

]
.

Let us take the limit r →∞ keeping v = t+ r finite:

Aσ(v,r, x̂)

=
1

4πr

∫ ∞
−∞

dv′
∫ ∞

0
dr′
∫
S2

d2z′

(1+x̂.x̂′)
δ(r′+2r(1+x̂.x̂′))

[
j2
σ(v′,z′)+jlog

σ (v′,z′)
logr′

r′
+. . .

]
(A.12)

In (A.12), the j2
σ term contributes to v0

r term as v → ∞. The next dominant fall off in

v →∞ limit is v0 log r
r2 . From above equation, we get:

Aσ(x) ∼ − log r

8πr2

∫ ∞
−∞

dv′
∫
S2

d2z′

(q.q′)2
jlog
σ (v′, x̂′).

In above expression we have used ‘∼’ as we have written down only the log r
r2 mode in the

field, ignoring other modes which are not relevant to us. Next we repeat the steps similar

to futute null infinity calculations and with a co-ordinate transformation we get:

Frz|I−+ =
1

8π

log r

r2
qν∂zq

µ

∫
S2

d2z′

(q.q′)3
q′[µD

Aq′ν]j
log
A (v′,−x̂′) + . . . . (A.13)

‘. . .’ denote O( 1
r2 ) terms. Above expression can be rewritten as:

Frz(x̂)|I−+ =
1

4π

log r

r2

∫ ∞
−∞

dv′
∫
S2

d2z′γzz̄D2
z

[
qν∂zq

µ

q.q′
q′[µD

Aq′ν]j
log
A (v′,−x̂′)

]
. (A.14)

– 22 –



J
H
E
P
1
0
(
2
0
2
0
)
1
1
0

B Quantum modes in h1
rr and A1

r

Let us start with the expression for
quan

h1
rr given in (6.13):

quan

h1
rr (x) =

1

4π

∫
d2z′(1 + z′z̄′)2 1

q′.q

[
ε−.qε−.q

log

Czz(x̂
′) + ε+.qε+.q

log

Cz̄z̄(x̂
′)

]
. (B.1)

We will use the leading soft theorem to evaluate action of (6.11) and (6.12). So, action of

h1
rr on a generic state is given by:

< out|
quan

h1
rr (x)S|in >

= i < out|
∫

d2z′

16π3

ε− · qε− · q
q′.q

∑
j

ε+ · pjε+ · pj
q′.pj

+
ε+ · qε+ · q

q′.q

∑
j

ε− · pjε− · pj
q′.pj

S|in > .

(B.2)

Using completeness relations for polarisation tensors:

ε− · qε− · q
q′.q

∑
j

ε+ · pjε+ · pj
q′.pj

+
ε+ · qε+ · q

q′.q

∑
j

ε− · pjε− · pj
q′.pj

=
∑
j

2(q.pj)
2

q.q′ q′.pj
. (B.3)

Thus, in (B.2), we need to do following integral:

I =

∫
d2z′

1

q.q′ q′.pj
=

∫
d2z′

∫ 1

0
dx

1

[q̂′.(xq̂ + (1− x)ωj q̂j)− x− (1− x)ωj ]2
,

= 2π

∫ 1

0
dx

1

[x(1− x)ωj(1− q̂j .q̂)]
. (B.4)

But I is divergent. These are collinear divergences that appear as we are dealing with

massless particles. We will see that the diverging terms cancel and the charge is finite. Let

us regulate the integral by introducing a regulator mj by making pj massive. Repeating

previous steps for a massive pj , we get:

I =
4π

q.pj

∫ 1

0
dx

1

[2x(1− x) +
m2
j

q.pj
(1− x)2]

.

Thus, I still has divergence coming from x = 1. But we will see that x = 1 term vanishes

due to conservation of momentum.

I =
4π

q.pj

m2
j − 2q.pj

(−2q.pj)

[
lim
x→1

log(1− x) + log

[
m2
j

m2
j − 2q.pj

]]
(B.5)

Let us study above expression in the limit when the regulator is taken to 0:

lim
mj→0

I =
4π

q.pj

[
lim
x→1

log(1− x) + log[m2
j ]− log[2q.pj ] + . . .

]
. (B.6)
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Here, ‘. . .’ denote terms that vanish when regulator is set to 0. The infinite piece is as

follows:

< out|
quan

h1
rr (x)S|in > |inf =

i

2π2

∑
j

(q.pj)

[
lim
x→1

log(1− x) + log

[
−
m2
j

2

]]

=
i

2π2

∑
j

(q.pj) log

[
m2
j

2

]
. (B.7)

Here, the first piece vanishes due to conservation of momenta. We could have regulated

the x = 1 divergence right from the beginning by introducing a mass for the null vector

qµ,11 and gotten the same result for I. The finite piece is:

< out|
quan

h1
rr (x)S|in > = − i

2π2

∑
j

(q.pj) log(q.pj). (B.8)

Next we will repeat the calculation for gauge field. To start with, we have [1]:

quan

Aµ (x) =
1

2π

∫
d2z′

(1 + |z′|2)√
2

1

q′.x

[
ε−µ

log

Az + ε+
µ

log

Az̄

]
, (B.9)

where,

log

Az̄(x̂
′) =

i

8π2

√
2

(1 + |z′|2)
lim
ω→0

ω
[
a−(ω, x̂′) + a†+(−ω, x̂′)

]
,

log

Az(x̂
′) =

i

8π2

√
2

(1 + |z′|2)
lim
ω→0

ω
[
a+(ω, x̂′) + a†−(−ω, x̂′)

]
. (B.10)

We extract out the 1/r-term:

quan

A1
r (x̂) =

1

2π
qµ
∫
d2z′

(1 + |z′|2)√
2

1

q′.q

[
ε−µ

log

Az + ε+
µ

log

Az̄

]
. (B.11)

The action of A1
r can be evaluated on a generic out state:

< out|
quan

A1
r (x̂)S|in > = i < out|

∫
d2z′

16π3

ε− · q
q′.q

∑
j

ej
ε+ · pj
q′.pj

+
ε+ · q
q′.q

∑
j

ej
ε− · pj
q′.pj

S|in >,
=

i

16π3
< out|

∫
d2z′

∑
j

ej
pj · q

q′.q q′.pj
S|in > . (B.12)

Above integral can be calculated similar to the earlier one. The infinite piece is a constant:

< out|
quan

A1
r (x)S|in > |inf =

i

4π2
log

[
m2
j

2

]
. (B.13)

We have for the finite part:

< out|
quan

A1
r (x̂)S|in > = − i

4π2

∑
j

ej log(q.pj). (B.14)

11The corresponding integral is same as the integral in equation (5.27) of [2] and can be evaluated

accordingly.
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C Maxwell’s equations in presence of gravity

In this section we write down Maxwell’s equations in presence of gravitational fluctuations

given by (2.9).

Let us study the ∇µFuµ = ju equation. Expanding the equation around r → ∞, at

O( 1
r2 ) we get:

∂u
2
F ru + ∂uD

BA0
B − j2

u = −γCBh0
Cr∂uF

0
uB. (C.1)

In the equation ∇µFAµ = 0, there appears a gravity correction even at O(1
r ):

∂u
1
F rA − h1

rr∂u
0
FAu = 0. (C.2)

This implies log r dressing of AA that has also been derived in (4.7). ∇µFAµ = 0 at O( 1
r2 )

gives:

2∂u
2
F rA − ∂A

2
F ru +DBF 0

AB − j2
A

= h1
rr∂u

1
FAu + h2

rr∂u
0
FAu − γCBh0

Cr∂uF
0
AB − γCBh0

CrDBF
0
Au − γBCh−1

ABF
0
uC

+ ∂uh
2
rr

0
FAu +

1

2
h1
rr

0
FAu −

1

2
γBCh−1

BCF
0
Au − γBCDBh

0
ArF

0
uC −DBh0

BrF
0
Au − 2h1urF 0

Au.

(C.3)

We use above equation to substitute for ∂u
2
F rA in (5.3) i.e. in

Qsoft
+ = −

∫
dud2z′V A∂u

[
u2∂2

u

2
F rA

]
, (C.4)

and we get (5.4) i.e.

Qsoft
+ = −1

2

∫
dud2z′V A∂u

[
u2∂u

[
∂A

2
F ru −DBF 0

AB + j2
A

]]
+ . . . , (C.5)

where “. . .” refers to the gravity corrections that come from r.h.s. of (C.3) and (C.1).

We will analyse them one by one. Out of the metric components appearing in Maxwell’s

equations only h2
rr and h−1

AB depend on u, rest of them are u-independent. This simplifies

the analysis for most of the terms.

Term h1
rr∂uF

1
Au.

Qcor
1 = −1

2

∫
dud2zV z∂u

[
u2∂u

[
h1
rr∂u

1
F uz

]]
+ z ↔ z̄.

Using Bianchi identities we can simplify above expression to:

Qcor
1 = −1

2

∫
d2zV z

∫
duh1

rr∂u
[
u2∂2

uD
2
zA

0
z̄

]
+ z ↔ z̄. (C.6)

The operator picks out difference between boundary values of log u piece of AA which is 0.
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Term h2
rr∂uF

0
uA.

Qcor
2 = −1

2

∫
dud2zV A∂u

[
u2∂u

[
h2
rr∂u

0
F uA

]]
. (C.7)

h2
rr has atmost a O(u) term. Using the u-behaviour of

0
F uA we see that this term is also 0.

Term γBCh−1
BAF

0
uC .

Qcor
3 =

1

2

∫
dud2zV A∂u

[
u2∂u

[
γBCh−1

BAF
0
uC

]]
.

This term vanishes trivially for classical fall offs of F 0
uC . For the quantum log u fall offs we

get 2 terms for A=z (the analysis is similar for A = z̄):

Qcor
3 = −1

2

∫
dud2zV zγ z̄z∂uh

−1
zz A

0,log
z̄ +

1

2

∫
dud2zV zγ z̄z∂uA

0
z̄h
−1,log
zz . (C.8)

Upto unimportant overall factors that are common to both terms, the first integrand

is: limω→0 ω[c+(ω) + c†−(ω)] limω→0 ω[a−(ω) − a†+(ω)]. Similarly the second integrand is:

limω→0 ω[c+(ω)− c†−(ω)] limω→0 ω[a−(ω) + a†+(ω)]. Thus, Qcor
3 = 0.

Term h0
rC∂uF

0
AB.

Qcor
4 =

1

2

∫
dud2zV A∂u

[
u2∂u

[
γCBh0

Cr∂u
0
FAB

]]
,

=
1

2

∫
dud2zγCBh0

CrV
A∂u

[
u2∂2

u∂(BA
0
A)

]
. (C.9)

This is similar to (C.6) and vanishes by same logic. The analysis for rest of the terms is

exactly similar.

D Herdegen like representation for graviton

The usual momentum space expression for free metric field is:

hµν(x) =
∑
r=+,−

1

2(2π)3

∫ ∞
0

ωdωd2q
[
e−iω(u+r−q̂.~x)crµν(ω, q)− e−iω(u+r−q̂.~x)c†rµν(−ω, q)

]
.

(D.1)

The angular integral can be performed using stationary phase approximation at large r,

we can obtain following well known expressions [5]:

hzz(u, q) =
r

2π

∫ ∞
−∞

dωe−iωuC̃zz(ω, q). (D.2)

where:

C̃zz(ω, q) =
c+(ω, q)

2πi(1 + |z|2)2
. . . ω > 0, C̃zz(ω, q) =

− c†−(−ω, q)
2πi(1 + |z|2)2

. . . ω < 0. (D.3)
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And

hz̄z̄(u, q) =
r

2π

∫ ∞
−∞

dωe−iωuC̃z̄z̄(ω, q). (D.4)

C̃z̄z̄(ω) =
c−(ω, q)

2πi(1 + |z|2)2
. . . ω > 0, C̃z̄z̄(ω) =

−c†+(−ω, q)
2πi(1 + |z|2)2

. . . ω < 0. (D.5)

Thus (D.1) can be rewritten as:

hµν(x) =
i

2(2π)2

∫ ∞
−∞

ωdωd2q(1 + |z|2)2[ε−µνC̃zz + ε+
µνC̃z̄z̄]e

−iω(u+r−q̂.~x),

=
i

2(2π)2

∫ ∞
−∞

ωdωd2q(1 + |z|2)2ε−µν

[∫ ∞
−∞

du′eiωu
′
Czz

]
e−iω(u+r−q̂.~x)

+
i

2(2π)2

∫ ∞
−∞

ωdωd2q(1 + |z|2)2ε+
µν

[∫ ∞
−∞

du′eiωu
′
Cz̄z̄

]
e−iω(u+r−q̂.~x),

= − 1

(4π)

∫
d2q(1 + |z|2)2

[
ε−µ ε

−
ν Ċzz(u = −x · q, q̂) + ε+

µ ε
+
ν Ċz̄z̄(u = −x · q, q̂)

]
,

(D.6)

here, CAB = limr→∞
1
rhAB. Above expression is analogous to the expression for gauge field

obtained by Herdegen [28].
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