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1 Introduction

With the discovery of the Higgs boson by the Large Hadron Collider (LHC) at CERN [1,

2], the Standard Model (SM) of particle physics is a complete theory without any free

parameters. Current and future collider experiments will be able to test the SM with an

increasing level of precision. The requested precision poses a severe challenge to theory

and calls for the development of improved techniques for theoretical predictions accurate

at the percent level. One of the main approaches to theoretical collider phenomenology

is perturbation theory, in which observables are expanded in the small coupling constants

of the theory. Here we focus on QCD observables, and consequently we will be concerned

with the computation of higher orders in the strong coupling constant αs of QCD.

Often, leading order predictions in QCD are not reliable. For example it is known that

in the case of Higgs production the next-to-leading order corrections almost double the

value of the cross section [3, 4]. The next-to-next-to-leading order (NNLO) corrections (in

the limit where the top-quark is infinitely heavy) further increase the cross section, and it

is only after the inclusion of the next-to-next-to-next-to-leading order (N3LO) corrections

that a reliable estimate of the cross section with a residual uncertainty of only a few percent

is obtained [5–7]. This example illustrates that reliable QCD predictions at the percent level

can most likely only be achieved after the inclusion of corrections at NNLO and beyond.

While over the last years a lot of progress was made in NNLO computations, so far, only

very few hadron collider processes are known at N3LO. Inclusive N3LO cross sections are

known for Higgs in gluon fusion [5–7], bottom-quark fusion [8, 9] and vector boson fusion

in the DIS approach [10, 11], as well as double Higgs production [12, 13] and Drell-Yan

– 1 –



J
H
E
P
1
0
(
2
0
2
0
)
0
9
3

production (via the intermediate of an off-shell photon) [14]. At the differential level, only

the Higgs rapidity and transverse momentum distributions in vector boson fusion in the

DIS approximation [10, 15, 16] are known.

One of the reasons progress towards more results at N3LO is difficult lies in the fact

that an observable at NkLO receives contributions from processes with up to k additional

partons in the final state. Each such contribution is individually infrared divergent, with

divergences arising in particular from the integration over regions of phase space where

the emitted partons are either soft or collinear. Several techniques have been developed at

NNLO to compute the relevant phase space integrals with generic acceptance cuts [17–50].

With some abuse of language, we refer to these techniques in the following collectively as

subtraction methods. Developing subtracting methods beyond NNLO will be an important

step towards obtaining more predictions with percent accuracy.1

An important ingredient in the development of subtraction methods is the universal

behaviour of the QCD scattering amplitudes in the infrared limits, embodied in universal

soft and collinear currents. At NNLO these currents have been computed more than a

decade ago, and they include splitting amplitudes for three partons at tree-level and two

partons at one-loop, as well as soft currents for the emission of two soft partons at tree-level

and one soft parton at one-loop [52–60]. Over the last few years, results have also become

available for the universal currents at N3LO. The two-loop currents for the emission of two

collinear or one soft parton were obtained in refs. [61–66], and the one-loop current for the

emission of three collinear partons is given in refs. [67, 68].2 The tree-level currents include

the soft current for the emission of three soft partons [70] and the splitting amplitudes

for four collinear partons. The latter have been obtained at the amplitude-level in four

dimensions in refs. [55, 71, 72]. Recently, we have published the splitting amplitudes for

the squared matrix element in dimensional regularisation, in the case where the parent

parton is a quark [73]. The main purpose of this paper is to complete the set of tree-level

splitting amplitudes at N3LO by providing analytic results in dimensional regularisation

for a gluon splitting into four partons.

This paper is organised as follows: in section 2, we review the collinear limit of tree-

level amplitudes and give a precise definition of the quantities that we want to compute. In

section 3, we present the main result of our paper, namely the computation of the tree-level

splitting amplitudes for a gluon parent to split into four collinear partons. The explicit

results are too long to be recorded in this paper and are made available in computer-

readable form [74]. In section 4 we study the collinear limit of the splitting amplitudes

themselves, and we define new universal objects which appear in these iterated limits. We

include several appendices with technical material omitted throughout the main text.

1Some of these methods have already been successfully applied at N3LO for processes with a simple final

state structure [10, 11, 15, 51].
2One-loop currents with three collinear partons are also known for mixed QCD+QED cases [69].
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2 Multiple collinear limits

We examine the behaviour of tree-level QCD amplitudes in the limit where a given number

of massless partons become collinear. Namely, we consider the scattering of n massless

particles with momenta pi and with flavour, spin and colour quantum numbers fi, si and

ci, respectively, and we analyse the behaviour of the amplitude as m partons of momenta

p1, . . . , pm become simultaneously collinear to some light-like direction P̃ . In this limit, the

leading behaviour is described by the amplitude for the production of a massless particle

of momentum P̃ from a scattering of the particles that do not take part in the collinear

limit, multiplied by a universal factor, termed the splitting amplitude, which depends only

on the m partons in the collinear set.

In order to parametrise the approach to the collinear limit, we introduce a light-cone

decomposition for all the momenta in the m-parton collinear set,

pµi = xiP̃
µ + kµ⊥i −

k2
⊥i

2xi

nµ

P̃ · n
, i = 1, . . . ,m , (2.1)

where the light-like momentum P̃ specifies the collinear direction, P̃ · k⊥i = 0, xi are the

longitudinal momentum fractions with respect to the parent momentum Pµ =
∑m

i=1 p
µ
i

and nµ is an auxiliary light-like vector such that n · k⊥i = 0 and n · pi 6= 0 6= n · P̃ , and

which specifies how the collinear direction is approached. The collinear limit is then defined

as the limit in which the transverse momenta k⊥i approach zero at the same rate. This

definition of the collinear limit is frame-independent, and it only depends on the collinear

direction P̃ and the transverse momenta k⊥i. In particular it is independent of the choice

of the auxiliary vector n.

The variables that appear in eq. (2.1) are unconstrained apart from on-shellness and

transversality, n ·k⊥i = P̃ ·k⊥i = 0, and so the sums of the momentum fractions xi and the

transverse momenta k⊥i are unconstrained. However, the collinear limit is invariant under

longitudinal boosts in the direction of the parent momentum P =
∑m

i=1 pi. We trade xi
and k⊥i for new quantities zi and k̃⊥i that are boost-invariant in the direction of the parent

momentum. In refs. [54, 73], it was shown that a convenient set of such variables is given by

zi =
xi∑m
j=1 xj

=
pi · n
P · n

, k̃µ⊥i = kµ⊥i − zi
m∑
j=1

kµ⊥j , i = 1, . . . ,m . (2.2)

It is easy to see that these new variables satisfy the constraints,

m∑
i=1

zi = 1 and

m∑
i=1

k̃µ⊥i = 0 . (2.3)

From now on, we only work with these variables, and in order to avoid cluttering notation,

we shall drop the tilde on the transverse momenta.

In the limit where a subset of massless particles is collinear, a scattering amplitude

factorises as [75–77]

C1...mMc1...cn;s1...sn
f1...fn

(p1, . . . , pn)

= Spc,c1...cm;s,s1...sm
ff1...fm

Mc,cm+1...cn;s,sm+1...sn
ffm+1...fn

(P̃ , pm+1, . . . , pn) ,
(2.4)
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where C1...m indicates that the equality holds up to terms that are power-suppressed in the

collinear limit, while f , s and c respectively denote the flavour, spin and colour indices of the

parent particle. The quantity Sp appearing on the right-hand side is the splitting ampli-

tude, which depends only on the kinematics and the quantum numbers in the collinear set.

For an amplitude whose collinear massless particles occur all in the final state, the

factorisation in eq. (2.4) is valid to all orders in perturbation theory.3 Accordingly, also

the squared matrix element factorises,

|Mf1...fn(p1, . . . , pn)|2 ≡
∑

(s1,...,sn)
(c1,...,cn)

∣∣∣Mc1...cn;s1...sn
f1...fn

(p1, . . . , pn)
∣∣∣2 , (2.5)

where in the short-hand notation of the left-hand side the sum over all spin and colour

indices of the matrix element is understood. The factorisation of the squared matrix

element can be written as

C1...m |Mf1...fn(p1, . . . , pn)|2 =

(
2µ2ε g2

s

s1...m

)m−1

P̂ ss
′

f1...fm T
ss′
ffm+1...fn(P̃ , pm+1, . . . , pn) , (2.6)

where gs is the strong coupling constant and µ is the scale introduced by dimensional

regularisation, and a sum over repeated indices, in this case the spin indices s and s′, is

implicit, and we introduced the Mandelstam invariant,

s1...m ≡ (p1 + . . .+ pm)2 . (2.7)

T ss′ffm+1...fn
denotes the helicity tensor obtained by not summing over the spin indices of the

parent parton,

T ss′ffm+1...fn ≡
∑

(sm+1,...,sn)
(c,cm+1,...,cn)

Mc,cm+1...cn;s,sm+1...sn
ffm+1...fn

[
Mc,cm+1...cn;s′,sm+1...sn

ffm+1...fn

]∗
, (2.8)

where for brevity we have suppressed the momenta on which the amplitude depends. The

tensorial structure of the factorisation in eq. (2.6) is necessary to correctly capture all

spin correlations. Due to colour conservation in the hard amplitude there are no non-

trivial colour correlations, and we therefore sum over the colour c of the parent parton in

eq. (2.8). The quantity P̂ ss
′

f1...fm
in eq. (2.6) is the (polarised) splitting amplitude for the

squared matrix element, which is related to Sp by(
2µ2ε g2

s

s1...m

)m−1

P̂ ss
′

f1...fm =
1

Cf

∑
(s1,...,sm)

(c,c1,...,cm)

Spc,c1...cm;s,s1...sm
ff1...fm

[
Spc,c1...cm;s′,s1...sm

ff1...fm

]∗
, (2.9)

where Cf is the number of colour degrees of freedom of the parent parton with flavour f ,

i.e., Cg = N2
c − 1 for a gluon and Cq = Nc for a quark. In eqs. (2.6), (2.9) and henceforth,

3When the subset of collinear particles contains also initial-state particles, the factorisation in eq. (2.4)

is valid in general only for tree amplitudes [78].
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the dependence of the splitting amplitude on the transverse momenta k̃⊥i and momentum

fractions zi of the particles in the collinear set is understood. Further, in QCD the flavour

of the parent is uniquely determined by the flavours of the particles in the collinear set, thus

we suppress the dependence of the splitting amplitude on the left-hand-side of eq. (2.9) on

the flavour of the parent parton.

Splitting amplitudes for the squared matrix element have been computed at tree level

for the emission of up to three collinear partons in refs. [53, 54], and for the emission of four

collinear partons out of a parent quark in ref. [73]. The goal of this paper is to compute

the tree-level splitting amplitudes for the squared matrix element for the emission of up to

four partons out of a parent gluon, thus completing the set of splitting amplitudes for the

emission of up to four collinear partons in QCD.4

3 Gluon-initiated splitting amplitudes

In this section we present the computation of the gluon-initiated tree-level splitting ampli-

tudes for m = 4 collinear partons,5 which is the main result of our paper. The computation

follows the same lines as that for m = 3 collinear partons in ref. [54]. Our results for the

splitting amplitudes are too lengthy to be presented in printed form, but we make them

available in computer-readable form [74].

In order to compute an m-parton splitting amplitude, we start from an on-shell ampli-

tude for n = m+ 3 partons and take m of them collinear. We perform a uniform rescaling

of the transverse momenta k⊥i in eq. (2.1) by a small parameter λ,

k⊥i → λ k⊥i , 1 ≤ i ≤ m. (3.1)

This ensures that in the collinear limit λ → 0 the k⊥i approach zero at the same rate.

We then expand the matrix element into a Laurent series around λ = 0. The leading

term corresponds to the coefficient of 1/λ2(m−1), which is universal and is described by the

collinear factorisation in eq. (2.6).

While the final result of this operation is of course gauge independent, the set of

Feynman diagrams that contribute to the leading behaviour in λ depend on the gauge

choice. We would therefore like to choose a gauge that simplifies the computation as

much as possible, e.g., by minimising the number of (interfering) Feynman diagrams that

contribute in the collinear limit. In ref. [54] it was argued that it is convenient to work in

a physical gauge (e.g., axial gauge), because contributions from Feynman diagrams where

collinear partons are separated by a hard propagator are subleading in the collinear limit.

Here we work in axial gauge, where the gluon field is subject to the following conditions,

∂µA
µ = nµA

µ = 0 , (3.2)

4As in ref. [73], we refer to both Sp and P̂ simply as splitting amplitudes.
5The constraints in eq. (2.3) have not been imposed on our results. This may allow us, through crossing

symmetry, to readily obtain the splitting amplitudes for initial-state collinear emissions [79].
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where n is an arbitrary light-like reference vector. In this gauge, the gluon propagator

takes the form,

µ, a ν, b

p
=

i δab dµν(p, n)

p2 + iε
, dµν(p, n) = −gµν +

pµnν + nµpν

p · n
. (3.3)

For p2 = 0, the polarisation tensor dµν(p, n) can be interpreted in three different ways: first,

it is the projector onto the (D − 2)-dimensional space transverse to p and n. Second, it is

the metric tensor induced by the D-dimensional Minkowski metric on that space. Finally,

it is the sum of all physical polarisations of a gluon with momentum p,∑
s

εµs (p, n)ενs(p, n) = dµν(p, n) , (3.4)

where εµs (p, n) is the polarisation vector for a gluon with momentum p and transverse

polarisation s = 1, . . . , (D− 2). In principle, we may choose a different reference vector for

each gluon, as long as it is not orthogonal to the momentum. In our case, it is convenient to

choose all gauge reference vectors to coincide with the reference vector n appearing in the

definition of the collinear limit in eq. (2.1). We can then write the collinear factorisation

for a parent gluon in terms of Lorentz indices rather than helicities [54],

C1...m |Mf1...fn(p1, . . . , pn)|2 =

(
2µ2ε g2

s

s1...m

)m−1

P̂µνf1...fm Tffm+1...fn,µν(P̃ , pm+1, . . . , pn) ,

(3.5)

where quantities with open Lorentz indices are obtained by amputating the polarisation

vectors and inserting the polarisation sum in eq. (3.4). Note that in passing from eq. (2.6) to

eq. (3.5) we have implicitly used gauge invariance to eliminate the gauge dependent terms

in eq. (3.4). Indeed, since physical polarisation states are transverse, only the transverse

part of a Lorentz tensor carries physical information. This is because the non-transverse

part vanishes upon contraction with a physical polarisation vector. As a consequence, the

helicity tensor T µνffm+1...fn
in eq. (3.5) can be chosen to satisfy the transversality condition,

P̃µ T
µν
ffm+1...fn

= P̃ν T
µν
ffm+1...fn

= 0 . (3.6)

With this choice, the complete tensor structure of the splitting amplitude contains terms

involving the transverse momenta of the collinear partons [54],

P̂µνf1...fm = gµν A
(g)
f1...fm

+
m∑

i,j=1

k̃µ⊥ik̃
ν
⊥j

s1...m
B

(g)
ij,f1...fm

. (3.7)

We stress, however, that the splitting amplitude defined in this way does not vanish upon

contraction with P̃ .

Since we work in axial gauge, we do not consider the subset of Feynman diagrams where

collinear partons are separated by a hard propagator. The sum of all relevant diagrams

– 6 –
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can be cast in the form,

C1...m |Mf1...fn(p1, . . . , pn)|2 =

= C1...m

(2µ2εg2
s

s1...m

)m−1 [
M(n) s

ffm+1...fn

]∗
V

(n) ss′

f1...fm
(p1, . . . , pm)M(n) s′

ffm+1...fn

 , (3.8)

where a sum over the spin indices s, s′ of the intermediate state is understood, and

we suppress all colour and spin indices of the external partons. Here M(n) s
ffm+1...fn

≡
M(n) s

ffm+1...fn
(P, pm+1, . . . , pn) denotes the sum of all Feynman diagrams with an off-shell

leg with momentum P , flavour f and spin s. Note that this subset of Feynman diagrams

is by itself not gauge invariant, and the superscript (n) indicates the dependence on the

reference vector. The squared off-shell current V
(n) ss′

f1...fm
may be written as the interference

of two colour-dressed off-shell currents,(
2µ2εg2

s

s1...m

)m−1

V
(n) ss′

f1...fm
(p1, . . . , pm) =

1

Cf

∑
(s1,...,sm)

(c,c1,...,cm)

[
Jc,c1...cm;s′s1...sm
f1...fm

]∗
Jc,c1...cm;ss1...sm
f1...fm

,

(3.9)

where Cf is defined after eq. (2.9). Note that also V
(n) ss′

f1...fm
depends on the gauge vector

n before the collinear limit is taken. Since the collinear limit is gauge invariant, this

dependence disappears in the limit, and the squared off-shell current reduces to the splitting

amplitude,

C1...mV
(n) ss′

f1...fm
(p1, . . . , pm) = P̂ ss

′
f1...fm . (3.10)

We have computed all gluon-initiated splitting amplitudes up to m = 4, and we repro-

duce all known results for the cases m = 2 and 3. The results for m = 4 are new and are

presented for the first time in this paper. There are four different gluon-initiated splitting

amplitudes,

g → q̄′q′q̄q , g → q̄qq̄q , g → q̄ggq , g → gggg . (3.11)

In the remainder of this section we discuss in more detail the computation of these splitting

amplitudes. The explicit results are available in computer-readable form [74].

Let us start by discussing the simplest splitting process, the collinear decay g → q̄′q′q̄q

with different quark flavours. There are five diagrams that contribute to the off-shell current

Jµq̄′q′q̄q in eq. (3.9). The diagrams are shown in figure 1. Going through the steps outlined

above, we find that the result for the splitting amplitude g → q̄′q′q̄q can be decomposed

into an ‘abelian’ and a ‘non-abelian’ part,

P̂µν
q̄′1q

′
2q̄3q4

=
1

4
CF P̂

µν (ab)
q̄′1q

′
2q̄3q4

+
1

4
CA P̂

µν (nab)
q̄′1q

′
2q̄3q4

, (3.12)

where the indices carried by the parton label refer to the indices of the momenta and the

momentum fractions of the partons, and CF and CA denote the quadratic Casimirs of the

fundamental and adjoint representations of SU(N),

CF =
N2 − 1

2N
, CA = N . (3.13)
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{
q̄′1

q4

q̄3

q′2

+

q̄′1

q̄3

q4

q′2

+ (1, 2)↔ (3, 4)
}

+
q′2

q̄′1

q̄3

q4

Figure 1. The diagrams contributing to the off-shell current g → q̄′1q
′
2q̄3q4. In the case of identical

quarks we also need to include diagrams where the anti-quarks q1 and q3 are exchanged.

The splitting process g → q̄qq̄q, in which the final state quarks have the same flavour,

q′ = q, includes diagrams where the anti-quarks 1 and 3 are exchanged (or equivalently,

where the quarks 2 and 4 are exchanged). This naturally leads to the following represen-

tation of the splitting amplitude,

P̂µνq̄1q2q̄3q4 =
[
P̂µν
q̄′1q

′
2q̄3q4

+ (1↔ 3)
]

+ P̂
µν (id)
q̄1q2q̄3q4 . (3.14)

The term in square brackets contains the splitting amplitude in eq. (3.12) in the case

of different flavours and the exchange contributions obtained by permuting the external

quarks. The last term in eq. (3.14) is new and captures interference contributions from

identical quarks. It is again convenient to display the result in terms of colour factors,

P̂
µν (id)
q̄1q2q̄3q4 =

1

2
CF (CA − 2CF ) P̂

µν (id)1
q̄1q2q̄3q4 +

1

2
CA (CA − 2CF ) P̂

µν (id)2
q̄1q2q̄3q4 . (3.15)

Since CA − 2CF = 1
N , the interference contributions are colour suppressed.

Next, let us discuss the splitting amplitude g → q̄qgg. The Feynman diagrams con-

tributing to the off-shell current Jµq̄qgg are shown in figure 2. As usual, we can decompose

the splitting amplitude into contributions from different colour factors as follows,

P̂µνq̄1g2g3q4 =
1

2
C2
F P̂

µν (ab)
q̄1g2g3q4 +

1

2
C2
A P̂

µν (nab)1
q̄1g2g3q4 +

1

2
CACF P̂

µν (nab)2
q̄1g2g3q4 . (3.16)

It is possible to express each colour coefficient in eq. (3.16) in a reduced form by exploiting

the symmetry under the exchange of the two external partons,

P̂
µν (X)
q̄1g2g3q4 =

(
P̂
µν (X) symm.
q̄1g2g3q4 + (1↔ 4)

)
+ (2↔ 3) , (3.17)

where (X) ∈ {(ab), (nab)1, (nab)2}.
Finally, let us discuss the pure gluon splitting process g → gggg, which poses a chal-

lenge due to the large degree of Bose symmetry under the exchange of the external gluons.

The diagrams contributing to the decay are shown in figure 3. An important step in the

computation of the splitting amplitude was to take into account symmetries between dif-

ferent permutatons of the four external gluons in order to minimise the number of terms.

We can write P̂µνgggg in a symmetrised form as

P̂µνg1g2g3g4 = P̂µν symm.
g1g2g3g4 + (11 permutations of g1g2g3g4) . (3.18)

– 8 –
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{
g2 g3 q̄1

q4

+

g2 q̄1

g3

q4

+

g2 q̄1

g3

q4

+ (2↔ 3)
}

+

q̄1

g3

g2

q4

+

q̄1

g2

g3
q4

+

g2

g3

q̄1

q4

{
+

q̄1

g2

q4

g3
+

q̄1

g3

g2

q4

+

q̄1

q4

g2

g3
+ (2↔ 3)

}

+

g2

g3

q̄1

q4

Figure 2. The diagrams contributing to the collinear decay g → q̄1g2g3q4.

The above permutations do not include orderings of the external gluons which leave the

first diagram in figure 3 invariant.

4 Nested collinear limits

In this section we analyse the collinear limit of the splitting amplitudes themselves, i.e.,

we study their behaviour in the limit where a subset of collinear partons is more collinear

than the others.

To be concrete, let us consider a collection of m partons with flavour indices

{f1, . . . , fm′ , . . . , fm} and momenta {p1, . . . , pm′ , . . . , pm}, with m′ < m. We always think
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{
g1

g3

g2

g4

+ 11 permutations
}

+
{

g1

g2

g3

g4

+ (1↔ 3) + (2↔ 3)
}

+
∑

σ∈S2 in S4

gσ(2)

gσ(1)

gσ(3)

gσ(4)

+
{

g1

g2

g3

g4

+ (1↔ 4) + (2↔ 4) + (3↔ 4)
}

Figure 3. The diagrams contributing to the splitting process g → g1g2g3g4. In the third diagram

we sum over the 6 possible pairings of the partons in the three-gluon vertex.

of these partons as being part of an on-shell n-point amplitude Mf1...fn involving (n−m)

additional coloured partons. Our goal is to study the behaviour of the amplitude in the limit

where {p1, . . . , pm′} become collinear to some lightlike direction P̃ ′, and {P̃ ′, pm′+1, . . . , pm}
are collinear to another lightlike direction P̃ . Depending on the order in which the dif-

ferent collinear limits are taken, there are two different scenarios of how such a kinematic

configuration can be reached, referred to as iterated and strongly-ordered collinear limits

in ref. [73]. The (splitting) amplitudes factorise in the same way in each of the limits, and

the factorisation involves the same universal quantities in both cases [73]. We therefore

focus here only on the strongly-ordered limit from now on.

We start by giving a precise definition of the strongly-ordered collinear limit. We

perform separate light-cone decompositions in each of the m- and m′-parton sets. For the

m-parton set, we will use the notations and conventions of eq. (2.1). For the m′-parton

subset we write

pµi = yiP̃
′µ + κµ⊥i −

κ2
⊥i

2yi

n′µ

n′ · P̃ ′
, i = 1, . . . ,m′ , (4.1)

with n′2 = P̃ ′2 = P̃ ′ · κ⊥i = n′ · κ⊥i = 0. The momenta P̃ and P̃ ′ indicate the directions to

which the partons in each set become collinear. We stress that at this point the lightcone

directions P̃ ′ and n′ in eq. (4.1) are not related to the quantities P̃ and n in eq. (2.1).

However, without loss of generality, we may choose n′ = n, and we work in the axial gauge

where the reference vectors of all external and internal gluons are n. For more details about

the parametrisation of the strongly-ordered collinear limit, we refer to ref. [73]. With this

setup, the strongly-ordered collinear limit is defined in analogy with the ordinary collinear

limit in section 2: the vectors kµ⊥i and κµ⊥i parametrise the transverse distance to the planes
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spanned by (P̃ , n) and (P̃ ′, n), respectively. The strongly-ordered collinear limit where the

m′-parton subset is more collinear than the m-parton set is defined as the limit where both

kµ⊥i and κµ⊥i approach zero, but the κµ⊥i tend to zero faster than the kµ⊥i. We can implement

the operation of taking this limit by a uniform rescaling of the transverse momenta in each

collinear set by a different parameter,

k⊥i → λ k⊥i, κ⊥i → λ′ κ⊥i, (4.2)

and keeping the dominant singular terms of order 1/λ′ 2(m′−1)λ2(m−m′) in the limit λ, λ′ → 0

with λ� λ′.

The leading behaviour of an amplitude in the strongly-ordered collinear limit is de-

scribed by a factorisation formula very similar to eq. (2.6) [73],

C(1...m′)...mC1...m′ |Mf1...fn(p1, . . . , pn)|2 =

(
2g2
sµ

2ε

s1...m′

)m′−1(
2g2
sµ

2ε

s[1...m′]...m

)m−m′

× P̂ hh′f1...fm′ Ĥ
hh′;ss′

f(1...m′)fm′+1...fm
T ss′ffm+1...fn(P̃ , pm′+1, . . . , pn) , (4.3)

where

s[1...m′]...m = (P̃ ′ + pm′+1 + . . .+ pm)2 . (4.4)

The functions P̂ hh
′

f1...fm′ and T ss′ffm+1...fn
are the splitting amplitude and the helicity tensor

introduced in section 2. The splitting tensor Ĥhh′;ss′

f(1...m′)fm′+1...fm
is new. It is obtained by

squaring the amplitude-level splitting amplitude without summing over the helicities of one

of the partons in the collinear set (cf. eq. (2.9)),(
2g2
sµ

2ε

s[1...m′]...m

)m−m′

Ĥhh′;ss′

f(1...m′)fm′+1...fm

=
1

Cf

∑
(sm′+1,...,sm)

(c,cm′+1,...,cm)

Sp
c,cm′+1...cm;s,h,sm′+1...sm
f(1...m′)fm′+1...fm

[
Sp

c,cm′+1...cm;s′,h′,sm′+1...sm
f(1...m′)fm′+1...fm

]∗
,

(4.5)

where Cf is defined after eq. (2.9). Just like in section 2 we suppress the dependence of

all splitting amplitudes and tensors on their arguments. The factorisation of the squared

amplitude in the strongly-ordered limit can be cast in the form of a factorisation of the

splitting amplitude itself,

C1...m′P̂ ss
′

f1...fm =

(
s[1...m′]...m

s1...m′

)m′−1

P̂ hh
′

f1...fm′ Ĥ
hh′;ss′

f(1...m′)fm′+1...fm
. (4.6)

By comparing eqs. (2.6) and (4.3), it is easy to see that upon summing over the helicities

(h, h′) the splitting tensor reduces to an ordinary splitting amplitude,

δhh
′
Ĥhh′;ss′

f(1...m′)fm′+1...fm
= P̂ ss

′
f(1...m′)fm′+1...fm

. (4.7)

In the following we refer to the partons with spin indices (s, s′) and (h, h′) as the parent

and sub-parent, respectively. Depending on the flavour of the parent and the sub-parent,
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the structure of the splitting tensor can be further simplified. The case where the parent

is a quark was considered in ref. [73]. Here we only consider the case where the parent is a

gluon. Using a similar argument as for the splitting amplitude in section 3, we can trade

helicity indices (s, s′) for Lorentz indices (µ, ν) and write eq. (4.3) in the equivalent form,

C(1...m′)...mC1...m′ |Mf1...fn(p1, . . . , pn)|2 =

(
2g2
sµ

2ε

s1...m′

)m′−1(
2g2
sµ

2ε

s[1...m′]...m

)m−m′

× P̂ hh′f1...fm′ Ĥ
hh′;µν
f(1...m′)fm′+1...fm

Tffm+1...fn,µν(P̃ , pm′+1, . . . , pn) , (4.8)

If the sub-parent is a quark, helicity must be conserved, and the splitting tensor is diagonal

in the spin indices (h, h′) of the sub-parent. Equation (4.7) then implies

C1...m′P̂µνf1...fm =

(
s[1...m′]...m

s1...m′

)m′−1

〈P̂f1...fm′ 〉 P̂
µν
qfm′+1...fm

, (4.9)

where 〈P̂f1...fm′ 〉 denotes the unpolarised splitting amplitude,

〈P̂f1...fm〉 ≡
1

Npol
δhh′ P̂

hh′
f1...fm , (4.10)

and Npol denotes the number of physical polarisation states for the parent parton. We

work in conventional dimensional regularisation (CDR), where the quarks and gluons have

2 and (D − 2) polarisation states, respectively.

If also the sub-parent is a gluon, we can use a similar argument to that of section 3 to

trade in the helicity indices (h, h′) for Lorentz indices (α, β) by amputating external polar-

isation vectors and contracting with polarisation tensors. Since only transverse polarisa-

tions are physical, only the transverse part of a Lorentz tensor carries physical information.

Thus, we can write eq. (4.8) in the equivalent form,

C(1...m′)...mC1...m′ |Mf1...fn(p1, . . . , pn)|2 =

(
2g2
sµ

2ε

s1...m′

)m′−1(
2g2
sµ

2ε

s[1...m′]...m

)m−m′

× P̂f1...fm′ ,αβ Ĥ
αβ;µν
f(1...m′)fm′+1...fm

Tffm+1...fn,µν(P̃ , pm′+1, . . . , pn) , (4.11)

and the relation in eq. (4.7) becomes

Ĥαβ;µν
f(1...m′)fm′+1...fm

dαβ(P̃ ′, n) = P̂µνf(1...m′)fm′+1...fm
+ gauge terms . (4.12)

In appendix B we show that the most general tensor structure of the splitting tensor is

Ĥαβ;µν
gfm′+1...fm

= dαβ(P̃ , n) gµν A
(g)
gfm′+1...fm

+
m∑

i,j=m′+1

kµ⊥ik
ν
⊥j

s[1...m′]...m
dαβ(P̃ , n)B

(g)
ij,gfm′+1...fm

+
m∑

i,j=m′+1

kα⊥ik
β
⊥j

s[1...m′]...m
gµν C

(g)
ij,gfm′+1...fm

+

m∑
i,j,k,l=m′+1

kµ⊥ik
ν
⊥jk

α
⊥kk

β
⊥l

s2
[1...m′]...m

D
(g)
ijkl,gfm′+1...fm

+

m∑
i,j=m′+1

gαµ kβ⊥ik
ν
⊥j + gβν kα⊥ik

µ
⊥j + gαν kβ⊥ik

µ
⊥j + gβµ kα⊥ik

ν
⊥j

s[1...m′]...m
E

(g)
ij,gfm′+1...fm

+
(
gαν gβµ + gαµ gβν

)
F

(g)
gfm′+1...fm

. (4.13)
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At this point we have to make some comments about eq. (4.13). First, let us discuss the

symmetry properties of the splitting tensor Ĥαβ;µν
gfm′+1...fm

. From its definition in eq. (4.5)

it follows that the splitting tensor must be symmetric under the exchange (µ, α)↔ (ν, β).

In eq. (4.3) it is contracted with P̂αβ and T µν , which are symmetric tensors at tree level.

Hence, only the part of Ĥαβ;µν
gfm′+1...fm

that is individually symmetric under µ↔ ν and α↔ β

enters the factorisation in eq. (4.3), and we only present here the part of the splitting

tensor with this enlarged symmetry. Second, we see that eq. (4.13) involves a mixture

of metric tensors gρσ and polarisation tensors dρσ(P̃ , n). The tensor structure given in

appendix B involves only polarisation tensors, which would make the splitting tensor

explicitly transverse. However, similar to the case of the splitting amplitude discussed in

section 3 (cf. eq. (3.7)), some of the gauge-dependent terms drop out in the contraction in

eq. (4.11). In particular, we can perform the replacements,

dρσ(P̃ , n)↔ −gρσ , (ρ, σ) ∈ {(µ, ν), (α, µ), (β, ν), (α, ν), (β, µ)} . (4.14)

For (ρ, σ) = (µ, ν), the equivalence between the polarisation tensor and the metric tensor

follows from eq. (3.6), while the other cases follow from relations like

P̂f1...fm′ ,αβ d
αµ(P̃ , n) dβν(P̃ , n) Tffm+1...fn,µν = P̂f1...fm′ ,αβ g

αµ gβν Tffm+1...fn,µν , (4.15)

P̂f1...fm′ ,αβ d
αµ(P̃ , n) kβ⊥ik

ν
⊥j Tffm+1...fn,µν = −P̂f1...fm′ ,αβ g

αµ kβ⊥ik
ν
⊥j Tffm+1...fn,µν .

We have checked that our results for the quadruple splitting amplitudes have the

correct behaviour in all strongly-ordered collinear limits, i.e., they satisfy eq. (4.6) for

m′ = 2 and 3. The strongly-ordered limit of the quadruple splitting amplitudes involves

the splitting tensors with two or three collinear particles in the final state. The relevant

splitting tensors for two collinear partons can be found in ref. [31],

Ĥhh′;µν
q̄q =

1

2
δhh

′
P̂µνq̄q , (4.16)

Ĥαβ;µν
gg = 2CA

[
1− z

2z

(
gαµgβν + gανgβµ

)
+

z

1− z
gµν

kα⊥k
β
⊥

k2
⊥
− z(1− z)

kµ⊥k
ν
⊥

k2
⊥

dαβ(P̃ , n)

]
,

where we set k⊥ = k1⊥ = −k2⊥. Note that, compared to ref. [31], we express the splitting

tensor Ĥαβ;µν
gg in a form that is individually symmetric in (µ, ν) and (α, β). In addition,

the two-parton splitting tensor Ĥαβ;µν
gg is special in that certain tensor structures do not

appear. The coefficients A
(g)
gg and D

(g)
3333,gg are subleading in the collinear limit, while E

(g)
33,gg

vanishes in the explicitly symmetric form (4.13). The relevant splitting tensors for three

collinear partons are new and are given in ref. [73] and in appendix C.

5 Conclusions

In this paper, we have computed the quadruple-collinear splitting amplitudes for a gluon

parent in CDR. Combined with our previous results for a quark parent [73], this completes

the set of tree-level splitting amplitudes describing all collinear singularities for the emission

of up to four collinear partons at N3LO. Our results are available in computer-readable form
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online [74]. We have also considered the strongly-ordered limit when a subset of the four

collinear partons become collinear to each other, and we have derived the corresponding

factorisation formulæ. Our results satisfy the expected factorisations in all strongly-ordered

limits, which provides a strong check on the correctness of our computations.

Our results are an important building block towards understanding the complete in-

frared structure of massless QCD amplitudes at N3LO, which is a cornerstone to construct

a substraction method at this order. Indeed, firstly, the purely virtual infrared singular-

ities of massless amplitudes with up to three loops are completely known [80–85]. Sec-

ondly, when our results are combined with the results for the one-loop emission of up to

three collinear particles [52–58, 60, 67, 68]6 and the two-loop splitting amplitudes for two

collinear partons [61–63], they provide a complete description of all collinear singularities

up to N3LO. Finally, soft emissions are known for the tree-level emission of up to three

soft partons [54, 70, 86, 87], and at one and two loops for the emission of a single soft

gluon [56, 58, 59, 64–66]. The soft current describing the emission of a pair of two soft

partons at one-loop, however, is still missing. For the future, it would be interesting to

compute this current and to complete the description of all infrared singularities of massless

QCD amplitudes at N3LO.
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A The iterated collinear limit

The strongly-ordered amplitude [73],

P̂ s.o. ;ss′

f1...fm
= P̂ hh

′
f1...fm′ Ĥ

hh′;ss′

f(1...m′)fm′+1...fm
, (A.1)

depends on the quantum numbers and light-cone kinematics of both the m-parton collinear

set and its m′-parton subset. It is obtained by summing over the helicities (h, h′) of the

parent parton of the collinear subset. In case the sub-parent with helicities (h, h′) is a

quark, following the factorisation in eq. (4.9), the strongly-ordered splitting amplitude has

the same tensor structure as an ordinary splitting amplitude. In case both the parent with

helicities (s, s′) and the sub-parent are gluons, the strongly-ordered amplitude has a similar

tensor structure as that of a gluon splitting amplitude,

P̂ s.o. ;µν
f1...fm

= gµν A s.o.
f1...fm +

m′∑
i,j=1

κµ⊥iκ
ν
⊥j

s1...m′
B s.o.
ij,f1...fm +

m∑
k,l=m′+1

kµ⊥kk
ν
⊥l

sm′+1...m
C s.o.
kl,f1...fm . (A.2)

6But for the one-loop collinear splitting amplitude q → ggq, which at present is unknown.
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It depends on the transverse momenta κµ⊥i of the collinear subset, i = 1, . . . ,m′ and those

of the other (m−m′)-collinear partons unaffected by the strongly-ordered limit, kµ⊥j with

j = m′ + 1, . . . ,m.

The strongly-ordered splitting amplitude can be obtained by performing the m′-parton

iterated limit on the m-parton splitting amplitude,

P̂ s.o. ;µν
f1...fm

=

(
s1...m′

s[1...m′]...m

)m′−1

C1...m′P̂µνf1...fm . (A.3)

The steps involved are essentially the same as for a quark parent, which was considered in

ref. [73]. However, as a first step, we need to apply the relation

kµ⊥i = ζiK
µ + κµ⊥i +

K · κ⊥i
α

nµ

n · P̃
, i = 1, . . . ,m′ , (A.4)

where Kµ =
∑m′

j=1 k
µ
⊥j = −

∑m
j=m′+1 k

µ
⊥j and α =

∑m′

j=1 zj . Then, we perform the steps

outlined in appendix C of ref. [73].

Comparing the strongly-ordered limit obtained from eq. (A.3) with that obtained from

eq. (A.1), works as a strong check on the splitting amplitudes. This was done to check all

possible two- and three-parton sub-limits.

B Tensor structure of gluon parent and sub-parent splitting tensors

In this appendix, we detail the general tensor structure of the gluon-initiated splitting

tensor Ĥαβ;µν
gfm′+1...fm

with a gluon sub-parent, defined in section 4. This tensor appears

as the collinear limit of the helicity tensor T αβ , defined in eq. (2.8). Therefore, we be-

gin by considering an n-parton tree-level QCD process with its associated helicity tensor

T αβf1...fn(p1, . . . , pn), where parton 1 carries the Lorentz indices (α, β). Using the same kind

of argument as for eq. (3.8), our gauge choice allows us to consider only diagrams that

have a propagator carrying the momentum P =
∑m

i=1 pi of the parent gluon. This directly

implies that the sub-diagrams splitting the parent parton into m partons will factorise (cf.

eq. (3.8)), the only difference being that the spin indices of parton 1 are not summed over,

C1...m T αβf1...fn(p1, . . . , pn) = (B.1)

= C1...m

[(
2µ2εg2

s

s1...m

)m−1 [
M(n)µ

gfm+1...fn

]∗
H

(n)αβ;µν
f1...fm

(p1, . . . , pm)M(n) ν
gfm+1...fn

]
.

The squared off-shell current H
(n)αβ;µν
f1...fm

is the interference of the colour-dressed off-shell

currents splitting the parent parton into m collinear partons (cf. eq. (3.9)), with the Lorentz

indices of parton 1 and the parent parton open,(
2µ2εg2

s

s1...m

)m−1

H
(n)αβ;µν
f1...fm

=
1

Cf

∑
(s2,...,sm)

(c,c1,...,cm)

[
Jc,c1...cm;νβs2...sm
f1...fm

]∗
Jc,c1...cm;µαs2...sm
f1...fm

, (B.2)
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where we have suppressed the dependence on the momenta. As usual the superscript

(n) indicates the dependence on the reference vector. Given the definition in eq. (B.2),

H
(n)αβ;µν
f1...fm

is symmetric under the simultaneous exchange of the Lorentz indices of parton

1 and the parent parton,

H
(n)αβ;µν
f1...fm

= H
(n)βα;νµ
f1...fm

. (B.3)

This means that the most general tensor structure for H
(n)αβ;µν
f1...fm

is given by

H
(n)αβ;µν
gf1...fm

= gαβ gµν A
(g)
gf1...fm +

m∑
i,j=1

pµi p
ν
j

s1...m
gαβ B

(g)
ij,gf1...fm +

m∑
i,j=1

pαi p
β
j

s1...m
gµν C

(g)
ij,gf1...fm

+
m∑

i,j,k,l=1

pµi p
ν
j p
α
kp

β
l

s2
1...m

D
(g)
ijkl,gf1...fm +

m∑
i,j=1

gαµ pβi p
ν
j + gβν pαi p

µ
j

s1...m
E

(g)
1 ij,gf1...fm

+
m∑

i,j=1

gαν pβi p
µ
j + gβµ pαi p

ν
j

s1...m
E

(g)
2 ij,gfm′+1...fm

+ gαµ gβν F
(g)
1 gf1...fm

+ gαν gβµ F
(g)
2 gf1...fm + gauge terms , (B.4)

where ‘gauge terms’ on the right-hand-side denote all terms proportional to the axial gauge

vector n. By the same arguments as for the tensor structure of the gluon-initiated splitting

amplitude, the coefficients A
(g)
gf1...fm through F

(g)
2 gf1...fm in eq. (B.4) are dimensionless and

of order zero in the collinear limit. In addition, we have the following symmetries, which

follow directly from eq. (B.3),

B
(g)
ij,gf1...fm = B

(g)
ji,gf1...fm ,

C
(g)
ij,gf1...fm = C

(g)
ji,gf1...fm ,

D
(g)
ijkl,gf1...fm = D

(g)
jilk,gf1...fm .

(B.5)

Since only the transverse part of a Lorentz tensor holds physical information (cf. sections 3

and 4), we multiply H
(n)αβ;µν
gf1...fm

by spin-polarisation tensors,

dµµ̃(P, n) dνν̃(P, n) dαα̃(p1, n) dββ̃(p1, n)H
(n) α̃β̃;µ̃ν̃
f1...fm

. (B.6)

Next, we take the m-parton collinear limit of H
(n)αβ;µν
f1...fm

to obtain the splitting tensor.

Equation (B.1) can then be written as

C1...m T αβf1...fn(p1, . . . , pn) =

(
2µ2εg2

s

s1...m

)m−1

Ĥαβ;µν
f1...fm

Tgfm+1...fn,µν(P̃ , pm+1, . . . , pn). (B.7)
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By computing explicitly the contractions of the tensors on the right-hand-side of eq. (B.4)

with the spin-polarisation tensors, we obtain

dµα(pi, n) gαβ dνβ(pi, n) = −dµν(P̃ , n) + . . . ,

dµν(pj , n) pνi = −kµ⊥i +
zi
zj
kµ⊥j + . . . ,

dµν(P, n)Pν = 0 + . . . ,

dµν(P, n)nν = 0 , (B.8)

dµν(pi, n) P̃ ν =
1

zi
kµ⊥i + . . . ,

dµν(P̃ , n) pνi = −kµ⊥i + . . . ,

where in the ellipses we have suppressed sub-leading terms in the m-parton collinear limit.

Thus, the transverse part of the splitting tensor in eq. (B.7) contains only combinations of

spin-polarisation tensors and transverse momenta.

In addition, we can take into account that in eq. (B.7) the splitting tensor is contracted

with the symmetric tensor T µνgfm+1...fn
, which allows us to discard terms in Ĥαβ;µν

f1...fm
that are

anti-symmetric under the exchange µ ↔ ν. This leads to the following expression for the

splitting tensor,

Ĥ αβ;µν
gf1...fm

= −dαβ dµν A(g)
gf1...fm

+
m∑

i,j=1

kµ⊥ik
ν
⊥j

s1...m
dαβ B

(g)
ij,gf1...fm

−
m∑

i,j=1

kα⊥ik
β
⊥j

s1...m
dµν C

(g)
ij,gf1...fm

+

m∑
i,j,k,l=1

kµ⊥ik
ν
⊥jk

α
⊥kk

β
⊥l

s2
1...m

D
(g)
ijkl,gf1...fm

−
m∑

i,j=1

dαµ kβ⊥ik
ν
⊥j + dβν kα⊥ik

µ
⊥j + dαν kβ⊥ik

µ
⊥j + dβµ kα⊥ik

ν
⊥j

s1...m
E

(g)
ij,gf1...fm

+
(
dαµ dβν + dαν dβµ

)
F

(g)
gf1...fm

, (B.9)

where we have suppressed the dependence of the spin-polarisation tensor on the gauge

vectors P̃ and n. The scalar coefficients appearing in eq. (B.9) are linear combinations of

the coefficients in eq. (B.4). To keep the symmetry of this expression, the coefficients now

satisfy

B
(g)
ij,gf1...fm

= B
(g)
ji,gf1...fm

,

C
(g)
ij,gf1...fm

= C
(g)
ji,gf1...fm

,

D
(g)
ijkl,gf1...fm

= D
(g)
jikl,gf1...fm

= D
(g)
ijlk,gf1...fm

= D
(g)
jilk,gf1...fm

.

(B.10)

We can now immediately obtain eq. (4.13) from eq. (B.9) by replacing some of the polari-

sation tensors by metric tensors following the discussion in section 4.

C The three-parton splitting tensors

There are three gluon-initiated splitting tensors with three partons in the collinear set,

g → q̄qg, g → gq̄q, g → ggg . (C.1)
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The first is obtained by not summing over the helicities (h, h′) of the quark (or equivalently,

by charge-conjugation, the anti-quark) in the collinear set. It is proportional to the three-

parton splitting amplitude P̂µνq̄qg given in ref. [54],

Ĥhh′;µν
q̄qg =

1

2
δhh

′
P̂µνq̄qg . (C.2)

The other two have the tensor structure of eq. (4.13). The three-gluon splitting tensor

Ĥαβ,µν
ggg is too lengthy to be presented on paper, but we make it available in computer-

readable form [74]. In the remainder of this section, we provide explicit results for the

splitting tensor Ĥαβ;µν
gq̄q . We can write it in terms of an ‘abelian’ and ‘non-abelian’ part,

Ĥαβ;µν
gq̄q =

1

2
CF Ĥ

αβ,µν (ab)
gq̄q +

1

2
CA Ĥ

αβ,µν (nab)
gq̄q . (C.3)

We add a subscript (12) to denote the on-shell momentum of the gluon sub-parent.

Furthermore, we define the shorthand,

z1...j = z1 + . . .+ zj , z̄i = 1− zi , k⊥1...j = k⊥1 + . . .+ k⊥j . (C.4)

In what follows, we have eliminated z12 and k⊥12 using the constraints. The sub-energies

s[ij]k are defined in eq. (4.4). The coefficients in eq. (4.13) belonging to the ‘abelian’ piece

of Ĥαβ;µν
g(12)q̄3q4

are given by

A
(g) (ab)
g(12)q̄3q4

= −
(
s[12]3 + s[12]4

)2
2s[12]3s[12]4

, (C.5)

B
(g) (ab)
33,g(12)q̄3q4

≡ B(g) (ab)
34,g(12)q̄3q4

≡ B(g) (ab)
43,g(12)q̄3q4

≡ B(g) (ab)
44,g(12)q̄3q4

= −
2s[12]34

s[12]3s[12]4
, (C.6)

C
(g) (ab)
33,g(12)q̄3q4

= −
2s[12]34

(
z4s[12]3 − z̄4s[12]4

)
2

s2
[12]3s

2
[12]4(1− z34)2

, (C.7)

C
(g) (ab)
44,g(12)q̄3q4

= −
2s[12]34

(
z3s[12]4 − z̄3s[12]3

)
2

s2
[12]3s

2
[12]4(1− z34)2

, (C.8)

C
(g) (ab)
34,g(12)q̄3q4

≡ C(g) (ab)
43,g(12)q̄3q4

=
2s[12]34

(
z3s[12]4 − z̄3s[12]3

) (
z4s[12]3 − z̄4s[12]4

)
s2

[12]3s
2
[12]4(1− z34)2

, (C.9)

D
(g) (ab)
3333,g(12)q̄3q4

= − 8z4
2

s2
[12]4(1− z34)2

, (C.10)

D
(g) (ab)
4444,g(12)q̄3q4

= − 8z3
2

s2
[12]3(1− z34)2

, (C.11)

D
(g) (ab)
3334,g(12)q̄3q4

≡ D(g) (ab)
3343,g(12)q̄3q4

= − 8z4z̄3

s2
[12]4(1− z34)2

, (C.12)

D
(g) (ab)
3433,g(12)q̄3q4

≡ D(g) (ab)
4333,g(12)q̄3q4

= − 8z4z̄4

s[12]3s[12]4(1− z34)2
, (C.13)

D
(g) (ab)
4434,g(12)q̄3q4

≡ D(g) (ab)
4443,g(12)q̄3q4

= − 8z3z̄4

s2
[12]3(1− z34)2

, (C.14)
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D
(g) (ab)
3444,g(12)q̄3q4

≡ D(g) (ab)
4344,g(12)q̄3q4

= − 8z3z̄3

s[12]3s[12]4(1− z34)2
, (C.15)

D
(g) (ab)
3434,g(12)q̄3q4

≡ D(g) (ab)
4343,g(12)q̄3q4

≡ D(g) (ab)
4334,g(12)q̄3q4

≡ D(g) (ab)
3443,g(12)q̄3q4

= 4
z3z̄4 + z4z̄3 − 1

s[12]3s[12]4(1− z34)2
, (C.16)

D
(g) (ab)
4433,g(12)q̄3q4

= − 8z̄2
4

s2
[12]3(1− z34)2

, (C.17)

D
(g) (ab)
3344,g(12)q̄3q4

= − 8z̄2
3

s2
[12]4(1− z34)2

, (C.18)

E
(g) (ab)
33,g(12)q̄3q4

= − 2z4

s[12]4(1− z34)
, (C.19)

E
(g) (ab)
44,g(12)q̄3q4

= − 2z3

s[12]3(1− z34)
, (C.20)

E
(g) (ab)
34,g(12)q̄3q4

= − 2z̄4

s[12]3(1− z34)
, (C.21)

E
(g) (ab)
43,g(12)q̄3q4

= − 2z̄3

s[12]4(1− z34)
, (C.22)

F
(g) (ab)
g(12)q̄3q4

= −1 , (C.23)

while the ‘non-abelian’ coefficients read

A
(g) (nab)
g(12)q̄3q4

=
1

2
, (C.24)

B
(g) (nab)
33,g(12)q̄3q4

=
s[12]34

(
s34 + s[12]4

)
s34s[12]3s[12]4

, (C.25)

B
(g) (nab)
34,g(12)q̄3q4

≡ B(g) (nab)
43,g(12)q̄3q4

=
s[12]34

(
s[12]34 + s34

)
2s34s[12]3s[12]4

, (C.26)

B
(g) (nab)
44,g(12)q̄3q4

=
s[12]34

(
s34 + s[12]3

)
s34s[12]3s[12]4

, (C.27)

C
(g) (nab)
33,g(12)q̄3q4

= −
s[12]34

(
z̄4

(
2z4s34 + s[12]4

)
+ z4s[12]3

)
s34s[12]3s[12]4(1− z34)2

, (C.28)

C
(g) (nab)
44,g(12)q̄3q4

= −
s[12]34

(
z̄3

(
2z3s34 + s[12]3

)
+ z3s[12]4

)
s34s[12]3s[12]4(1− z34)2

, (C.29)

C
(g) (nab)
34,g(12)q̄3q4

≡ C(g) (nab)
43,g(12)q̄3q4

= −
s[12]34

(1− z34)2

(
z̄4z̄3 + z4z3

s[12]3s[12]4
+

z̄3 + z4

2s34s[12]4
+

z̄4 + z3

2s34s[12]3

)
,

D
(g) (nab)
3333,g(12)q̄3q4

= −
8z4

2
(
s34 + s[12]4

)
s34

2s[12]4(1− z34)2
, (C.30)

D
(g) (nab)
4444,g(12)q̄3q4

= −
8z3

2
(
s34 + s[12]3

)
s34

2s[12]3(1− z34)2
, (C.31)

D
(g) (nab)
3334,g(12)q̄3q4

≡ D(g) (nab)
3343,g(12)q̄3q4

= −
8z4z̄3

(
s34 + s[12]4

)
s34

2s[12]4(1− z34)2
, (C.32)
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D
(g) (nab)
3433,g(12)q̄3q4

≡ D(g) (nab)
4333,g(12)q̄3q4

=
4z4z̄4

s[12]4(1− z34)2

(
s34 + 2s[12]4

s2
34

+
s34 + s[12]4

s34s[12]3

)
, (C.33)

D
(g) (nab)
4434,g(12)q̄3q4

≡ D(g) (nab)
4443,g(12)q̄3q4

= −
8z3z̄4

(
s34 + s[12]3

)
s34

2s[12]3(1− z34)2
, (C.34)

D
(g) (nab)
3444,g(12)q̄3q4

≡ D(g) (nab)
4344,g(12)q̄3q4

=
4z3z̄3

s[12]4(1− z34)2

(
s34 + 2s[12]4

s2
34

+
s34 + s[12]4

s34s[12]3

)
, (C.35)

D
(g) (nab)
3434,g(12)q̄3q4

≡ D(g) (nab)
4343,g(12)q̄3q4

≡ D(g) (nab)
4334,g(12)q̄3q4

≡ D(g) (nab)
3443,g(12)q̄3q4

= 2
z̄4z̄3 + z3z4

(1− z34)2

(
2

s2
34

+
s[12]34

s[12]3s[12]4s34

)
, (C.36)

D
(g) (nab)
4433,g(12)q̄3q4

= −
8z̄2

4

(
s34 + s[12]3

)
s34

2s[12]3(1− z34)2
, (C.37)

D
(g) (nab)
3344,g(12)q̄3q4

= −
8z̄2

3

(
s34 + s[12]4

)
s34

2s[12]4(1− z34)2
, (C.38)

E
(g) (nab)
33,g(12)q̄3q4

=
2z2

4(s[12]3 + s34)− 4z3z4s[12]4

(1− z34)z34s34

(
1

s[12]4
+

1

s34

)
+

2z2
4s[12]3

(1− z34)z34s2
34

, (C.39)

E
(g) (nab)
44,g(12)q̄3q4

=
2z2

3(s[12]4 + s34)− 4z3z4s[12]3

(1− z34)z34s34

(
1

s[12]3
+

1

s34

)
+

2z2
3s[12]4

(1− z34)z34s2
34

, (C.40)

E
(g) (nab)
34,g(12)q̄3q4

=
s34 + s[12]4

2s34s[12]3z34
−

(s34 + s[12]3)

2s34s[12]4

(
4z4z̄3

(1− z34)z34
+

1

z34

)
+

4z̄3

s34(1− z34)z34

(
z3 −

1

2
z4 −

s[12]3z4 − s[12]4z3

s34

)
, (C.41)

E
(g) (nab)
43,g(12)q̄3q4

=
s34 + s[12]3

2s34s[12]4z34
−

(s34 + s[12]4)

2s34s[12]3

(
4z3z̄4

(1− z34)z34
+

1

z34

)
+

4z̄4

s34(1− z34)z34

(
z4 −

1

2
z3 +

s[12]3z4 − s[12]4z3

s34

)
, (C.42)

F
(g) (nab)
g(12)q̄3q4

=
1

4
−
(
z3s[12]4 − z4s[12]3

)2
s34

2z2
34

+

(
s34 + s[12]4

) (
s34 − z3s[12]4

)
2s34s[12]3z34

−
s34 + s[12]3

2s[12]4

+
s[12]4

(
z34 (4− 3z4)− 8z3

2
)

2s34z2
34

+
3 (1− z34)

2z34
+
z3z4

z2
34

+ (3↔ 4) . (C.43)
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[39] V. Del Duca, G. Somogyi and Z. Trócsányi, Integration of collinear-type doubly unresolved

counterterms in NNLO jet cross sections, JHEP 06 (2013) 079 [arXiv:1301.3504] [INSPIRE].

[40] G. Somogyi, A subtraction scheme for computing QCD jet cross sections at NNLO:

integrating the doubly unresolved subtraction terms, JHEP 04 (2013) 010 [arXiv:1301.3919]

[INSPIRE].

[41] M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B

693 (2010) 259 [arXiv:1005.0274] [INSPIRE].

[42] M. Czakon, Double-real radiation in hadronic top quark pair production as a proof of a

certain concept, Nucl. Phys. B 849 (2011) 250 [arXiv:1101.0642] [INSPIRE].

[43] M. Czakon and D. Heymes, Four-dimensional formulation of the sector-improved residue

subtraction scheme, Nucl. Phys. B 890 (2014) 152 [arXiv:1408.2500] [INSPIRE].

[44] M. Czakon, A. van Hameren, A. Mitov and R. Poncelet, Single-jet inclusive rates with exact

color at O(α4
s), JHEP 10 (2019) 262 [arXiv:1907.12911] [INSPIRE].

[45] F. Caola, K. Melnikov and R. Röntsch, Nested soft-collinear subtractions in NNLO QCD

computations, Eur. Phys. J. C 77 (2017) 248 [arXiv:1702.01352] [INSPIRE].

[46] F. Caola, M. Delto, H. Frellesvig and K. Melnikov, The double-soft integral for an arbitrary

angle between hard radiators, Eur. Phys. J. C 78 (2018) 687 [arXiv:1807.05835] [INSPIRE].

[47] M. Delto and K. Melnikov, Integrated triple-collinear counter-terms for the nested

soft-collinear subtraction scheme, JHEP 05 (2019) 148 [arXiv:1901.05213] [INSPIRE].

[48] F. Caola, K. Melnikov and R. Röntsch, Analytic results for color-singlet production at NNLO

QCD with the nested soft-collinear subtraction scheme, Eur. Phys. J. C 79 (2019) 386

[arXiv:1902.02081] [INSPIRE].

[49] F. Caola, K. Melnikov and R. Röntsch, Analytic results for decays of color singlets to gg and

qq̄ final states at NNLO QCD with the nested soft-collinear subtraction scheme, Eur. Phys.

J. C 79 (2019) 1013 [arXiv:1907.05398] [INSPIRE].

[50] M. Cacciari, F.A. Dreyer, A. Karlberg, G.P. Salam and G. Zanderighi, Fully differential

vector-boson-fusion Higgs production at next-to-next-to-leading order, Phys. Rev. Lett. 115

(2015) 082002 [Erratum ibid. 120 (2018) 139901] [arXiv:1506.02660] [INSPIRE].

[51] J. Currie, T. Gehrmann, E.W.N. Glover, A. Huss, J. Niehues and A. Vogt, N3LO corrections

to jet production in deep inelastic scattering using the Projection-to-Born method, JHEP 05

(2018) 209 [arXiv:1803.09973] [INSPIRE].

[52] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop N point gauge theory

amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226]

[INSPIRE].

[53] J.M. Campbell and E.W. Glover, Double unresolved approximations to multiparton scattering

amplitudes, Nucl. Phys. B 527 (1998) 264 [hep-ph/9710255] [INSPIRE].

– 23 –

https://doi.org/10.1088/1126-6708/2009/08/079
https://arxiv.org/abs/0905.4390
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0905.4390
https://doi.org/10.1007/JHEP01(2011)059
https://doi.org/10.1007/JHEP01(2011)059
https://arxiv.org/abs/1011.1909
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1011.1909
https://doi.org/10.1007/JHEP06(2013)079
https://arxiv.org/abs/1301.3504
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1301.3504
https://doi.org/10.1007/JHEP04(2013)010
https://arxiv.org/abs/1301.3919
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1301.3919
https://doi.org/10.1016/j.physletb.2010.08.036
https://doi.org/10.1016/j.physletb.2010.08.036
https://arxiv.org/abs/1005.0274
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1005.0274
https://doi.org/10.1016/j.nuclphysb.2011.03.020
https://arxiv.org/abs/1101.0642
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1101.0642
https://doi.org/10.1016/j.nuclphysb.2014.11.006
https://arxiv.org/abs/1408.2500
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.2500
https://doi.org/10.1007/JHEP10(2019)262
https://arxiv.org/abs/1907.12911
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.12911
https://doi.org/10.1140/epjc/s10052-017-4774-0
https://arxiv.org/abs/1702.01352
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.01352
https://doi.org/10.1140/epjc/s10052-018-6180-7
https://arxiv.org/abs/1807.05835
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.05835
https://doi.org/10.1007/JHEP05(2019)148
https://arxiv.org/abs/1901.05213
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.05213
https://doi.org/10.1140/epjc/s10052-019-6880-7
https://arxiv.org/abs/1902.02081
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.02081
https://doi.org/10.1140/epjc/s10052-019-7505-x
https://doi.org/10.1140/epjc/s10052-019-7505-x
https://arxiv.org/abs/1907.05398
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.05398
https://doi.org/10.1103/PhysRevLett.115.082002
https://doi.org/10.1103/PhysRevLett.115.082002
https://arxiv.org/abs/1506.02660
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.02660
https://doi.org/10.1007/JHEP05(2018)209
https://doi.org/10.1007/JHEP05(2018)209
https://arxiv.org/abs/1803.09973
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.09973
https://doi.org/10.1016/0550-3213(94)90179-1
https://arxiv.org/abs/hep-ph/9403226
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9403226
https://doi.org/10.1016/S0550-3213(98)00295-8
https://arxiv.org/abs/hep-ph/9710255
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9710255


J
H
E
P
1
0
(
2
0
2
0
)
0
9
3

[54] S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the

next-to-next-to-leading order and beyond, Nucl. Phys. B 570 (2000) 287 [hep-ph/9908523]

[INSPIRE].

[55] V. Del Duca, A. Frizzo and F. Maltoni, Factorization of tree QCD amplitudes in the

high-energy limit and in the collinear limit, Nucl. Phys. B 568 (2000) 211 [hep-ph/9909464]

[INSPIRE].

[56] Z. Bern, V. Del Duca and C.R. Schmidt, The infrared behavior of one loop gluon amplitudes

at next-to-next-to-leading order, Phys. Lett. B 445 (1998) 168 [hep-ph/9810409] [INSPIRE].

[57] D.A. Kosower and P. Uwer, One loop splitting amplitudes in gauge theory, Nucl. Phys. B

563 (1999) 477 [hep-ph/9903515] [INSPIRE].

[58] Z. Bern, V. Del Duca, W.B. Kilgore and C.R. Schmidt, The infrared behavior of one loop

QCD amplitudes at next-to-next-to leading order, Phys. Rev. D 60 (1999) 116001

[hep-ph/9903516] [INSPIRE].

[59] S. Catani and M. Grazzini, The soft gluon current at one loop order, Nucl. Phys. B 591

(2000) 435 [hep-ph/0007142] [INSPIRE].

[60] D.A. Kosower, Multiple singular emission in gauge theories, Phys. Rev. D 67 (2003) 116003

[hep-ph/0212097] [INSPIRE].

[61] Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop g → gg splitting amplitudes in QCD, JHEP

08 (2004) 012 [hep-ph/0404293] [INSPIRE].

[62] S.D. Badger and E.W. Glover, Two loop splitting functions in QCD, JHEP 07 (2004) 040

[hep-ph/0405236] [INSPIRE].

[63] C. Duhr, T. Gehrmann and M. Jaquier, Two-loop splitting amplitudes and the single-real

contribution to inclusive Higgs production at N3LO, JHEP 02 (2015) 077 [arXiv:1411.3587]

[INSPIRE].

[64] C. Duhr and T. Gehrmann, The two-loop soft current in dimensional regularization, Phys.

Lett. B 727 (2013) 452 [arXiv:1309.4393] [INSPIRE].

[65] Y. Li and H.X. Zhu, Single soft gluon emission at two loops, JHEP 11 (2013) 080

[arXiv:1309.4391] [INSPIRE].

[66] L.J. Dixon, E. Herrmann, K. Yan and H.X. Zhu, Soft gluon emission at two loops in full

color, JHEP 05 (2020) 135 [arXiv:1912.09370] [INSPIRE].

[67] S. Catani, D. de Florian and G. Rodrigo, The triple collinear limit of one loop QCD

amplitudes, Phys. Lett. B 586 (2004) 323 [hep-ph/0312067] [INSPIRE].

[68] S. Badger, F. Buciuni and T. Peraro, One-loop triple collinear splitting amplitudes in QCD,

JHEP 09 (2015) 188 [arXiv:1507.05070] [INSPIRE].

[69] G.F.R. Sborlini, D. de Florian and G. Rodrigo, Triple collinear splitting functions at NLO

for scattering processes with photons, JHEP 10 (2014) 161 [arXiv:1408.4821] [INSPIRE].

[70] S. Catani, D. Colferai and A. Torrini, Triple (and quadruple) soft-gluon radiation in QCD

hard scattering, JHEP 01 (2020) 118 [arXiv:1908.01616] [INSPIRE].

[71] T.G. Birthwright, E.W. Glover, V.V. Khoze and P. Marquard, Multi-gluon collinear limits

from MHV diagrams, JHEP 05 (2005) 013 [hep-ph/0503063] [INSPIRE].

[72] C. Duhr, Applications of twistor methods in QCD, master’s thesis, Université Catholique de
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