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1 Introduction and notation

Once quantum corrections to quantities, which involve heavy quarks, are computed to

higher orders in perturbation theory the renormalization of the mass and wave function

has to be performed. The corresponding renormalization constants are usually denoted by

ZOS
m and ZOS

2 , respectively. They are defined through

m0 = ZOS
m mOS ,

ψ0 =
√
ZOS
2 ψOS , (1.1)

where m0 and ψ0 stand for the bare quark mass and wave function. The superscript

“OS” refers to the on-shell scheme, which for QCD corrections is used synonymous to the

pole scheme.

Within QCD, analytic results for both renormalization constants are available up to

three loops [2–9]. At four-loop order [10–13] semi-analytic methods were used. Starting

from two loops there are contributions with closed quark loops, which can either be mass-

less, have the mass of the external quark (m1), or have a different mass (m2). Sample

Feynman diagrams of this type can be found in figure 1. The case mi 6= 0 (i = 1, 2) and

m1 6= m2 was considered in refs. [3, 4] and [1] at two- and three-loop orders (see also

refs. [14, 15]). In this work we re-consider these contributions to ZOS
m and ZOS

2 up to three-

loop order and provide analytic results including O(ε) terms. In ref. [1] only expansions

for m2/m1 → 0 and numerical results have been provided up to the constant term in ε.

In the Standard Model the largest quark mass ratio comes from charm and bottom

quarks. In fact, with increasing experimental precision in B physics observables it be-

comes more and more important to include charm mass effects even at higher orders in

perturbation theory. A prominent example is the semileptonic decay b → c`ν which is

currently known to O(α2
s) [16–18]. The extension to O(α3

s), necessary to determine |Vcb|
with a relative uncertainty of about 1%, requires the two-mass renormalization constants

considered in this paper. They must be know analytically in all three limits m2/m1 → 0,

m2/m1 → 1 and m2/m1 →∞. Indeed, to renormalize the mass and wave function of the
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Figure 1. Sample Feynman diagrams contributing to ZOS
m and ZOS

2 . Straight and curly lines

represent quarks and gluons, respectively. The fermions in the closed loop may have a different

mass from the external fermion.

bottom field, one has m1 = mb and m2 = mc. To include the effects of the lighter charm

quark, one considers ZOS
2 and ZOS

m in the regime m2/m1 = mc/mb . 1. Vice versa, for the

renormalization of the charm field, one has to set m1 = mc and m2 = mb. Therefore effects

of the heavier bottom quark are covered by the opposite limit m2/m1 = mb/mc & 1.

In addition, the future analysis of the data from the MUonE experiment [19, 20] will

likely require the knowledge of the dominant α3
em corrections to muon-electron scatter-

ing [21–23]. As it often happens for QED processes, it is not possible to set the electron

mass me = 0 in the evaluation of virtual corrections, since charged leptons are experi-

mentally distinguishable from their collinear photon radiation (contrary to what happens

in QCD to quarks in jets). Therefore in QED, keeping finite fermion masses is often a

necessity in order to regularize collinear singularities. Even in the case when finite electron

mass effects are restored via massification [24] of virtual amplitudes computed for me = 0,

the procedure employs the lepton’s wave-function renormalization constant with finite me

effects to the relevant order in αem. The results presented in this paper thus apply also to

such processes, with the proper translation of QCD color factors to QED.

A further, at first sight not obvious, application of the three-loop two-mass result

for ZOS
m is the renormalon analysis of the relation between the top quark pole and MS

mass [25, 26] with the aim to determine the ultimate uncertainty of the top-quark pole

mass. Note that the typical loop momentum at order αn+1
s scales as mte

−n and thus light

quark mass effects are important at higher loop orders although at first sight mb/mt and

mc/mt seem to be negligibly small.

It is convenient to introduce the variable

x =
m2

m1
. (1.2)

We furthermore adopt the notation from [1] and write (i = m, 2)

ZOS
i = 1 +

αs(µ)

π

(
eγE

4π

)−ε
δZ

(1)
i +

(
αs(µ)

π

)2(eγE
4π

)−2ε
δZ

(2)
i

+

(
αs(µ)

π

)3(eγE
4π

)−3ε
δZ

(3)
i +O

(
α4
s

)
, (1.3)

where αs denotes the MS renormalized strong coupling constant defined in nf -flavour QCD,

and µ is the renormalization constant; γE is the Euler-Mascheroni constant. We decompose
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Quark type Mass Colour Label

external m1 > 0 nh

internal, massive m2 > 0 nm

internal, massless 0 nl

Table 1. Conventions adopted in this work for closed quark loops.

the coefficients δZ
(k)
i according to the different colour factors and obtain

δZ
(1)
i = CF Z

F
i

δZ
(2)
i = C2

F Z
FF
i + CFCA Z

FA
i + +CFTFnlZ

FL
i + CFTFnhZ

FH
i + CFTFnmZ

FM
i (x)

δZ
(3)
i = C3

F Z
FFF
i + C2

FCA Z
FFA
i + CFC

2
A Z

FAA
i + CFTFnl

(
CF Z

FFL
i + CA Z

FAL
i

+ TFnl Z
FLL
i + TFnh Z

FHL
i + TFnm Z

FML
i (x)

)
+ CFTFnh

(
CF Z

FFH
i + CA Z

FAH
i + TFnh Z

FHH
i + TFnm Z

FMH
i (x)

)
+ CFTFnm

(
CF Z

FFM
i (x) + CA Z

FAM
i (x) + TFnm Z

FMM
i (x)

)
, (1.4)

with the SU(Nc) colour factors CF = (N2
c − 1)/(2Nc), CA = Nc and TF = 1/2. We have

introduced the quantities nl, nh and nm to label closed quark loops with mass zero, m1

and m2, respectively, see also table 1. We have nf = nl + nm + nh = nl + 1 + 1 active

quark flavours. Note that only the terms proportional to nm and n2m have a non-trivial

dependence on x. This is the main subject of the present paper.

For the quark mass renormalization constant we also introduce the ratio

zm =
ZOS
m

ZMS
m

(1.5)

which is finite since both ZOS
m and the MS renormalization constant ZMS

m only contain

ultra-violet poles, which cancel in the ratio. Note that ZOS
2 contains both ultra-violet and

infra-red poles. zm has an analogous perturbative expansion as ZOS
m and ZOS

2 in eq. (1.3).

In ref. [1] the nm-dependent terms of ZOS
m and ZOS

2 were computed up to three loops.

At two-loop order analytic results were obtained. However, at three-loop order, for the

complicated master integrals only an expansion for x → 0 could be obtained. For larger

values of x a numerical evaluation was necessary. For most practical purposes this is

sufficient. However, in some cases analytic expressions or expansions are useful. In this

work we extend the result of [1] in the following aspects:

• We extend the ε expansion by one order both at two and three loops, which is

necessary input for a future four-loop calculation of the nm terms of the on-shell

renormalization constants.

• We provide analytic results in terms of iterated integrals with the letters τ, 1− τ, 1 +

τ,
√

1− τ2,
√

1− τ2/τ . They are present both in the α3
sε

0 and α3
sε

1 terms. Note that

in [1] for some of the colour factors even for the 1/ε poles only numerical results were

available.
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• We provide 26 terms in an anlytic expansions both for x → 0, x → 1 and x → ∞
(i.e. up to order x25, (1 − x)25 and 1/x25). In ref. [1], for the three-loop term only

the expansion for x→ 0 up to x8 was considered.

In the next section we briefly describe the approach which we use to obtain the analytic

results and the expansions in the various limits. In section 3 we discuss our results for the

renormalization constants and give our conclusions. In the appendix we provide details to

the supplementary material attached to this paper.

2 Technicalities

We base our three-loop calculation on intermediate expressions obtained in ref. [1]. In

particular, we use the results where ZOS
m and ZOS

2 are expressed in terms of the 28 master

integrals shown in figure 2. They are obtained from three integral families introduced in

refs. [1, 27]. We have implemented the integral families in LiteRed [28, 29] and redone the

redution to the 28 master integrals shown in figure 2. After using the additional relation [27]

M17 = − 1

x2
M15 −

2d− 5

2x2
M14 −

2− d
4x2

M4, (2.1)

one ends up with 27 master integrals, which have to be computed.

We utilize LiteRed [28, 29] to derive a closed system of differential equations. Out of

the 27 master integrals 23 can be solved in terms of harmonic polylogarithms (HPLs). Their

analytic results are given in [27]. There it was also noted that four master integrals (M20,

M21, M22, M23) cannot be expressed in terms of HPLs at higher orders in ε = (4 − d)/2.

For these integrals expansions around x = 0 were obtained and numerical values for larger

values of x were calculated. In this work we obtain analytic results for the missing master

integrals and, furthermore, extend all master integrals by one order in ε such that we obtain

the renormalization constants to O(ε2) at two and to O(ε) at three loops, respectively. This

will be a crucial input for a future four-loop calculation of the renormalization constants.

We solve the coupled system of differential equations using the algorithmic approach

presented in ref. [30]. For the convenience of the reader we outline in the following the

main steps of this approach. The differential equation can be written in the form

d ~M(x, ε)

dx
= A(x, ε) · ~M(x, ε) , (2.2)

where ~M(x, ε) is the vector of our 27 master integrals. It can be chosen such that the

matrix A is in upper-block diagonal form, i.e. the diagonal elements are square matrices

with possible non-vanishing entries to the left.

The square matrices on the diagonal represent coupled sets of master integrals, which

only depend on themselves and integrals from lower sectors. One can therefore solve the sys-

tem successively starting from simpler systems and insert the solutions as inhomogeneities

into the more involved ones. In total we find one 3 × 3 and seven 2 × 2 systems. The x

dependence of seven of the remaining ten master integrals factorizes.
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M1 M2 M3

M4 M5 M6 M7

M8 M9 M10 M11

M12 M13 M14 M15

M16 M17 M18 M19

M20 M21 M22 M23

M24 M25

M26 M27 M28

Figure 2. Three-loop master integrals after the LiteRed reduction. Solid and dashed lines repre-

sent propagators with mass m1 and m2. Wavy lines stand for massless particles. Note that there

is a relation between M4, M14, M15 and M17 (see text).
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We decouple the systems of differential equations with the package OreSys [31], which

is based on Sigma [32, 33], to obtain a single differential equation of higher order for one

of the master integrals in the system. Furthemore, OreSys provides rules to construct

the other master integrals from the solution of the differential equation. The higher order

differential equations are then expanded in ε and iteratively solved order by order. To solve

the differential equations we make use of the solver implemented in HarmonicSums [34–46],

which is particularly well suited to find solutions in terms of iterated integrals. In a first

step we consider the homogeneous part of the differential equation and try to write it in

factorized form. If it fully factorizes into first order factors the solution in terms of iterated

integrals can be obtained in a straightforward way. If second order factors remain Kovacic’s

algorithm [47] is used to find all solutions of the differential equation, which can be written

in terms of iterated integrals. In our case the homogenous solutions in terms of iterated

integrals exist and thus also the particular solutions can be expressed in terms of iterated

integrals. The construction and simplification of the homogeneous and particular solution

is automated in HarmonicSums. To fully solve the differential equations we still need to fix

the integration constants multiplying the homogeneous solutions. Boundary values for all

integrals at x = 0 and x = 1 can be extracted from the on-shell integrals given in ref. [48].

To fix all integration constants we need both limits since for some master integrals the

homogeneous solutions vanish at x = 0 or x = 1.

Four master integrals cannot be expressed in terms of usual HPLs. We want to il-

lustrate this for the system of differential equations of the integrals M22 and M23. After

decoupling the homogenous differential equations for the master integral M22 we obtain

M ′′22 =
1− 4x2

x(1− x2)
M ′22 +

4

1− x2
M22 , (2.3)

where d = 4 has been used in the coefficients since the ε-dependent terms enter the inho-

mogeneous part. Equation (2.3) has the two solutions

M
(1)
22 = x2(4− x2) ,

M
(2)
22 = (2− 3x2 + x4)

√
1− x2 + x2(4− x2)

[
1 + I

({√
1− τ2
τ

}
, x

)]
, (2.4)

where I denotes a generalized iterated integral over the specified integration kernels indi-

cated in the curly brackets with the help of the variable τ , i.e.

I
({
g(τ),~h(τ)

}
, x
)

=

x∫
0

dt g(t) I
({
~h(τ)

}
, t
)
. (2.5)

Note that a regularization is needed for letters which lead to divergent expressions for

t→ 0. This is in complete analogy to HPLs [49]. Equation (2.4) illustrates that one has to

introduce the new letter
√

1− τ2/τ in order to solve the differential equation. Analogously

the system of master integrals M20 and M21 introduces the letter
√

1− τ2. After fixing the

boundary conditions it turns out that for all master integrals the generalized letters are
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only needed from O(ε) onwards. Note that the O(ε) terms enter the finite contribution of

ZOS
m and ZOS

2 .

Since the additional letters only introduce one square root it is possible to rational-

ize the letters with a suitable variable transformation. One possibility is the so-called

trigonometric substitution

x =
2y

1 + y2
, (2.6)

which introduces the letters
1

1 + τ2
,

τ

1 + τ2
. (2.7)

Iterated integrals over these kinds of letters have been studied in ref. [37]; the corresponding

iterated integrals are called cyclotomic HPLs.

Alternatively one can factor the polynomial over the complex numbers and introduce

Goncharov polylogarithms [50] with letters taken from the set of the 4th root of unity. For

example one has

I
({√

1− τ2
}
, x
)

=
y(1− y2)
(1 + y2)2

+ I

({
1

1 + τ2

}
, y

)
=
y(1− y2)
(1 + y2)2

+
i

2
[G(i, y)−G(−i, y)] , (2.8)

but also

H1(x) = 2H1(y) + 2I

({
τ

1 + τ2

}
, y

)
, (2.9)

which shows that the variable transformation in eq. (2.6) converts HPLs with argument x

into cyclotomic HPLs with argument y. Note, however, that the transformation in eq. (2.6)

significantly increases the complexity of the rational functions in the differential equations.

Thus, we have chosen to solve them in the variable x. However, eq. (2.6) is needed to

fix the boundary conditions at x = 1, since this requires the evaluation of the iterated

integrals at this point. The corresponding results up to weight 5 are conveniently obtained

by transforming the iterated integrals to cyclotomic HPLs for which the values at x = 1

are known up to weight 6 [37]. This leads to relations like

I

({
1

τ
,
√

1−τ2, 1

1−τ

}
,1

)
=

5

4
+C

(
1

2
+l2

)
− 3l2

2
+
l22π

4
−π

2

8
−π

3

96
+

1

2
cs1 , (2.10)

with l2 = log(2), Catalan’s constant

C =

∞∑
i=1

(−1)i

(2i+ 1)2
≈ 0.915966 , (2.11)

and a further cyclotomic constant

cs1 =

∞∑
n=1

(−1)n

n2

n∑
k=1

(−1)k

1 + 2k
≈ 0.330798 . (2.12)
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Note that for the evaluation of individual functions at argument x = 1 several cyclotomic

constants appear. However, in our final result, all but C cancel. Analytic results for all

master integrals are provided in the supplementary material attached to this paper.

Up to O(α2
s) all renormalization constants can be expressed in terms of HPLs to all

orders in ε. This changes at O(α3
s). Here only the pole terms can be expressed in terms

of HPLs. Note that even the ε−1 terms of ZOS
2 has not been known analytically before.

At O(α3
sε

0) HPLs up to weight 5 and 14 iterated integrals with the two additional letters

introduced above up to weight 4 contribute. For the next term in the ε expansion HPLs

up to weight 6 and 100 additional iterated integrals up to weight 5 are needed. Note also

that starting from O(α3
sε

0) the prefactors of iterated itegrals, HPLs and transcendental

numbers become analytics functions in x rather than rational functions, since also here√
1− x2 appears.

For fast and precise numerical evaluations we provide expansions around x = 0, x = 1

and x→∞. The expansions around x = 0 can be obtained from

d

dx
I ({w1(τ), . . . , wn(τ)} , x) = w1(x)I ({w2(τ), . . . , wn(τ)} , x) . (2.13)

For the expansion around x = 1 we first map the argument of the iterated integrals to

1− x. This can be achieved iteratively with the formula

I ({w1(τ), . . . , wn(τ)} , x) = I ({w1(τ), . . . , wn(τ)} , 1)

−
1−x∫
0

dtw1(1− t)I ({w2(τ), . . . , wn(τ)} , 1− t) , (2.14)

which can be easily proven from the integral representation. In our case this step does not

introduce new letters, but introduces the iterated integrals at argument x = 1. The same

constants were already needed to fix boundary conditions for the differential equations.

Afterwards we can expand easily around 1 − x.

The expansion for x → ∞ is more involved since the letters involving square roots

develop a branch cut for x > 1. Thus, in a first step we have to construct the analytic

continuation for the iterated integrals, i.e., the relations for the corresponding functions

with argument x < 1. We use differential equations to do this. Let us for illustration

consider an iterated integral of weight one. Then we have

d

dx
I

({√
1− τ2
τ

}
, x

)
=

√
1− x2
x

. (2.15)

Now we change the variable to z = 1/x and find

d

dz
f(z) = −i

√
1− z2
z2

, (2.16)

where f(z) is the analytic continuation of the iterated integral in eq. (2.15). We assume

0 < z < 1 in accordance with x > 1. Note that in our case the change of variables again

does not introduce new letters. The differential equation can be easily solved by integrating

– 8 –
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the right hand side over z and fixing the integration constant for x = z = 1. This again

only requires the knowledge of the iterated integrals at argument x = 1. For our example,

we obtain

I

({√
1− τ2
τ

}
, x

)
= l2 − 1 + i

[
(1− z2)3/2

z
+ 2I

({√
1− τ2

}
, z
)
− π

2

]
. (2.17)

For higher weights one can proceed iteratively, since the derivative of an iterated integral

of weight w with respect to its argument only depends on iterated integrals of weight w−1.

Note that the analytic continuation of the individual iterated integrals introduces imag-

inary parts (cf. eq. (2.17)). However, after inserting the analytic continuations for all iter-

ated integrals into the expressions for ZOS
m and ZOS

2 all imaginary parts cancel analytically

and the expansion around 1/x = z = 0 can be obtained in a straightforward way.

3 Results and conclusions

In this section we briefly discuss our results for ZOS
m , zm and ZOS

2 . After inserting the exact

master integrals into the corresponding amplitudes we renormalize the quark masses m1

and m2 in the on-shell scheme, the strong coupling constant in the MS scheme and expand

in ε such that we obtain results up to ε2 at two-loop and ε1 at three-loop order. Whereas the

two-loop results are still quite compact (see, e.g., eqs. (15) and (28) of ref. [1]), the three-

loop expressions are too big to be printed. Instead we provide the analytic expressions in the

supplementary material attached to this paper. We also provide transformation rules which

map the iterated integrals introduced in the previous section to Goncharov polylogarithms

which can be evaluated numerically with the help of GiNaC [51]. Note that our final three-

loop result contains iterated integrals up to weight five and six in the ε0 and ε1 term.

More compact expressions are obtained after expanding for x → 0, x → 1 or x → ∞.

For illustration we show for the nm dependent terms of zm, which we define via

zMm = zm − zm(nm = 0) , (3.1)

the first three expansion terms at two and three loops. To keep the expressions compact

we specify the colour factors to QCD, i.e. CA = 3, CF = 4/3 and TF = 1/2. Furthermore

we set µ = m1, nh = 1 and restrict ourselves to the ε0 term. For x→ 0 we obtain

zMm =
(αs
π

)2 [ 71

144
+
π2

18
− π2x

6
+ x2

]
+
(αs
π

)3 [40715

3888
+

941π2

648
− 61π4

1944
+

695

216
ζ3 −

8a4
27

+
11π2l2

81
− 2

81
π2l22

− l42
81

+ nl

(
− 2353

11664
− 13π2

162
− 7

27
ζ3 −

2x2

9
+ x

(
7π2

27
− 2

9
π2l2 −

1

9
π2lx

))
+ x

(
−29513π2

2430
− 13π3

162
+

1199π2l2
81

+
31π2lx

18

)
+ x2

(
62

9
+

13π2

12

+

(
4 +

3π2

2
− π4

12

)
lx +

11

2
ζ3 −

3

4
π2ζ3 −

5

2
ζ5

)]
+O(ε, x3, α4

s) , (3.2)
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with lx = log(x), a4 = Li4(1/2) and ζn is Riemann’s zeta function. For x→ 1 we have

zMm =
(αs
π

)2 [143

144
− π2

9
+

(
−4

3
+

2π2

9

)
y +

(
1− π2

12

)
y2
]

+
(αs
π

)3 [74141

3888
− 67127π2

9720
− 41π4

972
− 619

216
ζ3 +

1

4
π2ζ3 −

5

4
ζ5 −

8a4
27

+
640π2l2

81
+

1

81
π2l22 −

l42
81

+ nl

(
− 5917

11664
+

13π2

324
+

2

27
ζ3 +

(
20

27
− 10π2

81

)
y

+ y2
(
−4

9
− π2

36
− 7

12
ζ3 +

π2l2
6

))
+ y

(
−5473

243
+

49738π2

3645
+

979π4

19440
+

839

162
ζ3

− 1

2
π2ζ3 +

5

2
ζ5 +

140a4
27

− 1274

81
π2l2 −

35

162
π2l22 +

35l42
162

)
+ y2

(
2665

162
− 85549π2

9720
− 979π4

12960
+

473

216
ζ3 +

1

4
π2ζ3 −

5

4
ζ5 −

70a4
9

+
107π2l2

9

+
35

108
π2l22 −

35l42
108

)]
+O(ε, y3, α4

s) , (3.3)

with y = 1− x and for x→∞ we have

zMm =
(αs
π

)2 [
− 89

432
+

13

18
lz−

1

3
l2z +

1

225
z2
(

19−20lz

)]
+
(αs
π

)3 [
− 119

1296
− 103π4

6480
+

157

288
ζ3+

4a4
9
− 1

54
π2l22 +

l42
54

+

(
5755

648
+

2π2

9
+

14

9
ζ3

)
lz+

2

27
π2l2lz−

287l2z
108

− l3z +z2
(
− 3207593

17496000

+
667π2

77760
− 29

648
ζ3+

887117lz
1166400

− 5809l2z
6480

)
+nl

(
− 1327

11664
+

2ζ3
27

−
(

1

12
+
π2

27

)
lz+

2l3z
27

+z2
(

529

10125
− 2π2

405
− 2lz

75
+

4l2z
135

))]
+O(ε, z3,α4

s), (3.4)

with z = 1/x.

Expansion terms up to order x25, (1−x)25 and (1/x)25, also to higher order in ε, can be

found in the supplementary material attached to this paper. It is interesting to note that

in the (1−x) and (1/x) expansion only the usual transcendental numbers as ζn, log(2) and

Lin(1/2) appear. On the other hand for x → 0 we observe in the O(α3
sε) term Catalan’s

constant, see eq. (2.11). Note that the expansions of the individual iterated integrals show

a more complicated structure.

Depending on the application it is advantageous to transform either m1 or m2 or both

to the MS scheme. For this purpose it is convenient to introduce the variables

x =
mOS

2

mOS
1

, xf (µf ) =
m2(µf )

mOS
1

, xq(µ) =
mOS

2

m1(µ)
, xfq(µf , µ) =

m2(µf )

m1(µ)
, (3.5)

where µf is the renormalization scale of the quark mass m2 and µ is the common renormal-

ization scale of m1 and αs. For zm explicit transformation rules to the various schemes can

– 10 –



J
H
E
P
1
0
(
2
0
2
0
)
0
8
7

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

−20

−15

−10

−5

0

5

10

15

20
z(3
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M

m

Figure 3. z
(3)
m as a function of x. The expansions for x → 0, x → 1 and x → ∞ are shown as

solid lines in the regions where the respective expansion is used for the numerical evaluation of zm
in the supplementary material. Outside this region dotted lines are used.

be found in ref. [1]. In the supplementary material attached to this paper we provide for zm
and ZOS

2 different variants for the expansions in the three limits x→ 0, x→ 1 and x→∞.

We update the Mathematica routines provided in ref. [1] for the numerical evaluation of

zm and ZOS
2 . In the supplementary material attached to this paper one finds the functions

zmnum[x,m1,mu1,mu2[,scheme]] and Z2OSnum[x,m1,mu1,mu2[,scheme]] (see appendix)

which implement the expansion for x → 0, x → 1 and x → ∞. We switch between the

first two expansions at x = 1/2 and between the latter two at x = 3/2. The justification

for this choice is illustrated in figure 3, where we show the expansions for z
(3),M
m for ε = 0,

nl = 3, nh = nm = 1 and µ = m1. In the regions where the expansions converge (x < 1/2,

1/2 < x < 3/2, 3/2 < x for x→ 0, x→ 1 and x→∞, respectively) we plot solid lines and

outside these region we switch to dotted lines. One observes that both around x = 1/2

and x = 3/2 there is a large overlap among at least two expansion, which justifies that we

use the expansion results to contruct the functions zmnum[x,m1,mu1,mu2[,scheme]] and

Z2OSnum[x,m1,mu1,mu2[,scheme]]. Let us also mention that we observe an agreement

with the exact result to at least 8 digits over the whole range in x. Similar results are

obtained for the O(ε) term of zm and for ZOS
2 .

– 11 –
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To summarize, we have obtained analytic results of all 27 master integrals which are

needed to obtain the three-loop contributions for the on-shell renormalization constants

ZOS
m and ZOS

2 with dependence on two different quark masses, m1 and m2. Our final result

includes terms of O(ε), which are relevant for a future four-loop calculation. Furthermore,

we have obtained 26 expansion terms for three cases m1 � m2, m1 ≈ m2 and m1 � m2.
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A README for supplementary material

Together with this paper we provide the following files which contain analytic expressions

for the various quantities in Mathematica format:

• master.m contains the 27 master integrals M1, . . . ,M16,M18, . . . ,M28 as resM1, . . . ,

resM28. Note that M17 is obtained from eq. (2.1).

• zmZmZ2.m contains exact results for the expressions zmos, ZmOS and Z2OS in the on-

shell scheme. Here the variable x corresponds to xOSOS.

• expansions/ is a direcory which contains the expansions for zm and ZOS
2 in the three

limits x→ 0, x→ 1 and x→∞ for various combinations of on-shell and MS masses

for m1 and m2.

• zmZ2_eval.m provides the functions zmnum[x,m1,mu1,mu2,[,scheme]] and

Z2OSnum[x,m1,mu1,mu2[,scheme]] which can be used for the numerical evaluation

of zm and ZOS
2 . In the case of zmnum the option scheme may take the values "OSOS",

"MSOS", "OSMS" and "MSMS", where the first (last) two letters refer to the scheme of

m2 (m1). In the case of Z2OSnum the values "OSOS" and "MSOS" are allowed. De-

pending on the value of x and the specified scheme the corresponding results from

expansions/ are loaded.

• toGINAC.m provides rules which maps the iterated integrals GL[{...}, x] and HPLs

H[..., x] to Goncharov polylogarithms which allows for a numerical evaluation with

GiNaC [51].

For the meaning of the symbols we refer to table 2. The exact expressions in zmZmZ2.m

contain in addition the iterated integrals GL[{...}, x] = I({. . .}), x) (cf. eq. (2.5)) and

the HPLs (H[..., x]), both in the notation of HarmonicSums [34–46].

– 12 –
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api lmm1 cf ca tr nl nm nh

αs(µ)/π log(µ2/(mOS
1 )2) CF CA TF nl nm nh

x xOSOS xMSOS xOSMS xMSMS mu1 mu2

x x xf (µf ) xq(µf ) xfq(µf , µ) µ µf

m1OS m1MS m2OS m2MS

mOS
1 m1(µ) mOS

2 m2(µf )

Table 2. Meaning of the symbols used in the Mathematica expressions.
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