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1 Introduction

Yang-Baxter (YB) deformations of 2D σ-models were introduced by Klimč́ık in [1]. The

name comes from the fact that the deformation is constructed using an R-matrix which

solves the (modified) classical Yang-Baxter equation. It was later realized that these defor-

mations preserve the classical integrability of the σ-model [2]. Delduc, Magro and Vicedo

constructed the YB deformation for symmetric spaces in [3], and then for the AdS5 × S5

superstring in [4], based on the Drinfeld-Jimbo R-matrix solving the modified classical

YB equation. Shortly thereafter it was shown in [5] that essentially the same construc-

tion works also for R-matrices solving the ordinary (non-modified) classical YB equation.

The latter are often referred to as homogenous YB deformations and have an interesting

realization in terms of non-abelian T-duality [6–8].

Surprisingly it was found, starting with the paper [9], that the backgrounds correspond-

ing to these deformed string σ-models did not always satisfy the equations of supergravity,

but a certain generalization of these [10, 11]. When this is the case the deformed σ-model

is only scale invariant, but not Weyl invariant, at one loop and cannot be interpreted as

a consistent string. For supercoset models such as the AdS5 × S5 superstring a condition

was found on the R-matrix that leads to a viable, i.e. one-loop Weyl invariant, deformed

string σ-model. The R-matrix should be unimodular, i.e. its trace with the Lie algebra

structure constants should vanish, Rrsfrs
t = 0 [12].

Subsequently, using the realization via non-abelian T-duality, homogeneous YB de-

formations were defined for a general Green-Schwarz superstring with isometries [13].1

Interestingly, examples were found where a non-unimodular R-matrix nevertheless gave

1In the abelian case these deformations are equivalent to so-called TsT-transformations, consisting of

T-duality, a coordinate shift and a T-duality back [14].
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rise to a good (super)gravity background [15, 16]. Therefore, while the unimodularity con-

dition is sufficient, it is not necessary to solve the one-loop Weyl invariance conditions, i.e.

the background (super)gravity equations.

Here we will determine the precise conditions for (bosonic) YB deformations to respect

one-loop Weyl-invariance. We find that, at least for deformations of symmetric spaces,

the only exceptions to the unimodularity condition occur when the matrix (G + B)mn,

where G,B are the metric and B-field of the undeformed background, is degenerate.2,3 In

that case, the unimodularity condition is no longer necessary and is replaced by weaker

conditions which we give. This is consistent with the examples found in [15, 16] since the

AdS3 × S3 background considered there has degenerate G+B.

We then go on to analyze what happens at two loops, i.e. when we include the first

α′-correction to the (super)gravity equations. We find that the conditions at two loops are

weaker and only a subset of the one-loop conditions are needed.

These calculations are simplified enormously by working with the O(D,D)-covariant

formulation known as Double Field Theory (DFT). In DFT a manifestly O(D,D)-covariant

formulation is achieved by doubling the coordinates to XM = (x̃m, x
m). One then imposes

a “section condition” which effectively removes half of them, leaving the right number of

physical coordinates. Here we will work only with the standard choice of section, XM =

(0, xm) or ∂M = (0, ∂m), and therefore the coordinates are not doubled. However, the

tangent space is effectively doubled and there are two copies of the Lorentz group. Therefore

there are two sets of vielbeins e(+) and e(−) which transform independently under each

Lorentz group factor. Fixing the gauge e(+) = e(−) = e breaks the doubled Lorentz

group down to its diagonal, which becomes the standard Lorentz group. With this gauge

fixing the action and equations of motion of the doubled formulation reduce to those of

standard (super)gravity. The reason the doubled formulation is useful is that the YB

deformation becomes equivalent to a coordinate dependent O(D,D)-transformation which

is easy to analyze. In fact the so-called generalized fluxes, the basic fields of the so-called

flux formulation we are using [18], transform very simply under the YB deformation. The 3-

form flux is invariant while the 1-form acquires a shift. This shift vanishes in the unimodular

case and the generalized fluxes are simply invariant, from which one can immediately

conclude that such YB deformations preserve Weyl invariance at least to two loops [19]. In

the present case, we are interested in non-unimodular R-matrices and we have to take the

shift into account. Provided that this shift satisfies certain conditions, which we determine,

the Weyl-invariance is preserved at least up to two loops. It is interesting that it is possible

to shift the 1-form generalized flux in certain ways and still preserve the equations of the

doubled formulation including the first α′-correction. This should have an interpretation

in gauged DFT [20], but we will not pursue this here.

In [19] the doubled formulation was used to determine the first α′-correction to the

2In the homogeneous case we prove this only for rank R < 8 for technical reasons.
3Gauge-transformations of B, which could affect this, are severely restricted by the fact that B is required

to be invariant under the isometries involved in the deformation. This is required in the homogeneous

case [13]. In the inhomogeneous case with a WZ-term [17] it is not required and our analysis is incomplete

in that case.
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deformed background for unimodular R. This correction arises because the fields of the

doubled formulation are not Lorentz-covariant once α′-corrections are included and a dou-

ble Lorentz transformation is needed to go to the gauge e(+) = e(−) = e and reduce to

the standard (super)gravity fields, thus leading to a correction to the background.4 Our

analysis here shows that no additional corrections are needed in the non-unimodular case,

so the correction to the deformed background is still given by the expressions found in [19].

The outline of this paper is as follows. First we review the elements we need of the

flux formulation of DFT and how the α′-correction to the double Lorentz transformations

determine the action to the first order in α′. In section 3 we derive the conditions for a YB

deformation to lead to a (super)gravity background, i.e. the conditions needed for one-loop

Weyl-invariance. The situation at two loops is analyzed in section 4 where we find weaker

conditions than at one loop. We end with some conclusions.

2 Doubled (flux) formulation

The O(D,D)-covariant formulation of (super)gravity used in DFT [22–24] turns out to be

very powerful for the kinds of questions we are interested in here. In particular we will

work with a frame-like formulation of DFT [25–27] where the structure group consists of

two copies of the Lorentz group O(1, D−1)×O(D−1, 1). In particular we use the so-called

flux formulation of [18, 28] where the first α′-correction to the bosonic and heterotic string

can also be nicely incorporated. We will always assume that the section condition is solved

in the standard way ∂M = (0, ∂m) so that we are really just working with a rewriting of

(super)gravity.

The starting point is to introduce a generalized (inverse) vielbein parametrized as

EA
M =

1√
2

 e(+)a
m − e(+)anBnm e(+)am

−e(−)
am − e(−)

a
nBnm e

(−)
a

m

 . (2.1)

Here e(±) are two sets of vielbeins for the metric Gmn which transform independently as

Λ(±)e(±) under the two Lorentz-group factors. To go to the standard supergravity picture

one fixes a gauge e(+) = e(−) = e, leaving only one copy of the Lorentz-group. The dilaton

Φ is encoded in the generalized dilaton d defined as

e−2d = e−2Φ
√
−G . (2.2)

There are two constant metrics, the O(D,D)-metric ηAB and the generalized metric HAB

which take the form

ηAB = ηAB =

(
η̄ 0

0 −η̄

)
, HAB =

(
η̄ 0

0 η̄

)
, (2.3)

where η̄ = (−1, 1, . . . , 1) is the usual Minkowski metric. The flat tangent space indices

A,B, . . . are raised and lowered with ηAB, ηAB. The generalized vielbein is used to convert

4The correction agrees with what is found by a much more involved calculation using standard (su-

per)gravity [21].
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between these indices and coordinate indices M,N, . . .. In particular we have the usual

expressions for the O(D,D)-metric and the generalized metric in a coordinate basis

ηMN =EA
MηABEB

N =

(
0 δm

n

δmn 0

)
, (2.4)

HMN =EA
MHABEBN =

(
Gmn −BmkGklBln BmkGkn

−GmkBkn Gmn

)
. (2.5)

We also define

∂A = EA
M∂M , (2.6)

where ∂M = (0, ∂m) is the ordinary derivative.

The basic fields of the flux formulation are the generalized fluxes. These are constructed

from the generalized vielbein as

FABC = 3∂[AEB
MEC]M , FA = ∂BEB

MEAM + 2∂Ad . (2.7)

The importance of these objects comes from the fact that they transform as scalars under

generalized diffeomorphisms implemented by the generalized Lie derivative defined as

LXYM = XN∂NY
M + (∂MXN − ∂NXM )Y N . (2.8)

The generalized diffeomorphisms contain the usual diffeomorphisms and B-field gauge-

transformations. The generalized fluxes satisfy the following Bianchi identities

4∂[AFBCD] = 3F[AB
EFCD]E , 2∂[AFB] = −(∂C −FC)FABC . (2.9)

Note also that

[∂A, ∂B] = FABC ∂C . (2.10)

The bosonic/heterotic5 string low-energy effective action can be cast in doubled form as

S =

∫
dX e−2dR , (2.11)

where the generalized Ricci scalar is defined as6

R = −4∂AF (−)
A + 2FAF (−)

A −F (−)
ABCF

(−)ABC − 1

3
F (−−)
ABCF

(−−)ABC . (2.12)

Here we have defined certain projections of the generalized fluxes using the natural projec-

tion operators

P± =
1

2
(η ±H) , (2.13)

5Setting the gauge fields and fermions of the heterotic string to zero.
6The last two terms are often written instead as 1

4
FACDFB

CDHAB − 1
12
FABCFDEFHADHBEHCF −

1
6
FABCFABC . In terms of the generalized metric we have instead

R = 4∂M (HMN∂Nd)− ∂M∂NHMN − 4HMN∂Md∂Nd

+
1

8
HMN∂MHKL∂NHKL −

1

2
HMN∂MHKL∂KHLN .
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as follows

F (±)
A = (P±)A

BFB , (2.14)

and

F (±)
ABC = (P∓)A

D(P±)B
E(P±)C

FFDEF , F (±±)
ABC = (P±)A

D(P±)B
E(P±)C

FFDEF .
(2.15)

Setting e(+) = e(−) = e in the generalized vielbein (2.1) this can be shown to reduce to the

correct low-energy effective (super)gravity action.

We will be interested in whether certain transformations of the generalized fluxes map

a solution to another solution, so we will need the equations of motion following from the

action (2.11). These can be easily found using the variations of the generalized fluxes with

respect to the generalized vielbein and dilaton

δEFABC = 3∂[AδEBC] + 3δE[A
DFBC]D , δEFA = ∂BδEBA + δEA

BFB , δdFA = 2∂Aδd ,

(2.16)

where δEAB = δEA
MEBM is anti-symmetric by construction. The equations of motion

become

R = 0 , ∂
(+)
A F

(−)
B + (∂C −FC)F (−)

ABC −F
(+)
CDAF

(−)DC
B = 0 . (2.17)

Here we have defined the projected derivatives ∂
(±)
A = (P±)A

B∂B. The second equation

of motion can equivalently be written with the opposite projections by exchanging + and

− superscripts. Setting e(+) = e(−) = e they reduce to correct (super)gravity equations

of motion.

The action (2.11) is invariant under three important symmetries. The first is gener-

alized diffeomorphisms, which encode regular diffeomorphisms and B-field gauge transfor-

mations. In the flux formulation we are working with here the generalized diffeomorphism

invariance is manifest since the fluxes and the derivative ∂A transform as scalars. The

second symmetry is that of global O(D,D)-transformations

XM → XNhN
M , EA

M → EA
NhN

M with hM
N ∈ O(D,D) (2.18)

and hM
N constant. Again the action is manifestly invariant under these transformations

since the fluxes are invariant. In our case we are always imposing the standard section

condition ∂M = (0, ∂m) so this symmetry is (partially) broken.

Finally, the most important symmetry for us will be the invariance under double

Lorentz transformations

δEA
MEBM = δEAB = λAB with (P+)A

C(P−)B
DλCD = 0 . (2.19)

The parameters of the infinitesimal double Lorentz transformation λAB commute with the

projectors P± so their non-trivial components are λ
(+)
AB and λ

(−)
AB , corresponding to the

two copies of the Lorentz group. These two copies rotate the two vielbeins e(±) in (2.1)

independently. The (double) Lorentz invariance of the action (2.11) is not manifest. It can

– 5 –
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be verified with a bit of algebra using the variations of the fluxes (2.16). In particular it

follows from these expressions that under a double Lorentz transformation

δF (±)
ABC = λ

(∓)
A

DF (±)
DBC + 2λ

(±)
[B

DF (±)
|AD|C] + ∂

(∓)
A λ

(±)
BC , (2.20)

which, except for the projections, is precisely the transformation of a connection. Indeed,

suppressing the last two indices we have7

δF (±)
M = ∂

(∓)
M λ(±) + [λ(±),F (±)

M ] , (2.21)

so that F (±)
M behave very much like connections. In fact, fixing the double Lorentz trans-

formations by setting e(+) = e(−) = e the non-zero components of F (±) are [28]

F (+)
M

ab =
1

2

 Gmnω
(+)ab
n

−(1−BG)m
nω

(+)ab
n

 , F (−)
Mab =

1

2

 Gmnω
(−)
nab

(1 +BG)m
nω

(−)
nab

 , (2.22)

where ω
(±)cd
m = ωm

cd ± 1
2Hm

cd. These expressions will be useful later.

A very important point is that the double Lorentz transformations receive α′-

corrections. In fact, this is a good thing since it allows us to derive the first α′-correction

to the action (2.11) from the knowledge of the correction to the Lorentz transformations.

We will now see how this works.

2.1 The first α′-correction

At the first order in α′ the double Lorentz transformations get corrected to [28]

δEAB = λAB + a tr
(
∂

(−)
[A λF (−)

B]

)
− b tr

(
∂

(+)
[A λF (+)

B]

)
, (2.23)

where a = b = −α′ for the bosonic string and a = −α′, b = 0 for the heterotic string (a =

b = 0 for type II). The correction involves the connection-like objects F (±)
ABC (note the trace

over the last two indices) and is therefore of the form of a Green-Schwarz transformation.

The knowledge of the correction to the Lorentz transformation can be used to find the

α′-correction to the action [28], as we will now review. For simplicity we will set b = 0 in

the derivation and restore b at the end. The variation (2.23) is then of the form δ = δ0 +aδ1

and a short calculation gives for the projections of the generalized fluxes appearing in the

lowest order action (2.11), (2.12)

δ1F (−)
A = −1

2
(∂B −FB) tr

(
∂

(−)
A λF (−)

B

)
, (2.24)

δ1F (−−)
ABC =

3

2
tr
(
∂

(−)
[A λF (−)D

)
F (−)
D|BC] (2.25)

and

δ1F (−)
ABC = (P−)[C

D tr
(
∂

(−)
B] λR

(−)
AD

)
+

1

2
tr
(
F (−)
A ∂Dλ

)
F (−)
DBC +

1

2
tr
(
∂

(−)
[B λF (−)D

)
F (+)
C]AD .

(2.26)

7We will try to be clear about when we suppress the last two indices to avoid possible confusion with

the generalized flux with one index FA.
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In the last expression we have defined the ‘curvature’ of the ‘connection’ F (−)
ABC as (sup-

pressing the last two indices which are projected by P−)

R(−)
AB = 2∂[A F

(−)
B] − (P+)[B

DFA]DEF (−)E − [F (−)
A ,F (−)

B ] . (2.27)

This object will be useful later. In particular when we project the indices A and B with P+

we have, writing R̄(−)
AB = (P+)A

C(P+)B
DR(−)

CD, (again the last two indices are suppressed)

δ0R̄(−)
AB = 2λ

(+)
[A

CR̄(−)
|C|B] + [λ(−),R(−)

AB ] + F (+)
CAB∂

Cλ(−) − ∂Cλ(+)
ABF

(−)
C , (2.28)

which apart from the last two terms is the expected transformation of a curvature.

At lowest order in α′ the action is Lorentz invariant. At the next order we find

δ1R = − 4(∂A −FA)δ1F (−)
A − 2∂BFA tr

(
∂

(−)
A λF (−)

B

)
− 2

3
F (−−)ABCδ1F (−−)

ABC − 2F (−)ABCδ1F (−)
ABC . (2.29)

Using the expressions for the δ1-variations (2.24), (2.25) and (2.26) as well as the Bianchi

identity for FA (2.9), (2.10) and the section condition this becomes

δ1R = δ0
(
−∂A

[
(∂B −FB) tr

(
F (−)
A F

(−)
B

)]
+ (∂A −FA)

[
FB tr

(
F (−)
A F

(−)
B

)])
−FABC tr

(
∂A∂

(+)
B λF (−)

C

)
+ FABC tr

(
∂

(+)
A λ∂BF (−)

C

)
− 2FABC tr

(
∂Cλ∂AF (−)

B

)
+ 2F (−)ABC tr

(
∂BλR(−)

CA

)
+ FABC∂CλAD tr

(
F (−)DF (−)

B

)
+ ∂BλAC∂A tr

(
F (−)
C F

(−)
B

)
+ FABCFBCD tr

(
∂DλF (−)

A

)
−F (−−)ABCF (−)

DBC tr
(
∂AλF (−)D

)
−F (−)ABCF (−)

DBC tr
(
∂DλF (−)

A

)
−F (−)ABCF (+)

CAD tr
(
∂BλF (−)D

)
. (2.30)

We must now find terms of order α′ whose lowest order Lorentz transformation cancels the

terms on the r.h.s. . The first term on the second line must be canceled by the variation

of a term of the form FABC tr
(
∂AF (−)

B F
(−)
C

)
and we find

δ1R = δ0
(
−∂A

[
(∂B −FB) tr

(
F (−)
A F

(−)
B

)]
+ (∂A −FA)

[
FB tr

(
F (−)
A F

(−)
B

)])
− δ0

[
FABC tr

(
∂AF (−)

B F
(−)
C

)]
−FABC tr

(
∂

(−)
C λR̄(−)

AB

)
+ ∂CλAB tr

(
F (−)
C R̄

(−)
AB

)
+ 2∂CλAB tr

(
F (−)
A F

(−)
B F

(−)
C

)
+ 2FABC tr

(
F (−)
A F

(−)
B ∂

(+)
C λ

)
+ F (++)

ABE ∂
CλAB tr

(
F (−)
C F

(−)E
)

+ 2FABE∂BλCA tr
(
F (−)CF (−)

E

)
+ FABCFDBC tr

(
∂(+)DλF (−)

A

)
−F (−)ABCF (−)

DBC tr
(
∂DλF (−)

A

)
, (2.31)

where we used the definition of the ‘curvature’ in (2.27). Using (2.28) we see that the

last two terms on the second line come from the variation of tr
(
R̄(−)ABR̄(−)

AB

)
and the

– 7 –
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remaining terms are also easy to write as the variation of something. When the dust has

settled one finds, reinstating b, that the corrected action

S =

∫
dX e−2d

(
R+ aR(−) + bR(+)

)
(2.32)

is invariant under Lorentz transformations up to and including order α′ where

R(−) = ∂A
[
(∂B −FB) tr

(
F (−)
A F

(−)
B

)]
− (∂B −FB)

[
FA tr

(
F (−)
A F

(−)
B

)]
+

1

2
tr
(
R̄(−)ABR̄(−)

AB

)
+

1

6
FABCC(−)

ABC . (2.33)

In the last term we have introduced the ‘Chern-Simons’ form

C(−)
ABC = 6 tr

(
F (−)

[A ∂BF
(−)
C]

)
+ 3(F (−)

D[AB −FD[AB) tr
(
F (−)
C] F

(−)D
)
− 4 tr

(
F (−)

[A F
(−)
B F

(−)
C]

)
.

(2.34)

The expression for R(+) is obtained by reversing the projections in an obvious way. These

expressions agree with the ones written in [29] but are much more compact.

3 Yang-Baxter deformations and one-loop Weyl invariance

Yang-Baxter deformations are closely related to a generalization of T-duality known as

Poisson-Lie (PL) T-duality. In particular homogeneous YB deformations can be con-

structed using non-abelian T-duality [6, 7]. It is therefore not surprising that they have a

natural formulation in terms of DFT. In the flux formulation we are working with they are

described as a coordinate dependent O(D,D)-transformation [13, 30, 31]

EA
M → ẼA

M = EA
N (1 + Θ)N

M . (3.1)

The only non-zero components of ΘN
M are Θmn = kmr k

n
sR

rs where kmr are Killing vectors

belonging to some Lie algebra g indexed by (r, s, t, . . .) and Rrs is a constant anti-symmetric

matrix satisfying, in the homogeneous case, the classical YB equation

[RX,RY ]−R([RX,Y ] + [X,RY ]) = 0 , ∀X,Y ∈ g , (3.2)

which implies the ‘Jacobi identity’ for Θ8

ΘN [K∂NΘLM ] = 0 . (3.3)

If we start from a symmetric space σ-model we can also define the inhomogeneous defor-

mation [3] where R satisfies the modified classical YB equation

[RX,RY ]−R([RX,Y ] + [X,RY ]) = [X,Y ] , ∀X,Y ∈ g . (3.4)

8Conversely, if we don’t impose any condition on R, this condition follows by requiring that we get a

(super)gravity solution [32].
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The canonical solution is the Drinfeld-Jimbo R-matrix defined to annihilate elements of the

Cartan subalgebra and to multiply generators corresponding to positive(negative) roots by

+i(−i). We can define again Θmn = kmr k
n
sR

rs which also satisfies (3.3).9

Note that letting R be multiplied by a small parameter, usually called η, these become

deformations of the original background. It is not hard to show, using the definitions (2.7),

that these deformations preserve the form of the generalized fluxes up to a shift of FA [19]

F̃ABC = FABC , F̃A = FA − 2KA . (3.5)

In addition derivatives of FABC are invariant, e.g. ∂̃AF̃BCD = ∂AFBCD. Because of the

shift this is in general not true for FA, instead

∂̃AF̃B = ∂AFB − 2∂AKB − 2EA
NΘN

M∂MKB . (3.6)

The shift of FA is given by a certain distinguished Killing vector namely KM = (0,Km)

with

Km = ∇nΘmn = ∇nkmr knsRrs = −1
2R

rsfrs
tkmt , (3.7)

where the third step involves using the algebra of the Killing vectors. This shift vanishes

precisely when R is unimodular, i.e. when Rrsfrs
t = 0.10 In this case the generalized fluxes

and their derivatives are invariant under the deformation and this directly implies that the

deformation preserves Weyl-invariance at least up to order α′ (2 loops) [19]. If we drop the

unimodularity condition we will generically get a scale-invariant but not Weyl-invariant σ-

model at one loop. This is reflected in the background solving the generalized supergravity

equations [10, 11] instead of the usual ones, the extra Killing vector appearing in these

equations being given by Km.

Here we want to ask what happens if you don’t require unimodularity but still require

the deformed model to preserve one-loop Weyl invariance.11 We will argue that, at least

in the case of symmetric spaces, it is possible to find such non-unimodular R-matrices (at

least of low enough rank to be interesting) only if the combination of metric and B-field

of the original model G ± B is a degenerate matrix. An example where this happens is

for AdS3 × S3 and indeed in that case several non-unimodular R-matrices that lead to

(super)gravity solutions have been found [15, 16].

The requirement that the equations of motion (2.17) remain invariant under the de-

formation, which is equivalent to preservation of one-loop Weyl-invariance, becomes, us-

9This was first noted in special examples in [33]. We thank S. van Tongeren for pointing this out to

us. The fact that the r.h.s. in the modified YB equation does not contribute can be seen as follows. For

a symmetric space g is generated by Pa,Mab with commutators of the form [P, P ] ∼ M , [M,P ] ∼ P and

[M,M ] ∼ M . The Killing vectors are given by kr
m = `a

m(P̂Adg)ar (see for example [13]), where `a
m

are inverse vielbeins of the left-invariant one-forms and P̂ projects on the Lie algebra generators Pa. Now

since the structure constants are Ad-invariant and since they have no component corresponding to three

Pa generators it follows that the r.h.s. in the modified YB equation does not contribute.
10It is easy to see that the Drinfeld-Jimbo R-matrix of the inhomogeneous deformation is not unimodular.
11This corresponds to having a solution of the generalized supergravity equations which also solves the

standard supergravity equations. Such ‘trivial’ solutions were analyzed in [34].
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ing (3.5) and (3.6)

∂
(+)
A K

(−)
B + (P+)A

CEC
NΘN

M∂MK
(−)
B −KCF (−)

ABC = 0 , (3.8)

∂AK
(−)
A + EA

NΘN
M∂MK

(−)A −KAF (−)
A +KAK

(−)
A = 0 . (3.9)

Since we should think of Θ as being multiplied by a small deformation parameter these

equations contain terms of first and second order in this parameter (note that K (3.7) is

of first order). These contributions then need to vanish separately.

3.1 First order terms

At the lowest order in the deformation we find the conditions

∂
(+)
A K

(−)
B −KCF (−)

ABC = 0 , ∂AK
(−)
A −KAF (−)

A = 0 . (3.10)

Using the form of the generalized vielbein (2.1) with e(+) = e(−) = e, the fact that KM =

(0,Km) and the form of F (−)
ABC in (2.22) the first equation becomes

∇a[(1 +B)b
cKc]−

1

2
Habc(1 +B)cdK

d = 0 . (3.11)

Symmetrizing in a, b and using the fact that K is Killing we find that K̃ = iKB is also a

Killing vector. Anti-symmetrizing we find, using LKB = 0, that

dK + iK̃H = 0 . (3.12)

This equation implies that H is invariant under K̃ since LK̃H = diK̃H = −ddK = 0. We

also have the same equation with K and K̃ exchanged since dK̃ = diKB = −iKH from

the invariance of the B-field under isometries, which we have assumed here.12 From the

dilaton equation we get, using the fact that K and K̃ are Killing vectors, the condition

K̃m∂mΦ = 0 , (3.13)

i.e. the dilaton is invariant under the isometry generated by K̃. To summarize, the condi-

tions we find at this order are that K̃ = iKB generates isometries of the background fields

G,H,Φ and satisfies (3.12).

For our later discussion of two-loop conformal invariance it will be useful to express

these conditions in terms of the generalized fluxes. The fact that K and K̃ generate

symmetries of the original background implies that under YB deformations

F̃ (±)
A ∂̃A(something invariant) = F (±)

A ∂A(something invariant) . (3.14)

In addition we have

KAF (−)
ABC =

1

2
(Km + K̃m)ω

(−)
mbcδ

b
Bδ

c
C

= − 1

2
(∇bKc +∇bK̃c)δ

b
Bδ

c
C −

1

4
(Km + K̃m)Hmbcδ

b
Bδ

c
C

= 0 , (3.15)

12This seems to be required in the construction of the general homogeneous deformations [13]. In the

inhomogeneous case this should be relaxed [17], but we will not try to do this here since it would take us

too far afield.
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where we used invariance of the vielbein under K, K̃ which implies iKωab = −∇aKb and

similarly for K̃ as well as the equation (3.12) and the same with K and K̃ exchanged. The

same is true with the opposite projection and therefore we have

F̃AF̃ (±)
ABC = FAF (±)

ABC . (3.16)

3.2 Second order terms

At second order in the deformation the conditions (3.8) and (3.9) read

(P+)A
CEC

NΘN
M∂MK

(−)
B = 0 , EA

NΘN
M∂MK

(−)A +KAK
(−)
A = 0 . (3.17)

We need to evaluate

EA
NΘN

M∂MKB =EA
NEB

LΘN
M∂MKL + EA

NΘN
M∂MEB

LKL

=RrsEA
NEB

MkrN
(
kLs ∂LKM −KL∂LksM

)
, (3.18)

where we used the fact that Θmn = kmr k
n
sR

rs and the isometry of the generalized vielbein,

i.e. its generalized Lie derivative (2.8) along kr vanishes, in the second step. Now we use

the form of Km in (3.7) and the algebra of the Killing vectors to reduce this to

EA
NΘN

M∂MKB = −1

2
krAkwBR

rsfsv
wRtuftu

v . (3.19)

Using the Jacobi identity and the (modified) classical YB equation this expression can be

seen to be symmetric in the indices A and B. The second order conditions now become

(G−B)ank
n
r (G+B)bmk

m
wR

rsfsv
wRtuftu

v = 0 , K2 + K̃2 = 0 . (3.20)

The first condition can be expressed as

knr k
m
wR

rsfsv
wRtuftu

v = vm+ v
n
+ + vm− v

n
− , (3.21)

where v± are zero-eigenvectors of G ± B, i.e. (G ± B)v± = 0. When G ± B is degenerate

precisely one such vector v± exists (up to rescaling). When G ± B is non-degenerate, for

example if B vanishes, then the r.h.s. is zero and we get the condition

knr k
m
wR

rsfsv
wRtuftu

v = 0 . (3.22)

This condition is very strong and in fact it seems to imply the unimodularity condition,

at least for deformations of symmetric spaces. In that case the condition becomes (see

footnote 9)

(P̂Adg)
a
r(P̂Adg)

b
wR

rsfsv
wRtuftu

v = 0 , (3.23)

and taking g = eε
aPa and expanding in ε this leads to

Rrsfsv
wRtuftu

v = 0 . (3.24)

It is easy to see from the form of the Drinfeld-Jimbo R-matrix that this rules out the

inhomogeneous deformations. For the homogeneous deformations R is invertible on the
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subalgebra where it is defined and this condition is equivalent to the condition that the

distinguished Lie algebra element Rrsfrs
tTt must lie in the center of the algebra.13 While

we have not found a general proof that this implies unimodularity one can easily verify

that this is true for R-matrices of rank< 8. In the rank 2 case this is trivial to see.

For rank 4 the relevant algebras are classified in [36] and it is easy to check that only

unimodular examples satisfy the condition. For rank 6 the relevant algebras are classified

in [37] (nilpotent algebras are automatically unimodular) and again only unimodular ones

satisfy the condition. In addition we note that for AdS5, corresponding to the isometry

group SO(2, 4), the maximum rank of R is 8 [12], however it is easy to see that the 8-

dimensional algebras in question have a trivial center and can therefore not lead to any

exception to the unimodularity condition. This rules out non-unimodular deformations of

AdSn with n ≤ 5 if G+B is invertible.

Therefore we conclude that for deformations of symmetric spaces non-unimodular R-

matrices can lead to one-loop Weyl invariant σ-models only if G ± B of the undeformed

model is degenerate (with the caveat that we checked this only up to rank 6). In that

case they must satisfy (3.20) as well as the conditions we found at first order, namely

that K̃ = iKB generates isometries of G,H,Φ and equation (3.12).14 Examples of such

backgrounds were found in [15, 16].

We will now turn to the question of what happens at two loops, i.e. including the first

α′-correction to the (super)gravity equations of motion. We will find that the conditions

at two loops as actually weaker. We will only need to satisfy the conditions we found at

first order in the deformation to solve also the two-loop equations.

4 Two-loop Weyl invariance

Here we will show that the α′-correction to the equations of motion can be cast in a form

that is manifestly invariant under non-unimodular YB deformations satisfying the one-loop

Weyl invariance conditions of the previous section. In fact our calculation will be more

general. We will assume only that the following remain invariant under the transformation

in question

FABC , ∂A1 · · · ∂An(anything invariant) ,

FAF (±)
ABC , F (±)

A ∂A(anything invariant) . (4.1)

However, FA and its derivatives need not be invariant. As we have seen this is true for

any YB deformation that is one-loop Weyl invariant (3.14), (3.16) (it is trivially true for

unimodular deformations since in that case also FA is invariant under the deformation).

13It also implies that the algebra can be constructed as a so-called symplectic double extension of a

lower-dimensional symplectic, or quasi-Frobenius, Lie algebra [35]. The question is then if the symplectic

double extension of a unimodular Lie algebra is always unimodular, in which case this condition would

imply unimodularity.
14For general inhomogeneous deformations with WZ-term a more careful analysis, where the condition

of invariance of B is dropped, is required.
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To get the equations of motion at order α′ we must vary the corrected action (2.32)

using the expressions for the variations of the fluxes in (2.16). The variation with respect

to the generalized dilaton is easy and gives just the vanishing of the Lagrangian itself

R+ aR(−) + bR(+) = 0 . (4.2)

In the following we will set b = 0 to simplify the calculations. In the end our results will

apply also for b 6= 0. Displaying only the order α′-terms that are not trivially invariant

under the YB deformation we have from (2.33)

R(−) = −2∂A
[
FB tr

(
F (−)
A F

(−)
B

)]
+ FAFB tr

(
F (−)
A F

(−)
B

)
+ . . . (4.3)

where the ellipsis denotes terms involving only FABC , which are trivially invariant. Using

the invariance of the expressions in (4.1) we see that the r.h.s. is invariant. Therefore the

dilaton equation remains satisfied to order α′ for such deformations.

Varying the action (2.32) with respect to the generalized vielbein using (2.16) the terms

involving FA, i.e. the first two terms, in R(−) (2.33) give the following contributions to the

equations of motion

2(∂C −FC)
[
(∂DF (+)

A + ∂
(+)
A F

D)F (−)
DCB

]
− (∂C −FC)

[
(∂DF (+)C + ∂(+)CFD)F (−)

DAB

]
+ (∂

(−)
A F

C − ∂CF (+)
A ) tr

(
F (−)
C F

(−)
B

)
− (∂CF (+)

A + ∂
(+)
A F

C) tr
(
F (−)
C F

(−−)
B

)
+ 2(∂CFD + ∂DFC)F (+)E

CAF (−)
DEB − (A↔ B) + . . . , (4.4)

where we suppress terms that are manifestly invariant, i.e. constructed form the invariant

combinations in (4.1). The variation of the R2
AB-term in (2.33) gives rise to the terms

4∂C
[
∂

(+)
B F

DF (−)
DCA

]
+ 4FC(∂D −FD)R̄(−)

DBCA − 4∂C
[
FDF (++)

DBEF
(−)E

CA

]
+ 2∂

(+)
A F

C tr
(
F (−)
C F

(−−)
B

)
− 4∂(+)CFDF (+)E

CAF (−)
DEB

+ 2FCF (++)
ACD tr

(
F (−)DF (−−)

B

)
+ 4FCF (++)CEFF (+)D

EAF (−)
FDB

− 2FCF (++)DE
AR̄(−)

DECB − 4FCF (−)DE
BR̄(−)

ADEC

+ 4FCF (−)DECR̄(−)
ADEB − (A↔ B) + . . . , (4.5)

where we have noted that using the definition (2.27) we have

FAR̄(−)
ABCD = ∂

(+)
B F

AF (−)
ACD −F

AF (++)
ABEF

(−)E
CD + . . . . (4.6)

Finally the variation of the CABC-term in (2.33) gives

∂AFC tr
(
F (−)
B F

(−)
C

)
−F (+)

C F
CDER(−)

DEAB − 2FCF (++)DE
BR̄(−)

DECA

− 4FCF (+)DE
BR(−)

DECA − ∂C
[
FDF (++)CDEF (−)

EAB

]
+ 2(∂C −FC)

[
FDF (++)DE

AF (−)
ECB

]
+ 2FC∂DF (+)

DBEF
(−)EC

A
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+ 2FC∂DF (++)
DBEF

(−)EC
A −F (+)

C ∂DFCDEF (−)
EAB −FCFDF

(+)CDEF (−)
EAB

− 2FCFDF (+)
CEAF

(−)E
DB + 2FCF (+)

ACD tr
(
F (−)DF (−)

B

)
+ FCF (++)

ACD tr
(
F (−)DF (−)

B

)
−FCF (++)

ACD tr
(
F (−)DF (−−)

B

)
+ 2FCF (++)CDEFDAFF (−)

EBF

+ FCF (+)EFCF (+)
EFDF

(−)D
AB + 2FCF (+)

EFBF
(+)EFDF (−)

DCA

− (A↔ B) + . . . . (4.7)

Now we need to add together these three potentially non-invariant contributions to the

equations of motion.

Using the Bianchi identity for FA (2.9) and noting also that the second term in (4.4)

can be written

2∂
(+)
C

(
∂(CFD)F (−)

DAB

)
= ∂C

(
FDF (++)

CDEF
(−)E

AB − 2∂
(−)
C F

DF (−)
DAB

)
+ 2FC∂CFDF (−)

DAB + . . .

= ∂C
(
FD[F (++)

CDE + 2F (+)
CDE ]F (−)E

AB

)
+ 2FC∂CFDF (−)

DAB + . . . (4.8)

we find, after a bit of algebra, that all terms involving only F (+)
A can be eliminated leaving

the terms

8FC∂D∂(+)
[A F

(−)
D]CB − 4FC∂D[F (−)

AC
EF (−)

DEB]− 4FC∂D[F (−)
AB

EF (−)
DCE ]

− 4FCF (++)
AD

E∂DF (−)
ECB − 8FCF (−)DE

B∂
(+)
[A F

(−)
D]EC + 8FCF (−)DEC∂

(+)
[A F

(−)
D]EB

+ 4FC∂D[F (+)
DEAF

(−)E
CB]− 8FCFD∂(+)

[A F
(−)
D]CB − 4FC∂(+)

A F
DF (−)

DCB

− 4FCFDF (+)
CEAF

(−)E
DB + 4FCFDF (−)

AC
EF (−)

DEB + 4FCFDF (−)
ABEF

(−)CDE

− 8FCF (−)DECF (++)
AD

FF (−)
FEB − 8FCF (−)DECF (−)

AE
FF (−)

DFB

− 4FCF (−)
DECF

(−)DEFF (−)
ABF− 4FCF (−)

AFCF
(−)
DEBF

(−)DEF− 4FCF (−)
FCBF

(+)
DEAF

(+)DEF

− 2FC
(
∂(−)CF (+)D + (∂E −FE)F (+)CDE −F (−)EFCF (+)

FE
D
)
F (−)
DAB

+ 2
(
∂

(+)
C F

(−)
A −FEF (−)

CAE

)
tr
(
F (−)
B F

(−)C
)
− (A↔ B) + . . . (4.9)

The last two terms drop out using the lowest order equations of motion (2.17). We now

rewrite the first term as

8FD∂C∂(−)
[B F

(+)
D]AC − 8FD∂C

(
∂

(+)
[A F

(−)
C]BD + ∂

(−)
[B F

(+)
D]AC

)
= − 8FD∂(−)

[D

(
∂

(−)
B] F

(+)
A + (∂C−FC)F (+)

B]AC −F
(−)
EFBF

(+)FE
A

)
− 4FDF (−−)

BDE∂
EF (+)

A

− 4FDF (−)
EBD∂

EF (+)
A + 8FDF (+)

[D|AC|∂
(−)
B] F

(+)C − 8FCFD∂(+)
[A F

(−)
C]BD

+ 4FDF (+)
FEA∂

(−)
B F

(−)EFD + 8FDF (−)EFD∂
(+)
[A F

(−)
E]BF + 4FDF (+)

BC
E∂CF (+)

DAE

− 4FDF (−)E
CB∂

CF (+)
DAE − 8FD(∂C −FC)

(
∂

(+)
[A F

(−)
C]BD + ∂

(−)
[B F

(+)
D]AC

)
− 8FEF (−)CDE

(
∂

(+)
[A F

(−)
C]BD + ∂

(−)
[B F

(+)
D]AC

)
+ . . . (4.10)
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The first term vanishes by the lowest order equations of motion (2.17). In the last two

terms we can use the Bianchi identity for FABC (2.9), which implies in particular that

2∂
(+)
[A F

(−)
C]BD + 2∂

(−)
[B F

(+)
D]AC =F (−)

AB
EF (−)

CED −F
(+)
BA

EF (+)
DCE + F (−)

AD
EF (−)

CBE

−F (+)
DA

EF (+)
BEC + F (++)

AC
EF (−)

EBD + F (+)E
ACF (−−)

BDE . (4.11)

After a bit of algebra we are left with

8FDF (+)
[D|A|

C
(
∂

(−)
B] F

(+)
C + (∂E −FE)F (+)

B]CE −F
(−)EF

B]F
(+)
FEC

)
− 4FDF (−−)

BD
E
(
∂

(−)
E F

(+)
A + (∂C −FC)F (+)

EAC −F
(−)
CFEF

(+)FC
A

)
− 4FEF (−)CDE

(
F (−)
AD

FF (−)
CFB −F

(+)
DA

FF (+)
BFC + F (++)

AC
FF (−)

FDB + F (+)F
ACF (−−)

BDF

)
− 8FDF (−)CE

B

(
∂

(+)
[A F

(−)
C]ED + ∂

(−)
[E F

(+)
D]AC

)
+ 4FDF (−−)

BDEF
(−)CEFF (+)

FCA

− 4FCF (−)
AFCF

(−)
DEBF

(−)DEF + 4FCF (+)DE
A

(
∂EF (−−)

BCD − ∂
(−)
B F

(−)
ECD + ∂DF (−)

ECB

)
− 4FCF (−)

FCBF
(+)
DEAF

(+)DEF − (A↔ B) + . . . . (4.12)

The first two terms vanish by the lowest order equations of motion and the remaining terms

cancel using the Bianchi identity for FABC . This completes the proof that the α′-correction

to the equations of motion can be cast in a manifestly invariant form provided that the

expressions in (4.1) are invariant. In particular this implies that if a YB deformation

preserves Weyl invariance at one-loop it also preserves it at two loops.

5 Conclusions

We have analyzed the conditions for a YB deformation of the bosonic/heterotic string

sigma-model to be Weyl-invariant at one loop, i.e. for the corresponding background to be

a (super)gravity solution. When (G + B)mn of the undeformed background is invertible

one finds no solution in the inhomogeneous case (although our analysis for the YB model

with WZ-term is not quite complete). For a homogeneous deformation of a symmetric

space one finds that the distinguished Lie algebra element Rrsfrs
tTt must belong to the

center of the algebra. We showed that, at least for rank R < 8, this in fact implies the

usual unimodularity condition Rrsfrs
t = 0 of [12]. When (G + B)mn of the undeformed

background is non-invertible instead the unimodularity condition is replaced by the weaker

conditions (3.12), (3.20) together with the condition that K̃ = iKB generate isometries of

the undeformed background G,H,Φ. This is consistent with what has been seen in specific

examples [15, 16] and the conditions we find agree with those coming from an analysis of

generalized supergravity, see appendix E of [16], when specifying to YB deformations. We

have also seen that when these conditions are satisfied the deformation in fact preserves

Weyl-invariance at least to two loops, i.e. the background solves the low-energy effective

string equations including the first α′-correction.

Interestingly, while in the case of unimodular deformations the fact that the two-loop

equations are satisfied is trivial in the doubled formulation we are using, this is not the
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case for non-unimodular ones due to the shift of FA by the generalized Killing vector KA.

In fact it took quite a bit of work to show that the equations of motion can be cast in

a form where it is easy to see that they are invariant under the deformation. It would

be interesting to understand if one can improve the formulation so that the invariance is

manifest also in the non-unimodular case and, if so, what this implies for the structure of

higher-derivative corrections. Perhaps the natural starting point to analyzing this question

is the gauged version of DFT [20].

For unimodular YB deformations the first α′-correction to the deformed background

was derived in [19], also by using the doubled formulation. The same correction is valid

also for the non-unimodular examples discussed here.

It would be interesting to extend our analysis to the general case of inhomogeneous

YB deformation with WZ-term by relaxing the requirement that B is invariant under the

isometries. The conditions must become essentially the same in that case since they are

mostly fixed by the generalized supergravity analysis. It would be interesting to understand

if there exist any non-unimodular Weyl-invariant examples in that case. It seems unlikely

to be the case since R is much more constrained than in the homogeneous case.

Finally, it would be interesting to extend the present analysis to the case of Poisson-Lie

T-duality, for which the first α′-correction was recently found [38–40] using essentially the

same approach as for YB.
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