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1 Introduction

The apparent accelerating expansion of our universe is most simply explained with a pos-

itive cosmological constant, so whether String/M-theory in lower energy description can

allow it or not is a very important question. Answering it turns out to be a tough task:

various no-go theorems are established [2–4], and the constructions proposed so far are

usually either not completely explicit or subject to assumptions whose validity is yet to be

tested rigorously. It is even conjectured recently that de-Sitter (dS) vacua are generally

not compatible in any theory of quantum gravity [5]. The literature on this topic is vast,

and for a review see e.g. [6, 7].

In this article we study a recent proposal for dS solutions in massive IIA supergrav-

ity [1], and provide analytic results by employing a perturbative prescription. The virtue

of the construction [1] is in its simplicity. It is done in ten dimensions, and without

e.g. intersecting branes, the supergravity field equations are reduced to ordinary differen-

tial equations. The recipe is quite minimal, and one just puts orientifold 8-planes (both

O8+ and O8−) in order to evade the no-go theorem [4]. Of course the solutions are non-

supersymmetric, so the stability is not guaranteed. They also suffer from singularities at

the orientifolds, but otherwise we are given a relatively straightforward, well-defined math-

ematical problem of analyzing coupled nonlinear differential equations with delta-function

sources representing the O8-planes.

The current work is also strongly motivated by the criticism in [8], which came up with

a no-go argument, according to which the numerical solutions in [1] are invalidated unless

extra ingredients e.g. O6-planes are added. In a more recent work however [9], the authors

of [1] have presented a refined version of boundary conditions near O8−, advocating the

existence of numerical solutions which satisfy such permissive, i.e. less stringent, require-

ments. The issue here is basically whether one should equate only the leading coefficient

of two divergent quantities at the singularity, or more restrictively the sub-leading finite

part as well. The permissive condition presumes that the discontinuity of the finite part

will be fixed when string corrections are taken into account.

In our computation we verify that while the permissive boundary conditions are satis-

fied, the restrictive ones are not satisfied just as the authors of [8] pointed out. Using our

result, any physical quantity can be calculated as a series in Λ, the cosmological constant.
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As an example we calculate the four-dimensional Newton constant. We also construct ex-

tra boundary terms at O8−, with which the solutions do respect the restrictive boundary

conditions.

2 The setup and the boundary conditions

The proposal in [1] is to consider massive IIA supergravity, and add O8-planes. More

concretely, one employs the following metric ansatz in string frame,

ds2 = e2Wds2
dS4

+ e−2W
(
dz2 + e2λds2

M5

)
. (2.1)

Namely, the ten-dimensional spacetime comprises the dS4 spacetime with warp factor e2W ,

a compact direction parametrized by z, and a negatively-curved Einstein manifold M5. We

have three functions — W (z), λ(z) and the dilaton φ(z) — to be determined.

In order to evade the no-go theorem for dS vacua in supergravity through dimensional

reduction [2–4], one allows a negative-tension object at z = z0 (O8−), in addition to an

O8+ plane at z = 0, where z is periodic as z ∼ z+2z0. The orientifolds in supergravity are

treated as a delta-function-like source of tension and charge, and their full backreaction

will be considered. The field equations are then reduced to [1]

W ′′ +W ′(5λ− 2φ)′ − Λe−4W

− 1

4
F 2

0 e
2(φ−W ) =

1

π
eφ−Wσ, (2.2)

(W + 2φ− 5λ)′′ +W ′(5λ+ 2φ)′ − 8(W ′)2 − 5(λ′)2

+
1

4
F 2

0 e
2(φ−W ) =

1

π
eφ−Wσ, (2.3)

(W − λ)′′ + (W − λ)′(5λ− 2φ)′

− 4Λ

5
e−2λ +

1

4
F 2

0 e
2(φ−W ) = − 1

π
eφ−Wσ, (2.4)

4(W ′)2 − 10(λ′)2 − 2(φ′)2 + 2φ′(5λ′ −W ′)

+ 2Λe−4W − 2Λe−2λ − 1

4
F 2

0 e
2(φ−W ) = 0. (2.5)

Here F0 = −2/π is the mass parameter of massive IIA, Λ is the cosmological con-

stant of dS4, and the Ricci scalar of M5 is 5κ. Without losing generality, we set

κ = −4Λ/5 for convenience. The orientifolds manifest themselves as the delta-function

source σ := δ(z)− δ(z − z0).

One can verify that the above equations (2.2)–(2.4) can be derived from the following

effective action.

Seff =

∫ z0

0
dz e5λ−2φ

[
4(W ′)2 − 10(λ′)2 − 2(φ′)2

+ 2φ′(5λ′ −W ′) + 2Λ(e−2λ − e−4W )

+
1

4
F 2

0 e
2(φ−W ) +

2

π
eφ−W (δ(z)− δ(z − z0))

]
, (2.6)

and the zero-energy Hamiltonian constraint (2.5).

– 2 –
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The usual prescription for 2nd-order differential equations with a delta-function source

is that the functions themselves are continuous while the first derivatives exhibit discontinu-

ity. The subtlety here is that the functions W,λ, φ are divergent near the negative-tension

object O8− at z = z0. On the other hand, at z = 0 the functions W,λ, φ are finite and

σ(z) can be treated in the standard way.

lim
z→0+

eW−φf ′i = −(4F0)−1 = (2π)−1, (2.7)

where fi ≡ {W,φ/5, λ/2} collectively represent the functions to solve for. The functions

fi, f
′
i are all finite at z = 0, so there is no subtlety with (2.7).

Now let us do the same with the boundary condition at z = z0. From the equations

of motion, one might naively want to impose

lim
z→z−0

(
f ′i − (2π)−1eφ−W

)
= 0 (restrictive). (2.8)

But in fact it is too restrictive, since it equates not only the leading divergent part but

also the sub-leading and finite part. It was thus proposed [9] that one should impose the

following condition which in fact fixes only the leading logarithmically divergent part,

lim
z→z−0

eW−φf ′i = (2π)−1 (permissive). (2.9)

This prescription is supported by the observation that a family of successfully tested

AdS/CFT duals involving orientifolds exhibit a curvature singularity with the same prop-

erty [10, 11]. From a more technical viewpoint, the permissive boundary condition is

obtained when the field variations are restricted to L2 space, while the restrictive one is

derived when the field variations are required to be smooth [9].

3 Perturbative solutions

Our idea is to solve (2.2)–(2.5) perturbatively. We will start with the case when Λ = κ = 0

in the above, and treat the remaining terms in question as perturbation. To expedite our

analysis let us introduce (Hi = e−4fi in the notation of [9])

{w, p, q} := {e−4W , e−4φ/5, e−2λ}. (3.1)

One can then easily check, if we choose to put O8+ and O8− at z = 0 and z = 1

respectively,

{w0, p0, q0} :=

{
π4c5

1

16
, c1,

π4c3

16

}
|1− z|, (3.2)

satisfy the equations, where c1, c3 are constants. We note that the boundary condition at

z = 0 is satisfied, and the behaviour at z = 1 implies that the quantities in the restrictive

boundary condition diverge but match exactly, while the permissive one is satisfied as an

equality between finite quantities.

– 3 –
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From now on let us assume that z lies in the interval 0 < z < 1, and the functions satisfy

appropriate limiting behaviour at z = 0 and 1, as dictated by the boundary conditions.

Our strategy is to solve the equations for non-zero Λ, by substituting

w(z) = w0(z)

(
1 +

∑
n=1

π4nΛnwn(z)

)
, (3.3)

p(z) = p0(z)

(
1 +

∑
n=1

π4nΛnpn(z)

)
, (3.4)

q(z) = q0(z)

(
1 +

∑
n=1

π4nΛnqn(z)

)
, (3.5)

into the equations of motion. Organising them as a power series in Λ, we obtain linearized

differential equations for wn, pn, qn, which we can solve exactly. One then demands that

the (permissive) boundary conditions be satisfied at both z = 0 and z = 1. Then the result

is straightforwardly extended to −1 < z < 0 since the functions are all even, and periodic

with z ∼ z + 2.

Let us comment that this approach is reminiscent of recent works [12–15], where su-

pergravity solutions in various holographic contexts are constructed using a perturbative

prescription. A notable difference here is that we are looking for non-supersymmetric so-

lutions, so instead of first-order BPS relations we have second-order differential equations,

and the analysis is more challenging.

The equations for w1, p1, q1 are given as follows, where the source terms are omitted

and will be taken care of by imposing the permissive boundary condition.

4(1− z)2w′′1 − 10(1− z)(p′1 − q′1) + 2w1 − 10p1 + c5
1(1− z)3 = 0, (3.6)

2(1− z)2(w′′1 + 10p′′1 − 10q′′1) + (1− z)(2w′1 + 5p′1 − 15q′1)− w1 + 5p1 = 0, (3.7)

10(1− z)2(w′′1 − 2q′′1) + 25(1− z)(p′1 − q′1)− 5w1 + 25p1 + 2c3(1− z)3 = 0, (3.8)

(1− z)(w′1 + 5p′1 − 10q′1)− w1 + 5p1 + (c5
1 − c3)(1− z)3 = 0. (3.9)

One can find the general solutions explicitly, with five integration constants. It is

indeed the case that the restrictive boundary conditions are too strong and no choice of the

integration constants can satisfy them. On the other hand, permissive boundary conditions

and the requirement to maintain the position of O8− at z = 1, by setting w1 = p1 = q1 = 0

at z = 1, completely fix the solution, with an extra relation c3 = c5
1.

We can explicitly see what goes wrong with the restrictive boundary conditions. Near

z = 1, our O(Λ) result gives

4f ′1 = −w
′

w
=

1

1− z
+
π4c5

1

128

(
1 + 34z − 17z2

)
Λ, (3.10)

4f ′2 = −p
′

p
=

1

1− z
+
π4c5

1

128

(
1 + 2z − z2

)
Λ, (3.11)

4f ′3 = −q
′

q
=

1

1− z
+
π4c5

1

640

(
5 + 26z − 13z2

)
Λ. (3.12)

Obviously, because the O(Λ) parts of f ′i here all take distinct values at z = 1, the restrictive

condition is violated.

– 4 –



J
H
E
P
1
0
(
2
0
2
0
)
0
5
7

At higher orders of Λ, one proceeds essentially in the same way. The homogeneous

part of the equations for wn, pn, qn are the same as n = 1, while the inhomogeneous part

is determined by the solutions for small n and gets complicated gradually. One also needs

to allow Λ-dependence in the relation between c3 and c1. Namely,

c3(c1; Λ) = c5
1 +

∑
n=1

π4nΛncn+1, (3.13)

and cn can be determined uniquely as well.

We have done the iterative computations up to Λ20 explicitly, although we present

only the results up to Λ2 below.

w(z) =−π
4c5

1

16
(z−1)−π

8c10
1

6144
(z−1)2

(
17z2−34z−37

)
Λ

− π12c15
1

103219200
(z−1)2

(
10117z5−50585z4+30547z3

+ 95579z2−68464z−77107
)

Λ2, (3.14)

p(z) =−c1(z−1)−π
4c6

1

384
(z−1)2

(
z2−2z−5

)
Λ

− π8c11
1

2150400
(z−1)2

(
199z5−995z4−551z3+593z2−888z−2369

)
Λ2, (3.15)

q(z) =−π
4c5

1

16
(z−1)− π

8c10
1

30720
(z−1)

(
13z3−39z2−15z+185

)
Λ

− π12c15
1

516096000
(z−1)

(
9257z6−55542z5+54120z4+54260z3

− 120915z2−43215z+385535
)

Λ2. (3.16)

As an example of what one can do using our result, we evaluate the supergravity action,

and read off the Newton constant from the coefficient of the curvature scalar.

M2
P = 2κ2

10vol(M5)

∫ 1

0
e−4W−2φ+5λdz, (3.17)

where MP is the four-dimensional Planck mass, and κ10 is the ten-dimensional gravitational

constant. The integral at hand is∫ 1

0
w (p/q)5/2 dz =

1

π6c5
1

(
32− 41Λ̃− 4297

896
Λ̃2

− 5890851

788480
Λ̃3 − 13579752323

1252392960
Λ̃4 − 7590791178245599

449659168358400
Λ̃5

− 227867772628905066871

8201783230857216000
Λ̃6 − 33203220336431649984314981

697217188888710217728000
Λ̃7

− 1464517396860440958310400521603

17402541034662207034490880000
Λ̃8

− 449002321297358563183375027089959

2949049736378235571201376256000
Λ̃9

− 1332929089357763777590588348841714411807

4749566031896881608884512987545600000
Λ̃10

− · · · − 1.09457× 105Λ̃19 − 2.18919× 105Λ̃20

)
, (3.18)
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where Λ̃ = π4c5
1Λ/10. This function is monotonically decreasing, and it vanishes when

Λ̃ ≈ 0.53.

One may recall that the computation of the lower-dimensional cosmological constant is

exactly how one derives the no-go theorem [2–4, 8]. Indeed, one can check that a particular

linear combination of (2.2)–(2.5) gives[
w−1p7/2q−5/2 (w/p)′

]′
+ 4Λw (p/q)5/2 = 0. (3.19)

Adopting restrictive condition means the right-hand-side is strictly zero at both z = 0

and z = z0. On the other hand, adopting permissive condition means we assume there

are extra delta-function sources in (2.2)–(2.5) at z = z0, so that the discontinuity of the

expression inside the square bracket (see figure 1 and the no-go argument in [8]) is cancelled.

We advocate the permissive condition, because classical supergravity is after all just an

effective theory which breaks down at O8−, and since O8− is a legitimate object in string

theory, we expect the sub-leading discontinuity in the above should be also cured once we

include stringy corrections.

For the final verdict we should in principle wait until all the correction terms in the

action are identified, which is clearly beyond out scope here. Let us instead carry out

a relatively simple test: would it be possible to add certain extra boundary terms at

z = z0 to (2.6), so that our explicit solutions satisfy the restrictive version of the modified

boundary conditions? The answer is in the affirmative, it turns out.

As a technical assumption, we allow the correction terms contain the fields and the

parameter Λ but not c1, and require they make finite contribution to discontinuity of f ′i
at z = z0. They should be compatible with string perturbation, which implies only higher

orders in eφ are allowed. Then the most general form of the correction terms should be[
e5λ−2φ

∞∑
n=1

Λn

πn
en(φ−5W )Gn(e4W−2λ)

]
z=z0

. (3.20)

We demand Gn(1) = 0, since e4W−2λ = 1 when Λ = 0, and we know we do not need a

correction term in that case. Let us henceforth write

Gn(s) =

∞∑
k=1

gn,k(1− s)k. (3.21)

One then studies how Gn affects the equations (2.2)–(2.4), and see if the restrictive bound-

ary condition can be simultaneously met, by choosing gn,k appropriately.

We have verified that (2.8) with correction terms can be achieved indeed, but not all

gn,k are fixed uniquely. It is interesting though that at least the first three coefficients are

determined,

g1,1 = 2, g1,2 = −37

48
, g2,1 =

53

50
. (3.22)

Other than these, there are many terms which make the same effect on (2.2)–(2.4) and our

computation alone cannot distinguish them.

– 6 –



J
H
E
P
1
0
(
2
0
2
0
)
0
5
7

0.5 1.0 1.5 2.0
�

-4

-2

2

4

Figure 1. A plot of w−1p7/2q−5/2 (w/p)
′
, for Λ = 0.1, c1 = 0.5. The discontinuity at z = 1 is also

pointed out in [8].

It is an intriguing question now whether the correction terms obtained above can be

shown to arise naturally in string theory. Although giving a full answer is beyond our scope

in this paper, let us point out that the terms with g1,1 and g1,2 may come from a boundary

action of the worldvolume curvature-squared, e.g.
∫
O8 e

−φ√g9(R9)2.

4 Discussion

In this paper we have solved the supergravity equations for the dS4 construction in [1],

and obtained the solution explicitly as a power series in the four-dimensional cosmologi-

cal constant Λ. Our explicit formulae, although it is unlikely we can sum them exactly,

enable us to calculate physical quantities as a series expansion form in Λ. Of course a

result like (3.18) should be taken with a grain of salt, because of the stringy correction

terms needed to resolve the orientifold singularity. For this particular quantity however,

the integrand in (3.18) vanishes at z = 1, so we expect the corrections are suppressed.

Additionally, we expect one can also do the stability analysis and calculate tachyon poten-

tial [16], compute the fluctuation spectrum etc. with our results.

Just like our previous works [12–15], the result here lends further support to the per-

turbative prescription as a powerful alternative to numerical analyses of supergravity equa-

tions which are generically nonlinear. We comment that an important requirement for our

prescription is an explicit, and preferably simple, unperturbed solution, like (3.2). It is

just the D8-brane solution with flat world-volume, as one can easily see. We expect there

are many other systems to which we can apply a similar method, and the dS4 construction

using O8+–O6− in [9] is one of them which we hope to address in a future work.
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