
J
H
E
P
1
0
(
2
0
2
0
)
0
1
2

Published for SISSA by Springer

Received: August 11, 2020

Accepted: September 4, 2020

Published: October 1, 2020

Combining single and double parton scatterings in a

parton shower

Baptiste Cabouata and Jonathan R. Gauntb

aSchool of Physics and Astronomy, University of Manchester,

Schuster Building, Oxford Road, Manchester M13 9PL, U.K.
bTheory Department, CERN,

1211 Geneva 23, Switzerland

E-mail: baptiste.cabouat@manchester.ac.uk,

jonathan.richard.gaunt@cern.ch

Abstract: Double parton scattering (DPS) processes in which there is a perturbative

“1→ 2” splitting in both protons overlap with loop corrections to single parton scatter-

ing (SPS). Any fundamental theoretical treatment of DPS needs to address this double-

counting issue. In this paper, we augment our Monte-Carlo simulation of DPS, dShower, to

be able to generate kinematic distributions corresponding to the combination SPS+DPS

without double counting. To achieve this, we formulate a fully-differential version of the

subtraction scheme introduced in Diehl et al. (JHEP 06 (2017) 083). A shower is attached

to the subtraction term, and this is combined with the dShower DPS shower along with

the usual SPS shower. We perform a proof-of-concept study of this new algorithm in the

context of Z0Z0 production. Once the subtraction term is included, we verify that the

results do not depend strongly on the artificial “DPS-SPS demarcation” scale ν. As part

of the development of the new algorithm, we improve the kinematics of the 1 → 2 splitting

in the DPS shower (and subtraction term), allowing the daughter partons to have a relative

transverse momentum. Several reasonable choices for the transverse profile in the 1 → 2

splitting are studied. We find that many kinematic distributions are not strongly affected

by the choice, although we do observe some differences in the region where the transverse

momenta of both bosons are small.
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1 Introduction

Double parton scattering (DPS) is where one has two separate hard parton-parton collisions

in the same proton-proton collision, producing two sets of final states that we shall denote

by A and B. In terms of the total cross section for the production of A + B, DPS is

formally a power suppressed effect compared to the usual single parton scattering (SPS)

mechanism [1–3]. However, DPS populates the final-state phase space in a different way

to SPS, with the result that when making more-differential measurements, DPS can play

an important role, and there are various regions of phase space where DPS contributes at

the same level as SPS. One generic example is the region where the transverse momenta of

both A and B are small [4, 5], and for many processes (such as double J/Ψ production [6]),

another is the region where A andB are widely separated in rapidities. For certain processes

where the SPS mechanism is suppressed by small or multiple coupling constants, DPS can

compete with SPS even at the level of the total cross section — a well known example is
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same-sign WW production [7, 8]. The importance of DPS relative to SPS increases with

collider energy (as lower momentum fractions are probed, where the population of partons

is greater), such that DPS is more relevant at the Large Hadron Collider (LHC) than at

any previous collider, and will be yet-more relevant at any future higher-energy proton-

proton collider. DPS can also be an important effect in proton-nucleus and nucleus-nucleus

collisions, with certain contributions to DPS rising more quickly with the nucleon number

A than SPS does [9–24] (for a review, see [25]). Finally, DPS reveals information about the

proton structure that is not accessible via any SPS process — namely, correlations between

partons. For all of these reasons, the experimental measurement of DPS contributions to

various processes at the LHC, and the ability to make corresponding theoretical predictions

of these contributions, is of great interest and importance.

The simplest and crudest approach to make theoretical predictions for DPS is to as-

sume that two partons entering a DPS process from a given proton are uncorrelated to

one another. This leads to the “pocket formula”, in which the DPS cross section for

A + B is computed as the product of SPS cross sections for A and B, divided by a ge-

ometrical prefactor σeff . Here, the kinematics of the final state A + B in DPS events is

simply that obtained by overlaying SPS A and B events. The simulations of DPS (and

more general multiple parton interactions, MPI) in general-purpose event generators such

as Herwig [26–34], Pythia [35–42] and Sherpa [43–45] (in particular, the AMISIC++

model [46]) are fundamentally based on the pocket-formula picture. These Monte-Carlo

simulations are key tools in experimental extractions of DPS, precisely because many such

extractions rely on the different kinematic “shapes” of DPS (A,B) and SPS A+B events,

and Monte-Carlo generators provide fully-differential predictions of these shapes (for both

SPS and DPS). The number of kinematic distributions used to extract the DPS contri-

bution in past analyses ranges from two in the ATLAS and CMS extractions of DPS in

W + 2 jets [47, 48], three or four in the ATLAS and CMS extractions in the four-jet pro-

cess [49–51], to eleven in the recent CMS extraction in same-sign WW [52].

The pocket-formula picture of DPS cannot be the complete one, however, and over the

past few years a complete theoretical framework for the description of DPS in Quantum

Chromodynamics (QCD) has been developed [5, 53–64] (see [13, 65, 66] for reviews). One

key aspect is that in QCD, the two partons entering the DPS process from a proton can

have a common origin in a single parton splitting perturbatively into two (the “1 → 2

splitting”) [5, 56, 57, 67]. Treating this splitting appropriately requires a formalism in

which the transverse separation between the partons y is taken into account.1 Inclusion of

the 1→ 2 splitting leads to potential double counting issues; most notably, the process in

which one has a 1→ 2 splitting in both protons overlaps with a loop correction to SPS (see

figure 2). The DPS description is clearly more appropriate at large y = |y|, whilst the SPS

one is appropriate at smaller y ∼ 1/Qh, with Qh the hard scale. A QCD framework that

consistently incorporates the 1 → 2 splittings in DPS and overcomes the double counting

issues was developed by M. Diehl, JRG and K. Schönwald [61], and will be referred to

here as the DGS framework. The first core aspect of this framework is that the DPS cross

1Bold symbols are used for two-dimensional vectors in the plane perpendicular to the beam axis.
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section is written in terms of y-dependent double parton density functions (dPDFs), which

are integrated over y down to a cut-off ∼ 1/ν. The parameter ν is an unphysical scale,

taken to be of order Qh. The second core aspect of the framework is the inclusion of a

“subtraction term” into the total cross section for the production of A + B (in addition

to the DPS and SPS terms), which cancels the dependence on ν order-by-order in the

strong coupling αs, as well as ensuring that the total cross section smoothly interpolates

between the DPS description at large y and the SPS description at small y, as is intuitively

appropriate.

Other effects also exist beyond the pocket-formula picture. The dPDFs should be

“aware” of the constraints associated with the finite number of valence quarks in the

proton (and the fact that its composition is uud) and the fact that the momentum of all

partons should add up to the proton momentum. Formally this information is encoded in

the number and momentum sum rules for the dPDFs [53, 68–72], which place non-trivial

constraints on their structure. The MPI model in Pythia 8 in fact takes account of number

and momentum sum-rule constraints in an approximate way, by ordering the interactions

in scale and rescaling the PDFs following each hard interaction [37]. In addition to this,

there can be non-perturbative correlations between the parton momentum fractions and

y in the dPDFs, and correlations in spin, colour and flavour between partons [5, 73] (for

a review, see [74]). All of these types of effects can lead to differences in the DPS rate

and/or DPS shapes (for examples of these, see [8, 70, 75–82]), where effects on the DPS

shapes are particularly important with regards to the correct experimental extraction of

DPS contributions.

In light of this, there is a need for an improved approach to generate event-level DPS

predictions that goes beyond the pocket formula and, ideally, is based on the full QCD

framework of [61]. One possible approach involves reweighting events generated by an

existing Monte-Carlo generator; this approach has been used to incorporate certain 1 → 2

splitting effects [83, 84] and the effect of quark spin correlations [78, 80]. In our work, we

have chosen to take a different approach, building a whole new Monte-Carlo simulation of

DPS from the ground up based on the DGS framework, which we believe to be advantageous

in terms of flexibility, ease of use, and future development. We refer to this algorithm as

dShower. In a previous work [79] we developed a parton-shower description of the DPS

term, with proper account of the y dependence and 1→ 2 splitting effects, and a cut-off on

the y integral ∼ 1/ν ∼ 1/Qh. That is, we recast the first core aspect of the DGS framework

into a parton-shower description. The goal of the present work is to do the same for the

second core aspect of the DGS framework, and develop a parton shower that can generate

both DPS and SPS events without double counting. This requires a formulation of the

DGS subtraction scheme at the fully-differential level, with an appropriate parton shower

for all terms. In order to achieve this goal, we adapt techniques used in the matching

of fixed next-to-leading-order (NLO) computations to the parton shower [85–98]. Also in

that context, there is a potential double counting issue (for example, between the real-

emission process in the NLO fixed-order process and the first emission in the shower), and

a subtraction scheme is needed to remove this double counting.
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The paper is organised as follows. In section 2 we present a brief review of the DGS

framework, along with an overview of the key features of the DPS shower that we developed

in [79]. Section 3 describes in detail our implementation of the DGS subtraction scheme at

the differential level in the parton shower. As part of this procedure, we alter one aspect

of the DPS shower from its formulation in [79]; whereas previously the 1 → 2 splitting

occurred with the two daughter partons having no transverse momentum relative to the

parent, we now add the possibility for the daughter partons to have a relative transverse

momentum k⊥ ∼ 1/y drawn from a distribution g(k⊥, y). This is beneficial in terms of

being able to construct a subtraction term that cancels both the DPS at small y and the

SPS at large y at the differential level, and yields a more realistic DPS description at large

y. We construct the algorithm in the context of on-shell vector-boson pair production

(Z0Z0, W+W−), where the SPS gg → Z0Z0/W+W− loop corrections overlapping with

DPS are known [99–102] (in fact, up to the next-to-leading order [103, 104]). Extension of

this procedure to more complex processes is in principle straightforward.

In section 4 we present numerical results from the algorithm in the context of on-shell

Z0Z0 production. Our purpose here is not to perform a full phenomenological study of

Z0Z0 production, but rather to study the behaviour and performance of the algorithm.

Thus, in this proof-of-concept study we include only the O(α2
s ) gg → Z0Z0 loop-induced

process in the SPS piece, and divide this contribution by 10 — this is to boost the relative

importance of DPS and reduce the Monte-Carlo statistics needed to obtain distinguishable

DPS effects. We perform the important validation check that the subtraction term cancels

the ν dependence of the DPS term, and investigate the effect of various sensible choices

for the profile g(k⊥, y) in the DPS term (with corresponding choices in the subtraction

term). We also show that in several distributions we see a difference in the SPS+DPS

results compared to the SPS results alone, in the context of this toy study.

Finally, in section 5, we conclude and discuss potential future directions.

2 Review of the dShower algorithm

In this section, a review of the algorithm proposed in [79] is given. This algorithm is

based on the QCD framework developed by M. Diehl, JRG and K. Schönwald [61] (DGS

framework) whose main features are gathered in the following. This section also introduces

the subtraction scheme presented in [61] that addresses the double-counting issue mentioned

in the introduction.

2.1 The DGS framework

In a proton-proton collision happening at a centre-of-mass energy of
√
s, the total cross

section for the production of a final state A+B via a process involving two separate hard
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Figure 1. Sketch of a DPS at a pp collider leading to the production of the final state A+B. The

transverse distance y between the partons is represented.

interactions ij → A and kl→ B is given by the factorisation formula2 [5, 53, 60–64]

σDPS
(A,B)(s) =

1

1 + δAB

∑
i,j,k,l

∫
dx1 dx2 dx3 dx4 σ̂ij→A(x1x2s, µ

2) σ̂kl→B(x3x4s, µ
2)

×
∫

d2y Φ2(yν)Fik(x1, x3,y, µ
2)Fjl(x2, x4,y, µ

2).

(2.1)

See figure 1 for an illustration of a DPS process. Here, σ̂ij→A and σ̂kl→B are the parton-

level cross sections for the subprocesses ij → A and kl → B. The symmetry factor in

front of the sum is equal to one half if A = B and to unity otherwise. The functions

Fij(x1, x2,y, µ
2) are the y-dependent dPDFs; note that in this work we will only consider

the case in which the two hard scatters are at equal scales, such that there is only one scale

µ2 in the dPDFs. A dPDF is proportional to the joint probability (or, more specifically,

the number density) of finding two partons of flavours i and j within the same proton

with longitudinal momentum fractions x1 and x2 when those partons participate in two

different hard interactions characterised by the same scale Qh [5]. The evolution of the

dPDFs with respect to the factorisation scale µ is described by the homogeneous double

DGLAP equations [5, 61]. It is customary to choose µ ∼ Qh. The impact parameter y

gives the relative distance between the two partons.

For small values of y, the dominant behaviour of the dPDFs can be expressed in terms

of the single PDFs (sPDFs) and a perturbative 1 → 2 splitting kernel. At leading order

(LO) in the strong coupling αs, this perturbative splitting expression reads [5]

F spl,pt
ij (x1, x2,y, µ

2) =
1

πy2

fk(x1 + x2, µ
2)

x1 + x2

αs(µ
2)

2π
Pk→i+j

(
x1

x1 + x2

)
. (2.2)

This expression includes the effects of the 1 → 2 splitting mechanism presented in the

introduction. More precisely, it takes into account the fact that the pair of partons ij

can originate from the perturbative splitting of a parton k with longitudinal momentum

fraction x1 +x2. The flavour k is uniquely determined by the flavours i and j for LO QCD

splittings. If there is no flavour k such that the branching k → i+ j is allowed, because of

colour or flavour considerations, then the perturbative splitting expression for the pair ij is

2This formula is derived under the so-called “collinear factorisation” approach. The partons are consid-

ered to be parallel to the incoming proton beams in the expressions of the partonic cross sections. In the

PDFs, the transverse momenta of the incoming partons are integrated over.
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Figure 2. Example of a process which can be seen either as a DPS or as an SPS. If the hard process

is defined by the black box, then it is a DPS with the two subprocesses qq̄ → A and qq̄ → B. In

the case where the hard process is defined by the green box, then one has the SPS gg → A + B.

The pieces which are not included within the boxes are integrated out inside the PDFs.

equal to zero. This small-y expression involves the unregularised splitting kernel Pk→i+j(z)

(see e.g. [53]) and the sPDF fk of parton k, which gives the probability of probing such a

flavour k at the scale µ.

In [61], the y-dependent dPDFs are modelled as the sum of an intrinsic part and a

splitting part. The evolutions of both components as a function of µ are given by the

(homogeneous) double DGLAP equations. For the intrinsic part, the initial condition for

the evolution is a product of sPDFs multiplied by a phase-space factor and a Gaussian in

y. The starting scale for the evolution is chosen to be µ0 ' ΛQCD, where ΛQCD ∼ 1 GeV is

the typical non-perturbative scale of QCD. In contrast, the input for the evolution of the

splitting part of the dPDFs, is the perturbative splitting expression given in equation (2.2)

(multiplied by a Gaussian factor that suppresses this expression for y & 1/ΛQCD). The

input is then evolved starting from the scale µy = b0/y
∗ with y∗ = y/

√
1 + y2/y2

max, ymax =

0.5 GeV−1, b0 = 2e−γE ' 1.12 and γE , the Euler-Mascheroni constant [61]. The scale µy
is not simply 1/y to avoid the sPDF and the strong coupling present in equation (2.2)

being evaluated at a scale which is below ΛQCD when y → +∞. Instead, µy → b0/ymax '
2.24 GeV, which is still in the perturbative regime. This construction for the dPDFs ensures

that the dominant behaviour of the dPDFs at small y is given by the perturbative splitting

expression written in equation (2.2), as required.

The function Φ(yν) in equation (2.1) is a cut-off at small y values. It regulates the

divergence of the DPS cross section which appears when y → 0 (recall the 1/y2 behaviour

in equation (2.2)). This power divergence is related to a double-counting issue between

SPS and DPS, which is inherent to the 1 → 2 splitting mechanism. More specifically, a

DPS process where 1 → 2 splittings occur in both protons (commonly referred to in the

literature as a “1v1” DPS process) can also be considered as a loop correction to the SPS

process. The latter description is actually the more appropriate one at small y where the

entire loop process is contained in a small space-time volume. An illustration of this double-

counting issue is given in figure 2. In the following, the Heaviside function Θ(yν − b0) will

be used as a cut-off, as was also done in the numerical studies of [61].

Introducing the cut-off Φ(yν) simply regulates the DPS cross section: it does not

solve the double-counting issue. There is double counting between the SPS and DPS

– 6 –
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contributions for all y > b0/ν, where the DPS (SPS) term gives a poor description for

small (large) y values. The simple sum of SPS and DPS terms has a strong dependence on

the unphysical parameter ν. These two related problems are cured by defining the total

cross section for the production of a final state A+B as [61]

σtot
A+B = σSPS

A+B + σDPS
(A,B) − σsub

(A,B), (2.3)

where σSPS
A+B is the usual total cross section for the production of the final-state A+B via

SPS given by the factorisation formula [105–108] as

σSPS
A+B(s) =

∑
i,j

∫
dx1 dx2 fi(x1, µ

2) fj(x2, µ
2) σ̂ij→A+B(x1x2s, µ

2). (2.4)

The subtraction term σsub
(A,B) is the integral over y of a quantity dσsub

(A,B)/d
2y that is defined

to satisfy dσsub
(A,B)/d

2y ' dσDPS
(A,B)/d

2y for y ∼ 1/ν and dσsub
(A,B)/d

2y ' dσSPS
A+B/d

2y for

y � 1/ν. When the two partons are well separated, the subtraction and SPS terms cancel

and one is left with the DPS description which is valid in this region of the phase space.

At small y, the subtraction and DPS terms cancel and leave the SPS term, which is the

appropriate description in this region. Such a scheme removes the double counting and

ensures a smooth transition between the SPS and DPS regimes. To achieve this objective

in practice, the following form for the subtraction term σsub
(A,B) is taken3

σsub
(A,B)(s) = σ1v1,pt

(A,B) (s) ≡ 1

1+δAB

∑
i,j,k,l

∫
dx1 dx2 dx3 dx4 σ̂ij→A(x1x2s, µ

2) σ̂kl→B(x3x4s, µ
2)

×
∫

d2y Φ2(yν)F spl,pt
ik (x1, x3,y, µ

2)F spl,pt
jl (x2, x4,y, µ

2). (2.5)

This term is nothing else but the DPS cross section given by equation (2.1), but with the

full dPDFs replaced by their small-y perturbative expressions written in equation (2.2).

Let us briefly sketch how this term satisfies the requirements. At small y ∼ 1/ν ∼
1/Qh, the DPS cross section is dominated by the 1v1 term, and there is little room for evo-

lution between µy and Qh, such that dσ1v1,pt
(A,B) /d

2y ' dσDPS
(A,B)/d

2y and we recover the SPS

term in this limit. SPS loop contributions are typically written as an integral over momenta

rather than positions, but it is known that at large y the dominant contribution to the

SPS loop term has the form of equation (2.5) [5, 57], such that dσ1v1,pt
(A,B) /d

2y ' dσSPS
A+B/d

2y

and we recover the DPS term. We will only consider the unpolarised colour-singlet term

in the DPS and subtraction cross sections here, for simplicity and because this is typically

the dominant contribution to DPS. In this case, at large y, we only replace the unpolarised

colour-singlet piece of the SPS loop by the DPS description, and all spin/colour/flavour

interference/correlation contributions remain described by the SPS term.

3Note that in [61], the subtraction term in fact comprises two terms: σ1v1,pt
(A,B) , which removes double

counting between DPS and SPS, and σ2v1,pt
(A,B) , which removes double counting between DPS and the so-

called “twist 2 × twist 4” mechanism. The twist 2 × twist 4 mechanism and σ2v1,pt
(A,B) do not contribute at

the leading logarithmic level when we take ν ∼ Qh (as we do here), and we do not consider them in what

follows.
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Since the DPS and subtraction terms coincide in the vicinity of the cut-off y = b0/ν,

up to higher order terms in αs, the leading dependence of the two terms on ν is the same,

and cancels out. Using the change of variables u = yν, one can show that this leading

behaviour is ∝ ν2: ∫ +∞

0

d2y

y4
Φ2(yν) = 2πν2

∫ +∞

0

du

u3
Φ2(u). (2.6)

In later sections, the implementation of this subtraction scheme within a parton-shower

algorithm as well as a numerical example of this implementation will be presented. A key

aspect of this implementation will be the cancellation of the ν dependence of the DPS and

subtraction terms, as in equation (2.3), albeit now at the differential level.

2.2 The dShower algorithm

The aim of the algorithm proposed in [79] is to simulate exclusive parton-level DPS events.

The starting point is to select two hard scatters with their respective kinematics according

to the DPS cross section introduced in equation (2.1). A value for y is also sampled

according to the cross section. After that, the two hard scatters are evolved simultaneously

using a variant of the usual parton-shower algorithms. In particular, the evolution of the

initial-state partons which are initiating the two hard scatters is guided by the y-dependent

dPDFs presented in the previous section. More precisely, consider a pair of partons of

flavours i and j belonging to the same proton with momentum fraction x1 and x2 and

participating in two different hard interactions characterised by the same hard scale Qh.

The probability that this pair remains resolved during a backward evolution from the scale

Q2
h down to a lower scale Q2 and then appears as coming either from the pair i′j or the

pair ij′ is [79]

dPij = dP̂ij exp

(
−
∫ Q2

h

Q2

dP̂ij
)
, (2.7)

with

dP̂ij =
dQ2

Q2

(∑
i′

∫ 1−x2

x1

dx′1
x′1

αs

2π
Pi′→i

(
x1

x′1

)
Fi′j(x

′
1, x2,y, Q

2)

Fij(x1, x2,y, Q2)

+
∑
j′

∫ 1−x1

x2

dx′2
x′2

αs

2π
Pj′→j

(
x2

x′2

)
Fij′(x1, x

′
2,y, Q

2)

Fij(x1, x2,y, Q2)

 .

(2.8)

By iterating equation (2.7), QCD emissions are attached to the incoming partons and their

effects are consistently included. Once an emission has occurred at a scale Qemi < Qh, the

evolution is carried on, but with starting scale Qemi instead of Qh. The algorithm stops

when the evolution scale Q reaches ΛQCD.

The algorithm described in [79] also includes the possibility that the two incoming

partons inside the same proton may be resolved into a single parton. This phenomenon,

referred to as “merging”, aims to give a geometrical picture of the backward evolution of

the system that is consistent with the 1→ 2 splitting mechanism. The merging procedure

– 8 –
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proceeds as follows. At the scale Q = µy ' 1/y, the backward evolution gets frozen and

the merging happens with a probability given by

pMrg =
F spl
ij (x1, x2,y, µ

2
y)

Fij(x1, x2,y, µ2
y)
, (2.9)

where F spl
ij is the splitting part of the full dPDF Fij , which is obtained as explained in

the previous section. In the case where the merging does not happen, then the evolution

of the pair ij is carried on as before, but with the term corresponding to the 1 → 2

splitting mechanism removed from the expression of the full dPDF (i.e. the splitting part

is omitted and only the intrinsic one remains). In the case where the merging happens, the

two partons i and j are merged into a single parton k with momentum fraction x1 + x2.

The evolution of this single parton k from the scale µy down to the non-perturbative scale

ΛQCD is carried on using the conventional one-parton branching algorithm. For the whole

procedure to work, one needs to have Qh > 1/y. With our choice for the cut-off Φ(yν),

this can be ensured at the cost of requiring that ν 6 Qh. This is one of the limitations of

the algorithm. In order to be able to include the case ν > Qh, one would need to combine

forward and backward evolutions, which is beyond the scope of this work.

In the procedure introduced in [79], the merging of the two partons i and j happens at

zero transverse momentum. More precisely, the four-momenta pi and pj of partons i and

j after the merging occurred are aligned with the beam axis in the laboratory frame. It

will be seen in a later section how one can modify the kinematics such that pi and pj get

a non-vanishing transverse momentum during the merging procedure.

3 Implementation of the subtraction scheme

As mentioned previously, there is a potential double counting issue between DPS processes

in which there is a 1 → 2 splitting in both protons (referred to as 1v1 events), and loop

corrections to SPS. The subtraction scheme introduced by the DGS framework removes the

double counting in the physical quantity — the cross section for the production of A+B via

both DPS and SPS — via the master formula, equation (2.3). This equation is written at

the inclusive level. However, we require a subtraction scheme that can be implemented in

a parton-shower framework where the DPS part is generated using the dShower algorithm,

such that we can simulate full events for the combination of SPS and DPS without double

counting. This subtraction scheme must be formulated at the fully-differential level, and

its construction will be detailed below.

We note that more-differential formulations of the DGS framework do exist — in

particular a formulation differential in the transverse momenta of the two produced systems

A and B was obtained in [63]. The framework constructed in that paper can be used to

resum logarithms of the transverse momenta p⊥ over the hard scale Qh to, in principle,

arbitrary accuracy. However, in this formulation, the DPS and subtraction terms have

different y values in amplitude and conjugate (termed y+ and y−), and there are further

terms associated with interference between DPS and SPS. These features are necessary

in the full all-order framework with transverse-momentum dependence. However, such
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features do not appear to be amenable to a probabilistic parton-shower treatment (and

some kind of amplitude-level parton branching framework [109–112] would presumably

be needed). In this work we take a simpler approach, neglecting DPS/SPS interference,

having only a single value of y in the DPS and subtraction terms, and making the most

“physically reasonable” choices of transverse-momentum profiles g(k⊥, y) in the 1 → 2

splitting (to be discussed shortly). Our treatment should be sufficient to achieve (at least)

leading logarithmic accuracy for a broad set of observables, and represents the best we can

achieve in the context of a probabilistic approach.

In section 3.2, the subtraction term at the differential level will be constructed by

combining the cross section σsub
(A,B) = σ1v1,pt

(A,B) with a shower algorithm. As suggested by

equation (2.5) itself, the subtraction term is “SPS-like” in terms of the shower (there is only

one parton in each proton) so the shower algorithm will be the usual one-parton branching

one. The kinematics of the subtraction term, which results from this combination, should

match the SPS one for large y whereas it should coincide with the DPS one for small y.

In order to best satisfy both requirements, and following the spirit of the DGS subtraction

approach, we decide to assign to the subtraction term the same kinematics as the one

generated by the dShower algorithm for a 1v1 event where no QCD emissions occurred

before the merging phase, which is forced to happen at a scale ∼ Qh. Such DPS events are

referred to as “1v1,pt” events in the following.

The cancellation between the subtraction term and DPS at small y occurs essentially by

definition. In the implementation of the dShower algorithm, the DPS events corresponding

to small y ∼ 1/ν ∼ 1/Qh are 1v1 events, where 1 → 2 splittings occur in both protons.

These splittings occur very close in scale to Qh such that there is little room for emissions

above the scale µy ∼ ν ∼ Qh of the 1 → 2 splittings. At small y and for ν ∼ Qh,

1v1,pt events are indistinguishable from 1v1 events (up to small corrections), and thus the

subtraction term matches the DPS one.

At large y values, the kinematics of the subtraction term needs to be equivalent to the

SPS kinematics (to be more specific, the unpolarised colour-singlet contribution to SPS).

In the following, Z0Z0 production is used as an illustration. Here, for the SPS process, we

will consider only the O(α2
s ) loop-induced process initiated by a pair of gluons, see figure 3,

since this is the contribution that overlaps with DPS (i.e. has a large-y tail). It is also gauge

invariant and well-defined on its own. The topology of the only graph in the loop-induced

contribution that has a large-y tail is the one in figure 3b, such that the topologies of SPS

and 1v1,pt events match. The choice to start the shower with a forced double merging at

scale ∼ Qh for all y in 1v1,pt events ensures that the shower starting scales match between

the SPS and 1v1,pt (and thus subtraction) terms at large y. On the other hand, with

the current version of the dShower algorithm, a reasonable kinematic match between the

subtraction and SPS terms at large y cannot be achieved. The kinematics of the loop-

induced process leads at LO to bosons that have a non-vanishing transverse momentum

with respect to the beam axis, even without the shower. In contrast, the equivalent topology

obtained with a DPS 1v1,pt event gives bosons which are produced along the beam axis

at LO, since partons are merged with zero relative transverse momenta. In section 3.1, an

improved merging kinematics for the DPS (and subtraction) term will be proposed such
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Figure 3. Examples of graphs contributing to the loop-induced gg → Z0Z0 process. The graph in

(b) has the same topology as a 1v1,pt event.

that it follows more closely the SPS kinematics at large y. This will yield an improved

description at large y overall — the cancellation between SPS and the subtraction term will

be more complete, and the mergings in the remaining DPS term, which are then dressed

by QCD emissions with dShower, will have more realistic kinematics.

3.1 Merging with non-vanishing transverse momentum

Before presenting the new kinematics which includes a non-vanishing transverse momen-

tum, the old kinematics developed in [79] is reviewed in detail.

3.1.1 The old procedure

Consider a pair of hard scatters that was evolved from a hard scale Qh down to the scale

Q = µy with the double-parton branching algorithm presented earlier. At this resolution

scale, the two incoming partons i and j inside the proton moving along the +z-axis in

the laboratory frame have momenta p̃i,j = ξi,j(
√
s/2)(1; 0, 0, 1), where the momentum

fractions ξi,j will be referred to as the “pre-kick” momentum fractions in the following.

The merging happens with a probability equal to F spl
ij (ξi, ξj ,y, µ

2
y)/Fij(ξi, ξj ,y, µ

2
y). Before

implementing the merging, one needs to apply longitudinal boosts to these partons (and

their daughters) in order to recover overall momentum conservation. Indeed, some parton

emissions might have been added to the two hard scatters during their common evolution

from Qh down to µy. Adding these emissions breaks momentum conservation since some

partons turn into virtual particles. In particular, the partons which are initiating the hard

scatters are now space-like and have acquired a transverse momentum by recoiling against

the emissions, whereas they used to be light-like and moving along the beam axis. The

longitudinal boosts are determined by requiring the invariant mass and the rapidity of each

hard scatter to remain as they were before the shower algorithm [30, 79]. The longitudinal

boosts have the following form

Λ(λ) =


ch(λ) 0 0 sh(λ)

0 1 0 0

0 0 1 0

sh(λ) 0 0 ch(λ)

 , (3.1)
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with

ch(λ) =
λ2 + 1

2λ
, sh(λ) =

λ2 − 1

2λ
. (3.2)

The parameter λ is the exponential of the rapidity associated to the longitudinal boost.

Therefore, a boost with λ ' 1 does not change the initial momenta too much. In practice,

if the parton emissions that were added are hard, then λ may be larger than unity. After

applying the boosts, the two partons i and j extracted from the proton have momenta

pi,j = Λ(λi,j) p̃i,j = λi,j ξi,j(
√
s/2)(1; 0, 0, 1) in the laboratory frame. Since the old proce-

dure does not add any transverse momentum to these latter momenta, the resulting parton

after merging has a momentum given by (λi ξi + λj ξj)(
√
s/2)(1; 0, 0, 1). The “post-kick”

momentum fractions xi = λi ξi and xj = λj ξj are usually different from the “pre-kick”

ones ξi and ξj . This ensures that the emissions prior to the merging phase do not break

momentum conservation.

3.1.2 The new procedure

With the new procedure, the two partons i and j involved in the merging are now allowed

to have a non-vanishing transverse momentum k⊥. More precisely, before applying the

boosts, the momenta in the laboratory frame are defined as

p̃i,j =
(
Ei,j ;±k⊥ cosϕ,±k⊥ sinϕ, pzi,j

)
, (3.3)

with ϕ some azimuthal angle. The energies and longitudinal components of these two

momenta are related to the pre-kick momentum fractions ξi,j as follows

Ei,j + pzi,j =
√
s ξi,j . (3.4)

We also define the virtualities of these momenta as

Q2
i,j = −p̃2

i,j > 0. (3.5)

These relations lead to

Ei,j =

√
s

2
ξi,j +

k2
⊥ −Q2

i,j

2
√
s ξi,j

, pzi,j =

√
s

2
ξi,j −

k2
⊥ −Q2

i,j

2
√
s ξi,j

. (3.6)

One is left with three degrees of freedom: k⊥, Q2
i and Q2

j . Momentum conservation gives

us one constraint. Indeed, when one sums p̃i and p̃j , one would like to get a light-like

momentum along the +z axis. This implies Ei +Ej = pzi + pzj which can be rewritten as

k2
⊥ =

ξj
ξi + ξj

Q2
i +

ξi
ξi + ξj

Q2
j . (3.7)

Unfortunately, this is the only constraint. Let us now apply the longitudinal boosts that

restore overall momentum conservation, as in the old procedure. The two boosted momenta

pi and pj should now add up to a light-like momentum along the beam axis. Given that

the two boosts are in general different (λi 6= λj), this is possible only if Ei,j = pzi,j . These

two last constraints imply that

Q2
i = Q2

j = k2
⊥. (3.8)
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With this prescription, the resulting parton after the merging has a light-like momentum

moving along the +z-axis, as with the old procedure. Partons i and j now have a transverse

momentum which will be propagated to the final states by recoil. For k⊥ = 0, one recovers

exactly the old kinematics. Note that a similar kinematics was proposed in [36].

The only remaining degree of freedom is thus k⊥. Naively, k⊥ should be a function of

three parameters: ξi, ξj and µy. Intuitively, one also expects k⊥ ∼ µy. This is not enough

to fix an expression for k⊥ and several choices are thus possible. The choice that is made

in this work will be presented shortly.

Let us now consider a 1v1,pt event i.e. there are no emissions before the double merging.

With this new procedure, after the double merging and boosts, the partons inside the proton

moving along the +z axis have four-momenta

p+
1,2 =

(
λ+

1,2 ξ
+
1,2

√
s

2
;±k+

⊥, λ
+
1,2 ξ

+
1,2

√
s

2

)
, (3.9)

whereas the ones moving along the −z axis4 have momenta

p−1,2 =

(
λ−1,2 ξ

−
1,2

√
s

2
;±k−⊥,−λ−1,2 ξ−1,2

√
s

2

)
, (3.10)

with k+
⊥ and k−⊥ the transverse momenta generated during the merging procedure. In the

case of Z0Z0 production, the pre-kick momentum fractions are given by

ξ±1 =

√
M2

Z

s
e±Y1 , ξ±2 =

√
M2

Z

s
e±Y2 , (3.11)

with MZ the Z0 mass and Y1,2 the rapidities of the bosons in the laboratory frame. Ac-

cording to momentum conservation, the Z0 bosons now have momenta

pZ
1 = p+

1 + p−1 , pZ
2 = p+

2 + p−2 . (3.12)

Both bosons thus get a transverse momentum given by p⊥1,2 = ±p⊥, with p⊥ = k+
⊥ +k−⊥.

Therefore, the transverse momenta of the bosons produced in a 1v1,pt event are directly

related to the choice of k⊥ profile made. In such a 1v1,pt event, extra emissions may

be attached to the merged system after the merging phase, thus modifying further the

transverse-momentum distributions of the bosons. For the purposes of comparing 1v1,pt

(i.e. subtraction) and SPS events, those additional emissions are actually not relevant

because they lead to the exact same effects in both event types, and in the study in the

next part of the section, we will neglect their effect. Since there are no prior emissions

before the double merging, the λ coefficients can be analytically calculated. One finds that

they are all equal to
√

1 + p2
⊥/M

2
Z. The post-kick momentum fractions are thus

x±1 = λ±1 ξ
±
1 =

√
M2

Z + p2
⊥

s
e±Y1 , x±2 = λ±2 ξ

±
2 =

√
M2

Z + p2
⊥

s
e±Y2 , (3.13)

and depend explicitly on p⊥. They lead to a squared invariant mass of the diboson system

equal to

m2
ZZ = 2(M2

Z + p2
⊥) (1 + cosh(Y1 − Y2)) . (3.14)

4For the proton moving along the −z axis, the boosts that must be applied are Λ(1/λ−1,2).
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Figure 4. Plot of the distribution k⊥ g(k⊥, y) as a function of k⊥ for y = 0.02 GeV−1 and

y = 0.04 GeV−1. Here, β = 1 is used.

3.1.3 Choice of the transverse profile

Whatever choice for k⊥ is made, the kinematics of a 1v1,pt event obtained with this choice

should match as closely as possible the SPS kinematics for large y values. In this work,

rather than aiming for an exact match, we will adopt a simple choice for the transverse

profile in the merging procedure, which should nevertheless reproduce the SPS kinematics

at large y reasonably well. More specifically, values for k⊥ will be sampled randomly

according to the following distribution

g(k⊥, y) =
β

π
y2 exp

(
−βy2k2

⊥
)
, (3.15)

which is normalised as ∫
g(k⊥, y) d2k⊥ = 1, (3.16)

with d2k⊥ = k⊥dk⊥dϕ = dk2
⊥dϕ/2. β is a free parameter of the model that controls the

width of the distribution. In the following, β = 1 will be used but the impact of different

choices for β will be discussed in a later section. The distribution is represented for a few

values of y in figure 4. One can see that the distribution peaks at k⊥ = 1/(
√

2β y) ' µy,

as desired. It will now be shown how this choice leads to a reasonable match between the

1v1,pt events and the SPS events at large y in the case of Z0Z0 production.

Loop diagrams are generally computed as integrals over internal momenta rather than

positions, and no full result exists for the gg → Z0Z0 loops differential in the transverse

partonic separation y. However, the small-p⊥ behaviour of the loop-induced process gg →
Z0Z0 is dominated by the contribution from the region of large y values [5, 57]. Therefore,

if the kinematics of a 1v1,pt event and the SPS one lead to the same behaviour at small

p⊥, then one can state that the two kinematics match to a reasonable degree of accuracy
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in the large-y region (and thus, that the kinematics of the subtraction and SPS terms also

match in the large y region). This can be checked by studying the p⊥ distribution of the

produced bosons. For the 1v1,pt events, p⊥ is defined as the sum of the two vectors k+
⊥

and k−⊥, which are selected according to equation (3.15). This quantity is thus distributed

according to

h(p⊥, y) =

∫
d2k+

⊥ d2k−⊥ g(k+
⊥, y) g(k−⊥, y) δ(2)(k+

⊥ + k−⊥ − p⊥)

=
β

2π
y2 exp

(
−β y

2p2
⊥

2

)
,

(3.17)

with the following normalisation ∫
h(p⊥, y) d2p⊥ = 1. (3.18)

In the SPS cross section, the y parameter is integrated over. One thus needs to do the same

for the 1v1,pt events in order to be able to compare. The 1v1,pt cross section differential

in p⊥ is given by equation (2.5), but with the profile h(p⊥, y) inserted into the y integral.

Then the p⊥ distribution of the bosons obtained for a 1v1,pt event can be estimated to be∫ +∞

0

d2y

y4
Φ2(yν)h(p⊥, y) = π

∫ +∞

b20/ν
2

dy2

y4
h(p⊥, y)

= −β
2

Ei

(
−β b

2
0 p

2
⊥

2ν2

)
,

(3.19)

with Ei(x) the exponential integral function defined as

Ei(x) = −
∫ +∞

−x

e−t

t
dt. (3.20)

In the limit where p⊥ � ν, one gets∫ +∞

b0/ν

d2y

y4
h(p⊥, y) ∼ β

2

(
− log

(
p2
⊥
ν2

)
− log

(
βb20
2

)
− γE

)
. (3.21)

This is, at least, not too far from the log2(p2
⊥/ν

2) behaviour one obtains for the p⊥ spectrum

of the loop-induced process for small p⊥ values [57, 99, 113]. This behaviour leads to a

divergence when p⊥ → 0 referred to as the “DPS singularity”, since this one also originates

from the double counting between SPS and DPS. This singularity is however integrable,

meaning that integrating log2(p2
⊥/ν

2) down to p⊥ = 0 yields a finite result. In the case

of a 1v1,pt event, the log(p2
⊥/ν

2) behaviour obtained in equation (3.21) leads also to an

integrable singularity.

3.2 Subtraction scheme at the differential level

The new kinematics presented in the previous section was introduced so that the 1v1,pt

events and the SPS kinematics lead to similar behaviours at large y values. The subtraction

term will then correctly reproduce the DPS one at small y and approximately the SPS one
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at large y, both at the inclusive and differential levels. The objective now is to create a

shower algorithm that can simulate event shapes for the combination SPS+DPS without

double counting. The procedure which will be presented in the following uses ideas from

matching [85–95] between NLO matrix elements and parton showers. Similarly to the

MC@NLO method [95–98], we decide to split the cross section for the production of a final

state A+B into two terms. More precisely, for any observable O, we write symbolically

dσtot
A+B

dO
= S1(t1)⊗

[
dσSPS

A+B

dO
−

dσsub
(A,B)

dO

]
+

∫
d2y S2(t2)⊗

dσDPS
(A,B)

dO d2y
. (3.22)

This formula is the differential version of equation (2.3). The operators S1 and S2 encap-

sulate the effects of the one-parton and two-parton branching algorithms respectively. In

other words, S1 is the usual shower algorithm whereas S2 is the dShower algorithm (in-

cluding the merging procedure) recalled in section 2.2. The quantities t1 and t2 are the

starting scales of the shower algorithms. Usually, it is the type of shower algorithm that is

implemented that determines which scale should be used. However, they should be related

to the hard scales of the corresponding hard scatters. As explained in section 2.2, one must

impose t2 > ν. In order to achieve the best matching between DPS and subtraction terms

at small y, one must take t1 = t2, as will be discussed later. The two operators S1 and S2

are unitary, meaning that they cannot modify the value of the total cross section σtot
A+B,

but only the event shapes. One thus has two types of events: SPS-like events (first term of

equation (3.22)) and DPS-like events (second term). For an SPS-like event, there is only

one hard scatter and its kinematics is sampled according to σSPS
A+B − σsub

(A,B). The event

is then showered using the one-parton branching algorithm. The DPS-like events start

from two hard scatters whose kinematics are selected according to σDPS
(A,B). The dShower

algorithm S2 is then applied to this pair of hard scatters. The DPS-like events include

all the contributions to DPS (1v1 contribution as well). Since y is not an observable, one

needs to integrate over it in the second term of equation (3.22). S2 contains an implicit

dependence on y due to the way the merging procedure is implemented, recall section 2.2.

Note that for each term in equation (3.22), both the shower and cross section parts can

contribute to the total value of O.

Let us now explain how equation (3.22) is implemented from an algorithmic point of

view. The first technical aspect is that the phase spaces for SPS-like and DPS-like events

are different. More precisely, in the instance of diboson production via SPS, the kinematics

of the diboson system can be parametrised by three non-trivial5 variables Φ1 = {Y1, Y2, p
2
⊥},

with Y1 and Y2 the rapidities of the two bosons and p2
⊥ the transverse momentum squared of

the bosons with respect to the beam axis in the laboratory frame. All the relevant kinematic

quantities can be derived from these three variables, as illustrated in section 3.1. In the

case of two hard scatters, the same rapidities Y1 and Y2 can be used to characterise the

kinematics of the two bosons. At LO, the two bosons are produced with zero transverse

momenta so there is no need for the variable p2
⊥ in the DPS case. The bosons get a

non-vanishing transverse momentum afterwards via the shower algorithm S2. The phase

5The azimuthal angles are selected according to flat distributions and are omitted here.
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space for DPS can thus be encapsulated in the variable Φ2 = {Y1, Y2, y}, with y the impact

parameter. Since Φ1 6= Φ2, one has to choose the event type before sampling the kinematics.

This can be done with the following algorithm [38, 95]

1. Select a random number R uniformly between 0 and 1. If one has R < M1/(M1 +M2)

then the event is an SPS-like one, otherwise it is a DPS-like one.

2. Select a phase-space point Φi according to the distribution pi(Φi), i being equal to 1 or

2, depending on the event type previously determined. Calculate the corresponding

quantity wi(Φi).

3. Accept the event with a probability given by wi(Φi)/Mi. In the case where the event

is rejected, then go back to the first step. If the event is accepted then apply the

corresponding shower algorithm Si.

Here, the event weight wi(Φi) is defined for i = 1, 2 as

wi(Φi) =
1

pi(Φi)

dσi
dΦi

, (3.23)

with σ1 = σSPS
A+B − σsub

(A,B) and σ2 = σDPS
(A,B). The functions pi(Φi) are some positive-definite

distributions normalised to unity which are used during the importance-sampling procedure

to increase the efficiency of the Monte-Carlo method. The number Mi is defined as the

maximum value of the event weight wi(Φi) over the whole phase space parametrised by Φi,

thus ensuring that wi(Φi)/Mi < 1. On average, the events are generated with the correct

weight σtot
A+B since

σtot
A+B =

∫
dΦ1 p1(Φ1) (M1 +M2)

(
w1(Φ1)

M1

M1

M1 +M2

)
+

∫
dΦ2 p2(Φ2) (M1 +M2)

(
w2(Φ2)

M2

M2

M1 +M2

)
,

(3.24)

where the right-hand-side of the equation is the sum of two terms: the first one (second

one) is the product averaged over the corresponding phase space of the weight associated

to an SPS-like (DPS-like) event with the probability to accept this event type. Also, on

average, the relative probability to select the event type i is σi/σ
tot
A+B, as desired.

The second technical aspect is linked to the fact that the implementation of equa-

tion (3.22) implies the handling of events with negative weights, as in the MC@NLO

procedure. Indeed, for some specific values of Φ1, it may happen that w1(Φ1) < 0. The

algorithm proposed above can be adapted to account for such cases by accepting the SPS-

like events with a probability equal to |w1(Φ1)|/M1 instead of simply w1(Φ1)/M1. In that

case, M1 must be defined as the maximum of |w1(Φ1)|. When constructing histograms,

the SPS-like events with w1(Φ1) < 0 contribute with a weight −1 whereas the ones with

w1(Φ1) > 0 and the DPS-like events are recorded with weight +1. Such a procedure ensures

that the average weight of an SPS-like event is σ1. Indeed, one can write

σ1 =

∫
dΦ1 p1(Φ1)

(
dσ1/dΦ1

|dσ1/dΦ1|
(M1 +M2)

)( |w1(Φ1)|
M1

M1

M1 +M2

)
, (3.25)
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which is the product averaged over the phase space parametrised by Φ1 of the weight

associated to an SPS-like event in the histograms with the probability to accept an SPS-

like event. This is similar to what is proposed in the MC@NLO implementation [95–98]. In

order for the whole procedure to be working efficiently, the fraction of events with negative

weights should not be too large, typically a few percent.

3.3 The subtraction term

3.3.1 Analytical expression

Let us now understand how the subtraction term is coupled to the one-parton branching

algorithm S1, as indicated by equation (3.22). First of all, the algorithm that implements

equation (3.22) requires to be able to calculate dσsub
(A,B)/dΦ1. We recall that Φ1 includes

the variable p⊥, such that we need a suitable p⊥ profile for this term. As mentioned in the

beginning of this section, we choose to assign to the subtraction term the p⊥ profile that

is generated by the dShower algorithm for a 1v1,pt event (i.e. a 1v1 event with no QCD

emissions before the merging phase). This latter profile was derived earlier in section 3.1.3

for diboson production. One can thus insert the profile h(p⊥, y) given by equation (3.17)

inside the subtraction term as follows

σsub
(A,B)(s) =σ1v1,pt

(A,B) (s) =
1

1 + δAB

∑
i,j,k,l

∫
dx1 dx2 dx3 dx4 σ̂ij→A(x1x2s, µ

2) σ̂kl→B(x3x4s, µ
2)

×
∫

d2y Φ2(yν)F spl,pt
ik (x1, x3,y, µ

2)F spl,pt
jl (x2, x4,y, µ

2)

∫
d2p⊥ h(p⊥, y).

(3.26)

Plugging equation (2.2) into this expression and using the rapidities Yi of the bosons instead

of the momentum fractions xi, one gets, in the case of Z0Z0 production

σsub
(Z,Z)(s) =

σ̂2
Z(s)

2

∫ +∞

b20/ν
2

π dy2

(π y2)2

∫
dY1 dY2

fg(X+
1 +X+

2 , µ
2)

X+
1 +X+

2

fg(X−1 +X−2 , µ
2)

X−1 +X−2

(
αs(µ

2)

2π

)2

× 2
∑

q

c2
q Pg→q

(
X+

1

X+
1 +X+

2

)
Pg→q

(
X−1

X−1 +X−2

)∫
d2p⊥ h(p⊥, y), (3.27)

where σ̂Z is the partonic cross section for the process qq̄ → Z0. The cq coefficients are

the couplings of the Z0 with the incoming quarks q and only depend on the flavour of

those quarks. The sum over q includes all the quark flavours which are allowed. The

factor two in front of that sum accounts for the symmetry between the branchings g → qq̄

and g → q̄q. There is some freedom in choosing which momentum fractions X should be

used in the splitting kernels and in the gluon sPDFs fg: one could use either the pre-kick

or the post-kick fractions defined in section 3.1. The scale µ should be set to the hard

scale appropriate to the process, although there are several potential choices. We will

come back to this question shortly. Provided the scale µ does not depend on y, we can
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Figure 5. p⊥ profile of the subtraction term for ν = MZ and ν = MZ/2. The area under each

curve is equal to ν2/(2b20). Here, β = 1 is used.

straightforwardly perform the y integral in equation (3.27) analytically, yielding

σsub
(Z,Z)(s) =

σ̂2
Z(s)

2

2π

π2

∫
dY1 dY2

fg(X+
1 +X+

2 , µ
2)

X+
1 +X+

2

fg(X−1 +X−2 , µ
2)

X−1 +X−2

(
αs(µ

2)

2π

)2

× 2
∑

q

c2
q Pg→q

(
X+

1

X+
1 +X+

2

)
Pg→q

(
X−1

X−1 +X−2

)∫
dp2
⊥

[
−β

4
Ei

(
−β b

2
0 p

2
⊥

2ν2

)]
.

(3.28)

This last expression is what is needed for the implementation of equation (3.22). Indeed,

the subtraction term is now written as an integral over Φ1. Inserting the p⊥ profile does

not change the dependence of the subtraction term on ν since∫ +∞

0
dp2
⊥

[
−β

4
Ei

(
−β b

2
0 p

2
⊥

2ν2

)]
=

ν2

2b20
, (3.29)

which is the same dependence as in equation (2.6). The p⊥ profile of the subtraction term

is represented in figure 5 for two values of ν.

3.3.2 Choices of scales and momentum fractions

Let us now discuss the choice of scale µ in the subtraction term, as well as the momen-

tum fractions X±1 and X±2 . We will also discuss the issues of the choice of renormalisa-

tion/factorisation scales in the SPS and DPS terms, which we shall refer to here as µSPS

and µDPS respectively, and the choice of shower starting scales t1 and t2 in equation (3.22).

Clearly, all renormalisation/factorisation scales should be set to be of the order of the

hard scale Qh. But for the SPS, DPS (and subtraction) terms slightly different choices

of hard scale may be optimal, even though formally the differences will be beyond the
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accuracy of the computation. Customary choices for µSPS in the context of Z0Z0 production

are µSPS = mZZ [114–118], µSPS = mZZ/2 [119–124] and µSPS = MZ [123, 125–127], with

mZZ the invariant mass of the diboson system given by equation (3.14). By contrast, for

Z0Z0 production via DPS one would typically choose µDPS = MZ. At large y, the SPS term

should predominantly produce the bosons with p⊥ ∼ 1/y �MZ, such that at such y values

one can drop p⊥ in dynamic scales like mZZ and write this as a function of MZ and the

rapidities Yi alone. To achieve best matching between the subtraction and DPS at small y,

and subtraction and SPS at large y, the optimal choice of µ in the subtraction term would

then be a y-dependent choice that tends to µDPS at small y, and to µSPS(p⊥ = 0) at large y

(this in practice could be implemented via appropriate profile scales [61, 128, 129]). With

this choice, one can straightforwardly follow the procedure above up to equation (3.27)

(since the scales are independent of p⊥), but would no longer be able to perform the y

integral analytically to obtain equation (3.28).

An alternative possibility is to choose µ to either be µSPS (or µSPS(p⊥ = 0)) or µDPS.

In this case the matching between the subtraction term and either DPS or SPS will be

degraded at small y or large y, where the degradation in matching will be, in general, more

observable at small y (since this is the leading-power SPS region). This would favour the

choice µ = µDPS in this case.

Now let us discuss the choice of starting scales ti for the showers. We set the shower

starting scales for the SPS and subtraction terms to be equal (= t1), as written in equa-

tion (3.22). The reason for this is that then we can treat these terms together as SPS-like

events in the algorithm. This in turn minimises the number of events with negative weights

— given that the SPS term is usually much larger that the subtraction term, one is en-

sured that the combination d(σSPS
ZZ − σsub

(Z,Z))/dΦ1 is positive-definite over a large region of

the phase space parametrised by Φ1. As in the MC@NLO method, a minimal fraction of

negative-weight events is desired because, for a given accuracy, the larger the fraction is,

the higher the statistics needs to be. If one separates the scales of the SPS and subtrac-

tion terms, then one has to split the SPS-like events into pure SPS events and subtraction

counter-events which contribute to the histograms with weight −1. This will increase the

number of negative weights drastically.

It is in principle possible to choose the shower starting scale to be different from the

renormalisation/factorisation scale in each term, although having such a mismatch between

the cross section expression and shower is somewhat unnatural. If we want to match the

shower starting scale with the renormalisation/factorisation scale, the constraint that the

shower starting scales of the SPS and subtraction terms are equal implies that µ = µSPS.

If µDPS 6= µSPS, this choice is incompatible with µ = µDPS.

In the Z0Z0 production example we study here, we will simply set all renormalisation,

factorisation and shower starting scales to MZ. In such a case, where we set µDPS = µSPS,

we can achieve all desired properties above simultaneously.

Now we discuss which momentum fractions X should be used in the expression of the

subtraction term. To achieve the best match between the DPS and subtraction terms at

small y, the pre-kick fractions ξ constitute a better choice than the post-kick fractions

x. Indeed, the DPS cross section uses the pre-kick fractions given by equation (3.11).
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Moreover, the post-kick fractions contain an explicit dependence on p2
⊥, see equation (3.13),

which technically prevents us from inserting the integral over p2
⊥ in equation (3.26).

3.3.3 Numerical checks

It will now be shown how the subtraction term performs numerically. The first step is to

check that the kinematics of the subtraction term is indeed equal to that of a DPS 1v1,pt

event. The kinematics corresponding to a 1v1,pt event can be simulated by combining the

cross section σ1v1,pt
(Z,Z) defined by equation (2.5) (with µ = MZ) with the dShower algorithm

S2. By definition, the shower evolution of a 1v1,pt event starts with a forced double

merging at t2 = MZ, in contrast with a usual 1v1 event where the merging phase happens

at the scale µy ' 1/y which is below t2. To highlight this technical difference, the shower

algorithm used to shower the 1v1,pt events is denoted by S̃2. Since the evolution of a 1v1,pt

event starts directly with the merging phase, there are no emissions before this phase, as

mentioned before. Recall that at small y ∼ 1/ν ∼ 1/MZ the 1v1,pt DPS term coincides

with the full one. The subtraction term in this comparison is simply the corresponding

term in equation (3.22) i.e. the cross section given by equation (3.28) coupled with the

shower algorithm S1, with t1 = MZ. In the rest of this section, ν = MZ is used. The effects

of a variation in ν are studied in section 4.1. The only differences between the two terms

are then the shower algorithm, the way the phase space is sampled (recall that Φ1 6= Φ2)

and the choices of scales and momentum fractions.

In the following figures, the two previously described terms S1(MZ)⊗ dσsub
(Z,Z)/dO

and
∫

d2y S̃2(MZ)⊗ dσ1v1,pt
(Z,Z) /(dO d2y) are designated by “Sub” and “1v1,pt” respectively.

The results for
√
s = 13 TeV were obtained using the 3-flavour MSTW2008 set of LO

sPDFs [130, 131] and the 3-flavour scheme for αs developed by the same authors [132],

with αs(MZ) = 0.126. Consequently, only the massless u, d and s quarks are allowed in

the cross-section formulae and in the showers. We only include three flavours to avoid to

have to deal with the different mass thresholds that would add further complications to

the problem. The showers are angular ordered and stop when the evolution scale reaches

the value of 2 GeV. No cuts are applied to the hard process qq̄ → Z0 ⊗ qq̄→ Z0. We take

MZ = 91.188 GeV.

In figures 6 and 7, the histograms of the transverse momenta of the Z0 bosons and of

the Z0Z0 pair are given for several choices of momentum fractions X (figure 6) and scale

µ (figure 7). These two histograms give complementary pieces of information since the

transverse momenta of the Z0 bosons are mostly determined by the cross section whereas

the transverse momentum of the Z0Z0 pair is particularly sensitive to the shower activity.

Indeed, the transverse momentum of the Z0Z0 pair must balance that of all the extra parton

emissions in order to achieve overall momentum conservation. In all the histograms, the

error bars represent the statistical errors due to the use of Monte-Carlo techniques. As

motivated above, the choice µ = MZ and X = ξ for both the PDFs and splitting kernels

leads to the best match between the 1v1,pt and subtraction terms, at least for the presented

distributions. With this choice, the subtraction term should reproduce the DPS one at

small y, since this latter is equal to the 1v1,pt term in that region.
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Figure 6. (a) Transverse momenta of the Z0 bosons and (b) transverse momentum of the Z0Z0

pair for different values of the momentum fractions X used in equation (3.28). The label “PDF”

refers to the momentum fractions used in the gluon PDFs, whereas “Ker” labels the fractions in

the splitting kernels. In both cases, these fractions are set to be either the pre-kick fractions or the

post-kick ones. The scale µ is set to be equal to MZ. The 1v1,pt setup is the reference in the ratio

plots. The histograms are not normalised to unity.
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Figure 7. (a) Transverse momenta of the Z0 bosons and (b) transverse momentum of the Z0Z0

pair for different values of the scale µ used in equation (3.28). The momentum fractions X are

set to be equal to the pre-kick fractions. The 1v1,pt setup is the reference in the ratio plots. The

histograms are not normalised to unity.

The second step is to check the large-y region. For y � 1/ν, the subtraction term

should match the unpolarised, colour-singlet part of the SPS loop-induced term. The

subtraction term S1(MZ)⊗dσsub
(Z,Z)/dO will now be compared to the loop-induced SPS cross

section coupled to the S1(MZ) algorithm. In the region y � 1/ν, the choice of scale µ and

fractions X does not matter as much as it does for y ∼ 1/ν because the p⊥ values are here
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Figure 8. (a) Transverse momenta of the Z0 bosons and (b) transverse momentum of the Z0Z0

pair as produced by the SPS and subtraction terms. The momentum fractions X are set to be

equal to the pre-kick fractions and µ = MZ. The SPS setup is the reference in the ratio plots. The

histograms are normalised to unity.

small and the different choices thus coincide. In this study, our focus will be on comparing

the overall shapes of the two terms (particularly at small p⊥ � ν) rather than making

precise numerical comparisons between the two — in any case the magnitudes of the two

should not coincide even at low p⊥, as the full SPS loop-induced term contains additional

colour, spin and flavour interference/correlation contributions, that are not contained in

our subtraction term.

In this study, the loop-induced cross section was computed using the matrix-element

generator OpenLoops 2 [133–137]. The factorisation scale and the argument of the strong

coupling are set to MZ. In the OpenLoops 2 calculation one has all six quark flavours

running inside the loop (with all quarks treated as massless except the top quark), instead

of the three massless flavours in the calculation of the subtraction term. However, since

we only aim at a rough shape comparison between the SPS and subtraction terms, this

mismatch is not critical. We use the same 3-flavour αs in both the SPS and subtraction

terms. In the SPS calculation, we use the default values for the Higgs and top masses,

MH = 125 GeV and Mt = 172 GeV.

In figure 8, the subtraction term is compared to the SPS one. Here, the histograms are

normalised to unity because we are mainly concerned with the shapes of the two different

terms, as mentioned above. It can be seen that the p⊥ spectra for the boson pair exactly

match. This is because the p⊥ spectrum of the Z0Z0 pair is mainly controlled by the shower

algorithm used and the two terms are showered with the exact same algorithm S1(MZ).

Nevertheless, the curves obtained for the p⊥ spectrum of the Z0 bosons do not coincide.

This is due to the fact that the Z0 p⊥ is strongly determined by the cross section. The p⊥
profile which was inserted in the expression of the subtraction term is the p⊥ spectrum of

a 1v1,pt event, and ensures an accurate subtraction in the region y ∼ 1/ν. However, this

profile only approximates the p⊥ spectrum of an SPS event and hence does not perfectly
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match the SPS cross section in the region y � 1/ν. In particular, the small-p⊥ behaviour

obtained with the subtraction term is log(p2
⊥/ν

2) instead of the log2(p2
⊥/ν

2) that can be

extracted from the SPS cross section, recall section 3.1.3. It will be seen in a later section

how one can modify the transverse profile used in the merging kinematics to improve the

matching between the SPS and the subtraction terms in the large-y region.

4 Numerical results

In this last section, the results obtained from the numerical implementation of equa-

tions (2.3) and (3.22) are presented for Z0Z0 production via SPS and DPS at
√
s = 13 TeV.

The set of sPDFs, the running scheme for the strong coupling and the choices of scales and

momentum fractions are identical to the ones mentioned in the previous section. In partic-

ular, the factorisation scales and the arguments of the couplings in all the cross sections as

well as the starting scales of the showers are set to be equal to MZ. The cross sections are

computed either analytically or with OpenLoops 2. As before, in this numerical study,

we will only include the loop-induced process in the SPS piece, although in principle one

can also add other SPS processes on top of the loop-induced one (such as the qq̄ → Z0Z0

Born process). For the DPS cross section written in equation (2.1), the set of y-dependent

dPDFs that is used is the 3-flavour DGS set originally developed in [61] and improved

in [79]. The results are presented at parton level, meaning that there is no hadronisation

phase. In each event, there are at most two different hard scatters.

In this study we choose to rescale the SPS cross section by a factor 1/10. This is to

counteract the fact that the DPS cross section is power suppressed with respect to the SPS

one [5]. Such a rescaling is of course not physical, but is helpful in this proof-of-concept

study to distinguish the DPS process from the SPS one in the histograms and to enhance

the sensitivity to the ν variation. We recall here that the SPS term does not contain any

dependence on the parameter ν and the cancellation of the dependence on this unphysical

parameter only occurs between the subtraction term and the DPS one.

4.1 Validation

Let us start by studying the impact of the subtraction term. The histograms presented

in figure 9 were produced setting σsub
(Z,Z) = 0, whereas the ones in figure 10 were obtained

using all the terms present in equation (3.22). As expected, removing the subtraction term

induces a strong dependence on the scale ν in the event shapes. The same effect can be

observed for the total cross sections, see table 1.

In the case where the subtraction term is included, the fact that the event shapes

are independent of ν (up to subleading terms in αs) can be understood as follows. As we

increase ν from an initial value of the order6 of Qh, a positive contribution is added to the

DPS term at small y ∼ 1/Qh. For the dominant 1v1 part of this, the double merging occurs

very close to the two hard scatters. The additional 1v1 events hence develop a topology

that is similar to the one usually associated to an SPS event. However, as we increase ν,

6We remind the reader that in our current implementation we must have ν ≤ Qh, although the general

argument presented here also works for ν > Qh.
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Figure 9. (a) Transverse momenta of the Z0 bosons and (b) transverse momentum of the Z0Z0

pair as given by equation (3.22) with σsub
(Z,Z) = 0 and for three different values of ν. The ν = MZ

setup is the reference in the ratio plots. The histograms are not normalised to unity.
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Figure 10. (a) Transverse momenta of the Z0 bosons and (b) transverse momentum of the Z0Z0

pair as given by equation (3.22) for three different values of ν. The ν = MZ setup is the reference

in the ratio plots. The histograms are not normalised to unity.

Scale ν With subtraction term Without subtraction term

ν = MZ 0.222± 0.002 0.296± 0.003

ν = MZ/2 0.219± 0.002 0.240± 0.002

ν = MZ/4 0.216± 0.001 0.222± 0.002

Table 1. Total cross section for pp → Z0Z0 in picobarns [pb] at
√
s = 13 TeV for different values

of the scale ν. The statistical error is given.
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the subtraction term gets a nearly identical additional contribution at small y. This means

that the term that is subtracted from the SPS cross section is larger, recall equations (3.22)

and (3.28), which implies fewer actual SPS events. The two mechanisms are designed to

cancel each other. In practice, a slight dependence on ν may appear for some observables,

however. This can be due to the fact that only the leading contributions were included

in the definition of the DPS and subtraction terms. Adding higher order corrections to

both terms would reduce the residual ν dependence (a key result that is needed for this

is obtained in [138]). In practice, the observables are even less sensitive to a ν variation

than it appears in this proof-of-concept study because the DPS and subtraction terms are

relatively small compared to the SPS one (recall the factor 1/10 applied to the SPS cross

section).

Let us briefly comment on the number of events with negative weights that are gener-

ated by our algorithm. The fraction of events that are accepted with a negative weight is

rather small: 0.4% for ν = MZ and drops to 0% for ν = MZ/2 and ν = MZ/4. Therefore,

these events do not affect the efficiency of the algorithm. The fraction of events would be

even smaller if the SPS cross section were not rescaled.

4.2 Improving the matching at large y

In figure 8a, it was observed that the shapes of the Z0 p⊥ spectra produced by the SPS and

subtraction terms do not coincide, even at small p⊥ � Qh. This is due to a mismatch for

large y values between the p⊥ profile of the subtraction term and the SPS cross section.

It is actually possible to calculate the p⊥ profile corresponding to the contribution

to the SPS process which overlaps with DPS (i.e. the loop-induced process) in the large-

y region. This was achieved in [5] and the p⊥ profile of the unpolarised, colour-singlet

contribution to SPS for large y values can be approximated to be

hSPS(p⊥, y) =
y4

(2π)2

∫
d2z eiz·p⊥(

y − 1
2z
)2 (

y + 1
2z
)2 . (4.1)

The factor in front of the integral ensures that the profile is correctly normalised:∫
hSPS(p⊥, y) d2p⊥ = 1. (4.2)

The p⊥ profile in equation (4.1) contains ultraviolet divergences at y+ = 0 and y− =

0, where y± = y ± z/2. However, no such divergences exist in the actual SPS cross

section. This is because the integrand in equation (4.1) is only valid in the region in which

|y±| � 1/Qh ∼ 1/ν, which is the region of the integral where a DPS description is most

appropriate. The region in which one of y± goes to zero whilst the other stays finite is

the region of the integral where an SPS/DPS interference description is most appropriate.

The “DPS” region |y±| � 1/Qh ∼ 1/ν ultimately yields the leading behaviour of the

SPS cross section ∝ log2(p2
⊥/ν

2) (mentioned in section 3.1.3 and [57, 113]), whilst the

“DPS/SPS interference” region yields a subleading behaviour ∝ log(p2
⊥/ν

2). Here, we are

predominantly interested in the leading low-p⊥ behaviour associated with the DPS region.

To extract this behaviour, we can simply insert ultraviolet regulators in equation (4.1)
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to cut off the integrand when |y±| ∼ 1/ν. In this work, we will regulate the ultraviolet

divergences by adding a term b20/ν
2 to each denominator factor in equation (4.1), yielding:

hSPS(p⊥, y; ν) =
y4

(2π)2

∫
d2z eiz·p⊥((

y − 1
2z
)2

+ b20/ν
2
)((

y + 1
2z
)2

+ b20/ν
2
) . (4.3)

Integrating this profile over y as in equation (3.19), one obtains∫ +∞

0

d2y

y4
hSPS(p⊥, y; ν) =

[
K0

(
b0 p⊥
ν

)]2

. (4.4)

The function K0(x) is one of the modified Bessel functions of the second kind and reads

K0(x) =

∫ +∞

0

cos(xt)√
1 + t2

dt =
1

2

∫ +∞

−∞

eixt√
1 + t2

dt. (4.5)

In the limit where p⊥ � ν, one gets∫ +∞

0

d2y

y4
hSPS(p⊥, y; ν) ∼

(
1

2
log

(
p2
⊥
ν2

)
+ log

(
b0
2

)
+ γE

)2

, (4.6)

which gives the leading log2(p2
⊥/ν

2). Note that the regularisation in equation (4.3) changes

the normalisation of the profile. This can be rectified by replacing the factor y4 by (y2 +

b20/ν
2)2 in this same equation. This substitution then modifies the result obtained in

equation (4.4) but does not change the leading log2(p2
⊥/ν

2) behaviour that is extracted

from this result for small values of p⊥. Using another regularisation scheme has the same

effect: it changes the subleading terms, but not the leading one. If the p⊥ profile derived in

equation (4.4) is then used to construct the subtraction term then the p⊥ spectra obtained

from the subtraction and SPS terms coincide in the small-p⊥ region, up to corrections

going like log(p2
⊥/ν

2) and terms which are not logarithmically enhanced.

The problem here is that the kinematics of the subtraction term must also match

the one of a DPS 1v1,pt event in the small-y region and it is cumbersome to design a

transverse profile g(k⊥, y) for the merging kinematics whose convolution with itself leads

to a p⊥ profile as given by equation (4.4) (recall equation (3.17)). This is the reason why

the transverse profile g(k⊥, y) was chosen to be Gaussian in this work, see equation (3.15).

Such a form leads to a resulting p⊥ profile h(p⊥, y) that can be analytically calculated and

at least has a reasonably similar behaviour, once integrated over y, as the one given by

equation (4.4) in the small-p⊥ region.

In figure 11, the approximated SPS p⊥ profile given by equation (4.4) is compared to

the one given by equation (3.19) for several values of β. This latter profile was obtained

from a Gaussian distribution g(k⊥, y). It can be observed that the shape of the SPS profile

is best reproduced for β = 2. This is confirmed in figure 12 where the SPS term is compared

to the subtraction term for several values of β. One observes in the plots that whatever

the value of β is, the shape of the subtraction term does not match that of the SPS term at

the lowest p⊥ values. This is due to the fact that changing the parameter β cannot change

the log(p2
⊥/ν

2) behaviour obtained from the resulting p⊥ profile for small p⊥ values, which
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Figure 11. Different p⊥ profiles for the subtraction term for ν = MZ. The profile given by

equation (3.19) which corresponds to a Gaussian distribution g(k⊥, y) is represented for three

values of β (red, blue and green curves). The approximated “true” profile (black) and the fitted

profile (magenta) are given respectively by equation (4.4) and equation (4.10). The fitted profile

corresponds to a decreasing Gaussian distribution g(k⊥, y), as given by equation (4.9). The area

under each curve is equal to ν2/(2b20).

SPS
Sub β = 1
Sub β = 2
Sub β = 1/2
Sub fitted profile

10−4

10−3

10−2

Z p⊥

1/
σ
d
σ
/
d
pZ ⊥

[1
/G

eV
]

20 40 60 80 100 120 140
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4

pZ⊥ [GeV]

R
at
io

Figure 12. Transverse momenta of the Z0 bosons as produced by the SPS and subtraction terms.

The subtraction term corresponding to a Gaussian distribution g(k⊥, y) is given for several values

of β. The fitted profile corresponds to a decreasing Gaussian distribution g(k⊥, y). The SPS setup

is the reference in the ratio plot. The histograms are normalised to unity.
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(a) (b)

Figure 13. (a) Transverse momenta of the Z0 bosons and (b) transverse momentum of the Z0Z0

pair as given by equation (3.22) for a Gaussian form of g(k⊥, y) (with three different values of β)

and for a decreasing Gaussian form (fitted profile). The β = 1 setup is the reference in the ratio

plots. The histograms are not normalised to unity.

does not match the SPS log2(p2
⊥/ν

2). In this sense the Gaussian ansatz is not ideal. One

has to keep in mind, however, that in fact the transverse profile g(k⊥, y) of the 1 → 2

splitting does not play a role at the leading-logarithmic level in the transverse-momentum

distributions of the Z0 bosons, so these considerations are technically beyond our intended

accuracy. The Gaussian ansatz implements in a simple way the physical intuition that the

partons in the 1→ 2 splitting should be given a relative transverse momentum k⊥ ∼ 1/y.

In figures 13 and 14, the results obtained by combining all the contributions as de-

scribed in equation (3.22) are given for several values of β. One can notice in figure 13 that

in general the value of β does not affect too much the resulting kinematic distributions. In

order to observe a discrepancy, one needs to study the small-p⊥ region with extreme cuts on

either the invariant mass or the transverse momentum of the Z0Z0 pair, see figure 14. The

fact that the results do not depend strongly on the value of β is expected: the discrepancy

between the different choices is not a leading-logarithmic effect.

One may wonder whether it is possible to improve the Gaussian ansatz — i.e. define

a class of profiles g(k⊥, y) such that the resulting p⊥ profile behaves as log2(p2
⊥/ν

2) in

the small-p⊥ region. To achieve such a goal, let us revisit the equations of section 3.1.3.

We recall that the small-p⊥ behaviour of the loop-induced SPS term is dominated by

contributions from the region 1/ν � |y±| � 1/p⊥ (the logarithmic integrations for y± are

“cut off” at values of order 1/p⊥ by the exponential factor in equation (4.3)). In a similar

way, the dominant small-p⊥ behaviour of the subtraction term under the Gaussian ansatz

arises from the region 1/ν � y � 1/p⊥ — we have a logarithmic integration over y that

extends between y ∼ 1/ν (where it is cut off by the factor Φ) and y ∼ 1/p⊥ (where it

is cut off by the Gaussian factor), recall equation (3.19). For the purposes of computing

the leading low-p⊥ behaviour, one can replace the Gaussian factor in equation (3.17) by a
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(a) (b)

Figure 14. Transverse momenta of the Z0 bosons with (a) a cut on the invariant mass of the

Z0Z0 pair and (b) a cut on the transverse momentum of the pair. The results were produced using

equation (3.22) for a Gaussian form of g(k⊥, y) (with several values of β) and for a decreasing

Gaussian form (fitted profile). The β = 1 setup is the reference in the ratio plots. The histograms

are not normalised to unity.

simple cut-off imposing yp⊥ < 1, yielding for the p⊥ distribution:∫ 1/p⊥

b0/ν

d2y

y4

(
β

2π
y2

)
= π

∫ 1/p2⊥

b20/ν
2

dy2

y2

β

2π
= −β

2
log

(
b20 p

2
⊥

ν2

)
. (4.7)

This agrees with equation (3.21) at the leading-logarithmic level.

This insight allows us to design an h(p⊥, y) that yields a double logarithmic behaviour

in the small-p⊥ limit. We need an expression which is strongly suppressed for yp⊥ > 1,

as for the Gaussian ansatz, but which is proportional to −y2 log(yp⊥) in the limit yp⊥ �
1 rather than y2. Then, the leading low-p⊥ behaviour will be proportional to (recall

equation (4.7))∫ 1/p⊥

b0/ν

d2y

y4

(
−y2 log(yp⊥)

)
= π

∫ 1/p2⊥

b20/ν
2

dy2

y2
(− log(yp⊥)) =

π

4
log2

(
b20 p

2
⊥

ν2

)
. (4.8)

Such a profile h(p⊥, y) can be obtained for example from the following form for g(k⊥, y):

g(k⊥, y) =
1

π
√

2

y

k⊥
exp

(
−π

2
y2k2
⊥

)
. (4.9)

The width of the Gaussian in this expression has been chosen such that when this profile

is used to construct the subtraction term, the coefficient of the log2(p2
⊥/ν

2) term in the p⊥
distribution is the same as the corresponding coefficient in equation (4.6).

Unfortunately, we were not able to obtain the p⊥ profile of the subtraction term cor-

responding to equation (4.9) analytically. However, one can perform a fit of this profile,

using the following functional form:∫ +∞

b0/ν

d2y

y4
h(p⊥, y) ' e−β0zα0

(
γ + β1z

−α1 + β2 log(z) + log2(z)
)
, (4.10)
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Figure 15. Transverse momenta of the Z0 bosons as produced by the 1v1,pt and subtraction terms

for a decreasing Gaussian form of g(k⊥, y). The 1v1,pt setup is the reference in the ratio plot and

is defined as in section 3.3. The histograms are not normalised to unity.

with z = b0 p⊥/ν. The result of the fit gives the coefficients7 β0 = 3.58, α0 = 1.16, γ = 1.18,

β1 = 3.58, α1 = 0.23 and β2 = 1.42.

In figure 11, the fit of the p⊥ profile is compared to the approximated SPS profile given

by equation (4.4) and to profiles corresponding to a Gaussian g(k⊥, y). One can see that

this fitted profile more closely approximates the shape of the SPS profile than the other

ones for small values of p⊥. This is due to the fact that the two profiles have the same

double-logarithmic behaviour in the small-p⊥ region.

Using an approximation of the p⊥ profile instead of the exact expression does mean that

the matching between 1v1,pt events and the subtraction term is to some extent degraded.

In figure 15, the subtraction term corresponding to the fitted profile given in equation (4.10)

is compared to the 1v1,pt DPS term, as defined in section 3.3. As a reminder, the transverse

momenta k⊥ of the merging partons in a 1v1,pt event are selected according to g(k⊥, y),

which is here the “decreasing Gaussian” given by equation (4.9). In this figure, it can

be observed that the two terms start to disagree at large p⊥ values. This is in contrast

with the case where g(k⊥, y) is a bare Gaussian, where the p⊥ profile of the subtraction

term can be analytically calculated. Indeed, it was noticed in figure 6 that the 1v1,pt and

subtraction terms overlap perfectly in this instance.

The mismatch at large Z0 p⊥ leads to an imperfect subtraction between the DPS and

subtraction terms at small y and large p⊥. However, one notes that when all contributions

are combined, the use of a fitted p⊥ profile instead of an analytical result does not have a

7Note that technically the leading small-z behaviour of the right hand side is z−α1 — however, the size

of this term only actually overtakes the log2(z) one once z . 10−9, which is not practically relevant.
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strong impact on the kinematic distributions, including the Z0 p⊥ — see figure 13, where

the fitted-profile result agrees well with the Gaussian-ansatz results, even at large p⊥. This

is because the subtraction term for the decreasing Gaussian ansatz falls more steeply than

the SPS term, such that it is much smaller than SPS at large p⊥ — see figure 12. Since

the large-p⊥ region is dominated by contributions from the small-y region, the DPS term

should also be much smaller than the SPS term at large p⊥. The mis-cancellation seen in

figure 15 is then numerically unimportant in the combination.

Both the Gaussian ansatz (with adjustable β) and the decreasing Gaussian ansatz

(using the fitted profile of equation (4.10) in the subtraction term) are available as options

in the code.

4.3 Distinguishing DPS from SPS

As previously mentioned, we do not aim here at a full phenomenological analysis of DPS

in the Z0Z0 production process. However, even in the context of our toy set-up where we

only have the loop-induced process in the SPS piece, and this is multiplied by 1/10, it is

interesting to investigate in what kinematic regions we can observe the largest impact from

the DPS process.

We recall from section 2.1 that the DPS cross section is generically not well-defined

on its own, since it depends on the unphysical parameter ν, and that the well-defined

combination is the total cross section SPS+DPS-sub. How can we then define a separation

of SPS and DPS? Note that, from a theoretical point of view, the SPS cross section for

pp → Z0Z0 is perfectly defined on its own. Therefore, we can compare the signal produced

by the SPS process on its own to the one obtained when combining SPS and DPS. Any

discrepancy between the two we attribute to DPS. In this way we effectively define the

quantity “DPS-sub” to be the DPS contribution, putting the large-y parts of 1v1 loops

that are not already described by the SPS term into the DPS contribution.

In figures 16, 17 and 18, some event shapes are given. The setups of the simulations

are the same as before. More precisely, the label “SPS+DPS” refers to the results obtained

using equation (3.22) for ν = MZ and β = 2 i.e. by combining SPS and DPS. The “SPS”

curves were again produced with the loop-induced process only, with the cross section

multiplied by a factor 1/10. The comparison shows that the inclusion of DPS leads to

more events in the regions of small transverse momenta and small invariant masses. It

is natural that DPS should be concentrated in this region since, at LO, the bosons are

produced with zero transverse momenta in the DPS process. Combining the DPS process

with the SPS one should then add to the SPS cross section a contribution that is peaked

at zero transverse momentum and at an invariant mass of 2MZ, recall equation (3.14).

This leads us to propose an upper cut on either the transverse momenta of the bosons

(or of the pair) or the invariant mass of the pair as a useful cut to distinguish DPS from

SPS. Moreover, the results presented in figure 17 seem to advocate an upper cut on the

difference in azimuthal angles ∆ϕZZ and a lower cut on the absolute value of the difference

in pseudorapidities ∆ηZZ of the bosons as discriminating cuts. For instance, in figure 18b,

the p⊥ spectrum of the pair was produced for both setups by only accepting the events

that satisfy ∆ϕZZ < 2. This seems to enhance the discrepancy between the two setups,
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Figure 16. (a) Transverse momenta of the Z0 bosons and (b) invariant mass of the Z0Z0 pair for

the production via SPS only and via SPS combined with DPS. The SPS+DPS setup is the reference

in the ratio plots. The histograms are not normalised to unity.
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Figure 17. (a) Difference of the azimuthal angles of the two Z0 bosons and (b) difference of the

pseudorapidities of the two Z0 bosons for the production via SPS only and via SPS combined with

DPS. The SPS+DPS setup is the reference in the ratio plots. The histograms are not normalised

to unity.

especially in the region of small transverse momenta which is the region where the DPS

contribution is expected to be important.

Removing the factor of 1/10 in the SPS piece will reduce the differences that can be

observed between the SPS and SPS+DPS curves. Including the other contributions to

the SPS process may affect the event shapes observed for Z0Z0 production, which may

lead to different discriminating cuts being appropriate. However, this is probably not

the case since our reasoning uses rather general distinguishing characteristics of the DPS
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Figure 18. (a) Transverse momentum of the Z0Z0 pair and (b) transverse momentum of the pair

with a cut on the azimuthal difference for the production via SPS only and via SPS combined with

DPS. The SPS+DPS setup is the reference in the ratio plots. The histograms are not normalised

to unity.

signal. Moreover, the proposed cuts are used in many phenomenological and experimental

analyses to distinguish the DPS signal from the background SPS signal. For instance,

similar cuts were already proposed in the context of a phenomenological study of Z0Z0

production in [139] and for the CMS extraction of DPS in same-sign WW production,

where discriminating variables of the kind we discussed were used to train boosted decision

trees [52]. For an extensive review of experimental extractions of DPS, where in many

places such variables are used to discriminate DPS and SPS, see chapters 6–8 of [140].

5 Summary

In this work, the Monte-Carlo simulation of DPS dShower introduced in [79] has been

augmented such that SPS and DPS processes can be combined in a consistent manner

for the first time. This is a non-trivial task; simply adding up SPS and DPS leads to a

double-counting issue both at the inclusive and differential levels. At the inclusive level,

the problem of combining DPS and SPS without double counting was solved in [61], via

the inclusion of a subtraction term. The objective of this work was to extend this sub-

traction scheme to the differential level in such a way that it can be implemented within a

probabilistic parton-shower algorithm.

This required several steps. First of all, the kinematics of the 1 → 2 splittings was

modified such that a relative transverse momentum k⊥ ∼ 1/y was generated between the

daughter partons (with y the partonic transverse separation). In the original dShower algo-

rithm [79], the daughter partons were produced with zero relative k⊥. This new kinematics

is more realistic, and ensures that the kinematics of “1v1,pt” DPS events (in which 1 → 2

splittings occur in both protons and there are no QCD emissions above the characteristic

– 34 –



J
H
E
P
1
0
(
2
0
2
0
)
0
1
2

scale of the 1→ 2 splittings) mimic more closely at large y the kinematics of an SPS event,

whose topology at such y values is equivalent to the 1v1,pt one (see figure 3).

Then, a subtraction term was introduced, whose kinematics was chosen to be the one

generated by the shower algorithm for a 1v1,pt DPS event. With such a choice (and with

the modification to the DPS algorithm just described), the kinematics of the subtraction

term matches the DPS one at small y by definition, and approximately matches the SPS

one at large y, thus extending the subtraction scheme at the differential level. Finally,

each term was combined with a shower algorithm, such that event shapes corresponding

to the production of a given final state via both SPS and DPS could be simulated without

double counting. The overall design of the subtraction scheme in the shower is to a certain

extent similar to techniques used in the matching of NLO computations to the parton

shower [85–95].

This subtraction scheme was implemented in the new version of the dShower simulation,

thus allowing the combination of SPS and DPS. The implementation was numerically

validated at parton level in the context of Z0Z0 production. In our proof-of-concept study,

the SPS term was the loop-induced process initiated by a pair of gluons since it is the

only contribution that overlaps with the DPS process and that has a large-y tail. This

SPS term was divided by 10, to boost the visibility of the DPS contribution and reduce

the required statistics. We studied the dependence of the algorithm on the quantity ν, an

unphysical parameter that effectively demarcates SPS and DPS. Once the subtraction term

is included, the results show a rather small dependence of the cross section and event shapes

on this scale, as should be the case. We also investigated several different sensible choices

for the k⊥ profile g(k⊥, y) in the 1→ 2 splitting process and subtraction term, including an

“optimal” choice for which the behaviour of the subtraction term matches that of the SPS

loop-induced term at small p⊥. For many distributions, almost no difference was observed

between the different choices, with a small difference being observed in the region of phase

space where the transverse momenta of both bosons are small. The implementation of

this subtraction scheme generates some counter-events that contribute to the histograms

with a negative weight (as is also encountered in NLO+shower matching schemes such as

MC@NLO [95–98]). However, it was shown that it is possible to limit the fraction of

events with negative weights to a few percent if one couples the SPS cross section and the

subtraction term to the exact same shower algorithm.

Using the toy set-up described above, we also studied in what kinematic regions the

inclusion of DPS has an observable impact. Our results indicate that upper cuts on pZ
⊥, pZZ

⊥ ,

mZZ and ∆ϕZZ as well as a lower cut on |∆ηZZ| will lead to an enhanced DPS contribution.

This is consistent with previous experimental and phenomenological studies of DPS.

In the future, it would be interesting to use this algorithm to make a proper phe-

nomenological analysis of Z0Z0 production and other processes of interest such as W+W−

production. For such studies it would be desirable to include at least the Born SPS process

in addition to the loop-induced one, massive quark flavours, decays of the bosons, and

hadronisation of the low-scale partons. It would also be interesting to study the effects of

different sets of sPDFs and dPDFs in the simulation, or to adapt the algorithm such that

it can handle unequal-scale dPDFs. The new PDF interpolation library ChiliPDF [141]
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could help to achieve such goals. The first aspect would help to assess the uncertainties

related to the PDFs, whereas the second one would be relevant for DPS processes that

involve hard scatters characterised by two different scales such as four-jet or W+2 jet

production.
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