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1 Introduction

Phenomenology of U(1) gauge bosons Xµ (see e.g. [1–9]) is, in general, very dependent on

the particle content and the X-hypercharge assignment of the fundamental theory. The

canonical requirements for the formulation of an ultraviolet (UV) model, such as to be

anomaly free and to recover the Standard Model (SM) fermion mass matrices, indicates

the presence of new scalars and stable fermions even in minimal extensions like the Two

Higgs Doublet Model (2HDM). Furthermore, in order to cancel the triangle anomalies per

generation, it is common to introduce new right-handed fermions. Motivated by the exis-

tence of discrepancies related to the muonic interactions, by charging the second generation

under U(1)X , we have found an appropriate theoretical framework to discuss either dark

photons or Z ′ gauge bosons. The model must contain at least two Higgs doublets and one

scalar singlet [10], as a condition to recover a consistent fermion mass spectrum. Apart
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from its simplicity, the U(1)X SM extension is commonly found in different models as the

first step of a gauge breaking scheme, like, for instance, in Grand Unified Theories E6,

where E6 → SO(10)⊗U(1)→ SU(5)⊗U(1)⊗U(1)→ SM ⊗U(1).

Guided by our theoretical analysis of SM⊗U(1)X theories, in this paper we describe the

constraints from the existing experimental data on the dark gauge boson phenomenology

at the low energies (MeV regime) [11]. We first consider leptonic interactions and provide

the detailed expressions for the computation of the most stringent processes. In Part

I of our work we present how the set of Xµ gauge bosons can be separated into A′ -

including dark photons - and the Z ′ subsets, depending whether they have axial couplings

with fermions or not [12]. In the minimal dark photon phenomenology [13], only three

new parameters are present, namely, the kinetic-mixing coupling, the mass of dark photon

A′ and its branching fraction into invisibles. In the more general case when SM fields

are charged under X, the parameter space is increased by at least two parameters - the

gauge coupling, and the new breaking scales. The presence of dark photon leads to small

corrections of Quantum Electrodynamic (QED) quantities and is commonly favored in

current experimental searches, for falsifiability reasons and safety from parity-violating

effects. Notwithstanding, we aim to explicitly obtain the dependence of axial couplings on

the model parameters and why their effects must be suppressed. We also check what is the

effect of axial couplings in the decay width of Z ′ into dark matter candidates. In the chiral

U(1)X model, Lepton Flavor Violation (LFV) is directly suppressed through the presence

of a flavor matrix F. For instance, by X-charging the second generation of the right-handed

fermions and selecting the element F22 = 1, we immediately achieve that no LFV emerges

at tree-level.

The analysis of section 3 is performed under the hypothesis that there is a light Xµ

boson below the di-muon threshold (∼ 10 − 200 MeV), whose effects can be detected for

couplings of the order gX ∼ 10−4 − 10−1. If this hypothesis holds, the gauge boson

existence must be associated to one specific point of the most favored (less excluded)

parameter space, in the plane defined by mX and g2
X . We will see that the search for

the most favored parameter planes will imply, for instance, that the fermionic dark matter

candidate χ is lighter than the new vector, once the decaying channel X → χ̄χ is open.

In addition, the strong bounds from the electron anomalous magnetic moment [7] can

be reduced in the vicinity of the poles, which emerge in the calculations of the (g − 2)e,

provided by the presence of axial couplings. Under standard considerations for the relic

density computation [14], this feature would severely restrict dark photon models coupled

to dark matter fermionic candidates. A similar conclusion is reached from the neutrino

trident production [3].

We denote by Xµ the new and generic gauge boson, while Z ′ and A′ are assigned ac-

cording to the presence or absence of axial-couplings, respectively, whenever the distinction

is necessary in our analysis. In section 4.1 we calculate the forward-backward asymmetry

for ēe → f̄f , which is relevant in the studies of light Z ′ physics. In section 4.2 we make

predictions for leptonic meson decay widths for M → jνj l̄l, with M = π,K,D,DsB and

j, l = e, µ, in the framework of SM ⊗ U(1)X . Finally, section 5 contains a summary of

our results.
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2 U(1)X coupling to right-handed fermions

The present work considers a number of the most stringent constraints coming from the

flavor physics in the MeV regime, applied for a particular U(1)X SM extension which

exclusively charges the second generation of all right-handed (RH) fermion species. Here

we summarize the important vertexes, necessary for the computation presented in the next

section. The fermion-gauge interactions are described by:

Lkin ⊃ i
[
LαL /DLαL +QαL /DQαL + lαR /DlαR + dαR /DdαR + uαR /DuαR + χR /DχR

]
, (2.1)

where α = 1, 2, 3, L,Q are lepton and quark isospin doublets, while l, u, d are the lepton, d-

type and u-type fermion singlets, respectively. The covariant derivative Dµ is introduced as

Dµ = ∂µ − ig(W+I+ +W−I−)− ieQAµ − igZZµ − igRXµ. (2.2)

The new SU(2) singlet and stable fermion, χR, is required for the treatment of quantum

anomalies. The couplings in the mass basis are dependent on two independent angles, i.e.

eQ = gsφτ
3 + gY cφY, (2.3a)

gZ = cθg
SM
Z + sθ(κY + gXX), (2.3b)

gR = sθg
SM
Z − cθ(κY + gXX), (2.3c)

where g, gY , gX are the weak couplings and τ3 is the SU(2) generator. We use cφ ≡ cosφ

and sφ ≡ sinφ. The quantum numbers Y and X are related to the U(1)Y and U(1)X parts

of the SM ⊗ U(1)X gauge group. The parameter κ = gY ε is the coupling resulting from

the Lm = ε
2B

Y
µνB

Xµν kinetic mixing term, while gSM
Z = g

cφ
(τ3− s2

φQ). There are two Higgs

doublets and a singlet in the model, denoted by:

φ0 =

 ϕ+
0

v0+H0+iχ0√
2

 , φX =

 ϕ+
X

vX+HX+iχX√
2

 , s =
vs +Hs + iχs√

2
. (2.4)

with the following hypercharges

Y0 = YX =
1

2
, X0 = 0, XX = −1, Ys = 0 Xs = 1 . (2.5)

The vacuum expectation values v0, vX are the weak breaking scales assumed to be related

to the SM v2 = v2
0 + v2

X . The full reproduction of QED and the introduction of a new

breaking scale, larger than the SM weak scale, allow the angles to be parametrized as:

sφ =
gY√
g2 + g2

Y

, sθ ≈
|2gXc2

β − κ|
ḡ

[
1−

m2
X

m2
Z

]−1

. (2.6)

and c2
β =

v2
X
v2 . The parameter sθ regulates the NP effects in the neutral currents and it must

be a small parameter. The gXX term of eq. (2.3) operates for RH fields and generates a
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so-called flavor matrix F, encompassing the flavor changing (FCNC) and non-universality

effects in the theory. F emerges after the field redefinition fR → VfRf
′
R ≡ VfRfR, where

f = (f1, f2, f3):

Lkin ⊃ −cθgX
[
uRFUγµuR + dRFDγµdR + lRFlγµlR

]
Xµ, (2.7)

such that (Ff )ij = Xf (V †fR)i2(VfR)2j , with Tr[Ff ] = Tr[Xf ] = Xf , where Xf is the X-

hypercharge of the particular fermion type. From the definition

|Ff | ≡ Xf

 |VfR|221 |VfR|21|VfR|22 |VfR|21|VfR|23

|VfR|21|VfR|22 |VfR|222 |VfR|22|VfR|23

|VfR|21|VfR|23 |VfR|22|VfR|23 |VfR|223

 , (2.8)

one can verify that the F diagonal elements control the amount of Lepton Flavor Violation

(LFV) predicted by the model.

In summary, the New Physics (NP) effects in flavor are dominated by Xµ interactions,

which can be represented by1

L ⊃ 1

2
f γµ(xfV + xfAγ

5) f Xµ. (2.9)

The couplings xfV,A can be extracted by replacing in eq. (2.2) and eq. (2.1) the following

hypercharge assignment:

• Y hypercharges:

YL = −1

2
, YQ =

1

6
, Yl = −1, Yχ = 0, Yu =

2

3
, Yd = −1

3
, (2.10)

• X hypercharges (the second generation receives the charges under U(1)X):

XL = 0, XQ = 0, Xe2 = 1, XχR = −1, Xu2 = −1, Xd2 = 1 , (2.11)

where the remaining RH fields uncharged.

For completeness, we present the quarks and leptons vector and axial-vector couplings

xUV = g
sθ
cφ

(
1

2
− 4

3
s2
φ

)
− cθκ

5

6
− cθgXFUii , (2.12a)

xUA = g
sθ
cφ

(
−1

2

)
− cθκ

1

2
− cθgXFUii , (2.12b)

xDV = g
sθ
cφ

(
−1

2
+

2

3
s2
φ

)
+ cθκ

1

6
− cθgXFDii , (2.12c)

xDA = g
sθ
cφ

(
1

2

)
+ cθκ

1

2
− cθgXFDii , (2.12d)

xlV = g
sθ
cφ

(
−1

2
+ 2s2

φ

)
+ cθκ

3

2
− cθgXFlii, (2.12e)

1NP in Z interactions are doubled suppressed by sθgX ≈ g2
X .

– 4 –



J
H
E
P
1
0
(
2
0
1
9
)
2
7
9

xlA = g
sθ
cφ

(
1

2

)
+ cθκ

1

2
− cθgXFlii, (2.12f)

xνV = −xνA = g
sθ
cφ

(
1

2

)
+ cθκ, (2.12g)

xχV = xχA = cθgX . (2.12h)

We emphasize that the effects of additional new scalar fields are considered to be negligible,

in contrast with those coming from the χ fermion coupling to Xµ.

Xµ interactions with charged hadrons The interaction of a new dark gauge boson Xµ

with charged hadrons can be obtained by using the gauge principle of the QED Lagrangian,

and by rotating the Abelian gauge field like

BY
µ → BY

µ + εBX
µ , (2.13)

which brings the kinetic mixing, at first order in ε, into a diagonal form. In other words, af-

ter the above transformation, the QED covariant derivative Dµ = ∂µ−ieqAµ is extended to

Dµ
(2.13)→ ∂µ − ieqAµ + iqc2

φκXµ, (2.14)

where κ = gY ε. We neglect second order terms in the small parameters. The shift will

allow us to compute the inner X-bremsstrahlung from a charged hadron. We present in

section 4.2 its importance in the case of the M → µνee meson decays, for M = π,K,D,Ds

and B.

3 Low-energy constraints

3.1 ρ parameter

The dependence of the W -boson mass on the coupling and vacuum expectation values

(v.e.v) reproduces the Standard Model value at tree-level, i.e.

m2
W =

g2v2

4
, with v2 ≡ v2

X + v2
0. (3.1)

In the limit of vanishing new couplings, the Z-boson mass is SM-like, while the mass of

Xµ gauge boson becomes M2
X → g2

X v̄
2 + κ2v2/4 (with v̄2 ≡ v2

X + v2
s , defined in eq. (2.21)

of the Part I). The ρ parameter is defined by three observables, namely mW , mZ and the

weak mixing angle, through the expression ρ =
m2
W

m2
Zc

2
w

. We use notation cosθw ≡ cw. In

the SM these parameters are connected, such that at tree-level ρ = 1. Within SM⊗U(1)X
theories, if the couplings g and gY are assumed to take the SM values, or equivalently

cφ ≡ cw, the Z mass parameter approaches (m2
Z)SM from the right, i.e. (m2

Z)X > (m2
Z)SM,

which leads to a suppression in ρ. In order to find how the ρ parameter differs from unity,

we can write mZ as

m2
Z ≈

v2

4
ḡ2

(
1 +

a2
2

ḡ2 − a1

)
→ v2

4
ḡ2
(
1 + s2

θ

)
, (3.2)
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with a1 ≡ 4
[
g2
X
v̄2

v2 − gXκc2
β

]
+ κ2 , a2 ≡ 2gXc

2
β − κ . The last step recalls eq. (2.6) and the

light mass condition a1 � ḡ2. By relying on the above result and using the eq. (3.1) in the

definition of ρ , it follows that

ρtree
X ≈ c2

θ, (3.3)

which cannot reach the central value of the experimental measurement [15] ρ ∈ 1.00040(24).

Nevertheless, at two sigma level one can demand 0.99992 < c2
θ ≤ 1, i.e.

s2
θ < 8× 10−5. (3.4)

Hence, it follows the genuine smallness of the θ angle at tree-level.

3.2 Proton charge radius in the U(1)X model

The proton radius can be extracted from the comparison of the theoretical prediction and

the measured value for the Lamb shift in muoninc and atomic hydrogen. The result can

be expressed as a sum of independent physical contributions, i.e.

∆E|lth = δEla + δElb + · · ·+ λl〈r2
p〉|l, (3.5)

where l = µ, e accounts for the two types of hydrogen and the last term corresponds the

correction due to the finite-size of charge distribution in the proton. At leading order λl is

given by

λl =
2α

3a3
l n

3
(δP0 − δS0) , (3.6)

where n = 2 for 2P − 2S and al = (αmlp)
−1 is the Bohr radius of the system with reduced

mass mlp =
mlmp
ml+mp

. Numerically λµ = −5.2012 MeV fm−2. The proton charge radius is

derived from the condition

∆E|lth = ∆E|lexp, (3.7)

with the r.h.s. denoting the experimental value of the Lamb shift in the l-hydrogen. For

instance, in the muonic hydrogen [16]

∆E|µexp = 202.3706(23) MeV. (3.8)

On the theoretical side, the proton charge distribution is considered to affect the effective

potential defining the µ-hydrogen states, whose Lamb shift is estimated to be (see [16])

∆E|µth = 206.0336(15) + 0.0332(20)− 5.2275〈r2
p〉. (3.9)

Here the first term summarizes the vacuum polarization contributions and recoil effects,

while the second includes a two-photon exchange contribution. The proton puzzle denotes

the difference in the solutions of eq. (3.7) for both eH and µH systems, which provides2√
〈r2
p〉|µ = 0.84087(39) fm [16] (3.10a)√
〈r2
p〉|e = 0.8758(77) fm CODATA-2010 [18] (3.10b)

2After the publication of this work, a new measurement of the atomic hydrogen Lamb shift was an-

nounced by [17].
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Note that the level of precision in the µH is one order of magnitude higher than in eH.

The above results are obtained when no New Physics effects are included. In the present

work we accommodate this discrepancy through the NP contribution in eq. (3.7), whose

l.h.s. may be rewritten as

∆E|lth = δEl0 + δElX + λl〈r2
p〉|Xl (3.11)

where δEl0 sums up the errors of the results in eq. (3.10), and now

〈r2
p〉|Xµ = 〈r2

p〉|Xe . (3.12)

Moreover, from eq. (3.11) the difference between the “X” and QED frameworks can be

expressed as a small deviation δXl :

〈r2
p〉|Xl = 〈r2

p〉|l − δXl , (3.13)

with

δXl ≡
δElX
λl

. (3.14)

In summary, a constraint on the proton radius is imposed by eq. (3.12), i.e.

δXe − δXµ = 〈r2
p〉|e − 〈r2

p〉|µ. (3.15)

In general, the correction δXl is derived as the deviation from the Coulomb potential due

to the exchange of a massive vector boson Xµ, or ([19])

V l
X(r) =

glgp
e2

αe−mXr

r
, (3.16)

with a correspondent shift in 2P − 2S given by [20]

δElX =

∫
dr V l

X(r)
(
|R21(r)|2 − |R20(r)|2

)
r2 = − α

2a3
l

(
glgp
e2

)
f(almX)

m2
X

. (3.17)

Above, |R2i|2 are the radial wave-functions corresponding to the states P and S, while

gl, gp are the lepton and proton couplings with Xµ, respectively and f(x) = x4

(1+x)4 [19].

The parameter al = (αmlp)
−1 denotes the Bohr radius, with mlp denoting the reduced

mass of the l − p system, and implies aµ ∼ 1.44, i.e. ∼ mµ
me

smaller than ae. Therefore, for

mX > 10 MeV one can approximate f(x) ∼ 1. From eq. (3.14) it follows that

δXl = 6
(glgp
e2

) f(almX)

m2
X

(3.18)

and a proton curve is defined by

6
gp
e2

(ge − gµ)

m2
X

= 〈r2
p〉|e − 〈r2

p〉|µ, (3.19)

which, in principle, can be solved by an attractive force (i.e. sgngp = −sgngl) strongly

coupled with muons. In the SM⊗U(1)X framework, and in the limit f(x) ∼ 1, the sgn gp
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must be opposite only to the non-universal part of the Xµ coupling. The couplings gp and

gl, extracted from eq. (2.14) and eq. (2.12e) respectively, are given by:

gp = −c2
φκ, gl =

xlV
2
. (3.20)

For simplicity Fττ may be set to 0, such that Fµµ + Fee = 1, what reduces the proton

curve to

6
gpgX
e2

2Fµµ − 1

m2
X

= 0.060(13) fm2. (3.21)

In figure 3 we present two examples for the 2σ favored region allowed by the cur-

rent experimental results for the proton radius,3 with the fixed parameters (cβ , κ,Fµµ) =

(0.8,−4gX , 1) and (cβ , κ,Fµµ) = (0.8,−gX , 1). We emphasize that, even in the absence of

the experimental discrepancy in eq. (3.10), any theory of lepton non-universality in the first

two generations will imply, from eq. (3.11), a non-zero contribution to the Lamb shift in

the l-hydrogen system and, therefore, it will impose strong constraints on these couplings

in the MeV range.

3.3 M+ → µ+ invisibles

In this section we compare the experimentally measured decay width for K → µY (Y de-

notes invisible states), and the theoretical prediction for the decay width of K → µ+νµχχ̄.

The narrow-width approximation (NWA) is assumed to be valid in the region where

mX > 2mχ, i.e when e+e−, νν and χχ̄ are the only directly accessible decay products

of Xµ. Hence the differential decay width may be determined using

dΓ(K → µνχχ̄) =
1

3
dΓ(K → µνX)BR(X → χχ̄). (3.22)

The dominant contributions to the decay amplitude are presented in figure 1(a,b). The

Feynman’s rules for the vertexes related to figure 1(a,b) are given in appendix A and they

lead to the amplitudes

Ma =

(
GF

2
√

2
fMV

∗
UD

)
εµ∗X

q2
23 −m2

l

{
(xlV + xlA)ml

[
ūν(1 + γ5)

(
(/p2

+ml)γµ + 2p3µ

)
vl

]
−(xlV − xlA)q2

23 [ūν(1 + γ5)γµvl]
}

(3.23a)

Mb =

(
GF√

2
fMV

∗
UD

)
(c2
φκ) [(k + q) · ε∗X ]

ml

q2 −M2
[ūν(1 + γ5)vl] , (3.23b)

where q = p1 +p3 and q23 = p2 +p3, fM are meson decay constants and VUD stands for the

CKM matrix element present in the particular decay mode. As a cross-check one can prove

that the gauge invariance holds by replacing the dark gauge boson Xµ by the photon field

through xlV → 2e, xlA → 0 and c2
φκ→ e, such that εµ(Mµ

a +Mµ
b )→ p2µ(Mµ

a +Mµ
b ) = 0.

3Note that since gp = −c2φκ, a force strongly coupled to electrons could also explain the anomaly through

an opposite phase in the kinetic mixing constant.
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(a) (b) (c)

Figure 1. The Feynman diagrams (a,b) contributing to MlY , Y denoting invisibles, in the U(1)X
model and the structure dependent diagram (c) in QED.

Figure 2. For mX < 2mµ the boson Xµ has five directly decay modes, l = e, χ, ν.

The details of the decay width calculation are given in appendix B. Assuming that

the vector Xµ decays into the invisible pairs χ̄χ, ν̄ν, its contribution to the process K →
µ+ invisibles can be constrained by the existing experimental bound [21]

ΓKµY
ΓKµν

< 3.5× 10−6, 90% C.L. , (3.24)

with the missing energy in the interval 227.6 < mY (MeV ) < 302.2. The vertex Xµχ̄χ is

extracted from the Lagrangian component

L ⊃ gR
2
Xµχ̄γµ(1 + γ5)χ, (3.25)

with gR given by eq. (2.3c). Since χR is a singlet under the SM gauge group and Xχ = −1,

it follows that the Feynman’s rule for the Xµχ̄χ is i(gX/2)γµ(1+γ5), where we set cθ ∼ 1. If

the mass of Xµ is in the MeV region, the dark boson may still decay into a electron-positron

pair, whose vertex is written in eq. (A.2). In the NWA,

ΓKµY = ΓKµχ̄χ + 3ΓKµν̄ν

=
1

3
Γ(K → µνX) [BR(X → χχ̄) + 3BR(X → νν̄)] , (3.26)

where the factor of three accounts for the neutrino flavors. The decay amplitude coming

from the diagrams in figure 2 can be written most generally as

Ml =
1

2

[
ū(p−)γµ(xlV + xlAγ5)v(p+)

]
εµ(P ). (3.27)

From eq. (3.25), xχV = xχA = gX . Again, one can estimate the branching ratio

BR(X → āa) =
Γ(X → āa)∑
l Γ(X → l̄l)

(3.28)
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where, from eq. (B.1),

Γ(X → l̄l) =

∑
|MXl̄l|2

2mX

Φ2(X → l̄l)

(2π)2
, (3.29)

i.e.

BR(X → āa) =
|MXāa|2

√
λ(m2

X ,m
2
a,m

2
a)∑

l |MXl̄l|2
√
λ(m2

X ,m
2
l ,m

2
l )
. (3.30)

The sum over l takes all l = χ, e, νe, νµ, ντ . Finally, from the amplitude of eq. (3.27), one

can write the general formula

|MXl̄l|2 = 4
[
2m2

l

(
xlV

2 − 2xlA
2
)

+m2
X

(
xlV

2
+ xlA

2
)]
, (3.31)

where the average over final state spins is made implicit. Since xχV = xχA, the equation is

simplified, such that

|MXχ̄χ|2 ∝ [m2
X −m2

χ] (3.32)

i.e. the decay width of X → χχ̄ is suppressed by the difference between X and χ masses.

Provided by the experimental constraint [21], we present some examples of the allowed

region for mX × g2
X in figure 3 and figure 4.

3.4 (g − 2)e

The contribution to the electron anomalous moment ae, coming from the new dark gauge

boson Xµ is equivalent to a shift in the fine-structure constant, as already discussed in

ref. [7]

dα = 2πaXe → dα−1

α−1
= −2πaXe

α
. (3.33)

The r.h.s. is the relative correction to the measurement of α−1 which should not exceed

0.5 ppb [1]. The contribution of the Xµ gauge boson to the electron magnetic moment in

the dipole function can be written as

aXe =
m2
e

4π2

[
(xeV )2IV (m2

X) + (xeA)2IA(m2
X)
]
, (3.34)

where

IV (m2
X) =

∫ 1

0
dz

z2(1− z)

[m2
l z

2 +m2
X(1− z)]

mX�ml→ 1

3m2
X

,

IA(m2
X) =

∫ 1

0
dz
z(1− z)(z − 4)−

(
2
m2
l

m2
X

)
z3

[m2
l z

2 +m2
X(1− z)]

mX�ml→ − 5

3m2
X

. (3.35)

Since the limit mX � me is valid in our analysis, we can set the bounding curve

f

(
m2
e

m2
X

)
≡
(
m2
e

m2
X

)
1

6πα
|(xeV )2 − 5(xeA)2| < 0.5ppb (3.36)
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Figure 3. The allowed region for the proton radius explanation, using the bound in eq. (3.24).

Under the narrow-width approximation the vector Xµ decays into the missing χ̄χ, ν̄ν pairs. Here

mX = 3mχ and Fττ = 0.

Parameter space. As discussed in Part I, we have to find out how to fix a plane in

a five-dimensional parameter space assuming that the model can explain the selected ex-

perimental discrepancies. If we insist to explain the proton charge radius puzzle, one has

to require

sgn gX = −sgnκ. (3.37)

In the examples depicted in figure 3, it is evident how stringent are the bounds from (g−2)e.

However, due to the interplay of the contributions coming from the vector and axial-vector

couplings, the curve can be minimized through the root equation

|(xeV )2 − 5(xeA)2| = 0 (3.38)

with a fixed F, i.e. around the roots there is almost no effect from the dark boson X to the

fine structure constant. If Fee = 0 the solutions to eq. (3.38) are

n ∈
[
−7

5
,
3

2
, 3

]
c2
β . (3.39)

for κ = ngX . Due to the condition of eq. (3.37) only n = −7/5c2
β may be a solution for the

proton puzzle, as presented in figure 4. We denote κ0 = −7/5c2
βgX . Note that for κ0 value,

the (g − 2)e bound reduces the discrepancy of the proton puzzle from 5σ to 2σ. In the

case where κ is not inside the range of eq. (3.39), then the electron anomalous magnetic

moment gives the most stringent bound on the parameter space.

In the following calculations we have written the electron vector and axial-vector cou-

plings to Xµ in the form

xeV = gX

[
g

cφ

(
2s2
φ −

1

2

) |2c2
β − n|
ḡ

+
3n

2
− Fee

]
, (3.40)

xeA = gX

[
g

2cφ

|2c2
β − n|
ḡ

+
n

2
− Fee

]
. (3.41)

In addition, the decay of the vector boson Xµ into neutrino pairs is allowed, with couplings

xνV = −xνA =
gX
2

[
g

cφ

|2c2
β − n|
ḡ

+ n

]
. (3.42)
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Figure 4. The allowed region for mX and g2X are presented, when the (g− 2)e curve is minimazed

by requiring the cancellation of the vector and axial contributions, as described in the text. Two

values of c2β are used. The blue region is allowed by proton anomaly.

Figure 5. The diagrams contributing to the muon anomalous magnetic moment. The second

diagram is not generated in SM ⊗U(1)X theories.

3.5 (g − 2)µ

In figure 5 we present the most general four contributions to the muon anomalous magnetic

moment. Since the new vector boson is neutral, the diagram (b) is the only one not

contributing to our case. The diagram (c) is present for charged scalars and (d) for neutral

Higgs. In this section we want to find the necessary conditions for the correct sign of the

(g − 2)µ discrepancy. In the following, h+, h0 generically denote the charged and neutral

scalars present in the theory.

Following the work of [22], a general fermion-Xµ vertex can be written as

L =
1

2

∑
F

µ̄[xV γ
ρ + xAγ

ργ5]F Xρ. (3.43)

For simplicity, we do not include the suppressed flavor violating processes, i.e. F = µ. For

mF = mµ, the integral linked to the first diagram is given by

[aµ]a =
m2
µ

16π2

∫ 1

0
dz

[
x2
V [(z − z2)z] + x2

A[(z − z2)(z − 4)− 2
m2
µ

m2
X
z3]
]

m2
µx

2 +m2
X(1− x)

. (3.44)

As mentioned before, we work under the assumption of very large Higgs masses, where aµ
is dominated by [aµ]a. On the other hand, the above integral leads to a wrong negative sign

– 12 –



J
H
E
P
1
0
(
2
0
1
9
)
2
7
9

for a wide range of the cβ parameter, and have to be compensated by additional contribu-

tions. Therefore, we assume that scalar masses are relatively large and compute the scalars

contributions to the moment function in the region where the asymptotic approximation

to the integrals is fairly valid, i.e. mh > 20mµ. The bounds on the Higgses couplings to Z

are coming from the LHC analyses, as already considered by the authors of ref. [23]. The

Yukawa Lagrangian can be parametrized as

LY =
∑
h,F

µ̄[CS + CPγ5]F h. (3.45)

Both diagrams (c) and (d) can contribute to the muon anomalous magnetic moment. For

the diagram(c) we have to specify F = ν or mF = 0. The coupling CP is in fact present

in our model for both neutral and charged scalars and, in the neutral case, it is purely

imaginary. For mF = mν = 0 it follows that

[aµ]c =
m2
µ

8π2
(|C+

S |
2 + |C+

P |
2)

∫ 1

0
dz

(z3 − z2)

m2
µz

2 +m2
h+(1− z)

(3.46)

and for neutral scalars in the diagram (d) F = µ, one gets

[aµ]d =
m2
µ

8π2

∫ 1

0
dz
|C0
S |2(2z2 − z3) + |C0

P |2z3

m2
µz

2 +m2
h+(1− z)

, (3.47)

with

(g − 2)µ = [aµ]a + [aµ]b + [aµ]c + [aµ]d. (3.48)

If we consider mh+ ,mh0 � mµ the integrals converges to a simplified form:

[aµ]c →
m2
µ

8π2
(|C+

S |
2 + |C+

P |
2)

(
−1

3

)
, (3.49)

[aµ]Sd →
m2
µ

m2
h0

|C0|2S
8π2

[
log

[
m2
h0

m2
µ

]
− 7

6

]
, (3.50)

[aµ]Pd →
m2
µ

m2
h0

|C0|2P
8π2

[
log

[
m2
h0

m2
µ

]
− 11

6

]
. (3.51)

Therefore, the charged scalars cannot provide the correct sign and their interactions have

to be suppressed, either by their large masses or by their negligible couplings to muons. In

summary, in order to explain the (g−2)µ discrepancy only diagram (a) and (d) contribute.

Again, there is a range for cβ in which the (a) integral already gives the correct sign for

the aµ discrepancy, allowing all the scalars to live in the decoupling limit. For instance,

if we do not take into account the constraint coming from the proton radius, then we can

use all solutions derived from eq. (3.39). Thus, for κ = 3
2c

2
βgX , and cβ < 0.9, light neutral

scalars with masses in the range mh0 ∈ (10− 100)mµ are required to restore (g − 2)µ, for

|C0|S ∼ |C0|P ∼ 10gX and different values for cβ . Charged scalars are still disfavored.

Since c2
β = v2

X/v
2, a minimal model at low-energies (MeV) is well supported by a small

scale vX . For the completeness of our study, let us mention that the pairs κ = −7
5c

2
βgX

and cβ > 0.7, as well as κ = 3c2
βgX and cβ > 0.99, both can solve, through (a) diagram

only, the discrepancy of (g − 2)µ.
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(a) (b)

Figure 6. The trident production in the equivalent photon approximation (EPA). In addition,

there are the reciprocal diagrams where the real photon is attached to µ−.

3.6 Kµνe+e−

The decay width of Kµνe+e− , denoted as ΓKµ2ee, is obtained from the distribution
dΓKµ2ee

dmee
,

integrated over the electron-positron invariant mass mee > 145MeV [15]. We use the

narrow-width approximation in a way that, for a fixed mX = mee, the contribution from

X → ee should not exceed the uncertainty of the total ΓKµ2ee. By demanding that the

decay rate has to be smaller than the experimental uncertainty, it actually implies that no

enhancement should be seen in the region mee > 145 MeV. The analysis is similar to the

calculation of ΓKµY , now with

1

3

Γ(K → µνµX)

ΓK
BR(X → e+e−) < 3.1× 10−9, (3.52)

for 145 MeV < mX < 2mµ. In figure 3 and figure 4 the excluded region is marked by the

yellow color.

3.7 Neutrino trident production

We determine the cross-section for the neutrino trident production in the Equivalent Photon

Approximation (EPA) [3, 24–26], i.e. by connecting it with the scattering of a real photon

and the neutrino beam. We then include the bound from the CHARM-II experiment [27].

The total amplitude for the scattering of a real photon and a neutrino beam in γν →
νµ+µ− includes the six diagrams of figure 6 for the exchange of W,Z and X bosons. The

neutrinos spins are summed, while one takes the average over the photon polarization, i.e.

1

2

∑
p

|M|2 = −1

2
[M]α[M]∗α. (3.53)

In the case of the neutral currents, both Z and X, the neutrino vector and axial-couplings

are related by

xνV (z) = −xνA(z) ≡ xνz , (3.54)

where z = Z,X. The amplitude can be simplified and presented as

[M]α =
GF√

2
e[uν(k2)γν(1− γ5)uν(k1)]Fαν , (3.55)
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with

Fαν = B−[uµ(p−)γα{(/p− − /q) +mµ}γν(CV + CAγ5)vµ(p+)]

+B+[uµ(p−)γν(CV + CAγ5){(/q − /p+
) +mµ}γαvµ(p+)] (3.56)

and Bi ≡ [(pi−q)2−m2
µ]−1. The constants CV,A summarize the contributions coming from

all diagrams

CV =
∑
z=Z,X

xνzx
µ
V (z)

2
√

2GF
[k2 −m2

z]
−1 − 1, CA =

∑
z=Z,X

xνzx
µ
A(z)

2
√

2GF
[k2 −m2

z]
−1 + 1. (3.57)

These expressions are exact in the sense that the Z mass parameter depends on the new

gX , sθ. Once the vertices are defined as in eq. (2.9), by taking cθ ≈ 1 and neglecting second

order terms on the small parameters, the SM contribution to neutrino trident production

is given by

CSM
V = −

(
1

2
+ 2s2

φ

)
, CSM

A =
1

2
. (3.58)

The phase-space for the scattering of a real photon and a neutrino can be defined

through the invariants [28] (see figure 6)

s1 = (p1 + p2)2, t1 = (pa − p1)2, s2 = (p2 + p3)2, t2 = (pa − p1 − p2)2. (3.59)

In the EPA, the total cross-section can be written as [29]

σ(νN → νNµ+µ−) =
Z2e2

64π

1

(2π)5

∫ ∞
2m2

µ
Eν

dq

∫ 2Eνq

4m2
µ

ds

∫ (
√
s−m1)2

(m2+m3)2

ds2

∫ t+1

t−1

dt1

∫ t+2

t−2

dt2

·
∫ 2π

0
dφ

F 2(q2)|M|2

qs2λ1/2(s,m2
1,m

2
b)λ

1/2(s2,m2
b , t1)

,

(3.60)

where q ≡ |q|, Z is the atomic number of the target and F (q2) is the electromagnetic

form-factor introduced in [3, 29]. The details of the integration over phase space are given

in appendix B. In eq. (3.60) the integrals over q (with q ≡
√
q2) and s = (pa + pb)

2 are

derived from the probability of creating a virtual photon with momenta q, defined by [3]

P (q2, s) =
Z2e2

4π2

ds

s

dq2

q2
F 2(q2) (3.61)

and the electromagnetic form factor F (q2) =
[
1 + 1.21 q2

m2
p

]−2
is given in ref. [24], where mp

is the proton mass. In the CHARM-II experiment, a neutrino beam with the mean energy

Eν ∼ 20 GeV is scattered by a glass target (Z = 10). We require that the contribution

coming from the interference of the SM and the SM ⊗ U(1)X to the total cross-section

should be inside the one standard deviation region, i.e.

|σint
SM+X| < 0.57σSM. (3.62)

For the SM prediction, averaged over both neutrino and antineutrino scattering, we ob-

tained σSM = 1.8× 10−41cm2.
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3.8 χ relic abundance

In this section we compute the relic abundance for a thermally produced χ-fermion from a

set of fixed points in the parameter space. Before we proceed to the details, it is important

to emphasize that our computation will follow the standard scenario presented in [14]. Since

Cold WIMPs freeze-out in the pre-Big Bang Nucleosynthesis (BBN) epoch, the results rely

on a number of assumptions concerning the early history of the universe during an interval

from which no information can be collected. Therefore, they may substantially differ

between independent cosmological models. These assumptions are commonly centered, for

instance, on the expansion rate of the universe at the freeze-out, the kinetic and chemical

equilibrium state before the decoupling, and on the dominant interactions for the WIMP

production in the plasma, if thermally produced [30]. In the following, we set up the

framework which determines a bounding curve to the χ parameters, in accordance with

the current measurement of ΩCDM.

We start with the exact solution of the Boltzmann equation, aiming to examine the

sensitivity of the allowed band on small variations of the couplings. We then consider the

approximate formula for the weakly interacting massive particles (WIMP) relic density [30]

Ωh2 ≈ 3× 10−27cm3s−1

〈σannv〉
. (3.63)

with the thermal average computed at the freeze-out temperature Tf.o. w mχ
20 . In the

general case, the attempt to create a direct bounding curve (i.e. gX < f(m2
X) for the

analytical function f) is difficult due to the presence of the X boson as a resonance. In

other words, the coupling gX cannot be easily factorized, once it enters the decay width in

the Breit-Wigner propagator. We perform the integration of

dY

dx
= −

(
45

πM2
P

)−1/2 g
1/2
∗ mχ

x2
〈σv〉(Y 2 − Y 2

eq), (3.64)

by describing the evolution of the comoving abundance Y, whose value at chemical equi-

librium is given by [14]

Yeq =
45g

4π2

x2k2(x)

heff(m/x)
. (3.65)

Above, the MP = 1.22×1019GeV is the Planck mass. The variable x ≡ mχ
T , where T is the

photon temperature. It is commonly taken from x = 1, which defines the boundary for the

condition Y = Yeq, to the present value. According to ref. [14], we choose for the χ mass

range, 10 MeV < mχ < 80 MeV, such that the effective degrees of freedom g
1/2
∗ has a small

deviation from g
1/2
∗ ≈ 7/2 due to QCD quark-hadron phase transition, which we neglect

in our calculation. In eq. (3.65), the constant g accounts the degrees of freedom for the

particles present at the equilibrium. We consider the dominant channels including ν, e, µ, χ.

On the other hand, the heff(T ) encloses the effective degrees of freedom for entropy and,

in principle, it should sum over all species present in the plasma. In practice, however, the
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species with large energies are suppressed by their distribution function such that we may

sum over photons in addition to the particles at the equilibrium.4

The thermally averaged annihilation cross-section is regulated by the diagram of fig-

ure 10 with χχ̄ in the initial states and f summed over the particles at chemical equilibrium.

Co-annihilations are discarded. The expression for 〈σv〉 can be written as [14]

〈σv〉 =
x

8m5
χk

2
2(x)

∫ ∞
4m2

χ

ds

[√
s(s− 4m2

χ)k1

(
x

√
s

mχ

)
σ

]
, (3.67)

where, as in eq. (3.65), the ki are the order i modified Bessel functions. The cross-section

σ is a sum over f such that

dσf =
dΩ

64π2

(s− 4m2
f )1/2

(s− 4m2
χ)1/2

1
4 |Mχχ̄→ff̄ |2

s
(3.68)

is the differential cross section for each fermion f in the final state. Again, the Xµ resonance

is dominant over the remaining mediators and is implemented as a Breit-Wigner vector

whose χ couplings are xχV = xχA = gX . The total amplitude squared can be integrated over

the polar angle and results in the expression∫
dθ|M|2 = g4

X

8m2
χ

[
m2
f (35xfA

2
+ 29xfV

2
)− 8s(xfA

2
+ xfV

2
)
]

+ 19sxfA
2
(s− 4m2

f ) + sxfV
2
(19s− 52m2

f )

3(Γ2
Xm

2
X + (m2

X − s)2)
.

(3.69)

The solution of eq. (3.64) then has to be translated in the present time. The abundance

Y0 is related to the WIMP relic density through [30]

Ωχh
2 = 2.755× 105Y0

mχ

MeV
(3.70)

and must be consistent with the current measurement ΩCDMh
2 = 0.1131(34) [31] of the

cold dark matter density. In figure 7(a) we present the integrand of the thermal average in

eq. (3.67) for different temperatures, under a fixed point in the parameter space, dominated

by the resonance.5 In figure 7(b) we present the solution of eq. (3.64) for the WIMP mass

mχ = 30 MeV, gX = 4 × 10−3 and a set of couplings x. It depicts the point where the

low temperatures hinder the abundance to follow the evolution of its equilibrium value,

and the particle decouples. The horizontal black band is the 3σ limit for the current relic

abundance. The well-known pattern of the figure 7(b) reveals that the relic density gets

4The relevant species are considered to be at thermal equilibrium with the plasma and heff(T ) =
∑
i hi(T )

where

hi(T ) =
90gi

(2π)5T 3

∫
3m2

i + 4p2
i

3EiT

p2
i dpi

expEi/T + ηi
, (3.66)

gi accounts the number of spin degrees of freedom of i, while Ei,mi and ηi = 1(−1) denote its energy, mass

and Fermi-Dirac (Bose-Einstein) statistics, respectively.
5The numerical integration can be optimized by hiding the pole via the approximation∫ ∞

α

f(x)dx ≈
∫ xp−ε

α

f(x)dx+

∫ ∞
xp+ε

f(x)dx+ ε[f(xp) + f(xp − ε)], (3.71)

for a Breit-Wigner function whose pole is xp � ε.
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overabundant for small couplings, a feature that will help us to maximize the excluded

region of our parameter space. Although an underabundant sector is disfavored by ΩCDM,

it actually informs us about the necessity of completing the theory with additional dark

matter candidates, and is not entirely ruled out. One can also notice from the figure how

sensitive Y0 is to small variations of gX . We consider that the use of eq. (3.63) is appropriate

for our precision level, and it may simplify our analysis. For large temperatures (x < 20)

and small couplings (gX . 10−2, cβ ∈ [0.4, 0.95]) the integral is dominated by the region

around the resonance and is sufficiently narrow to use a Dirac delta approximation.6 In

order to illustrate the importance of the relation between the Xµ and χ fermion masses,

in figure 8(a) we present the favored band for the current relic abundance by taking the

relation mX = ymχ for different values of y, at the freeze out temperature xf.o. = 20. In

figure 8(b) a similar set of lines is computed for particular choices of cβ .

4 Outlook

The results of the previous section, for two fixed points, were summarized in figure 9. In

plot (a), cβ = 0.6 cannot resolve the (g − 2)µ discrepancy. Notwithstanding, we can verify

the impact of the axial-vector couplings interference in the cross-section of the neutrino

trident production (dark-blue region) in comparison with the dark photon case (light-

blue). Moreover, the choice of the parameter κ = 3
2c

2
βgX renders irrelevant the bound

coming from (g − 2)e. In plot (b) the favored region for the explanation of the (g − 2)µ
discrepancy (in gray) is presented, for cβ = 0.95, while the circled area highlight the overlap

between the solution for the muon anomaly and the relic abundance ΩCDM favored bands.

The parameter space that we covered hitherto should be further tested. In the following

subsection 4.1, we consider the forward-backward asymmetry in electron-positron collision

to fermion anti-fermion, e+e− → f̄f , in order to determine how the observable is sensitive

on the SM ⊗ U(1)X parameters. Finally, in subsection 4.2 we illustrate the impact of one

set of parameters, allowed by figure 9(b), to the leptonic decays M → jνji
+i−, where

M = π,K,D,Ds, B and i, j = e, µ.

4.1 Parity non-conserving observables

Light Z ′ physics requires the use of the LEP data, where the effects of Z interactions

are suppressed by its large mass. Here, we have to constrain the region for the light Z ′

and its small couplings. As we mentioned in the previous section, in scattering processes,

the dark photon effects can be considered as a correction to the fine-structure constant.

When the axial-vector coupling of the dark gauge boson is present it can be tested in the

angular asymmetries of the differential cross-section. The forward-backward asymmetry is

defined as

A(θ) ≡ dσ(θ)− dσ(π − θ)
dσ(θ) + dσ(π − θ)

. (4.1)

6I.e. we replace the Breit-Wigner propagator by

1

(s−m2
X)2 + (mXΓX)2

→ π

mXΓX
δ(s−m2

X) (3.72)
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Figure 7. (a) The differential thermal average dominated by a narrow resonance. In the example,

the X boson mass is mX = 90 MeV, while the dark fermion mass is mχ = 30 MeV. In (b), the

horizontal black band presents the 3σ region allowed by the current measurement of cold dark

matter density. The abundance Y0 is sensitive to small variations of the coupling constant gX , such

that ΩCDM provides a strong bound for SM⊗U(1)X theories. The remaining parameters are fixed

as (cβ , κ, Fµµ) = (0.6, 1.5c2βgX , 1).

Here we will focus on the energy region far from both Z and X peaks, i.e. 2mµ �
√
s� mZ

and we must compute the generic diagram in figure 10 for V = γ, Z,X. For simplicity,

the Feynman rule for the vertex f̄fVµ can be written as ieγµ(vVf − aVf γ5). For instance,

(vγf , a
γ
f ) = (−qf , 0) where qe = −1, qu = 2

3 , qd = −1
3 . The amplitude can be expressed as

MV =
e2

s−m2
V

[v̄(p+)γµ(vVe − aVe γ5)u(p−)][ū(k−)γµ(vVf − aVf γ5)v(k+)], (4.2)
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Figure 8. The 3σ favored region for ΩCDMh
2. In (a) it is illustrated how the variations in the

relation mX = ymχ move the allowed region. In (b), the lines are less sensitive under small

variations of cβ . The region below each line corresponds to overabundant Ωχh
2.

with |M|2 = |
∑

V=γ,Z,XMV |2. The dominant contribution to A(θ) originates from the

interference of contributions coming from γZ and γX in the numerator, while the cross

section coming from the photon mediator (γ) gives the dominant contribution in the de-

nominator, i.e.

A(θ) ≈ [dσγZ(θ) + dσγX(θ)]− [dσγZ(π − θ) + dσγX(π − θ)]
dσγ(θ) + dσγ(π − θ)

. (4.3)

In the CM reference frame it results in

A(θ) ≈ 8scθ|k|
√
s

4c2
θ|k|2 + 4m2

f + s

[
aXe a

X
f

s−m2
X

+
aZe a

Z
f

s−m2
Z

]
. (4.4)
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Figure 9. The parameter space for κ = 3
2c

2
βgX . Notice, in (a), the excluded region for the dark

photon (A′ )(light-blue) is presented in comparison to the dark gauge boson (Z ′) region (dark-

blue). In (b), the difference is reduced when cβ = 0.95 which, on the other hand, produces a

possible solution both for the (g − 2)µ discrepancy and the ΩCDM (circled region).

Here cθ is the scattering angle, and k the space-momentum of the particles in the final

state. In the region
√
s � mµ the contribution coming from X exchange can be written

as δAX(θ) ∝ aXe a
X
f

s or

A(θ) ∝

[
aXe a

X
f

s
−
aZe a

Z
f

m2
Z

]
. (4.5)
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Figure 10. Forward-backward asymmetries in e+e− → f̄f are important tests for axial-vector

couplings. The model predict non-universality for f = µ and f = τ . Here V = γ, Z,X.

In our case, by assuming aZ ∼ g and aX ∼ gX , the region around
√
s ∼ mZ

10 would

severely constrain gX ∼ 10−1g. In summary, the precise measurement of forward-backward

asymmetry, in the region described above, might provide an additional limit to the coupling

gX , as well as a possible test of lepton-flavor universality.

4.2 Leptonic meson decays: M → l′νl′ll

The experimental measurement of the branching ratio for Kµνee gives the most stringent

bound of figure (9). This result motivates us to extrapolate this analysis and make predic-

tions for the bottom and charm mesons. In this section we present our results for the total

and differential branching ratio of the purely leptonic decays M → l′νl′ l
+l−, or simply

Ml′2ll, where M denotes the mesons M = π,K,D,Ds, B and l′, l = e, µ. The diagrams in

figure 1 are dominant in that process and can be separated into the inner-bremsstrahlung

(IB) amplitude (a,b) and a structure dependent (SD) amplitude (c). The off-shell vectors

Xµ, Aµ mediate the interaction with the lepton pair l+l−. The IB amplitudes can be com-

puted in a general form for all mesons by following the work of [32]. The SD diagram can

be parametrized as

MSD = e2GF√
2
V ∗UDhµα[uνγ

µ(1− γ5)vl′ ][uilγ
αvl], (4.6)

where VUD is the CKM element linked to the particular meson’s quark structure, and

hµα =
1

p2

[
εµαλβk

λpβ
FV (p2)

mM
− ie (gµαp · (k − p)− pµ(k − p)α)

FA(p2)

mM

]
. (4.7)

In general, the IB contribution is dominant in Mµ2ee and suppressed in Me2µµ. We compute

the differential branching ratio for Ds decay, in the SM framework, including both IB +

SD interference. The form-factors are given by:7

FV (p2) =
0.029

1− p2

(2.11GeV )2

, FA(p2) =
0.173

1− p2

(2.46GeV )2

. (4.8)

In figure 11 we plot the results for different mesons, keeping IB contributions only. The

results are summarized in table 1. We provide cuts on the di-lepton invariant mass in order

7We acknowledge D. Melikhov for providing us with these form-factors.
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to connect them to possible experimental limitations. These results for the SM branching

ratio might be interesting if precision measurements are reached. In figure 11(b) we present

the results for the Ds meson including the SD part. In these last examples, the di-leptons

are the e+e− and µ+µ− pairs and the integrated values are presented in table 2.

We also compute the branching ratios for Mµ2ee (M = π, K, D, B), coming from the

dominant IB amplitudes, in which the photon mixes with the X boson. The branching

ratios below test our IB formulas in the SM⊗U(1)X framework for the point of figure 12,

namely (g2
X ,mX) = (4× 10−4, 60):

BR(πµ2ee)IBX = 3.27× 10−7, BR(Kµ2ee)IBX = 2.49× 10−5,

BR(Dµ2ee)IBX = 6.54× 10−8, BR(Bµ2ee)IBX = 1.78× 10−10,
(4.9)

Once more, the increase in the differential branching ratios is tinny and it can eventually

be observed if high precision measurements are performed.

In order to provide a possible test for lepton flavor universality we introduce

R(f) =
BR(Mf2µµ)

BR(Mf2ee)
, (4.10)

in a kinematic region far from resonances. In the SM the ratio is close to the unity for

q2 � (2mµ)2 and different leptons in the final state. This case might be potentially

interesting, and it is kinetically allowed only for Bτ2ll. For m2
ll far from the Xµ pole, any

non-universality effects are negligible if compared with the SM prediction. For instance,

from the parameters selected for the analysis presented in figure 12, and (1500)2 MeV2

< m2
ll < (1600)2 MeV2, we find

RX(τ) =
0.93 mX = 1550 MeV,

0.99 mX = 60 MeV,
(4.11)

while for the SM value, RSM(τ) = 0.9998. In the region where the invariant mass of the

di-lepton pair is in (300)2 MeV2 < m2
ll < (400)2 MeV2 we find

RSM(τ) = 0.933, RX(τ) =
0.90 mX = 350 MeV,

0.931 mX = 60 MeV.
(4.12)

Finally, in figure 12 we present the normalized differential branching ratio for Dsµ2ee,

both in the SM⊗U(1)X and in the SM frameworks. Around the resonance, the probability

for measuring the di-lepton mass in the interval 58 MeV < mee < 62 MeV is equal to

P = 2.54%, for (g2
X ,mX) = (4 · 10−4, 60), allowed by figure 9(a), in comparison with

P = 0.63%, in the SM.

5 Conclusion

We have explored a number of processes at low energies (MeV-GeV) in order to constrain

a SM⊗U(1)X theory, UV-completed by cold WIMPs and whose U(1)X is chiral for right-

handed fermions. The most stringent bounds are obtained from the electron anomalous

magnetic moment and the neutrino trident production. Dark photons, as U(1)X gauge
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Mµ2ee Full mee > 0.1mM mee > 20MeV mee > 140MeV

πµ2ee 3.27× 10−7 2.82× 10−9 − −

Kµ2ee 2.48× 10−5 8.6× 10−7 3.15× 10−6 4.97× 10−8

Dµ2ee 6.45× 10−8 1.13× 10−9 1.45× 10−8 1.84× 10−9

Bµ2ee 1.66× 10−10 1.64× 10−12 4.69× 10−11 1.02× 10−11

Table 1. In the SM framework, a set of cuts in the di-lepton mass for the BR(Mµ2ee), used in the

decay width calculations for IB contributions.

Mf2ll Full mll > 0.1mDs mll > 20MeV mll > 140MeV

Dsµ2ee 1.07× 10−6 2.41× 10−8 2.56× 10−7 3.95× 10−8

Dse2µµ 5.46× 10−9 − − −

Table 2. In the SM framework, similar cuts in the di-lepton mass for the BR(Dsj2ii), used in the

decay width calculations for IB+SD contributions.

bosons, may be fully restricted by these observables if we assume the standard scenario

for the computation of the χ relic density, described in section 3.8. On the other hand,

the theories where the Xµ bosons are coupled to the fermion fields through both vector

and axial-vector currents (Z ′ bosons) are not in conflict with the limits from the neutrino

trident production, but can still be ruled out by (g − 2)e. However, a possible interference

between the vector and axial-vector couplings might make the shift in the fine structure

constant negligible. Under this condition a certain choice of parameters can be found for

three tuned planes, which allow the explanation of the (g − 2)µ discrepancy for specific

values of the cβ angle. In particular, the pairs κ = −7
5 for cβ > 0.7, κ = 3 for cβ > 0.99 and

κ = 3
2 for cβ > 0.95, solve the discrepancy in the muon system without the introduction of

light scalars.

We propose to measure the forward-backward asymmetry in e+e− → f̄f , for f = µ, τ ,

far from the Z boson peak at low energies. We also suggest the measurement of the

branching ratios to the purely leptonic meson decays M → jνll, for M = D,Ds, B. The

ratio BR(M → jνjµ
+µ−)/BR(M → jνje

+e−) in definite regions of the di-lepton invariant

mass shows a deviation from the SM prediction and might serve as an important test of

lepton flavour universality, in particular for M = B and j = τ .
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Figure 11. Differential branching ratio as a function of the di-lepton invariant mass in the SM. In

the plot (a), the IB diagrams are dominant. In (b), the IB and SD contributions are presented for

Ds decays.

A Feynman rules

The Feynman rules for the vertexes presented figure 1(a,b) may be generically written as

M+(k) ν̄l(pi) l(pj) : −iGF√
2
fMV

∗
UD /k(1− γ5), (A.1)

Xµ(pm) l̄(pi) l(pj) : i
γµ
2

(xlV + xlAγ5), (A.2)

Xµ(pm) M+(pi) M
−(pj) : −ic2

φκ (pµi + pµj ). (A.3)
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Figure 12. The normalized differential branching ratio corresponds to the probability P = 2.54% of

measuring the di-lepton mass in the interval 58 MeV < mee < 62 MeV at the resonance (g2X ,mX) =

(4× 10−4, 60), one allowed region from figure 9 (a). P = 0.63%, in the SM framework.

B Decay width

The general expression for the decay width can be written as

dΓ =
∑
sp

|M|2

2M

Φn(M ;m1, · · · ,mn)

(2π)(3n−4)
, (B.1)

such that, for n = 3, following results of ref. [33],

Φ3(M ;m1,m2,m3) = dM2
2

∣∣∣∣∣
(M−m3)2

(m1+m2)2

√
λ(M2,M2

2 ,m
2
3)

8M2
dΩ∗3

√
λ(M2

2 ,m
2
1,m

2
2)

8M2
2

dΩ∗2. (B.2)

The variables defining the solid angle dΩ∗i are in the rest frame of ki =
∑i

j=1 pj , M
2
i ≡ k2

i .

The scalar products emerging from the squared amplitudes can be expressed in a more

convenient form through the momenta ki, i.e.

k2
1 = 0, k2

2 = M2
2 , k2

3 = M2 (B.3)

and

k1 · k2 =
M2

2 −m2
X

2
, k2 · k3 =

M2 +M2
2 −m2

l

2
(B.4a)

k1 · k3 =
(k1 · k2)(k2 · k3)

M2
2

− (k1 · k2)
√

(k2 · k3)2 −M2M2
2

M2
2

c∗θ. (B.4b)

Using these invariants it follows that q2 = m2
X +m2

l −M2
2 +2k1 ·k3 and q2

23 = M2−2k1 ·k3.
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C Phase space integration for the neutrino trident production

The integration limits for ti are obtained from the condition

t2 : G(s2, t2,m
2
3, t1,m

2
b ,m

2
2) ≤ 0

t1 : G(s, t1, s2,m
2
a,m

2
b ,m

2
1) ≤ 0

(C.1)

where G is the Cayley determinant:

G(x, y, z, u, v, w) = −1

2

∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1

1 0 v x z

1 v 0 u y

1 x u 0 w

1 z y w 0

∣∣∣∣∣∣∣∣∣∣∣
. (C.2)

All the possible scalar products in the real photon-neutrino scattering can be written in

terms of the invariants of eq. (3.59) and it is convenient to write s1 in terms of the polar

angle via

s1 = s+m2
3 −

1

λ(s2, t1,m2
b)


∣∣∣∣∣∣∣

2m2
b s2 − t1 +m2

b m
2
b +m2

3 − t2
s2 − t1 +m2

b 2s2 s2 −m2
2 +m2

3

s−m2
a +m2

b s+ s2 −m2
1 0

∣∣∣∣∣∣∣
+ 2

(
G(s, t1, s2,m

2
a,m

2
b ,m

2
1)G(s, t1, s2,m

2
a,m

2
b ,m

2
1)
)1/2

cosφ

 .
(C.3)

The remaining angles in eq. (B.2) may be integrated directly and Φ3 is reduced to

Φ3(M ;m1,m2,m3) =
π2

4M2
dM2

∣∣∣∣∣
(M−m3)

(m1+m2)

dc∗θ

∣∣∣∣∣
1

−1

√
λ(M2,M2

2 ,m
2
3)
√
λ(M2

2 ,m
2
1,m

2
2)

M2
. (C.4)
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