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ABSTRACT: We construct a (locally) supersymmetric worldsheet action for a string in a
non-relativistic Newton-Cartan background. We do this using a doubled string action,
which describes the target space geometry in an O(D, D) covariant manner using a dou-
bled metric and doubled vielbeins. By adopting different parametrisations of these dou-
bled background fields, we can describe both relativistic and non-relativistic geometries.
We focus on the torsional Newton-Cartan geometry which can be obtained by null dual-
ity /reduction (such null duality is particularly simple for us to implement). The doubled
action we use gives the Hamiltonian form of the supersymmetric Newton-Cartan string
action automatically, from which we then obtain the equivalent Lagrangian. We extract
geometric quantities of interest from the worldsheet couplings and write down the su-
persymmetry transformations. Our general results should apply to other non-relativistic
backgrounds. We comment on the usefulness of the doubled approach as a tool for studying
non-relativistic string theory.
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1 Introduction

This is a paper about supersymmetric non-relativistic string theory, and it exists because
the author was surprised.

The cause of the surprise was a connection between two very different sounding topics.
The first is the description of strings in non-relativistic Newton-Cartan backgrounds, which
has recently been explored extensively in (for instance) [1-16]. This is in part inspired by
motivations from holography [17, 18], but also recalls older studies of non-relativistic limits
of string theory [19-21], in which one might hope to find a novel corner of string theory in
which at least some aspects of the full theory become simpler to understand.



The second is the “doubled” approach to manifest T-duality covariance in string theory
or supergravity. Here the basic idea is to extend the geometry of spacetime in a way that
leads to an immediately O(D, D) covariant theory. These doubled approaches include dou-
bled worldsheet actions such as [22-25] (in which we introduce twice the number of target
space coordinates, plus a chirality constraint to ensure the number of degrees of freedom
on the worldsheet remains the same) and the double field theory approach to supergrav-
ity [26-28] (in which we formally introduce dual coordinates on which the spacetime fields
may in principle depend, along with an O(D, D) covariant constraint which restricts to the
usual number of coordinates).

Remarkably, it was realised in [29-31] that non-relativistic geometries such as Newton-
Cartan have a home in these doubled approaches. This is surprising because this does
not seem like something you would naturally expect to find in a formulation intended to
describe T-duality in a relativistic theory. Surprise, of course, is a function of ignorance.
An explanation for the surprise is that the worldsheet description of strings in certain
Newton-Cartan backgrounds can be related to strings in relativistic backgrounds with a
null isometry using a sort of T-duality transformation [1, 3, 5]. From the relativistic side,
this appears to be ill-defined (recall the Buscher rule inverts the metric component in the

isometry direction, g,, = i, but g,, = 0 if z is a null isometry), so has to be interpreted

carefully. In the doubledg approach, however, we choose to work with O(D, D) valued
background fields rather than the usual spacetime metric and B-field, and even if the
latter are seemingly nonsensical the former need not be. Then this sort of null duality is
formally well-defined, and issues only arise when trying to use an inappropriate spacetime
parametrisation of the O(D, D) valued fields. The appropriate parametrisation in fact [31]
will turn out to describe a non-relativistic geometry! (The surprise is then that the same
doubled formalism admits both relativistic and non-relativistic parametrisation in the first
place. This surprise can also be uplifted to M-theory: for an initial exploration of these
ideas in the U-duality covariant “exceptional” formalism, see [32].)

In this paper, we will explicitly connect the dots between a particular worldsheet
supersymmetric doubled sigma model [33] and the action for a worldsheet supersymmetric
Newton-Cartan string, extending the Polyakov action of [5].

The action of [33] was motivated by the natural appearance of O(D, D) covariant
structures in the Hamiltonian approach to worldsheet string theory. Note that the Hamil-
tonian analysis of the Newton-Cartan string, and the use of null T-duality in this setting,
has been explored in [2, 7, 8, 10] (and extended to other branes in non-relativistic back-
grounds [34-36]). Effectively, what will help here is that limits which appear singular in
the Lagrangian description may be non-singular in the corresponding Hamiltonian picture.
By working not with the ordinary spacetime metric and form fields as fundamental fields
but instead with a larger generalised metric, we can achieve similar results.

This also means that at the level of the worldsheet, the doubled string sigma models
that we will use below can be effectively viewed as the standard string action in Hamiltonian
form, where we have defined new worldsheet scalars X in terms of the canonical momenta
P by X' = P. The background fields appear in parametrisations of an O(D, D)-valued
generalised metric, Hyn (g, B) (and its corresponding vielbein). If we allow ourselves



within the Hamiltonian framework to range over all possible parametrisations of Hsn
including those that are not consistent with having a standard relativistic metric, then we
will discover non-relativistic geometries and other more exotic “non-Riemannian” scenarios.
There is not necessarily any need to then invoke the tools and interpretation of the doubled
formalism; however the latter will be especially useful in studying features of the spacetime
theory as its kinematics and dynamics are known irrespective of parametrisation.

Bosonic particle and string actions in non-relativistic or non-Riemannian backgrounds
have been obtained from the doubled formalism already in the papers [29-31] The action
we construct will be supersymmetric on the worldsheet (i.e. it is a spinning or RNS string).
A doubled Green-Schwarz action has also been constructed in [37], in which the application
to the Gomis-Ooguri non-relativistic string was considered.

Outline and main result. The principal points of this paper are as follows.

1. We first demonstrate explicitly in the bosonic setting how a doubled action can handle
a null duality leading to the Newton-Cartan Polyakov action of [5]. This is the subject
of section 2.

2. We discuss some general features of the effect of null duality on the transformation
rules of vielbeins and worldsheet fermions, in section 3. We point out that the space-
time vielbein e, transforms to different non-invertible spacetime vielbeins e, in
the left- and right-moving sectors (which the left- and right-moving fermions should
couple to), and that we cannot find a spacetime Lorentz transformation that relates
these two quantities. This underlies the fact that we obtain a non-relativistic geome-
try: the left- and right-moving sectors of the string no longer see the same relativistic
target space. The counterpart of this in the bosonic sector is that a certain pair of
directions in the target space become chiral and antichiral respectively. However, we
do not lose any degrees of freedom once we take into account that these chirality
constraints are imposed by an extra pair of fields appearing as Lagrange multipliers.

Despite these issues, we observe that the doubled vielbeins appearing in the doubled
string are perfectly well-defined after the duality. This helps us understand what
we should use as an appropriate basis for the worldsheet fermions in the Newton-
Cartan string.

3. In section 4, after reviewing the worldsheet supersymmetric doubled string of [33],
we show that the Polyakov action for a string in a Newton-Cartan background has
the following worldsheet supersymmetric extension:
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Here i =1,...,d and the Newton-Cartan geometry is described by the pair (hi;, 7;),
where h;; is symmetric and has rank d — 1, with zero vector v® such that hijvj = 0;
the covector 7; specifies the preferred Newton-Cartan time direction with vir; = —1.
The index m is a flat index with m = 1,...,d — 1 and we have a pseudo-vielbein e;”
such that h;; = €;"%€"%0mn. The bosonic target space coordinates are X# = (X LV).
If we view this action as being obtained from null duality, then V is the coordinate
dual to the original null isometry direction. We have additional worldsheet fields 3
and 3, which enforce what can be viewed as chirality conditions on V +7;X?. In the
Hamiltonian approach, 3 and 3 arise from components of the momenta conjugate to
X* that do not appear quadratically in the action, and cannot be integrated out.

The worldsheet fermions wA and &A are one-component Majorana-Weyl spinors and
anticommuting. They carry flat indices A = 1,...,d + 1 and A = 1,...,d + 1
associated to separate chiral O(1,d) groups. Note however that only a common
O(d — 1) subgroup of these can be realised as the conventional background local
symmetry group, as a consequence of the non-relativistic parametrisation we will
specify. We decompose the flat indices such that wA = (Y™, T, %) and A =
(1[)@, YT, 1;@), where m = 1,...,d — 1. Here the indices 7 and u do not run over
anything, and label the fermions which are the superpartners of (7;X% 4+ V) and
B, B respectively (see below). (The notation is explained in section 3.2.) These
indices are contracted using flat metrics, h ;5 and hap, with Ry, = R = S and
hry =hp = 1.

The B-field includes the additional Newton-Cartan U(1) gauge field m; as the com-
ponent B;, = —m,;. We will also consider components B;; # 0. Further couplings to
the background are contained in the spin connections, w,; 15, w—;aB, torsions T'4pc
and T1p5¢, and curvature R g50p, which are defined in (4.27), (4.28) and (4.29) in
terms of certain geometric quantities arising automatically in the doubled approach.
These geometric quantities are in effect certain (combinations of) projections of dou-
bled spin connections. The quantities @, 75 and <i>y ApB also appearing in this action
are also of this nature. These details will be explained in the course of the paper.

Finally, the worldsheet derivatives are D, = 0; —u0,, D+ = D, +¢ed,, where e and u
are the two independent components of the worldsheet metric. The superpartners of e
and u are £ and 5 , which are one-component anticommuting Majorana-Weyl spinors,
and are the independent components of the worldsheet gravitino. Our worldsheet
conventions are contained in appendix A, from which one can also check that the



form of the action we have written above can be made manifestly covariant on the
worldsheet.

4. As well as the action, we write down the supersymmetry transformations in sec-
tion 4.5. This tells us something about the fermionic counterpart of the “constraints”
imposed by the equations of motion 3 and 3. This is most intuitive in a flat back-
ground: there these constraints enforce that certain combinations of the bosonic
coordinates are chiral. Now, the fermions are automatically also chiral, and the
bosonic constraints transform into the equations of motion for the superpartners of
B3, B, which are just the standard fermionic equations of motion for certain combina-
tions of the fermions. We use a basis in which this is automatic: with our pairs of
superpartners being (8,94, (8, 9Y), (V + 1 X%, YT, (—=V + 1:.X1, 4T).

5. In addition, in the discussion in section 5, we generate a couple of simple examples of
potential Newton-Cartan backgrounds based on null or timelike dualities in the dou-
bled setting, and suggest some advantages (and disadvantages) of using the doubled
approach to further understand non-relativistic string theory.

2 Newton-Cartan string and doubled string

2.1 Newton-Cartan from null duality

Newton-Cartan variables. First let us recall from [32] how to embed the Newton-
Cartan geometry of [1, 5] into doubled language. This geometry can be conveniently first
viewed in terms of a d 4+ 1 dimensional Lorentzian spacetime with a null isometry, which
can always be put into the form

ds? = guyd;p“dajy = 27’idaji(du — midxi) + hijdxidilfj ) (2.1)

where u denotes the null direction, and the d dimensional matrix h;; has rank d — 1. The
fields 7;,m; and h;; together describe a torsional Newton-Cartan geometry. The objects
(hij, i) can be viewed as a pair of degenerate metrics, while m; is a U(1) gauge field
associated to mass conservation. We can also introduce a vector v* and a rank d — 1 matrix
h¥ such that

hijvj = 0, UiTi =—-1 s hijTj = 0, hlkhk] — UiTj = 5; . (2.2)
It is convenient to also define

. . .. ~ . 1 ..
hij = hz‘j — ;M — T;my, Pt =t — h”mj s o= —vzmi + §h”mimj s (23)

such that the completeness holds also as hikﬁkj — f)iTj = (5; The inverse metric is

-
T 2.4
g (—@J 2@) : (2.4)



while the determinant is

det h B 1
20 vitpdt pizdz | hiddd

detg = — (2.5)
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We would like to “dualise” this model on the null isometric direction. The conventional
Buscher rules involve inverting the metric component g¢,,, which is of course zero here.
Despite this, one can indeed carry out this sort of dualisation by introducing a Lagrange
multiplier A, and new worldsheet scalar V in order to place the momenta conjugate to the
direction U on-shell [1, 5], leading to an action for a string in a Newton-Cartan background
(see also [3], which showed that a non-relativistic string in the somewhat different so-called
stringy Newton-Cartan background is also T-dual to a Lorentzian background with a null
isometry - the two actions are related in [12]).

Doubled variables. We can reinterpret this procedure by embedding the null duality
in the “doubled” framework, which encompasses both worldsheet models [22-25] and the
target space supergravity via double field theory [26-28]. The conceptual advantage here
for us will be the repackaging of the original spacetime (or Newton-Cartan space and time)
background into quantities which transform covariantly under general O(D, D) T-duality
transformations. This will allow us additional “freedom” to evade the singularities that
would otherwise appear in the Buscher rules.

Let us introduce some notation. Any object in the fundamental representation of
O(D, D) carries a doubled index, M, N,---=1,...,2D, which decomposes into spacetime
vector and covector indices such that VM = (V# V,) (for the metric in (2.1), we have
D = d+1). By definition O(D, D) transformations preserve the following bilinear form:

NMN = (? é) , (2.6)

which is used together with its inverse n™ ¥ to raise and lower doubled indices. We pack-
age the NSNS sector fields (g, Buv, ¢) into a generalised metric, H sy, and generalised
dilaton, d. The latter is a scalar under O(D, D) transformations, and would normally be re-
lated to the determinant of the spacetime metric and the dilaton ¢ by e=2? = ¢72?, /] det g|.
The generalised metric is defined to obey:

Hun = Hyv s Huxn™ Hin = nun (2.7)

and the standard solution of these constraints is to take H sy to parametrise the coset
O(D,D)/O(D) x O(D) or O(D,D)/O(1,D — 1) x O(1,D — 1). For the Newton-Cartan
application we are interested in, the latter Lorentzian coset is appropriate. Note that other
solutions exist [31], which we will see below, which may have uses for other non-relativistic
geometries. The standard parametrisation of the generalised metric in O(D, D)/O(1, D —

1)xO(1,D—1) is
_ 9w = Bupg”’ Bow Bpg™
HMN - ( —gﬂpoV guu . (28)



Generating the Newton-Cartan generalised metric. We now will carry out a null
duality on the background (2.1), viewing this as a particular O(D, D) transformation acting
on the generalised metric. So, first we insert the metric (2.1) into the standard parametri-
sation (2.8) of the generalised metric. We assume for now there is no background B-field

(however we will see at the end of this section that it is straightforward to incorporate

one), so that we simply have Hyny = diag(guw,g"”). To carry out the analogue of a

Buscher transformation on the null isometry direction, we split 4 = (i, u) and then act on

the generalised metric with the O(D, D) transformation which swaps the * and ,, indices,

namely:

5,000
0001
00670
0100

TM N = (2.9)

(It is worth emphasising that this means that we can also do the inverse problem with no
difficulties.) Let’s note first that the invariant generalised dilaton (assuming ¢ = 0 before

the duality) is
o-2d _  [|deth] . L (2.10)
2@ |m€i1~~-id6jl--~jdvllvjlhl2]2 “ .. hzd]d|

More immediately interesting and useful is the dual generalised metric, which we denote

by Hnc as we will refer to it as the Newton-Cartan generalised metric:

ilij 0 0 T3
0 20 —7 0
= S 2.11
(HNc)mN 0 o B 0 (2.11)
5 0 0 0

We see immediately that this does not admit the standard parametrisation of (2.8) because
the lower right D x D block is not invertible and so cannot be interpreted as the inverse

spacetime metric!

General parametrisations of generalised metrics. However, in a doubled approach,
the generalised metric (2.11) is a perfectly well-defined object. Indeed, a classification of
all possible parametrisations of the generalised metric subject to the conditions (2.7) was
carried out in [31]. These parametrisations take the general form

1B K Z 10
Hun = (0 1) (ZT H> (—B 1> (2.12)

where the matrices K, and H*” are simultaneously degenerate, each having n + n zero
eigenvectors. Let a basis for the null eigenvectors of H*" be :):/ﬂ, I=1,....,n+n, and a
dual basis for those of K, be yf, with

whhy =01, HMWK,, +alyf =6l (2.13)

v



Then the matrix Z,” = a;ia]ﬁy?,, where the matrix o has eigenvalues +1 with multi-

plicity n and —1 with multiplicity 7. A canonical choice of bases then consists of zf, :EZ,

yh, U5, a=1,....,nand a=1,...7, such that
ny{f =0y, :izyg = (51‘—)j , x/‘igjlff =0= :EZy{f ) (2.14)
Z)} =xlylh — 2, Yy, H'"K,, +xiyl + I, = ok . (2.15)

The integers n and 7 characterise the type of parametrisation, and appear in the trace
HM = 2(n — 7). Evidently, in a usual “Riemannian” parametrisation, n = 7 = 0. All
other cases are then non-Riemannian in nature, as the block H*" is not invertible and so
cannot be interpreted as a spacetime metric. This does not mean these other cases are not
geometric: they may just be geometries of different type. As shown in [31], this implies that
many versions of non-relativistic geometries, including Newton-Cartan, can be embedded
as a generalised metric and hence understood in the doubled formalism.

A non-Riemannian background with n = i # 0 can be generated by O(D, D) trans-
formations acting on a Riemannian generalised metric. This is what happens when we
obtain the Newton-Cartan geometry by starting with the background (2.1) and dualising
on the null duality. Another closely related example is the T-duality of a fundamental
string solution on both the time and string spatial direction, which for particular values of
the original B-field gives rise to a non-Riemannian background which may be related to
the Gomis-Ooguri string [19-21], as shown in [29, 30].

One point worth mentioning is that the decomposition of a given non-Riemannian
generalised metric into H*”, K,,,,, By, is not unique, owing to the presence of certain shift
symmetries [31]. In the Newton-Cartan case these will actually correspond to Galilean
transformations.

Back to Newton-Cartan. The Newton-Cartan generalised metric (2.11) admits a
parametrisation of the form (2.12) with n =7 = 1 and:

. ij .
K,y = frij 0 . OHM = w0 , B, = 0 =mi) (2.16)
00 00 m; 0

Note that the U(1) gauge field m; appears in the off-diagonal components of the B-field,
and therefore its U(1) symmetry is induced in this picture by the gauge transformations
0By = Oury. Now, an obvious basis of null vectors would be (xﬁ,y’; ), with I = 1,2

() o) o) we)e e

v 0 7-7: _ I I v I . 0 1
Z,) = (—’Uj 0) = w0y, o =1 4] (2.18)

We can diagonalise this to match the canonical form of the generalised metric parametri-
sation of [31]:

given by:

such that

Z,uy = xuyy - jugya (2‘19)



with

1 (7 1 T; u_ 1 — o 1 —' 990
=) wm=m\ ) Vsl ) Vsl ) (2.20)

We shall use this basis below.

2.2 Bosonic worldsheet action

Doubled action. Now we will describe the doubled string action that we will use to
obtain an action for a string in the Newton-Cartan background. The starting point is the

string worldsheet action in Hamiltonian form:!

S = /d% X"P, — Ham(X, P), (2.21)

where

Ham(X, P) = < ZMHyn2ZN + S 2Mpynzy, 2M = (X/M> . (2.22)
2 2 P,
Here e and u are the two independent components of the worldsheet metric, imposing the
vanishing of the string Hamiltonian constraints. These constraints are written naturally in
terms of doubled quantities. One can define dual coordinates by X ;L = P, (a prime denotes
the worldsheet spatial derivative); integrating by parts we arrive at the doubled action of
Tseytlin [22, 23] written in terms of XM = (X*, X,):?

1.
S = /d% 5XMnMNX’N - gX’MHMN(X)X’N - %X’MUMNX’N. (2.23)

In principle, we allow the generalised metric Hx(X) to depend on any of the X, however
we impose the section constraint:

MY o HpoONHKL =0, (2.24)

which guarantees closure of the algebra of worldsheet diffeomorphisms [33], and restricts
us to backgrounds where we only depend on the usual number of coordinates. One can
view the choice of which half of the X™ we allow the background to depend on as an
expression of the manifest O(D, D) covariance of this approach. When the background has
N isometries, there is an ambiguity in the choice of which X are chosen as the physical
coordinates, and we obtain a true O(N, N) T-duality symmetry.

String action in (n,7n) background. We can now consider the action (2.23) for the
background specified by the Newton-Cartan generalised metric - in fact, it is no more
trouble to evaluate it on the general (n,7n) parametrisation and then specify to Newton-
Cartan at the end. We will find the result obtained by [31] (who used an alternative
but equivalent form of the doubled string action), but it is worth outlining the general

n this paper, as in [33], the string tension is T = 1.
2As discussed in [33], there may be some subtleties related to the zero modes. We will ignore such
subtleties here.



procedure for completeness. Readers solely interested in the immediate application to the
Newton-Cartan geometry described above can simply mentally delete the indices a and @
everywhere they appear below.

First we run the doubling argument backwards: assuming the background only depends
on X*, we integrate the term in the doubled action (2.23) involving X™ by parts so that
it becomes X“)N(/; Then X only appears in the Lagrangian with a sigma derivative;
we therefore let P, = X, and will seek it to integrate this out of the action. (This total
derivative could also be thought of as being cancelled against a “topological” term which can
be added to the doubled worldsheet action as in [25]. This term is not relevant classically,
however it is important in the quantum doubled string, which we will not however consider
in this paper.)

It is convenient to consider factoring out the B-field dependence:

H=UTHU, n=UTnU, Uez<j32>. (2.25)

On all terms except X # P, this amounts to sending P, — P,— B/, X"". Therefore redefining

P, =P, — B, X"" we find the action is
S = / 2o — gKWX'“X”’ + B, XPX" — gHWP,,PV +P.cr, (2.26)

where we used the fact that we have a (n,n) generalised metric with

o K, Z)Y
Hary = <sz1 H) , (2.27)
and have
CH =Xt —uX™—eZH X", (2.28)

Note that we have generated the standard B-field coupling in (2.26) by virtue of the
redefinition from P, to ]5#.

As HM is not invertible, in order to integrate out 15# we proceed as follows. The
completeness relation implies

P, = K,,H" P, + 2%y’ P, + i°

u "L P, (2.29)

so we let
A=K, ,H"P, Bo=y.P, Ba=7yLP,. (2.30)

We insert this decomposition of IN’M into (2.26) and add Lagrange multipliers to enforce the
constraints y4 A, = 0 = g4 A,. The part of the Lagrangian involving P, is then

e _ o
— §H“”AMAV + AL (CH = Aoyly — Aa@h) + BaCpu + BaZy"C . (2.31)
The equation of motion for A, is

—eHM" A, +CH — Agy* — Mgl = 0. (2.32)

~10 -



Contracting with zj, and i'z implies that A, = xZC“ and A = EZC“. Then contracting
with K, implies that

1 v
A=K, (2.33)

which indeed solves (2.32) given the solutions for the Lagrange multipliers. We finally
backsubstitute to find that (2.26) becomes

1 . o
S = / Ao 3K 'Y - gKWX’“X’” + B XP X" 4 BoalCl + BaziCh
1 1. . ,
_ / o 5K (e(X H X)XV —uX") — eX’“X"’) + B xrxv (234
+ Bual (X — (-t X) £ B (X5 — (u— €)X").

This is written covariantly as:
1 1
S = / d*o — ?ﬁ—»yfyaﬁffwaax“aﬁxu - ieaﬁBWaaX#agx'/

(2.35)
+ Baa®l (V=7 = €P)95 X" + Baal, (—\/ =P — P ) dpX*.

We have the standard kinetic term, except with the degenerate metric K, , as well as the
standard B-field coupling, and have identified

—Boa+ (u—€)Bia=Ba, —Boa+ (u+e)ba=Pa. (2.36)

Recovering the Newton-Cartan Polyakov action. We take our coordinates to be
X" = (X% V) such that the duals are X* = (X;,U), where U corresponds to the original
null isometry direction of the metric (2.1). The background is specified by (2.16) and (2.20).
Inserting this into the action (2.35), one finds:?

1 A , 4
S = / d*o — iwﬁ—waﬁhijaa)(’aﬁw + €*Pm;0, X 05V
1 = _ .
+ 5 <(ﬁa — Ba) + V=11 €3a(B5 + Ba)) (V=05 X i — e*PD5V)
This gives the Polyakov action for a string in Newton-Cartan gravity proposed in [5]. Note
we can make things look simpler by defining A, = %((ﬁa —Ba)++/ —fyfﬂ‘sew (Bs+ Bs)) to
be the Lagrange multiplier. Solving the V' equation of motion by setting A, —m, = —0,U

(2.37)

returns us to the action for a string in the original Lorentzian background (2.1). From the
doubled perspective, we could have alternatively integrated out V to obtain this.

Fradkin-Tseytlin term. Let us add here a brief digression on the Fradkin-Tseytlin term
describing the coupling of the generalised dilaton to the doubled worldsheet [25].

1
Spr = 47T/d2m/—’y R (~)d. (2.38)

3Note the conventions €' = eg; = —1, such that e’ = 62, (detv)y*Pes, 7?0 = 2P,
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This is relevant when going beyond the classical action and treating the quantum doubled
string. Adapting the standard arguments [25, 38], integrating out the gauge fields A, in
the path integral should generate a shift

1
d—d— 1 log det’(H™) (2.39)

where det’ denotes we should be taking this determinant on the restriction of the degenerate
matrix H*" to the subspace spanned by the A, on which it is non-degenerate. Now, for
Newton-Cartan, in fact

d= ilog (d_ll)!eilmidejlmjdvilvjl hi2d2 | pldid (2.40)
is exactly }logdet/(H"), so that we get d — 0 (in the absence of an original dilaton).
This is consistent with what happens in a conventional background.

For the remainder of this paper, we consider only the classical worldsheet action, and
its supersymmetrisation, and will not further discuss this Fradkin-Tseytlin term. (We note
that it would be relevant when considering the beta functional equations for the background
fields, for instance, and we mention it both for completeness and with a view to further

analysis of the quantisation of the Newton-Cartan string in the future.)

2.3 Adding a B-field

As a slight extension of our previous procedure, let’s outline what would happen if we as-
sumed that our background (2.1) with a null isometry was also equipped with a B-field B,
with non-zero components B;; = B;; and Biu = B;. We consider the factorisation (2.25)
for the original generalised metric. After T-dualising, the generalised metric admits the
factorisation

H=UHncUT . (2.41)

where Hnc is the (original) Newton-Cartan generalised metric (2.11), for which we used
the parametrisation in terms of H, K, B and zero vectors given by (2.16) and (2.20), and
U can itself be factorised as

~ o*, 0 Aty 0
U=UgUs=UaUs, (Us)"n= (—B 5 1/> , (O)My = ( _ ) , (2.42)
v Op

where the only non-zero components of B, are B;;, and

540
At =7 , (2.43)

generates a geometric GL(d + 1) transformation. Note that A*,B,, = B,,, B,,A”, = B,.

Now, overall conjugation of Hnc by Ug simply has the effect of turning on the components
B;;, and does not materially change any aspect of our analysis. The conjugation by Ua

- 12 —



on the other hand does have an impact, but this is easily calculated. The overall result is
that the parametrisation given by (2.16) and (2.20) is replaced by the following one:

K - hij 0 W — h¥ —h Bk B — Bij — Qm[iBj] —my; (2 44)
w 00)’ —hkBy WM BB )T T m; 0o ) 7

with the zero vectors:

1 Ti + B; _ 1 (,—B;
T, = ——= T —_ ,
Pve 1) Pve -1

i L v gL (2.45)
Y _\/§ 1—|—Bk1jk ’ Y _\/§ —1—|—Bkvk ’ ’

With this parametrisation, we see immediately that the Newton-Cartan action (2.37) be-
comes that of [12]:

1 . ] . A A A
5= / P — S\ hi0a X 05 X7 — B0, X 03X + P mida X' (057 + B0 X')

t \2 (wa = Ba) + V=1 eral(Bs + 55)) (\ﬁwaﬁaﬂXin — P95V + BiaﬁXi)> _
(2.46)

3 Vielbeins, worldsheet fermions and duality

The goal of this section is to introduce some necessary technology in the form of doubled
pseudo-vielbeins for the projectors (3.1), and to discuss in general terms some features of
the description of worldsheet fermions in the Newton-Cartan background.

3.1 Doubled vielbeins

In the standard RNS string, the worldsheet bosons X* are accompanied by their worldsheet
superpartners in the form of a pair of Majorana-Weyl fermions of opposite chirality, y*
and 1*. How should we describe these fermions in an O(D, D) covariant picture?

For the bosons, the idea was to first go to the Hamiltonian setting, pairing the coordi-
nates X* with their momenta P,. This provided a natural doubling. On the other hand,
fermions are already their own momenta (their kinetic term will be ~ ww) and so they
should not be doubled in the same way. This suggests exchanging (X*, P,) — XM but
continuing to work with the original fermions ¢* and ¢*. The latter are spacetime vectors.
Generically, there is no canonical way to express a single spacetime vector in an O(D, D)
covariant manner. However, as the fermions come with different chirality and so are natu-
rally left- and right-moving, there is a natural way to associate them to the denominator
subgroup in the coset O(D,D)/O(1,D — 1) x O(1, D — 1), which consists of copies of the
Lorentz group seen separately by left- and right-movers on the worldsheet. This motivates
defining the fermions with flat indices 1/1A and ¢4 such that # = et Awﬁ, Pr = et yp,
with wA and ﬂA transforming under the separate Lorentz group factors (with associated
different flat indices A and A for emphasis, and in principle we could use separate vielbeins
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in each sector, as will appear naturally after T-dualising). Crucially though, these fermions
with flat indices do not transform under the global O(D, D).

In fact, we could equivalently define doubled fermions ¥ and 1/;M as follows. (This
is what is used in [25, 39] in an alternative approach to the worldsheet supersymmetric
doubled string.) The definition of the generalised metric in (2.7) implies the existence of
projectors:

1 _ 1
PMy = 5(5MN + HMKHKN% Py = 5(5MN - ”MKHKN)' (3.1)

which can be thought of as projecting onto the separate D dimensional subspaces associated
to each doubled Lorentz factor. Requiring

implies that each of ™ and ™ only have D independent components (for n = n). In the
standard parametrisation, for instance, this gives

1 e S 1;/1
V= ((—g +B>Ww”> B (<g + BW") ' 33

We can connect these two pictures by solving the conditions (3.2) by writing ™ = VM AwA
and @M = VM 4, where VM 1 and VM, can be constructed as “vielbeins” for the
projectors themselves (we will for convenience refer to all these non-square pseudo-vielbeins
simply as vielbeins, to avoid awkward phrasing). To define these in full generality, let’s
assume again we have a general (n,n) parametrisation of the generalised metric. This
actually means [31] that the full doubled Lorentz group (i.e. the denominator subgroup in
the coset that the generalised metric parametrises) is O(t + n,s + n) x O(t + n, s + n),
witht+s+n+n=D. SonowA=1,....D+n—nand A=1,...,D+n —n are the
corresponding flat indices.
Then we introduce VM ;5 and VM 4 such that (note the sign in the first expression):

_ 1 I
Pyn = §(TIMN —Hun) = —Vu'VnBhis

2 (3.4)
Pyn = 5(77MN + Hun) = V'V Phag,

where h 55 and hap are O(t +7, s +n) and O(t +n, s +n) flat metrics, respectively. These
obey various identities:

PNt =0, PN =V, PuNvat =0, PNVt =Vt (35)
NV AV = - PNV AV E = +hAP N AV B =0, (3.6)
The paper [31] introduced the following explicit parametrisation. Decompose the flat in-
dices as A = (m,a,a) and A = (m,a,a), where m and m are D —n — fi dimensional flat

indices, and a and a are the indices corresponding to the zero vectors appearing in the gen-
eralised metric. Let’s pre-emptively point out that for Newton-Cartan, one can ignore the
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indices a and @ (as they are one-dimensional), and we will in fact not distinguish between
the D — 2 dimensional flat indices m and m, but denote both instead by* m. Introduce
non-square “vielbeins” for the degenerate matrices K and H involving flat O(¢, s) metrics

Nmn and Dz

K/_w = k,u,mkynnmn = ]%,umlguﬁnﬁzﬁ ) HM = humh’/nnmn = Eumﬁyﬁnmﬁ ) (37)
where k, "yl = l;:umgjg =0, W'y, = B"m:ﬁz = 0, and we have completeness relations
By = 67 Ry = 67
k"W m 4 2y + 0 = 6, k"R 5+ gy + 2R = 0
Define )
k:HA = (kum g xZ) , IEJMA = (Eum T i“Z) ) (3.10)
Wy = (h“m Yh ya) , hf;= (ﬁ“,—n ye gg) , (3.11)
and then let
. 1 (—k,z+ Buwh"4 1 (kya+ Buh”a
= pA TPt A Viga=— [ * ne . 3.12
The flat indices are raised and lowered using
_ Nmn 0 0 Nmn 0 0
hig = 0 —0; 0|, hap= 0 —dbap O | . (3.13)
0 0 dg 0 0 dw

In fact, in this paper we will work with a perhaps slightly simpler parametrisation where
we off-diagonalise the blocks in these flat metrics, leading to:

Nimnan 0 0 Nmn 0 0
hig=| 0 06,3, has=| 0 0 6w | . (3.14)
0 0 0 0 dap O
such that
B = (k™ V255 0) | B = (k™ V225 0) (3.15)
B = (Eﬂm 25 0) : By = (h“m N 0) . (3.16)

It is useful to record that in both cases we have
H* kot 4 aby b = hid Kuh” A+ 2yt kya = kua , (3.17)
H" kA + zbghh = b4 Kuh” 5+ 205k, 5 =k, - (3.18)

4The author apologises for this, and also for the sheer number of versions of “h” in use. The flat matrices

hag, hig are not to be confused with the degenerate hij, h' appearing in the Newton-Cartan geometry
(nor, for that matter, are they to be confused with anything else).
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3.2 Newton-Cartan vielbeins

Let’s now discuss in general terms what we expect to happen when we consider the super-
symmetric Newton-Cartan string, based on expectations from T-duality on the worldsheet.

T-duality on spacetime vielbeins. First of all, let’s suppose we are dealing with
an ordinary supergravity background, for which we introduce a vielbein eAM such that
Juv = eAueBl,hAB. Then the projector vielbeins are (identifying the vielbeins and hence
flat indices in each):

1 eua+ Buela _ 1 —e A+ Buela
Via=— 1" v Via = — K K : 3.19
RN ( et s ’ et a (3.19)

Let’s split u = (4,2) and carry out a Buscher transformation. One finds [40] that the
spacetime vielbein eAu transforms differently in the left and right projected sectors. There
are two transformations (here the + case is associated to V and the — case to V):

,, 5 0
eba=0%e"a, QL,= <:|:g ~4J—B . ) , (3.20)
2] 2] 2z

and the different vielbein are related by a Lorentz transformation:®

_ 1
e'l_t_A = eliBABA, ABA =8 (Q_l)prg_ﬂe‘uA = 55 — 27€ZB€ZA. (3.21)
zz
Evidently, if g,, = 0, the transformations Q4 relating e to e+ are non-invertible, and the
different vielbein can not be related to each other.

Null duality on Newton-Cartan vielbein. For the Lorentzian metric (2.1), a natural
choice of vielbein is to write®

ds® = 2eTel + 5memieﬁjdxidxj . e =rdat, et = du — myda? (3.22)

¢

where we introduce a non-square “vielbein” e™; such that

hij = 5m€m¢eﬂj (3.23)
such that (e;™,7;) is invertible and has inverse (e’p,, —v') [4]. We have identities
eimemj = (55 + 700 emjejH = 0™, (3.24)

with h¥/ = et,,e7,6™2. The full vielbein is then

e, 0 o i i 0 Omn 00
@AM: n 0], efa= ( jﬂ j > , hap= 0O 01]. (3.25)
em’m; —vlm; 1
—my; 1 0 10

For a conventional choice of vielbein, with A = (4, z), we have e.! = 0, e.Z = /g, then Ail = 51'1,
A%, = —1, and this gives the standard T-duality minus sign flip, 9% — 9, ¥* — —¢2, for example.

SWe adopt the convention of writing flat index components in the Newton-Cartan background with an
underline.
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From this, the T-dual inverse vielbeins are:

= (€m0 3.26
A (0 +1 0) (3.26)

which are as expected not invertible. We can explicitly check that there is no AZ 4 such that
el 4 = e gAB 4, as if there were this would require €', A™; 4+ v’ = —v%, and contracting
with 7; gives —1 = 1. Nonetheless, the doubled vielbeins are well-defined:

€mi —m; T; —€mi m; —T;

1 emmy —vim; 1 _ 1 emfme —vim; 1
Viva=— | = - , i=— 1 - 3.27
MAZ B ey —vi 0 MA= | eém —vi 0 (3:27)

0 1 0 0 -1 0

This is consistent with the parametrisation of section 3.1, with
kﬂA = (k#m \/ia:“ 0) ) EuA = (kum \/iffu 0) ) k™ = (eim ) ) (3.28)
By = (h“m V2y o) ;o Ri= (h“m V2t 0) ;o W= (eim 0) o (329)

The way the relationship between e and e_ breaks down is clearly consistent with the
fact that we no longer have a relativistic background geometry. We also remember that
in the bosonic sector, we had what were essentially chirality conditions enforcing that the
directions z, X* and Z, X* be either left- or right-moving only. The lack of a Lorentz trans-
formation which can be used to align the left- and right-moving sectors of the worldsheet
is then seen to be connected to these directions becoming chiral. We see however from
the above parametrisation that the left and right doubled vielbeins contain still the same
dx (d—1) not-square “vielbein” e,,’, which means that in the (d — 1)-dimensional subspace
on which h;; is non-degenerate the string left- and right-moving sectors see the same space
- in this case, they agree on the spatial hypersurfaces orthogonal to the Newton-Cartan
time direction specified by v’. Note that it is for this reason that we use the common flat
index m for both V}; 5 and Vi 4, rather than separate indices m and m as indicated in the
previous subsection.

One might wonder as a result about how one should think of the separate chiral O(1, d)
groups under which @DA and ¢ are said to transform. We can decompose O(1,d) into
O(d — 1) acting on the m indices, O(1, 1) transformations acting in the (z,u) directions,
with 2(d—1) “mixed” transformations leftover. With the vielbein choices as above (viewed
as a Lorentz gauge fixing), half of the latter survive and implement Galilean transformations
via the action of

Sn AT 0
AMp=1] 0 10], (3.30)
X, 01

which induces ;™ — ;™ + AN27;, m; — m; + AN, vt — vt + eim)\m. In the non-
Riemannian parametrisations of the generalised metric [31], this transformation can be
viewed as a shift symmetry acting on the decomposition into a particular K, ,y*,y*
and By, .
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Worldsheet fermions. The RNS string action contains fermions TW;I;“ with kinetic
terms like

)
Ly~ 5, 00" (3.31)

T-dualising only explicitly changes the part of the action coupling directly to the bosonic
coordinates X*#, Ly, itself is invariant under T-duality in the trivial sense that one can find
a change of variables " — wé‘ual such that

1 1
§¢“9uua¢u = iwgual(gdual)uuafl/}gua] (332)

with the metric transforming according to the Buscher rules. As we discussed, a way to
make this manifest is to flatten the indices on the fermions, such that ¢4 = eAMW‘, and
declare that 14 is an invariant under O(D, D). Note that in this case,

wgual = el:f:AwA = ineyAwA = Qiulﬂ'j . (333)

Hence the worldsheet fermions with curved spacetime indices transform like the spacetime
vielbein.

This picture breaks down when doing a null duality. In particular there is no well-
defined notion of ¢4 . This is because there is no well-defined (invertible) spacetime
vielbein eX 4 which can be extracted from the doubled vielbeins. We can see this quite
clearly by defining (for example) ™ = VM 41p4. We have

1[)7,’
1 Pk M 1 9220% + (g + B)zj¢j
pM = — L] v = — . s 3.34
VNt Buer) " T | (gt By + (o + Bt (334
wz
which would ordinarily lead to the expected results
wéual = wz ) wgual = 920" + (g + B)ijj . (3'35)

When g,, = 0, ¥* drops out of the putative definition for wgual entirely. Nevertheless, it is
of course still present in the doubled variable ¢é\{1al or in the invariant ¢»4. This is just saying
(again) that in such circumstances one cannot use the standard spacetime parametrisations
and intuition, however starting with the doubled picture and then adopting the correct
Newton-Cartan parametrisation will lead to sensible results.

Let’s now consider working in the Lorentzian background with null isometry, prior to
passing to the Newton-Cartan description. Here we have a well-defined spacetime vielbein
so it is equivalent to work with either worldsheet fermions with curved spacetime indices,
which we denote *, or flat indices, 4 = GA/ﬂ/J“. Explicitly, we have

(R ey
pr= |yt | = Tt (3.36)
U P —mit
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Note for instance that:
G oY = hijp Od + T O + T Ot
= O OY™ + YPTOP™ + PLOYT + . .. (3.37)
= happ oy + ...,

where the ellipsis denotes derivatives of the background, which combine into terms featuring
the spin connection of the background (see appendix A). In going to the Newton-Cartan
description using the null duality, we will write the action for the fermions in terms of the
flat indexed quantities.

4 Worldsheet supersymmetric Newton-Cartan string

4.1 The worldsheet supersymmetric doubled action

Details of the action. The doubled RNS string of [33] extends the bosonic action (2.23)
to the worldsheet supersymmetric action:”

S = /d% %XMWNX’N — %(¢A¢BBAB AP hap) — MM — M —i€Q —i€Q. (4.1)

As we discussed above, the worldsheet fermions 1/1A and @A carry flat indices, associating
each to one of the two separate factors of the doubled Lorentz group.® We now have both
bosonic Lagrange multipliers, A and ), related to the parametrisation of the worldsheet
metric (with A = e — u, A=e+ u), and fermionic Lagrange multipliers, £ and é , related to
the parametrisation of the worldsheet gravitino, as detailed in appendix A. They enforce
the super-Virasoro constraints, H = H = Q= Q = 0. To describe these, we first need to
use the projector vielbeins of (3.4) to build objects which resemble spin connections,

wyras = —Vnadu V¥ 5+ VYV gopHun

Onap = VvaduVVp + VN[AVPB]apHMN. (4.2)

Though we will casually refer to these as spin connections, under generalised diffeomor-
phisms (the O(D, D) covariantisation of spacetime diffeomorphisms and B-field gauge
transformations) they do not transform as a (generalised) connection should. However,
the following objects built from w,;55 and Wy ap are in fact scalars under generalised

diffeomorphisms:
boap=VYownas, beup =V eiman, (4.3)
PABC = VM[AW\MBC’} ; ¢asc = VM 4dBe) - (4.4)

"We have slightly changed some of the (also surprising to the author) notation and conventions of [33].
In particular, our names for the doubled vielbeins are V = R and V = L, and unlike in [33] we do not raise
indices with the generalised metric but with the O(D, D) structure.

8Note that this means that strictly speaking in order to show invariance of the action under spacetime
Lorentz transformations, one has to make a certain non-local transformation of the X which only affects
the dual coordinates XW being of the form X — XM + I do’OMA(...). As ultimately only XL appears
in the action, this is sensible.
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It is actually only these combinations that appear in the action (4.1). We can in fact
relate the above spin connections to projections of the double field theory covariant deriva-
tive [26, 27, 41, 42]. We will calculate the scalars (4.3) and (4.4) explicitly for the Newton-
Cartan background in appendix B.

The constraints then take the form:

oH = — XMPyn XN +ih g e’E +iX™M (PN ywy 150207 — PN yanapd i)
1 1 .8.0.05  LaMN~ -  carBicT
— 1PN onapwnept v + L PMN Gy apnepd PP
1 o
= 5Fapepp T w",
oH =X"M Pyy XN — ihapp 0P + i X™M (PN yrwy 150 0P — PN yaon apd0P)

2
1 T
- ZPMNWMABWN6D¢A¢B¢C¢D + ZPMNOJMABWNCD¢A¢B¢C¢D

1 ~ o o
- §FABC*D¢A1/JB¢C¢D ; (4.5)
where we have “curvatures” with flat indices:

Fipep =2VY 200 @g10p) + 24150 50" + 3045597 cp (46)
Fapep =2V 40m(®@piep) + 2456 50" + 364" 6p -

These are scalars under generalised diffeomorphisms, as they involve the quantities (4.3)
and (4.4) which are already scalars. Though it is tempting to think of these four-index
objects as curvatures, because they couple to the four-fermion terms in the action, strictly
speaking their relationship to genuine notions of curvature is more indirect. In particular,
in the geometry of double field theory the generalised Riemann tensor does not give a
well-defined generalised curvature tensor [41, 42]. If we were to unflatten the indices on
Figep and Fypep, we would obtain four-index generalised tensors, which however would
not be invariant under the local O(D) x O(D) generalised Lorentz transformations (as F
and F' are not [33]) and so could not be interpreted as a generalised Riemann tensor built
solely out of the generalised metric, instead involving also derivatives of the generalised
vielbeins.”

Finally, we have:

§¢ABC¢A¢B¢C + §¢0AB¢A1/JB¢C ;

V20 = XMy NV 4% + 5%@1&%%0 + §¢ABC¢A¢B¢C -

_\/§Q - X/M’OMNVNA?/)A +
(4.7)

These generate worldsheet translations and supersymmetries. This can be seen explicitly
by introducing symmetry parameters a, & (bosonic) and €, € (fermionic), and defining the

°In line with this, what one finds in the reduction to the standard string sigma model as in [33] (though
this result was not stated explicitly there), is that Figop = %RiAB’CD —+ %w+mgw_icp = Fopaig, where
w+ denote torsionful spin connections, and R4+ the associated (identical) Riemann curvatures (with flat
indices).
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“smeared” quantities:
H(a) = / doa(o)VH(c), (@) = /
Q(e) = /doe(a)Q(U) Q(é) = /dae(o)Q(a), (4.9)

Then for any quantity O we define its variations as:
5,0 = {H(), 0}, 5.0 ={0Q(c),0}*, 50 = {H(&), 0}, 5:0={0Q(¢),0}*, (4.10)
using the Dirac brackets:
{(xM(0), XN (")} = —*NO(0 — o), (4.11)
{¥4(0). v ()} = ih"Poo — o), {IM0). 07 (0)) = kS0 — o), (412)
where 0,0(c) = §(0), 8(—0) = —6(o). Note this doubled Dirac bracket ensures that we
have the standard bracket {X* (o), P,(c/)}* = {X*(0), X (") }* = 6",6(c — o).
For instance, the supersymmetry variations of the constraints themselves are:
3

1 ~ . - ~ 1 =
5.0 =ieH, 6M = %6'Q +56Q, SQ=ieH, GH=-T¥Q- Q0.  (4.13)

Before integrating out the dual coordinates to obtain a standard Lagrangian form of the
action, we want to emphasise to the reader that the action (4.1) will automatically pro-
vide the Hamiltonian form of the string action on replacing X I; = P,, and the bosonic
kinetic term with X#P,. It is necessary just to evaluate the constraints explictly for the
background we are considering.

4.2 Integrating out the dual coordinates

The terms in the Lagrangian of (4.1) that involve the bosonic coordinates XM are:
1 1 1
Ly = g XM nun X" = SeHpun XM XN = Cunun XMXN + XM f (4.14)

where the final term contains the coupling to the fermions, with

. 1.8 . - BN -~ caa . G S 1 i€ -
fur = —iePN ywon 15 08 + iePN oy apptht + iVMA@bA - iVMAIZJA, (4.15)

V2 V2

which is a generalised vector.

We can proceed to integrate out the dual coordinates X u using the same procedure
as for the bosonic string. The only difference is the appearance of terms involving the
fermions in fjs, amounting to shifting the quantity C* defined in (2.28) to C* + fH. The
end result is that the Lagrangian after this integration out is given by L = Lx + L, where
Lx is given by:

1 1 :
Lx = 5K <DTX“DTX" - eX’“X”’) + B, XM X"
€

1 .1
+ gKWDTX“f” + X" f, + %K,Wf“f” (4.16)

+ Bafo(D*X“ + f“) +BﬁjZ(D+XM + f”)’
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where now j?u = fu— Buwf", D = 0 —u0s, D+ = D; £ €0y, and the remaining solely
fermionic terms are:
L'=- %BAWA(I/}B —(u—e)y'P) — %hABW(%ZB — (u+t )i’
+ Z (hEF‘I’EAB@FCD¢A¢B¢C¢D + BEF&’EAB&)FCDJJA@BQ;CZZD)
E Fancpt WBEGP + S P 9Py CyP (4.17)

1 - 5 L _
+ Tﬂg (—SOABchwB PC — gt tpP wC)

_l’_

1 - o -
_|_7<(I)”ABC+~ ABC>’

2\&5 cABYT VYT + Gapc YT
with the various geometric quantities here defined in (4.3), (4.4) and (4.6). Now, the
quantities f* and f, = f, — B f" appearing in (4.16) are the components arising from
the vector fys, defined in (4.15), which we can write as

far = —ieVMCfC — ieVMéf@, (4.18)

with

fo= q)cABwAl/JB + \/%e@zca fé = “Iv’CAB&AiB - \/%ewc- (4.19)

Using the vielbein parametrisation of section 3.1, it follows that

e e e e - Az

— - — — kS fo+ —k,  fa. 4.20
\/§ \/5 \/§ Iz fc \@ Iz fC ( )

Thus far this has been completely general. The resulting Lagrangian given by the sum

W feo WCfe, fu=—

fr=—

of (4.16) and (4.17) gives the full worldsheet supersymmetric Lagrangian for an arbitrary
(n,n) non-Riemannian doubled background. Although not immediately obvious, it can be
tidied up into a form which is manifestly covariant on the worldsheet and which contains
the expected sort of geometric couplings to the background in the form of generalised
spin connections, torsions and curvatures. We will not present the general details of this
procedure here, and instead will focus on the Newton-Cartan case, for which we will use a
slightly bespoke approach to manipulating our result into an understandable form.

4.3 Manipulations for the Newton-Cartan parametrisation

So, we now specialise to a Newton-Cartan parametrisation of our doubled background.
Our goal is to isolate all terms involving the additional worldsheet bosonic field V', so
that it only appears in the constraints. (Essentially, we want to isolate the combination
(2, —x,) X" which picks out the direction V. This is not an especially natural combination
in the doubled approach, because z, and I, are associated to the projectors P and P
respectively, which appear everywhere.) Let’s focus on the following combination in (4.16):

1 ° 1 _
F K DX 4 Xt o S 4 B (D-XP 4 1) 4 B, (D X" ). (4:21)

We carry out the following manipulations:
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e We replace D; = 3(Dy + D_) and 9, = (D4 — D_)

e We expand X* = (X% V) and insert the explicit Newton-Cartan parametrisations of
Ky, Mo, bt e, k,© and k,%, using (2.16), (2.20) and (3.28), (3.29). We also expand
fC = (fmy fzy fg) and f_ = ( ms f’T‘) g)'

e We note that the terms involving 3 and /3 are:

1
V2

1

3 (D,V + D Xi - Z'E\f?f2> -

B <D+V -nD X'+ z‘e\/ﬁfﬁ) . (4.22)

e Anywhere we have D,V appearing we add and subtract from it the extra terms
appearing in the brackets above, so that D,V only appears in the combinations
which are the equations of motion of 5 and §.

The result is that we can write (4.21) in terms of the parts that involve V:

1 t = i
\ﬁ (ﬁ + 5(fz+ fT)) (D—V +nD_X" — Zeﬁf@)

1
V2

. (4.23)
(ﬁ 5t fT>> (D+V = DX +iev2fu)

and the parts that involve only X*, where now we also insert the explicit expressions for
the components of fo and fg, giving:

7

<D+Xi(6¢m<1’mAB + 70, 150 WP + D_X (2B a5 + Ti(i)zAB)QLA@ZB)

V2
— 5o€(e™ iy + ) Dy X 2%(1&%@@1&%0 + 04089 p o)
+ 2%5 (€™ m + Tithr) D- X" + 2\5@@% ape0PEC + pA82% P yC) (4.24)

e T 5 A = - - = e e
-1 <¢EAB¢E0D¢A¢B¢C¢D + & 54T cp P BYCyP

_ ~ o 1 - s
+ QhEF‘I)EAB@pCDl/JA@Z)B¢C¢D> - EfthEﬂ/’A@Z)B :

Here we defined
Omn 00

has=hgs=| 0 01], (4.25)
0 10

which captures cross-coupling between left and right projected sectors. This is numeri-
cally identical to h 55 and hap. It is immediately clear that there are some cancellations

between (4.24) and (4.17), removing all terms involving ¥, i, Enh and Eabap.
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4.4 Lagrangian form of the worldsheet supersymmetric Newton-Cartan action

Our result for the Newton-Cartan worldsheet supersymmetric string action can thus be

written as:10

S = / d*c %hij <iDTXiDTXj —~ eX”'X’J) + B, X'X"™
- % (¢A7LABD+¢B + Dy X'wy 450007 >

- % (T/;AhABDJZJB + D—Xiw—z'ABlZ}AQZ)B>

- 2%5(6@1/}@ +Tt) Dy X+ %ﬁ(e@wﬂ + 7)) D_ X!

- %TABCE@ZA P — 113 [apo€d™vPyC - ZlegthB’?;AlﬂB

e - 5~
+ §RABCD¢A¢B¢C¢D

(4.26)

1 i . .
+ E <B + §(f1+ fT)) (D,V + T@'DfX — ’Le\/ifg)

1
V2

The information about the geometry is captured explicitly in the couplings to h;; and By,

(5 + 1) (D2v = mDX vievaE,)

(which contains the field m;) and in the following quantities. We have spin connections,

wWiiap = V2™ @y ap + TP ap) |

. . (4.27)
w_iA = V2(ei2® a5 + Ti®raB),
torsions,
_ 6 . D
Tapc = NG (_SOABC + 014 (I)\DIBC]) ’
f (4.28)
[ine = —— (0ins — 0122 ® 1 e
ABC = /2 (SDABC (A |D|BC}) )
and curvature
1 r- EF =
Rigep = B (FABCD + Fopag —2h™" ®p ’B‘I’FCD) . (4.29)

In fact, it can be shown that Fig-p = FC pAip- The cheapest way to do this is to realise
that this is true in a standard Riemannian parametrisation as in [33] and our Newton-
Cartan background can be obtained from such a background by the null duality, which
does not change the value of F or F.

In addition, we record that

R SN - U T S S S Y S )
2c 2 (4.30)
= Buapd P — Syt F= it - S g,

V2e V2e

10WWe have kept everything written in one-component spinor notation: appendix A contains the infor-

mation needed to first rewrite these as projections of two-component Majorana spinors and thus write
everything in manifestly covariant worldsheet notation.
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All these quantities can be worked out explicitly in components using the results of ap-
pendix B. We use the parametrisation in which there is also a background B-field with
components B;; and field strength H;jx = 30;B;; (any components B;, can be absorbed
into a redefinition of m;) and for simplicity we assume that there are no off-diagonal com-
ponents of the B-field prior to the null dualisation, i.e. that the field B; of section 2.3
is zero.

Then, we find for instance that the components of the torsions (4.28) turn out to be
equal and to contain the contribution of the field strength of the background B-field:

ng = Hijkeimejﬂekg, _MB = Hijkeimejﬂekg,

Tonr = —Hl-jkeimejﬂvk, [nr = —Hl-jkeimejﬂvk,

Trnu = 0, [nu = 0,

T =0, Tonru = 0. (4.31)

We can also straightforwardly calculate the components of the spin connections (4.27):

. 1 .
+ 7€l [mekﬂ]a[jmk] - §Hijk€]mek2a

J

Wiimn = e’“[m|(6¢ek|ﬂ} - akezm]) - hik(ﬁjek[m)eﬂ]

1 . . . 1 .

Wiimr = §Uk8iekm + 8[jhk]ie]mvk — el m0my) + Tiv]ekma[jmk] + ieijkHz’jk )

Wrimu = ejma[ﬂ']] y

Wepiry = vja[jm ) (4.32)

and
k ko yoi i ek 1 J ek
W—imn = € [m|(al€k|m - 8;431‘@]) - h,;k(f)je [m)eﬂ] + e [me ﬂ]f)[]mk] + iHijke m€ n,
1 . . . 1 .
W_imr = gvk@-ekm + 8[jhk]iejmvk — el m0my) + Tivjekma[jmk] — §e]mka¢jk,

Wi, = e]mf)[iTj] ,

W_jru = Uja[j’l'i} . (4.33)

In fact, these are the components of the original spin connection of the background (2.1)
with the null isometry, except with pieces proportional to m; removed (this is related to
the redefinition of P, to I:)u which means that terms proportional to the bare B-field end
up appearing multiplied by the constraints). We can turn around the definitions (4.32)
and (4.33) to now make sense of the scalar quantities that originally appeared in the
worldsheet action, based on the results listed in from appendix B. We can write:

1 G L
P45 = 5 mWiidBs PmaB = 5€'mw-iaB,

. - ) 4.34
Q45 = _%Uzw_i-iAB? Orap = —%vzwﬂ'AB, (4.34)
while we also have
L 1 i j k
Prnp = =€ [mWlilnp] ~ ~=Hijk€ me n€"p,
\? 6v2 (4.35)

Pmnp = \ﬁei[mw\ilngl T 5ve Hijke'me'ney
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where we let Wtimn = Wimn F %Hijkejmekﬂ, and

1, . . 1 o
¢mmf:;5(Z¥@WMMZ_Um@m)+6§§Hwﬂzﬁﬁﬂh

1 , . 1 o
Pmnr = 5 (2€' pnWijnlz — V'Wimn) — m"'ijkezmejavk,

(4.36)
where we let wijmr = Wimr £ %Hijkej mvk. These are the only components in which H;j
appears. We also have the components carrying a u index, for which:

) 1.
q)m = Pymn = _3(;0% = _3()0M - _ﬁelme]ﬂa[i’rj] )
(4.37)

B 1 . .
(I)m = Pymr = _390m - _3()0w = ﬁezmv]a[i’rj] )

with components involving the index u twice vanishing. In fact, if the Newton-Cartan
background is assumed to be “twistless” [17, 18] then

hikhjla[kT” =0« T[iaka] =0%& eime’jﬂa[iTj] =0 (4.38)
and then we have ®umn = Pumn = Prmnu = Pmnu = 0-

What would be interesting now to do is to take the above torsionful spin connections,
which we may claim are the string’s preferred connections for the Newton-Cartan geome-
try, and use them as the building blocks appearing not only in the curvature (4.29) but in
the action and equations of motion of double field theory. Note that the background field
equations of the doubled string are the equations of motion of double field theory [43, 44].
This tells us that we can derive the field equations of a Newton-Cartan background by in-
serting the appropriate parametrisation of the generalised metric and generalised dilaton.
The results could then then be checked against the beta functional equations derived di-
rectly from the non-relativistic worldsheet theory starting with the bosonic Newton-Cartan
string [9, 11]. We defer detailed investigation of the geometry and dynamics for future work.

4.5 Supersymmetry transformations

General expressions. Let us write down the supersymmetry transformations following
from (4.10). The general expressions are [33]:

€

2VM;wA
e(o’)
V2
+-%3M¢Agcwg¢éwé+-%3M5A30¢A¢B¢C)0/)7 (4.39)

5. XM =

S5

do’ O(c — o) (@bAX/P@M‘_/PA

i € , — i 3 3 3,06 l=i =-p-~
bt = (—zX’MvMA + 59" BoY Y + 2<1>ABchwC> ,

S

5617214 = - (i)C’ABwélZB )

5
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0e XM = VMAwA

¢
7

/ p (J)AX/PaMVPA

+20 @ABcszwa% L IO (4.40)

se = % (z’X’M Var —

6 wA o +\/§(I)C B,¢Ow3

while the worldsheet metric and gravitino components transform as:

a4 o 1 5 G
5# et 2@A30¢3w0> ,

e = ?e, 1 56): = ?e, L (4.41)
66 =i (Dye—3Ne) 5g£:z<D €4 5Ne )

The transformation of the coordinates X™ involves non-local expressions. However, these
only affect the transformations of the components X , which (assuming the background
obeys the section condition and does not depend on these coordinates) only appear in the
action as the derivatives X ZL, and we do not see this non-locality in practice.

Supersymmetry transformations for Newton-Cartan background. Thus far
these supersymmetry expressions are entirely general and apply to any doubled RNS string
action. Now let’s specialise them to the Newton-Cartan background. The key to making
use of the expressions (4.39) and (4.40) is to recall that we had

L =P,=F, —i—Bw,X/V,
1 , . . W (4.42)
= EK,U,I/(DTX +f ) + l‘,uﬁ + $,u5 + B;WX >

as a result of integrating the dual coordinates out of the action. This can be inserted into
the transformation rules to determine the transformations of the fermions 1 and ¥ in
terms of (X*, 3, 3). Meanwhile, the transformations of 3 and 3 can be determined using
the fact that our definitions imply 8 = y“(f(l’t — B, X") and B = y“(f(; — B, X"). Note
that we have

0e(X], = B X") = — Sk a(e™)

+ ey (2%7@] 4= Ok (X, — BypX'?) — Ty X" hP 4 ) (4.43)

N = N
~.

- ﬁe (%@ABG¢A¢B¢C + 3u‘i>ABc¢A1EB7/~)C) ;
0:(X!, — By X") = —%kw(aﬁ)’

1 - -
+ 5 (28mky] u+ b A(X] — BypX'?) + Ty X" 1P A) (4.44)

¢ (Oupanct BPGC + 0,8 45t v PyC) |

—97 —



so the transformation rule for 3 and 3 will in general be rather involved. We refrain from
going into the details.
For the other transformations, we will be more explicit. We have for X# = (X" V) that

) 1 7 m i, 0T 1 m i T
5XT = Sel(el ™ — 0'4T) = SE(El ™ — '),
) ) (4.45)
(5V = —§€¢1 — §€w1
The fermion transformations work out as:

; 1 5.6 1 (-
by = e (‘Seei’”DXl + 5o (Bempe — ¥ pe) P — - (&0 - fW))

2v2
€
o Oyl
TR 1 1 (4.46)
S = ¢ (2 ei™D X" + NG ( 3¢™pe + ‘P*Bc) PPPC 4 E(Ezﬁm - 5¢m)>
LN c B
\[ BY Y
and
T _ i I yli L r__ B, C | & _TB7C i T _7C. B
o —e(—ze(V XTZ)+2\/§<3@BC'¢¢ +@BC¢¢>>+\/§¢) BYT YT,
5«,ZT=€(+2Z€(V’+X%) 7<3s0 BebPY + 075 wBQZJCD \%%LB#J%B,
(4.47)

and

u o [ u B € u_ . E
fw—e(\[ﬂ NG (3so pePuC + &ty w%(’)) +—5%c Y7,

5

(4.48)
U = v 7B.7 u B, C €& u C B
ot = (4758~ 5 s (368000 + 2poPiC) ) - SbotsuC
Note that the combinations actually appearing in the action are:
— 1 i TAT u u>)
= — — (I)T = - )
B \f <ﬁ+ ( AP+ +Boap PP + \[ (Eg — &y )

=7 </3 + - ( LA P+ 4 Poapd T 4 T(W w“)) :

in terms of which (4.48) take a form similar to (4.46). In particular we have that the terms
in the transformations involving wAwB involve the following;:

Qpip =30mas — Pmans ap =398 — Pran,  Quap =3¢uap — Puap, (4.50)
which has non-zero components

Qunp = ‘/ieiﬂejﬁa[iej]m s Qrmn = _ﬂeimejﬂa[imj] Qumn = \/ieimejﬂa[ﬂ—j]’
Qonr = ﬂviejﬂf)[ieﬂm, Qrmr = \/ieimvja[imj] Qumr = \/iviejma[ﬂj].

The quantities Qm ApB etc. with the analogous definition end up having identical compo-

(4.51)

nents.
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Global SUSY in a flat background. In superconformal gauge (e = 1,u =0,£{ =& = 0)
in a constant background, the action simplifies to:

S = / d2 hij(XTXT — X" XY —my(XV — VX

b D= X 4V V) Dm0 ) v v

V2 V2 (4.52)
i . . )
— 2 (Omnt™ (W + ) + YT + ) + 1 + 47
7 ~ K ~ -z
= & (B (" = ) + T = @)+ PG - ) ) )
We can refine our presentation by defining
X=X +4'1X7, 71X =0, (4.53)
y=V 41X, jy=-V4+71X". (4.54)
In this case the (global) supersymmetry transformations are:
7 1 i m 1. i Tm m i m (et 17 Tm i 7 1
oX' = €€ myP™ — Sée mP™, Y™ = —ieei—(X —-X"), oy 5662 m(XI4+X"), (4.55)
oy = —&*, 5 = & (4.56)
67 = —ey’, BYT = 57 (4.57)
1 _- ~ i
0B =———=ep™, oYt = —€ég, 4.58
B ﬁew ¥ \/565 (4.58)
_ 1 P
08 = — ey, L —_—— (4.59)

V2 V2
One question that would naturally occur after thinking about the bosonic action would be
what is the superpartner of the “constraints” enforced by (in our notation) 3 and 3. The
naive expectation would be that the fermions would also have to obey a constraint obtained
by the supersymmetry variation of the bosonic case. In some sense, this is true, because
for instance 8 imposes that d_v = 0, and the supersymmetry variation of d_~ is d_1".
The equation of motion for 1[12 is indeed that 8_1/37 = 0. What is really going on however
is that the bosonic constraints are really chirality conditions on certain combinations of
coordinates. The fermions v and 1/; are naturally chiral, and so no additional constraints are
needed. (Note that by working with this particular flat basis we are using, these facts are
especially clear. In curved indices one would need to identify the appropriate combinations
of the worldsheet fermions that become chiral together. This can be read off from (3.36).)
Ultimately what is happening (in this flat case) is that part of the usual string worldsheet
action involving ordinary coordinates has been replaced by a (v system, as used in the
Gomis-Ooguri non-relativistic string [19], for example.

The constraints are obviously not so simple when the background is non-constant, but
we would expect that there are no further fermionic constraints (with their equations of
motion sufficing). We would argue that 3 and /3 should be viewed as replacing the degrees
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of freedom lost by enforcing that «v and % are chiral, thus overall we have the same numbers
of degrees of freedom in the bosonic side and hence in the fermionic side by supersymmetry.
Viewed from the point of view of the parent doubled action, there is nothing unusual at
play. Nevertheless, this is something to investigate in future work.

Supersymmetric Gomis-Ooguri. Speaking of the Gomis-Ooguri string, it is a special
case of the flat Newton-Cartan background, as noted for the bosonic situation in [5]. Let’s
split i = (0,a) and take hyy, = 6ap, hoi = hoo = 0, v = (—=1,0), 7 = (1,0). Then
y=V+ X% 4= -V + X? and the action (4.52) is (dropping the total derivative term
involving m;):

p B -

ﬁ@,W + ﬁ&rv

— % (O™ Y™ + 202D, T (4.60)
l

2

1 ..
S = / d20(§6ab(X“Xb — X X" +

(5m&ma,¢? 42048 @z?l) ) .

Here we have dropped the term involving m; as it is a total derivative. However, we know
from [30] that we should take m; = (i, 0) to generate the additional term —ud;~vy0_75. Here
this follows from the redefinition

1 . o 1 ,

GO 19 = GO i

= + —mv' 0y, = + —mv'0_7, 4.61
6 /6 \/5 (2 +fy /B /B \/5 (2 /)/ ( )
This is a covariant way of recalling that 3 and 3 were obtained from the shifted momentum,
ISM = P, — B,,, X’. In either case, the action 4.60 then gives the supersymmetric version of
the Gomis-Ooguri non-relativistic string, which was studied (with p = 0) in [45] by treating
(B,7) and (b= YL ¢ = 1[)1) as commuting #v and anticommuting bc CFTs.

5 Discussion

5.1 Surprise?

The purpose of this paper was to follow the author’s sense of surprise and use methods
and results of the doubled approach to string theory to learn about non-relativistic strings.
Depending on your perspective, we either used a null duality in the O(D, D) covariant
action of [33] or else applied the Newton-Cartan generalised metric parametrisation of
section 2 directly to this same action. The result, after some tidying up, is a worldsheet
locally supersymmetric Newton-Cartan string, extending the bosonic action of [5].

Let’s now discuss some highlights and drawbacks of this approach, and sketch some
thoughts for future directions.

Advantages and disadvantages of our approach. The advantages of our approach
include:

e By starting with the doubled approach, we can easily implement the null duality.
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e The action of [33] also takes care of the worldsheet fermions without additional com-
plications. We also obtain a nice physical interpretation of the effect of the null duality
on the worldsheet fermions: after the duality the separate spacetime vielbeins in the
left- and right-moving sectors that the worldsheet fermions should couple to become
non-invertible, and cannot be related to each other by a Lorentz transformation. This
means that the effect of the background becoming non-relativistic is related to the
left- and right-moving sectors on the worldsheet becoming disconnected and “seeing”
different target spaces. In the bosonic sector, this manifests itself as the fact that the
directions 7, X* 4+ V' become chiral/anti-chiral respectively.

e Our initial action (4.1) automatically gives the Hamiltonian form of the worldsheet
supersymmetric action, on replacing X L = P,. We also automatically know the
worldsheet constraints (4.5) and (4.7), the symmetry transformations they generate
and their algebra, with no need to rederive or recheck this.

e We obtain the worldsheet couplings to background geometric quantities such as spin
connections, torsions and curvatures. This tells us the string’s preferred structures
in a Newton-Cartan background.

e As we mentioned, we should be able to obtain an action and equations of motion
for the Newton-Cartan background by directly using our Newton-Cartan generalised
metric and generalised dilaton in the double field theory action and equations of
motion (which also can be respectively interpreted as a generalised Ricci scalar and
tensor, respectively). This could be analysed using the full geometric machinery
of double field theory [26, 27, 41, 42], as perhaps could extensions to the full type
IT [46, 47] (with Ramond-Ramond fields and fermions) or heterotic [26, 27, 48] cases.

e The general results can be adapted to alternative parametrisations of the generalised
metric which appear to describe other variants of non-relativistic geometries [31].

The disadvantages include:

e After integrating out the dual coordinates, it is necessary to reconstruct the world-
sheet action in a manifestly covariant form including working out explicitly the com-
ponents of the doubled spin connections and related quantities. This is not entirely
trivial. It remains to compare the geometric quantities we obtain with for example
the spin connections obtained from the study of non-relativistic symmetry algebras
e.g. in [13].

e An alternative approach which would have bypassed this perhaps lengthy detour into
doubled geometry would simply have been to start with the usual locally supersym-
metric RNS string in background fields (see appendix A) and carry out the dualisation
procedure of [5] directly there! We believe this would give the same answer for the
Lagrangian form of the action.
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5.2 Exploring Newton-Cartan backgrounds in doubled geometry

It could be interesting to explore Newton-Cartan geometry using doubled strings as a
probe, or else directly using double field theory (as mentioned above). Let’s discuss first
the idea of generating non-relativistic backgrounds using duality transformations in the
doubled setting. Here we are inspired by a comment made in the conclusions of [13]
wondering about how the nature of the usual T-duality between the fundamental string
solution and that of a pp-wave changes if one considers a null duality. We can at least easily
carry out this duality in our set-up, though we will not draw any conclusions here about
whether the non-relativistic background obtained has something to do with a pp-wave.
The supergravity solution of a fundamental string is:

ds? = H Y (=dt? +d2?)+dijs>, B=(H '—1)dtAndz, e¢®=H, H= 1+|yf;|6. (5.1)
Let w= (t+2)/V2, u = (2 —t)/v/2, and z* = (w, g). Then we have a Lorentzian metric
with a null isometry in u (there is also a null isometry in w), of the form (2.1) with

6@(;0 o 6 7;_ 6 o
hw—<0 O)’ TZ—<H_1>, v-(_H>, m; =0, (5.2)

but also with a B-field By, = 1 — H~!. The generalised metric after null duality on u
admits the general (1, 1) parametrisation with (here p = (i,v) = (a,w,v) where v denotes
the direction dual to u as before)

hi; O hiJ 0
K, = Y , HM = , By, =0, 5.3

(where h® = §* and otherwise zero) and the null vectors

1

L =5

0 0
= |u|, p=—| &
V2 H H-2
(5.4)
This conforms to the parametrisation (2.44) and (2.45) incorporating the extra covector

0 0
-1 _ 1

Ty =—F=|2H

V2

1 -1

B; arising from the mixed components Bj;, of the original B-field. Here B; = (6, H 1 — 1).
Thus the (bosonic) Newton-Cartan string action in such a background is given by (2.46).

Another intriguing possibility is to study backgrounds in which the string becomes
non-relativistic at a singular locus. The example we have in mind (based on [32, 49])
consists of the supergravity solutions that appear to describe negative branes, for instance
the negative F1 solution has the form (5.1) but with H replaced by H = 1 — %. These
can be obtained by acting with timelike dualities, for instance the Buscher rules applied on
both the ¢ and z directions of (5.1) gives this negative F1 solution. At the point in such
a solution where H = 0 there is a naked spacetime singularity. However, certain brane
probes do not see this singularity and as a result it has been argued that one can attempt
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to make some sense of them in string theory [50]. For example, a doubled string in the
negative F1 background has generalised metric and dilaton

H-2 0 0 0 H-10

0 2-HOH-1 0 0
0 0 Iz O 0 0 oy
= ~ ~ :1 .
Hun o A-10 H o of © (5:5)
H-1 0 0 0 H 0
0 0 0 0 0 I

At the point H = 0, the bottom right block of the generalised metric is non-invertible,
and the generalised metric is exactly of the type (1,1) form that describes the Newton-
Cartan geometry we have studied in this paper. This is therefore a background in which
for H > 0 and H < 0 we have strings probing a relativistic geometry (however with
different potentially “exotic” variants of string theory in each region, possibly with different
signatures of spacetime [50]), while at the naively singular region H = 0 in spacetime the
string theory sees a non-relativistic background. It would be very interesting to find other
examples of such behaviour, and to understand whether such backgrounds should really be
taken seriously.

5.3 Other future directions

We considered a worldsheet supersymmetric string; it would be interesting now to compare
and perhaps generalise the work of [37] on the doubled Green-Schwarz string (see also [51]
for a non-relativistic superstring).

One direction in double field theory which would be particularly appealing to
pursue is whether one can adopt the techniques of generalised Scherk-Schwarz twists
to obtain deformations of the Newton-Cartan geometry. The idea here (for a re-
view see e.g. [52]) is to study factorisable doubled backgrounds, with Hpn (X, X) =
Un (X, X)UnB(X, X)Hap(X), where the twist matrices Up4(X, X) must satisfy cer-
tain consistency conditions, including that they give rise to constant generalised fluxes
fapc. This gives a deformed theory involving the dynamical generalised metric 7:[AB(X )
and these fluxes. In this setting, the section condition can be relaxed, and the twist ma-
trices can actually depend on a coordinate dual to those that appear in Hap. However
the consistency conditions ensure that this dual coordinate dependence does not explicitly
enter the action or symmetries. It would be interesting to apply this procedure in the
Newton-Cartan parametrisation (note that the mechanics of this sort of twisting has some
similarities to our treatment of the extra B-field in section 2.3). One initial suggestion
would be to consider whether it is consistent to let 7;, m; or B; have a linear dependence
on the null direction U.

We can also easily generalise the approach of this paper to the exceptional sigma
model [53, 54] which describes a U-duality covariant string action. Here we would need
to know the appropriate embedding of the Newton-Cartan geometry into the generalised
metrics of the U-duality groups - some possibilities were described in [32]. This would
presumably at least reproduce the (p, q) string actions of [34].
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Our final suggestion is that it would be very interesting to continue building on [32] in
order to describe non-relativistic M-theory geometries and thus study the non-relativistic
non-perturbative duality web.
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A  Worldsheet conventions

A.1 Conventions

We record here our worldsheet conventions, following our earlier paper [33]. The worldsheet
metric can be parametrised in terms of A and A (for A # —\) as:

DS U U 20
Yap = (%(:\);/\/\) 2(/\1 /\)> ) (E_l)ac_v = <ii§ 1) : (Al)

A+

(We could also include a conformal scale, but this drops out of the action, so we exclude
it completely this appendix.) It is convenient to define e = (A + \) and u = (A — ), in
terms of which the above are

uw?—e?u 1 10
e (U7 e (49). "

1 1 —U
af _ A
v o2 (_u ul 62) : (A.3)

Qi

The inverse metric is

So for instance

1

\/—’y’yaBE)X“agX”gW = —ggw,(X” — uX'“)(X” —uX") + egWX’“X”’. (A.4)
Flat gamma matrices v* can be chosen as 'y() = 109, 71 = —o with 73 = —o3. Then the
curved ones are
101 0 -1-
0== L= cl. A5
v e<—1o)’ K (—1+g 0 ) (4.5)
These obey
Yy + 4Py =29 (A.6)
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For two component spinors, Y = x.4". Then for instance

an 0 0 — (e +u)0,
V=771"00 = (—c‘% - wd, 0 > : (A7)

such that

V0,0 0 = (oA (ut )) — ST — ()P ) nap (AS)
for U4 = (A, 44). Also,
VA0, X T8 = AP (X — (e — ) X') + PP (=X + (e +w)X'),  (A.9)
V=AU 30, X 08 = 9B (X + (e — ) X') + o P (- X + (e +u)X').  (A.10)
We can similarly work out the bilinears:
TAGE = pAGB L gBGA | Ty U8 = pAJE _ yBA. (A1)

Just as we have excluded the conformal scale from our metric parametrisation (as it drops
out of the action), there are components of the gravitino which do not appear due to its
transformations under Weyl and super-Weyl transformations. The latter act as d,xo =
van (and trivially on all other fields), and it is convenient to think of having fixed these
transformations such that the gravitino is gamma-traceless, that is 7%y, = 0. This imposes
the conditions

Xo=(e+uwX1, xo=(—e+u)xi, (A.12)

on its components. One can calculate for instance

iV =XV VX = i/ = 7Xa WY PO X = 2ix19(X — (e+u) X') +2ix19(X + (e —u) X)) .
(A.13)

A.2 Usual worldsheet supersymmetric string in background fields

The full action. The action for an RNS string in background metric and B-field is
(from [55] but here following the slightly different conventions of [33]):

1
S =— 3 /dea V= <7aﬂaax#aﬁxygw + eo‘ﬁaaX“(?ﬂX”BW
= TR0 U g, — 1T OTPT ) 0 X gy — %\Twy%gqf”aaXPTwp
1 _ - 1 _ - 1 _ _
+ éRﬂpug\I/M\I/V\IJP\I/J + ngT,uoy\I/“\pr\I/V’yg\I/J — ET#PHTH vo PPy UPIY 3 U9

- 1 _ 1 _
— 20X Y OO XY g — gxwﬂ NOUPTY y5y3 0P T, + §Xoﬁﬁ o i ‘Vguu) :
(A.14)

Here U* are two-component worldsheet Majorana spinors, and X, is the worldsheet grav-
itino. We denote the field strength of the B-field by 7}, = 39|, B,,), the usual Levi-Civita
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connection by I',,* and define the Riemann tensor by R*, ), = 20,51,/ +2F[p‘>\“1“g],,)‘. In
components, we write the spinor ¥# as W* = (¢* 1*). We can introduce a spacetime viel-

A

bein e,*, so that G, = eMAel,B hap where hp is the flat Minkowski metric. Using this,

we flatten the spacetime indices on the worldsheet fermions, ¥4 = e,/‘w“, 1;’4 = euAd;“.
In fact, one could flatten the different Weyl components by separate vielbein eMA and éMA.
It is always possible to do this after the fact, by following the indices.

Fermion kinetic terms. These are
Ly= %M <\M“aawgw + Uy WY 00 XPT 17 guo + ;\T/“'ya'yg,\ll”@aXpTWp) , (A.15)
With D, =0, —ud,, D+ = D; £ ed, and
P = Tl & ST, (A.16)
we have
Ly =~ (4 (D4t + Dy X" g + 9 [D?” + DX 00”07 gua) - (A1)

If we then define ¢* = e* 4" and

oUi,uAB = euAa,ueyB + FiuupepAeyB , (A]-S)
we have
i - - -
Li=-% (VD10 hap + V0P DL X 0w pap + 0D 0P hap + 6P D_XPw,pap)
(A.19)

Gravitino terms. These are

. — v 1 — N1 4 1 = T v
LX: \/_77 <2Xa’76'7alpuaﬁx Guv + EXQ'Y/BVOC\IJN\II WBWS\IJPT#V;) - ZXa’Vﬁ'YaXﬂ\I}M\II g,uzz>

(A.20)
One finds
Ly = 2i19" D_X" g + 2ix10" D4 X gy
e . ~ ~ - (A.21)
+ 3 e (XWW”W — xayptpryP ) — dex1X1V" Y g -
The identification used in [33] and in the main body of the present paper is then:
o _ ¢ £
-5 = _> A.22
X1 de X1 e ( )
Four-fermion terms. These are
1 - - 1 - _
waw _\/—7fy< — ERM,W‘II"\I/”\IIPIIIU — EVPTWV\I/“\IW\I/V%\I/U
1 - _
+ oy Tupn T vo U173 07 ‘I’V’Y:%‘I’U) (A.23)
e U
= ZR:I:,uzszd)uw 1/)’)1/10 )

where Ry, 0 = R_,p0 are the Riemann tensors for the torsionful connections (A.16)
defined above. These are equal by the Bianchi identity for the three-form field strength.
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B Details of the spin connections
The spin connections in terms of doubled vielbeins. We consider

wiyas = ViV g + VY 1V 5opHun
yvas = Vadu VN g+ VN 4V 50pHun - (B.1)

Writing Hyn = VM AVN‘Z‘ + VigaVn? we obtain the equivalent forms:
WiAB= —VNAaM‘_/NB —VP[A|aPVM|B] -f-VMévN[AVPB]aPVNC‘«-i-VMC‘_/N[AVPB}ﬁpVNC ,

nap=+Vnaou VN 5=V 140pVar g+ VarC VY 4V g aPVNC+VMCVN[AVPB} opVye -

(B.2)
We define the generalised diffeomorphism scalars:
®oap =V cwyap = VY eVyaou V" = 2V VY ou Ve, (B3)
Deup =V eonan = +VY o Vnaou VN g + 2V VY 510 Ve
and
vapo = V" awnsey =~V AV 500V vy (B.4)

PABC = VM[A@\M|BC} = +VM[AVNBa\M\V|N\C] :

The spin connections in terms of the non-Riemannian parametrisation. We
insert the parametrisation

_ 1 [—k, i+ B,h'; 1 [(kya+ Bu,h’a
_ pA T Purtt A —— K B
Via \/§< o ) , Vma \/5< B, ) : (B.5)

We must have that k,ah¥p + k,ph*4 = hap and assume further that we choose a
parametrisation as in section 3.1 such that k, 4h* g is constant. Then, with T},,, = 38[#31,[,],

we have
1 v 1. 7, 1. v 7, v
o = ﬁ <h“ch [;”auky‘g} + h“[glkﬂg]a“h C— h‘u[gh B]auk,,o>
L - LV
- 9 2hMAh BhpCTuup7
- 1 /- - B (B.6)
Poap = 7 (h" ch”1410uky B) + W14k B OWh” & — WF [AhVB]aukuC‘>
1 _
+ ——=h* AWV BRP T ,0)p
22 Alt-BIV- ¢t pvp
and
YaBc = iﬁ“[gﬁ”é%l_ﬂwé} - iﬁ“[gﬁ”gﬁpcﬁwp,
V2 6v2 (B.7)

1 1
> — ____hH v __hH v P T
- 17
YABC ﬁh [Ah Ba| ku|0} + 6\/§h [Ah Bh L pvp -
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The spin connections in terms of the Newton-Cartan parametrisation. We use
the Newton-Cartan parametrisation of (2.16) and (2.20) with

ey, —vt 0 - ety —vt 0

mo . 0 - e.m T 0
BA= (T A () B.9
" (0 10’ ’ 0 —-10 (B.9)

The coordinates are X* = (X!, V), and we assume we only depend on the X?. We may

!

write both flat indices as A = (m,7,u) and A= (m,7,u): the distinction between them
will be of relevance only on the worldsheet where they are (automatically) carried by
fermions of different chirality. Then for instance we have that h’,,, h'; and k™, kT are
non-constant, similarly Bim , ﬁil and k;™, k,Z. Note that the flat metrics are taken in this
parametrisation to be off-diagonal in the (7, u) components, thus k,, = k,~ and so on. We
will also easily incorporate the possibility of a background B-field with components

B.: —m.
By = -9 7™M B.10
p (mj 0 ) (B.10)

containing both the covector field m; and an additional contribution B;;. (Any additional
piece B;, could simply be absorbed into a redefinition of m;. Note also that we are ex-
cluding the extra field B; = B;, that could arise from the null dualisation of a Lorentzian
background with background B-field, i.e. we take B; = 0. This is a simplifying assumption
and could straightforwardly be relaxed.) We have Ty, = Hyji, Tijo = —20;mj; where

We can then calculate the components of the generalised diffeomorphism scalars defined
above. The end result is:

1 o . . o 1 ..
Ppmn = V2 (ezﬂej m|0i€j|n] + €' [m€lj|n)Oi€’p — 6Z[m€]ﬂ]aiejﬂ) B QﬂelmejﬂekBHijka

1 /. . o o 1 . .

oz = 5 (€007 0pesm + €'t ety — €'yl ey ) + 55 ¢ mHijer”
1 . .

(PEM = Eelﬂejma[ﬂ—ﬂ s
1 ..

(I)Bﬂ = E’Uzejga[ﬂ'ﬂ s

1, .. o o
= — (V€' 14 (Di€jn) — Djin)) + €' me’ nOymy)) + e mel yHijrv" |

CI)Tmn - \/i

1 . .
Prmr = 7elmvj(_28[imj]) )

V2

1
2v/2

1 .
Drmy = ﬁw €'miTj)
1 .
DPumn = _ﬁelmejﬁa[im ’
1 . .
Pumr = —=€'m0’ 7y, (B.11)

V2
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. 1 /. . A , o 1.
pmn = NG (elﬂej m|Oi€;ln] + €' [me)jln)0i€’p — ez[me]ﬂ]aiejg) + TﬁelmejﬁekgHijk )
. 1 /. . o o 1 ..
Bpme = V2 (elﬂvja[iej]m + e mv e — elﬂejma[imj]) 22 e'pel mHijiv",
- 1 . .
Ppmu = —Qezpejmﬁ[ﬂﬂ ,
- 1
Cpru = N ank
P _ ! Jet. (O, o il 9 L i H k
Tmn = 75 (v €' (m)(0i€jn) — Oj€ijn]) + €'me’n [z‘mj}) - ﬁe m€ nHijrv™,
- 1 .
Prmr = 7261@“](_23[17”]']) )
. 1,
Prmy = ﬁe m?’ Ty
. 1 . .
DPumn = _E ‘m€’n0; )
- 1.
Pumr = —m€'mv’ 07y (B.12)
with (i)u = (i)m = &)m =0, and
® :Lei e 10iei — ——=e'mel ek Hisn
mnp ﬂ[mnlljlg] 6\@@@@137
1 S o o
pmnr = o7 (26t (Orj10) = Dyiy) = 2" me ndimy)) + el menHi”
Pmnu = Tﬁzeimejﬂa[ﬂj] ’
Pmru = 7 ﬂQUiejma[ﬂjl ) (B.13)
N 1 . - S
Pmnp = ﬁel[mejﬂlaiejlg] + ?ﬂezmejnekal"ijk )
P =675 (26" (v (Diejjn) — jeitn)) — 2" me’ ndpmy)) — TﬂeimejﬂHijkvk’
5 1
Pmnu = 6\/§2€1m€jﬂ8[i7j] ;
. 1.
Pmru = 20" m )Ty (B.14)

6v/2

Note that the components of ® and ®, and p and ¢, are all equal except for the terms

involving Hj;, which change sign.
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