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1 Introduction

This is a paper about supersymmetric non-relativistic string theory, and it exists because

the author was surprised.

The cause of the surprise was a connection between two very different sounding topics.

The first is the description of strings in non-relativistic Newton-Cartan backgrounds, which

has recently been explored extensively in (for instance) [1–16]. This is in part inspired by

motivations from holography [17, 18], but also recalls older studies of non-relativistic limits

of string theory [19–21], in which one might hope to find a novel corner of string theory in

which at least some aspects of the full theory become simpler to understand.
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The second is the “doubled” approach to manifest T-duality covariance in string theory

or supergravity. Here the basic idea is to extend the geometry of spacetime in a way that

leads to an immediately O(D,D) covariant theory. These doubled approaches include dou-

bled worldsheet actions such as [22–25] (in which we introduce twice the number of target

space coordinates, plus a chirality constraint to ensure the number of degrees of freedom

on the worldsheet remains the same) and the double field theory approach to supergrav-

ity [26–28] (in which we formally introduce dual coordinates on which the spacetime fields

may in principle depend, along with an O(D,D) covariant constraint which restricts to the

usual number of coordinates).

Remarkably, it was realised in [29–31] that non-relativistic geometries such as Newton-

Cartan have a home in these doubled approaches. This is surprising because this does

not seem like something you would naturally expect to find in a formulation intended to

describe T-duality in a relativistic theory. Surprise, of course, is a function of ignorance.

An explanation for the surprise is that the worldsheet description of strings in certain

Newton-Cartan backgrounds can be related to strings in relativistic backgrounds with a

null isometry using a sort of T-duality transformation [1, 3, 5]. From the relativistic side,

this appears to be ill-defined (recall the Buscher rule inverts the metric component in the

isometry direction, g̃zz = 1
gzz

, but gzz = 0 if z is a null isometry), so has to be interpreted

carefully. In the doubled approach, however, we choose to work with O(D,D) valued

background fields rather than the usual spacetime metric and B-field, and even if the

latter are seemingly nonsensical the former need not be. Then this sort of null duality is

formally well-defined, and issues only arise when trying to use an inappropriate spacetime

parametrisation of the O(D,D) valued fields. The appropriate parametrisation in fact [31]

will turn out to describe a non-relativistic geometry! (The surprise is then that the same

doubled formalism admits both relativistic and non-relativistic parametrisation in the first

place. This surprise can also be uplifted to M-theory: for an initial exploration of these

ideas in the U-duality covariant “exceptional” formalism, see [32].)

In this paper, we will explicitly connect the dots between a particular worldsheet

supersymmetric doubled sigma model [33] and the action for a worldsheet supersymmetric

Newton-Cartan string, extending the Polyakov action of [5].

The action of [33] was motivated by the natural appearance of O(D,D) covariant

structures in the Hamiltonian approach to worldsheet string theory. Note that the Hamil-

tonian analysis of the Newton-Cartan string, and the use of null T-duality in this setting,

has been explored in [2, 7, 8, 10] (and extended to other branes in non-relativistic back-

grounds [34–36]). Effectively, what will help here is that limits which appear singular in

the Lagrangian description may be non-singular in the corresponding Hamiltonian picture.

By working not with the ordinary spacetime metric and form fields as fundamental fields

but instead with a larger generalised metric, we can achieve similar results.

This also means that at the level of the worldsheet, the doubled string sigma models

that we will use below can be effectively viewed as the standard string action in Hamiltonian

form, where we have defined new worldsheet scalars X̃ in terms of the canonical momenta

P by X̃ ′ = P . The background fields appear in parametrisations of an O(D,D)-valued

generalised metric, HMN (g,B) (and its corresponding vielbein). If we allow ourselves

– 2 –
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within the Hamiltonian framework to range over all possible parametrisations of HMN

including those that are not consistent with having a standard relativistic metric, then we

will discover non-relativistic geometries and other more exotic “non-Riemannian” scenarios.

There is not necessarily any need to then invoke the tools and interpretation of the doubled

formalism; however the latter will be especially useful in studying features of the spacetime

theory as its kinematics and dynamics are known irrespective of parametrisation.

Bosonic particle and string actions in non-relativistic or non-Riemannian backgrounds

have been obtained from the doubled formalism already in the papers [29–31] The action

we construct will be supersymmetric on the worldsheet (i.e. it is a spinning or RNS string).

A doubled Green-Schwarz action has also been constructed in [37], in which the application

to the Gomis-Ooguri non-relativistic string was considered.

Outline and main result. The principal points of this paper are as follows.

1. We first demonstrate explicitly in the bosonic setting how a doubled action can handle

a null duality leading to the Newton-Cartan Polyakov action of [5]. This is the subject

of section 2.

2. We discuss some general features of the effect of null duality on the transformation

rules of vielbeins and worldsheet fermions, in section 3. We point out that the space-

time vielbein eAµ transforms to different non-invertible spacetime vielbeins eA±µ in

the left- and right-moving sectors (which the left- and right-moving fermions should

couple to), and that we cannot find a spacetime Lorentz transformation that relates

these two quantities. This underlies the fact that we obtain a non-relativistic geome-

try: the left- and right-moving sectors of the string no longer see the same relativistic

target space. The counterpart of this in the bosonic sector is that a certain pair of

directions in the target space become chiral and antichiral respectively. However, we

do not lose any degrees of freedom once we take into account that these chirality

constraints are imposed by an extra pair of fields appearing as Lagrange multipliers.

Despite these issues, we observe that the doubled vielbeins appearing in the doubled

string are perfectly well-defined after the duality. This helps us understand what

we should use as an appropriate basis for the worldsheet fermions in the Newton-

Cartan string.

3. In section 4, after reviewing the worldsheet supersymmetric doubled string of [33],

we show that the Polyakov action for a string in a Newton-Cartan background has

the following worldsheet supersymmetric extension:

S =

∫
d2σ

1

2
hij

(
1

e
DτX

iDτX
j − eX ′iX ′j

)
+BµνẊ

µX ′ν

− i

2

(
ψĀh̄ĀB̄D+ψ

B̄ + ψĀD+X
iω+iĀB̄ψ

B̄
)

− i

2

(
ψ̃AhABD−ψ̃

B + ψ̃AD−X
iω−iABψ̃

B
)

− i

2e
ξ̃(eimψ̃

m + τiψ̃
u)D+X

i +
i

2e
ξ(eimψ

m + τiψ
u)D−X

i
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− 1

12
TABC ξ̃ψ̃

Aψ̃Bψ̃C − 1

12
T̄ĀB̄C̄ξψ

ĀψB̄ψC̄ − 1

4e
ξ̃ξhAB̄ψ̃

AψB̄

+
e

2
RĀB̄CDψ

ĀψB̄ψ̃Cψ̃D

+ β
(
D−V + τiD−X

i − ie
√

2ΦuĀB̄ψ
ĀψB̄ − iξ̃ψ̃τ

)
− β̄

(
D+V − τiD−Xi + ie

√
2Φ̃uABψ̃

Aψ̃B − iξψτ
)
.

Here i = 1, . . . , d and the Newton-Cartan geometry is described by the pair (hij , τi),

where hij is symmetric and has rank d − 1, with zero vector vi such that hijv
j = 0;

the covector τi specifies the preferred Newton-Cartan time direction with viτi = −1.

The index m is a flat index with m = 1, . . . , d− 1 and we have a pseudo-vielbein ei
m

such that hij = ei
mej

nδmn. The bosonic target space coordinates are Xµ = (Xi, V ).

If we view this action as being obtained from null duality, then V is the coordinate

dual to the original null isometry direction. We have additional worldsheet fields β

and β̄, which enforce what can be viewed as chirality conditions on V ± τiXi. In the

Hamiltonian approach, β and β̄ arise from components of the momenta conjugate to

Xµ that do not appear quadratically in the action, and cannot be integrated out.

The worldsheet fermions ψĀ and ψ̃A are one-component Majorana-Weyl spinors and

anticommuting. They carry flat indices Ā = 1, . . . , d + 1 and A = 1, . . . , d + 1

associated to separate chiral O(1, d) groups. Note however that only a common

O(d − 1) subgroup of these can be realised as the conventional background local

symmetry group, as a consequence of the non-relativistic parametrisation we will

specify. We decompose the flat indices such that ψĀ = (ψm, ψτ , ψu) and ψ̃A =

(ψ̃m, ψ̃τ , ψ̃u), where m = 1, . . . , d − 1. Here the indices τ and u do not run over

anything, and label the fermions which are the superpartners of (τiX
i ± V ) and

β, β̄ respectively (see below). (The notation is explained in section 3.2.) These

indices are contracted using flat metrics, h̄ĀB̄ and hAB, with h̄mn = hmn = δmn and

h̄τu = hτu = 1.

The B-field includes the additional Newton-Cartan U(1) gauge field mi as the com-

ponent Biv = −mi. We will also consider components Bij 6= 0. Further couplings to

the background are contained in the spin connections, ω+iĀB̄, ω−iAB , torsions TABC
and T̄ĀB̄C̄ , and curvature RĀB̄CD, which are defined in (4.27), (4.28) and (4.29) in

terms of certain geometric quantities arising automatically in the doubled approach.

These geometric quantities are in effect certain (combinations of) projections of dou-

bled spin connections. The quantities ΦuĀB̄ and Φ̃uAB also appearing in this action

are also of this nature. These details will be explained in the course of the paper.

Finally, the worldsheet derivatives are Dτ ≡ ∂τ −u∂σ, D± ≡ Dτ ±e∂σ, where e and u

are the two independent components of the worldsheet metric. The superpartners of e

and u are ξ and ξ̃, which are one-component anticommuting Majorana-Weyl spinors,

and are the independent components of the worldsheet gravitino. Our worldsheet

conventions are contained in appendix A, from which one can also check that the
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form of the action we have written above can be made manifestly covariant on the

worldsheet.

4. As well as the action, we write down the supersymmetry transformations in sec-

tion 4.5. This tells us something about the fermionic counterpart of the “constraints”

imposed by the equations of motion β and β̄. This is most intuitive in a flat back-

ground: there these constraints enforce that certain combinations of the bosonic

coordinates are chiral. Now, the fermions are automatically also chiral, and the

bosonic constraints transform into the equations of motion for the superpartners of

β, β̄, which are just the standard fermionic equations of motion for certain combina-

tions of the fermions. We use a basis in which this is automatic: with our pairs of

superpartners being (β, ψ̃u), (β̄, ψu), (V + τiX
i, ψ̃τ ), (−V + τiX

i, ψτ ).

5. In addition, in the discussion in section 5, we generate a couple of simple examples of

potential Newton-Cartan backgrounds based on null or timelike dualities in the dou-

bled setting, and suggest some advantages (and disadvantages) of using the doubled

approach to further understand non-relativistic string theory.

2 Newton-Cartan string and doubled string

2.1 Newton-Cartan from null duality

Newton-Cartan variables. First let us recall from [32] how to embed the Newton-

Cartan geometry of [1, 5] into doubled language. This geometry can be conveniently first

viewed in terms of a d + 1 dimensional Lorentzian spacetime with a null isometry, which

can always be put into the form

ds2 = gµνdx
µdxν = 2τidx

i(du−midx
i) + hijdx

idxj , (2.1)

where u denotes the null direction, and the d dimensional matrix hij has rank d− 1. The

fields τi,mi and hij together describe a torsional Newton-Cartan geometry. The objects

(hij , τi) can be viewed as a pair of degenerate metrics, while mi is a U(1) gauge field

associated to mass conservation. We can also introduce a vector vi and a rank d−1 matrix

hij such that

hijv
j = 0 , viτi = −1 , hijτj = 0 , hikhkj − viτj = δij . (2.2)

It is convenient to also define

h̄ij ≡ hij − τimj − τjmi , v̂i ≡ vi − hijmj , Φ̃ ≡ −vimi +
1

2
hijmimj , (2.3)

such that the completeness holds also as hikh̄kj − v̂iτj = δij . The inverse metric is

gµν =

(
hij −v̂i

−v̂j 2Φ̃

)
, (2.4)

– 5 –
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while the determinant is

det g = −det h̄

2Φ
=

1
1

(d−1)!εi1...idεj1...jdv
i1vj1hi2j2 . . . hidjd

. (2.5)

We would like to “dualise” this model on the null isometric direction. The conventional

Buscher rules involve inverting the metric component guu, which is of course zero here.

Despite this, one can indeed carry out this sort of dualisation by introducing a Lagrange

multiplier Aα and new worldsheet scalar V in order to place the momenta conjugate to the

direction U on-shell [1, 5], leading to an action for a string in a Newton-Cartan background

(see also [3], which showed that a non-relativistic string in the somewhat different so-called

stringy Newton-Cartan background is also T-dual to a Lorentzian background with a null

isometry - the two actions are related in [12]).

Doubled variables. We can reinterpret this procedure by embedding the null duality

in the “doubled” framework, which encompasses both worldsheet models [22–25] and the

target space supergravity via double field theory [26–28]. The conceptual advantage here

for us will be the repackaging of the original spacetime (or Newton-Cartan space and time)

background into quantities which transform covariantly under general O(D,D) T-duality

transformations. This will allow us additional “freedom” to evade the singularities that

would otherwise appear in the Buscher rules.

Let us introduce some notation. Any object in the fundamental representation of

O(D,D) carries a doubled index, M,N, · · · = 1, . . . , 2D, which decomposes into spacetime

vector and covector indices such that VM = (V µ, Vµ) (for the metric in (2.1), we have

D = d+ 1). By definition O(D,D) transformations preserve the following bilinear form:

ηMN =

(
0 I

I 0

)
, (2.6)

which is used together with its inverse ηMN to raise and lower doubled indices. We pack-

age the NSNS sector fields (gµν , Bµν , φ) into a generalised metric, HMN , and generalised

dilaton, d. The latter is a scalar under O(D,D) transformations, and would normally be re-

lated to the determinant of the spacetime metric and the dilaton φ by e−2d = e−2φ
√
| det g|.

The generalised metric is defined to obey:

HMN = HNM , HMKη
KLHLN = ηMN , (2.7)

and the standard solution of these constraints is to take HMN to parametrise the coset

O(D,D)/O(D) × O(D) or O(D,D)/O(1, D − 1) × O(1, D − 1). For the Newton-Cartan

application we are interested in, the latter Lorentzian coset is appropriate. Note that other

solutions exist [31], which we will see below, which may have uses for other non-relativistic

geometries. The standard parametrisation of the generalised metric in O(D,D)/O(1, D −
1)×O(1, D − 1) is

HMN =

(
gµν −BµρgρσBσν Bµρgρν

−gµρBρν gµν

)
. (2.8)

– 6 –
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Generating the Newton-Cartan generalised metric. We now will carry out a null

duality on the background (2.1), viewing this as a particular O(D,D) transformation acting

on the generalised metric. So, first we insert the metric (2.1) into the standard parametri-

sation (2.8) of the generalised metric. We assume for now there is no background B-field

(however we will see at the end of this section that it is straightforward to incorporate

one), so that we simply have HMN = diag (gµν , g
µν). To carry out the analogue of a

Buscher transformation on the null isometry direction, we split µ = (i, u) and then act on

the generalised metric with the O(D,D) transformation which swaps the u and u indices,

namely:

T MN =


δij 0 0 0

0 0 0 1

0 0 δi
j 0

0 1 0 0

 . (2.9)

(It is worth emphasising that this means that we can also do the inverse problem with no

difficulties.) Let’s note first that the invariant generalised dilaton (assuming φ = 0 before

the duality) is

e−2d =

√∣∣∣∣det h̄

2Φ

∣∣∣∣ =

√
1

| 1
(d−1)!εi1...idεj1...jdv

i1vj1hi2j2 . . . hidjd |
. (2.10)

More immediately interesting and useful is the dual generalised metric, which we denote

by HNC as we will refer to it as the Newton-Cartan generalised metric:

(HNC)MN =


h̄ij 0 0 τi
0 2Φ̃ −v̂j 0

0 −v̂i hij 0

τj 0 0 0

 . (2.11)

We see immediately that this does not admit the standard parametrisation of (2.8) because

the lower right D ×D block is not invertible and so cannot be interpreted as the inverse

spacetime metric!

General parametrisations of generalised metrics. However, in a doubled approach,

the generalised metric (2.11) is a perfectly well-defined object. Indeed, a classification of

all possible parametrisations of the generalised metric subject to the conditions (2.7) was

carried out in [31]. These parametrisations take the general form

HMN =

(
1 B

0 1

)(
K Z

ZT H

)(
1 0

−B 1

)
(2.12)

where the matrices Kµν and Hµν are simultaneously degenerate, each having n + n̄ zero

eigenvectors. Let a basis for the null eigenvectors of Hµν be xIµ, I = 1, . . . , n + n̄, and a

dual basis for those of Kµν be yµI , with

xIµy
µ
I′ = δII′ , HµρKρν + xIνy

µ
I = δµν . (2.13)

– 7 –
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Then the matrix Zµ
ν = xIµσI

I′yνI′, where the matrix σI
I′ has eigenvalues +1 with multi-

plicity n and −1 with multiplicity n̄. A canonical choice of bases then consists of xaµ, x̄
ā
µ,

yµa , ȳµā , a = 1, . . . , n and ā = 1, . . . n̄, such that

xaµy
µ
b = δab , x̄āµy

µ

b̄
= δāb̄ , xaµȳ

µ

b̄
= 0 = x̄āµy

µ
b , (2.14)

Zµ
ν = xaµy

ν
a − x̄µāȳνā , HµρKρν + xaνy

µ
a + x̄āν ȳ

µ
ā = δµν . (2.15)

The integers n and n̄ characterise the type of parametrisation, and appear in the trace

HMM = 2(n − n̄). Evidently, in a usual “Riemannian” parametrisation, n = n̄ = 0. All

other cases are then non-Riemannian in nature, as the block Hµν is not invertible and so

cannot be interpreted as a spacetime metric. This does not mean these other cases are not

geometric: they may just be geometries of different type. As shown in [31], this implies that

many versions of non-relativistic geometries, including Newton-Cartan, can be embedded

as a generalised metric and hence understood in the doubled formalism.

A non-Riemannian background with n = n̄ 6= 0 can be generated by O(D,D) trans-

formations acting on a Riemannian generalised metric. This is what happens when we

obtain the Newton-Cartan geometry by starting with the background (2.1) and dualising

on the null duality. Another closely related example is the T-duality of a fundamental

string solution on both the time and string spatial direction, which for particular values of

the original B-field gives rise to a non-Riemannian background which may be related to

the Gomis-Ooguri string [19–21], as shown in [29, 30].

One point worth mentioning is that the decomposition of a given non-Riemannian

generalised metric into Hµν , Kµν , Bµν is not unique, owing to the presence of certain shift

symmetries [31]. In the Newton-Cartan case these will actually correspond to Galilean

transformations.

Back to Newton-Cartan. The Newton-Cartan generalised metric (2.11) admits a

parametrisation of the form (2.12) with n = n̄ = 1 and:

Kµν =

(
hij 0

0 0

)
, Hµν =

(
hij 0

0 0

)
, Bµν =

(
0 −mi

mj 0

)
, (2.16)

Note that the U(1) gauge field mi appears in the off-diagonal components of the B-field,

and therefore its U(1) symmetry is induced in this picture by the gauge transformations

δBµv = ∂µλv. Now, an obvious basis of null vectors would be (xIµ, y
µ
I ), with I = 1, 2

given by:

x1
µ =

(
τi
0

)
, x2

µ =

(
0

1

)
, yµ1 =

(
−vi

0

)
, yµ2 =

(
0

1

)
, (2.17)

such that

Zµ
ν =

(
0 τi
−vj 0

)
≡ xIµσI I

′
yνI′ , σI

I′ =

(
0 1

1 0

)
. (2.18)

We can diagonalise this to match the canonical form of the generalised metric parametri-

sation of [31]:

Zµ
ν = xµy

ν − x̄µȳν , (2.19)

– 8 –
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with

xµ =
1√
2

(
τi
1

)
, x̄µ =

1√
2

(
τi
−1

)
, yµ =

1√
2

(
−vi

1

)
, ȳµ =

1√
2

(
−vi

−1

)
. (2.20)

We shall use this basis below.

2.2 Bosonic worldsheet action

Doubled action. Now we will describe the doubled string action that we will use to

obtain an action for a string in the Newton-Cartan background. The starting point is the

string worldsheet action in Hamiltonian form:1

S =

∫
d2σ ẊµPµ −Ham(X,P ) , (2.21)

where

Ham(X,P ) =
e

2
ZMHMNZ

N +
u

2
ZMηMNZ

N , ZM ≡

(
X ′µ

Pµ

)
. (2.22)

Here e and u are the two independent components of the worldsheet metric, imposing the

vanishing of the string Hamiltonian constraints. These constraints are written naturally in

terms of doubled quantities. One can define dual coordinates by X̃ ′µ = Pµ (a prime denotes

the worldsheet spatial derivative); integrating by parts we arrive at the doubled action of

Tseytlin [22, 23] written in terms of XM = (Xµ, X̃µ):2

S =

∫
d2σ

1

2
ẊMηMNX

′N − e

2
X ′MHMN (X)X ′N − u

2
X ′MηMNX

′N . (2.23)

In principle, we allow the generalised metricHMN (X) to depend on any of the XM , however

we impose the section constraint:

ηMN∂MHPQ∂NHKL = 0 , (2.24)

which guarantees closure of the algebra of worldsheet diffeomorphisms [33], and restricts

us to backgrounds where we only depend on the usual number of coordinates. One can

view the choice of which half of the XM we allow the background to depend on as an

expression of the manifest O(D,D) covariance of this approach. When the background has

N isometries, there is an ambiguity in the choice of which XM are chosen as the physical

coordinates, and we obtain a true O(N,N) T-duality symmetry.

String action in (n, n̄) background. We can now consider the action (2.23) for the

background specified by the Newton-Cartan generalised metric - in fact, it is no more

trouble to evaluate it on the general (n, n̄) parametrisation and then specify to Newton-

Cartan at the end. We will find the result obtained by [31] (who used an alternative

but equivalent form of the doubled string action), but it is worth outlining the general

1In this paper, as in [33], the string tension is T = 1.
2As discussed in [33], there may be some subtleties related to the zero modes. We will ignore such

subtleties here.
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procedure for completeness. Readers solely interested in the immediate application to the

Newton-Cartan geometry described above can simply mentally delete the indices a and ā

everywhere they appear below.

First we run the doubling argument backwards: assuming the background only depends

on Xµ, we integrate the term in the doubled action (2.23) involving ẊM by parts so that

it becomes ẊµX̃ ′µ. Then X̃ only appears in the Lagrangian with a sigma derivative;

we therefore let Pµ = X̃ ′µ and will seek it to integrate this out of the action. (This total

derivative could also be thought of as being cancelled against a “topological” term which can

be added to the doubled worldsheet action as in [25]. This term is not relevant classically,

however it is important in the quantum doubled string, which we will not however consider

in this paper.)

It is convenient to consider factoring out the B-field dependence:

H = UT H̊U , η = UT ηU , U ≡

(
1 0

−B 1

)
. (2.25)

On all terms except ẊµPµ this amounts to sending Pµ → Pµ−BµνX ′ν . Therefore redefining

P̃µ = Pµ −BµνX ′µ we find the action is

S =

∫
d2σ − e

2
KµνX

′µX ′ν +BµνẊ
µX ′ν − e

2
HµνP̃µP̃ν + P̃µCµ , (2.26)

where we used the fact that we have a (n, n̄) generalised metric with

H̊MN =

(
Kµν Zµ

ν

Zν
µ Hµν

)
, (2.27)

and have

Cµ = Ẋµ − uX ′µ − eZνµX ′ν . (2.28)

Note that we have generated the standard B-field coupling in (2.26) by virtue of the

redefinition from Pµ to P̃µ.

As Hµν is not invertible, in order to integrate out P̃µ we proceed as follows. The

completeness relation implies

P̃µ = KµρH
ρνP̃ν + xaµy

ν
a P̃ν + x̄āµȳ

ν
ā P̃ν (2.29)

so we let

Aµ ≡ KµρH
ρνP̃ν βa ≡ yνa P̃ν β̄ā ≡ ȳνā P̃ν . (2.30)

We insert this decomposition of P̃µ into (2.26) and add Lagrange multipliers to enforce the

constraints yµaAµ = 0 = ȳµāAµ. The part of the Lagrangian involving P̃µ is then

− e

2
HµνAµAν +Aµ(Cµ − Λay

µ
a − Λ̄āȳ

µ
ā ) + βax

a
µCµ + β̄āx̄µ

āCµ . (2.31)

The equation of motion for Aµ is

− eHµνAν + Cµ − Λay
µ
a − Λ̄āȳ

µ
ā = 0 . (2.32)
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Contracting with xaµ and x̄āµ implies that Λa = xaµCµ and Λ̄ā = x̄āµCµ. Then contracting

with Kµν implies that

Aµ =
1

e
KµνCν , (2.33)

which indeed solves (2.32) given the solutions for the Lagrange multipliers. We finally

backsubstitute to find that (2.26) becomes

S =

∫
d2σ

1

2e
KµνCµCν −

e

2
KµνX

′µX ′ν +BµνẊ
µX ′ν + βax

a
µCµ + β̄āx̄

ā
µCµ

=

∫
d2σ

1

2
Kµν

(
1

e
(Ẋµ − uX ′µ)(Ẋν − uX ′ν)− eX ′µX ′ν

)
+BµνẊ

µX ′ν

+ βax
a
µ(Ẋµ − (u+ e)X ′µ) + β̄āx̄

ā
µ(Ẋµ − (u− e)X ′µ) .

(2.34)

This is written covariantly as:

S =

∫
d2σ − 1

2

√
−γγαβKµν∂αX

µ∂βX
ν − 1

2
εαβBµν∂αX

µ∂βX
ν

+ βαax
a
µ(
√
−γγαβ − εαβ)∂βX

µ + β̄αāx̄
ā
µ

(
−
√
−γγαβ − εαβ

)
∂βX

µ .

(2.35)

We have the standard kinetic term, except with the degenerate metric Kµν , as well as the

standard B-field coupling, and have identified

− β0a + (u− e)β1a ≡ βa , −β̄0ā + (u+ e)β̄1ā ≡ β̄ā . (2.36)

Recovering the Newton-Cartan Polyakov action. We take our coordinates to be

Xµ = (Xi, V ) such that the duals are X̃µ = (X̃i, U), where U corresponds to the original

null isometry direction of the metric (2.1). The background is specified by (2.16) and (2.20).

Inserting this into the action (2.35), one finds:3

S =

∫
d2σ − 1

2

√
−γγαβhij∂αXi∂βX

j + εαβmi∂αX
i∂βV

+
1√
2

(
(βα − β̄α) +

√
−γγγδεγα(βδ + β̄δ)

)
(
√
−γγαβ∂βXiτi − εαβ∂βV )

(2.37)

This gives the Polyakov action for a string in Newton-Cartan gravity proposed in [5]. Note

we can make things look simpler by defining Aα ≡ 1√
2
((βα− β̄α) +

√
−γγγδεγα(βδ + β̄δ)) to

be the Lagrange multiplier. Solving the V equation of motion by setting Aα−mα = −∂αU
returns us to the action for a string in the original Lorentzian background (2.1). From the

doubled perspective, we could have alternatively integrated out V to obtain this.

Fradkin-Tseytlin term. Let us add here a brief digression on the Fradkin-Tseytlin term

describing the coupling of the generalised dilaton to the doubled worldsheet [25].

SFT =
1

4π

∫
d2σ
√
−γ R(2)(γ) d . (2.38)

3Note the conventions ε01 = ε01 = −1, such that εαγε
βγ = δβα, (det γ)γαβεβγγ

γδ = εαβ .
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This is relevant when going beyond the classical action and treating the quantum doubled

string. Adapting the standard arguments [25, 38], integrating out the gauge fields Aµ in

the path integral should generate a shift

d→ d− 1

4
log det ′(Hµν) (2.39)

where det ′ denotes we should be taking this determinant on the restriction of the degenerate

matrix Hµν to the subspace spanned by the Aµ on which it is non-degenerate. Now, for

Newton-Cartan, in fact

d =
1

4
log

∣∣∣∣ 1

(d− 1)!
εi1...idεj1...jdv

i1vj1hi2j2 . . . hidjd
∣∣∣∣ (2.40)

is exactly 1
4 log det ′(Hµν), so that we get d → 0 (in the absence of an original dilaton).

This is consistent with what happens in a conventional background.

For the remainder of this paper, we consider only the classical worldsheet action, and

its supersymmetrisation, and will not further discuss this Fradkin-Tseytlin term. (We note

that it would be relevant when considering the beta functional equations for the background

fields, for instance, and we mention it both for completeness and with a view to further

analysis of the quantisation of the Newton-Cartan string in the future.)

2.3 Adding a B-field

As a slight extension of our previous procedure, let’s outline what would happen if we as-

sumed that our background (2.1) with a null isometry was also equipped with a B-field Bµν
with non-zero components Bij ≡ Bij and Biu ≡ Bi. We consider the factorisation (2.25)

for the original generalised metric. After T-dualising, the generalised metric admits the

factorisation

H = ŨHNCŨ
T . (2.41)

where HNC is the (original) Newton-Cartan generalised metric (2.11), for which we used

the parametrisation in terms of H,K,B and zero vectors given by (2.16) and (2.20), and

Ũ can itself be factorised as

Ũ = UBUA = UAUB , (UB)MN =

(
δµν 0

−Bµν δµν

)
, (UA)MN ≡

(
Aµν 0

0 (A−1)νµ

)
, (2.42)

where the only non-zero components of Bµν are Bij , and

Aµν ≡

(
δij 0

Bj 1

)
, (2.43)

generates a geometric GL(d+ 1) transformation. Note that AµνBµρ = Bνρ, BµρA
ρ
ν = Bµν .

Now, overall conjugation of HNC by UB simply has the effect of turning on the components

Bij , and does not materially change any aspect of our analysis. The conjugation by UA
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on the other hand does have an impact, but this is easily calculated. The overall result is

that the parametrisation given by (2.16) and (2.20) is replaced by the following one:

Kµν =

(
hij 0

0 0

)
, Hµν =

(
hij −hikBk

−hjkBk hklBkBl

)
, Bµν =

(
Bij − 2m[iBj] −mi

mj 0

)
, (2.44)

with the zero vectors:

xµ =
1√
2

(
τi +Bi

1

)
, x̄µ =

1√
2

(
τi −Bi
−1

)
,

yµ =
1√
2

(
−vi

1 +Bkv
k

)
, ȳµ =

1√
2

(
−vi

−1 +Bkv
k

)
. (2.45)

With this parametrisation, we see immediately that the Newton-Cartan action (2.37) be-

comes that of [12]:

S =

∫
d2σ − 1

2

√
−γγαβhij∂αXi∂βX

j − 1

2
εαβBij∂αX

i∂βX
j + εαβmi∂αX

i(∂βV +Bi∂βX
i)

+
1√
2

(
(βα − β̄α) +

√
−γγγδεγα(βδ + β̄δ)

)(√
−γγαβ∂βXiτi − εαβ(∂βV +Bi∂βX

i)
)
.

(2.46)

3 Vielbeins, worldsheet fermions and duality

The goal of this section is to introduce some necessary technology in the form of doubled

pseudo-vielbeins for the projectors (3.1), and to discuss in general terms some features of

the description of worldsheet fermions in the Newton-Cartan background.

3.1 Doubled vielbeins

In the standard RNS string, the worldsheet bosons Xµ are accompanied by their worldsheet

superpartners in the form of a pair of Majorana-Weyl fermions of opposite chirality, ψµ

and ψ̃µ. How should we describe these fermions in an O(D,D) covariant picture?

For the bosons, the idea was to first go to the Hamiltonian setting, pairing the coordi-

nates Xµ with their momenta Pµ. This provided a natural doubling. On the other hand,

fermions are already their own momenta (their kinetic term will be ∼ ψψ̇) and so they

should not be doubled in the same way. This suggests exchanging (Xµ, Pµ) → XM but

continuing to work with the original fermions ψµ and ψ̃µ. The latter are spacetime vectors.

Generically, there is no canonical way to express a single spacetime vector in an O(D,D)

covariant manner. However, as the fermions come with different chirality and so are natu-

rally left- and right-moving, there is a natural way to associate them to the denominator

subgroup in the coset O(D,D)/O(1, D − 1)× O(1, D − 1), which consists of copies of the

Lorentz group seen separately by left- and right-movers on the worldsheet. This motivates

defining the fermions with flat indices ψĀ and ψ̃A such that ψµ = eµĀψ
Ā, ψ̃µ = eµAψ̃

A,

with ψĀ and ψ̃A transforming under the separate Lorentz group factors (with associated

different flat indices Ā and A for emphasis, and in principle we could use separate vielbeins
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in each sector, as will appear naturally after T-dualising). Crucially though, these fermions

with flat indices do not transform under the global O(D,D).

In fact, we could equivalently define doubled fermions ψM and ψ̃M as follows. (This

is what is used in [25, 39] in an alternative approach to the worldsheet supersymmetric

doubled string.) The definition of the generalised metric in (2.7) implies the existence of

projectors:

PMN =
1

2
(δMN + ηMKHKN ) , P̄MN =

1

2
(δMN − ηMKHKN ) . (3.1)

which can be thought of as projecting onto the separate D dimensional subspaces associated

to each doubled Lorentz factor. Requiring

PMNψ
N = 0 , P̄MNψ

N = ψM , P̄MN ψ̃
N = 0 , PMN ψ̃

N = ψ̃M , (3.2)

implies that each of ψM and ψ̃M only have D independent components (for n = n̄). In the

standard parametrisation, for instance, this gives

ψM =
1√
2

(
ψµ

(−g +B)µνψ
ν

)
, ψ̃M =

1√
2

(
ψ̃µ

(g +B)µνψ̃
ν

)
. (3.3)

We can connect these two pictures by solving the conditions (3.2) by writing ψM = V̄M
Āψ

Ā

and ψ̃M = VM
Aψ

A, where V̄M
Ā and VM

A can be constructed as “vielbeins” for the

projectors themselves (we will for convenience refer to all these non-square pseudo-vielbeins

simply as vielbeins, to avoid awkward phrasing). To define these in full generality, let’s

assume again we have a general (n, n̄) parametrisation of the generalised metric. This

actually means [31] that the full doubled Lorentz group (i.e. the denominator subgroup in

the coset that the generalised metric parametrises) is O(t + n, s + n) × O(t + n̄, s + n̄),

with t + s + n + n̄ = D. So now Ā = 1, . . . , D + n̄ − n and A = 1, . . . , D + n − n̄ are the

corresponding flat indices.

Then we introduce V̄M
Ā and VM

A such that (note the sign in the first expression):

P̄MN =
1

2
(ηMN −HMN ) = −V̄MĀV̄N

B̄h̄ĀB̄

PMN =
1

2
(ηMN +HMN ) = VM

AVN
BhAB ,

(3.4)

where h̄ĀB̄ and hAB are O(t+ n̄, s+ n̄) and O(t+n, s+n) flat metrics, respectively. These

obey various identities:

PM
N V̄N

Ā = 0 , P̄M
N V̄N

Ā = V̄M
Ā , P̄M

NVN
A = 0 , PM

NVN
A=VM

A , (3.5)

ηMN V̄M
ĀV̄N

B̄=−h̄ĀB̄ , ηMNVM
AVN

B=+hAB , ηMN V̄M
ĀVN

B=0 . (3.6)

The paper [31] introduced the following explicit parametrisation. Decompose the flat in-

dices as Ā = (m̄, ā, ā) and A = (m, a, a), where m and m̄ are D − n − n̄ dimensional flat

indices, and a and ā are the indices corresponding to the zero vectors appearing in the gen-

eralised metric. Let’s pre-emptively point out that for Newton-Cartan, one can ignore the
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indices a and ā (as they are one-dimensional), and we will in fact not distinguish between

the D − 2 dimensional flat indices m and m̄, but denote both instead by4 m. Introduce

non-square “vielbeins” for the degenerate matrices K and H involving flat O(t, s) metrics

ηmn and η̄m̄n̄:

Kµν = kµ
mkν

nηmn = k̄µ
m̄k̄ν

n̄ηm̄n̄ , Hµν = hµmh
ν
nη

mn = h̄µm̄h̄
ν
n̄η

m̄n̄ , (3.7)

where kµ
myµa = k̄µ

m̄ȳµā = 0, hµmx
a
µ = h̄µm̄x̄

ā
µ = 0, and we have completeness relations

kµ
mhµn = δmn , k̄µ

m̄h̄µn̄ = δm̄n̄ , (3.8)

kµ
mhνm + xaµy

ν
b + x̄āµȳ

ν
b̄ = δνµ , k̄µ

m̄h̄ν n̄ + xaµy
ν
b + x̄āµȳ

ν
b̄ = δνµ . (3.9)

Define

kµ
A ≡

(
kµ

m xaµ x
a
µ

)
, k̄µ

Ā ≡
(
k̄µ

m̄ x̄āµ x̄
ā
µ

)
, (3.10)

hµA ≡
(
hµm yµa y

µ
a

)
, h̄µĀ ≡

(
h̄µm̄ ȳµā ȳ

µ
ā

)
, (3.11)

and then let

V̄MĀ =
1√
2

(
−k̄µĀ +Bµν h̄

ν
Ā

h̄µĀ

)
, VMA =

1√
2

(
kµA +Bµνh

ν
A

hµA

)
. (3.12)

The flat indices are raised and lowered using

h̄ĀB̄ =

ηm̄n̄ 0 0

0 −δāb̄ 0

0 0 δāb̄

 , hAB =

ηmn 0 0

0 −δab 0

0 0 δab

 . (3.13)

In fact, in this paper we will work with a perhaps slightly simpler parametrisation where

we off-diagonalise the blocks in these flat metrics, leading to:

h̄ĀB̄ =

ηm̄n̄ 0 0

0 0 δāb̄
0 δāb̄ 0

 , hAB =

ηmn 0 0

0 0 δab
0 δab 0

 , (3.14)

such that

k̄µ
Ā ≡

(
k̄µ

m̄
√

2x̄āµ 0
)
, kµ

A ≡
(
kµ

m
√

2xaµ 0
)
, (3.15)

h̄µĀ ≡
(
h̄µm̄

√
2ȳµā 0

)
, hµA ≡

(
hµm

√
2yµa 0

)
. (3.16)

It is useful to record that in both cases we have

Hµνkν
A + xbνy

µ
b h

νA = hµA , Kµνh
ν
A + xbµy

ν
b kνA = kµA , (3.17)

Hµν k̄ν
Ā + x̄b̄ν ȳ

µ

b̄
h̄νĀ = h̄µĀ , Kµν h̄

ν
Ā + x̄b̄µȳ

ν
b̄ k̄νĀ = k̄µĀ . (3.18)

4The author apologises for this, and also for the sheer number of versions of “h” in use. The flat matrices

hAB , h̄ĀB̄ are not to be confused with the degenerate hij , h
ij appearing in the Newton-Cartan geometry

(nor, for that matter, are they to be confused with anything else).

– 15 –



J
H
E
P
1
0
(
2
0
1
9
)
2
6
6

3.2 Newton-Cartan vielbeins

Let’s now discuss in general terms what we expect to happen when we consider the super-

symmetric Newton-Cartan string, based on expectations from T-duality on the worldsheet.

T-duality on spacetime vielbeins. First of all, let’s suppose we are dealing with

an ordinary supergravity background, for which we introduce a vielbein eAµ such that

gµν = eAµe
B
νhAB. Then the projector vielbeins are (identifying the vielbeins and hence

flat indices in each):

VMA =
1√
2

(
eµA +Bµνe

ν
A

eµA

)
, V̄MA =

1√
2

(
−eµA +Bµνe

ν
A

eµA

)
. (3.19)

Let’s split µ = (i, z) and carry out a Buscher transformation. One finds [40] that the

spacetime vielbein eAµ transforms differently in the left and right projected sectors. There

are two transformations (here the + case is associated to V and the − case to V̄ ):

eµ±A = Qµ±νe
ν
A , Qµ±ν =

(
δij 0

±gzj +Bzj ±gzz

)
, (3.20)

and the different vielbein are related by a Lorentz transformation:5

eµ+A = eµ−BΛBA , ΛBA ≡ eBν(Q−1
− )νρQ

ρ
+µe

µ
A = δBA − 2

1

gzz
ez
BezA . (3.21)

Evidently, if gzz = 0, the transformations Q± relating e to e± are non-invertible, and the

different vielbein can not be related to each other.

Null duality on Newton-Cartan vielbein. For the Lorentzian metric (2.1), a natural

choice of vielbein is to write6

ds2 = 2eτeu + δmne
m
ie
n
jdx

idxj , eτ ≡ τidxi , eu ≡ du−midx
i , (3.22)

where we introduce a non-square “vielbein” emi such that

hij = δmne
m
ie
n
j (3.23)

such that (ei
m, τi) is invertible and has inverse (eim,−vi) [4]. We have identities

ei
mem

j = δji + τiv
j , em

jej
n = δm

n , (3.24)

with hij = eime
j
nδ
mn. The full vielbein is then

eAµ =

 emi 0

τi 0

−mi 1

 , eµA =

(
em

i −vi 0

em
jmj −vjmj 1

)
, hAB =

δmn 0 0

0 0 1

0 1 0

 . (3.25)

5For a conventional choice of vielbein, with A = (i, z), we have ez
i = 0, ez

z =
√
gzz, then Λij = δij ,

Λzz = −1, and this gives the standard T-duality minus sign flip, ψi → ψi, ψz → −ψz, for example.
6We adopt the convention of writing flat index components in the Newton-Cartan background with an

underline.
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From this, the T-dual inverse vielbeins are:

eµ±A =

(
eim −vi 0

0 ±1 0

)
(3.26)

which are as expected not invertible. We can explicitly check that there is no ΛB
A such that

eµ+A = eµ−BΛBA, as if there were this would require eimΛmτ + vi = −vi, and contracting

with τi gives −1 = 1. Nonetheless, the doubled vielbeins are well-defined:

VMA =
1√
2


emi −mi τi

em
kmk −vjmj 1

eim −vi 0

0 1 0

 , V̄MĀ =
1√
2


−emi mi −τi
em

kmk −vjmj 1

eim −vi 0

0 −1 0

 . (3.27)

This is consistent with the parametrisation of section 3.1, with

kµ
A =

(
kµ

m
√

2xµ 0
)
, k̄µ

Ā =
(
kµ

m
√

2x̄µ 0
)
, kµ

m ≡
(
ei
m 0

)
, (3.28)

hµA =
(
hµm

√
2yµ 0

)
, h̄µĀ =

(
hµm

√
2ȳµ 0

)
, hµm ≡

(
eim 0

)
, (3.29)

The way the relationship between e+ and e− breaks down is clearly consistent with the

fact that we no longer have a relativistic background geometry. We also remember that

in the bosonic sector, we had what were essentially chirality conditions enforcing that the

directions xµX
µ and x̄µX

µ be either left- or right-moving only. The lack of a Lorentz trans-

formation which can be used to align the left- and right-moving sectors of the worldsheet

is then seen to be connected to these directions becoming chiral. We see however from

the above parametrisation that the left and right doubled vielbeins contain still the same

d×(d−1) not-square “vielbein” em
i, which means that in the (d−1)-dimensional subspace

on which hij is non-degenerate the string left- and right-moving sectors see the same space

- in this case, they agree on the spatial hypersurfaces orthogonal to the Newton-Cartan

time direction specified by vi. Note that it is for this reason that we use the common flat

index m for both V̄MĀ and VMA, rather than separate indices m and m̄ as indicated in the

previous subsection.

One might wonder as a result about how one should think of the separate chiral O(1, d)

groups under which ψĀ and ψ̃A are said to transform. We can decompose O(1, d) into

O(d − 1) acting on the m indices, O(1, 1) transformations acting in the (τ , u) directions,

with 2(d−1) “mixed” transformations leftover. With the vielbein choices as above (viewed

as a Lorentz gauge fixing), half of the latter survive and implement Galilean transformations

via the action of

ΛAB =

 δ
m
n λm 0

0 1 0

−λn 0 1

 , (3.30)

which induces ei
m → ei

m + λmτi, mi → mi + λmeim, vi → vi + eimλ
m. In the non-

Riemannian parametrisations of the generalised metric [31], this transformation can be

viewed as a shift symmetry acting on the decomposition into a particular Kµν , y
µ, ȳµ

and Bµν .
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Worldsheet fermions. The RNS string action contains fermions ψµ, ψ̃µ with kinetic

terms like

Lψ ∼
i

2
ψµgµν∂ψ

ν . (3.31)

T-dualising only explicitly changes the part of the action coupling directly to the bosonic

coordinates Xµ, Lψ itself is invariant under T-duality in the trivial sense that one can find

a change of variables ψµ → ψµdual such that

i

2
ψµgµν∂ψ

ν =
i

2
ψµdual(gdual)µν∂ψ

ν
dual (3.32)

with the metric transforming according to the Buscher rules. As we discussed, a way to

make this manifest is to flatten the indices on the fermions, such that ψA = eAµψ
µ, and

declare that ψA is an invariant under O(D,D). Note that in this case,

ψµdual = eµ±Aψ
A = Qµ±νe

ν
Aψ

A = Qµ±νψ
ν . (3.33)

Hence the worldsheet fermions with curved spacetime indices transform like the spacetime

vielbein.

This picture breaks down when doing a null duality. In particular there is no well-

defined notion of ψµdual. This is because there is no well-defined (invertible) spacetime

vielbein eµ±A which can be extracted from the doubled vielbeins. We can see this quite

clearly by defining (for example) ψM = VM
Aψ

A. We have

ψM =
1√
2

(
ψµ

(g +B)µνψ
ν

)
, ψMdual =

1√
2


ψi

gzzψ
z + (g +B)zjψ

j

(g +B)ijψ
j + (g +B)izψ

z

ψz

 , (3.34)

which would ordinarily lead to the expected results

ψidual = ψi , ψzdual = gzzψ
z + (g +B)zjψ

j . (3.35)

When gzz = 0, ψz drops out of the putative definition for ψµdual entirely. Nevertheless, it is

of course still present in the doubled variable ψMdual or in the invariant ψA. This is just saying

(again) that in such circumstances one cannot use the standard spacetime parametrisations

and intuition, however starting with the doubled picture and then adopting the correct

Newton-Cartan parametrisation will lead to sensible results.

Let’s now consider working in the Lorentzian background with null isometry, prior to

passing to the Newton-Cartan description. Here we have a well-defined spacetime vielbein

so it is equivalent to work with either worldsheet fermions with curved spacetime indices,

which we denote ψµ, or flat indices, ψA = eAµψ
µ. Explicitly, we have

ψA ≡

ψmψτ
ψu

 =

 emiψ
i

τiψ
i

ψu −miψ
i

 . (3.36)
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Note for instance that:

gµνψ
µ∂ψν = h̄ijψ

i∂ψj + τjψ
u∂ψj + τjψ

j∂ψu

= δmnψ
m∂ψn + ψτ∂ψu + ψu∂ψτ + . . .

= hABψ
A∂ψB + . . . ,

(3.37)

where the ellipsis denotes derivatives of the background, which combine into terms featuring

the spin connection of the background (see appendix A). In going to the Newton-Cartan

description using the null duality, we will write the action for the fermions in terms of the

flat indexed quantities.

4 Worldsheet supersymmetric Newton-Cartan string

4.1 The worldsheet supersymmetric doubled action

Details of the action. The doubled RNS string of [33] extends the bosonic action (2.23)

to the worldsheet supersymmetric action:7

S =

∫
d2σ

1

2
ẊMηMNX

′N − i

2
(ψĀψ̇B̄h̄ĀB̄ + ψ̃A

˙̃
ψBhAB)− λH− λ̃H̃ − iξQ− iξ̃Q̃ . (4.1)

As we discussed above, the worldsheet fermions ψĀ and ψ̃A carry flat indices, associating

each to one of the two separate factors of the doubled Lorentz group.8 We now have both

bosonic Lagrange multipliers, λ and λ̃, related to the parametrisation of the worldsheet

metric (with λ = e− u, λ̃ = e+ u), and fermionic Lagrange multipliers, ξ and ξ̃, related to

the parametrisation of the worldsheet gravitino, as detailed in appendix A. They enforce

the super-Virasoro constraints, H = H̃ = Q = Q̃ = 0. To describe these, we first need to

use the projector vielbeins of (3.4) to build objects which resemble spin connections,

ωMĀB̄ = −V̄NĀ∂M V̄ N
B̄ + V̄ N

[ĀV̄
P
B̄]∂PHMN ,

ω̃MAB = VNA∂MV
N
B + V N

[AV
P
B]∂PHMN . (4.2)

Though we will casually refer to these as spin connections, under generalised diffeomor-

phisms (the O(D,D) covariantisation of spacetime diffeomorphisms and B-field gauge

transformations) they do not transform as a (generalised) connection should. However,

the following objects built from ωMĀB̄ and ω̃MAB are in fact scalars under generalised

diffeomorphisms:

ΦCĀB̄ ≡ VM
CωMĀB̄ , Φ̃C̄AB ≡ V̄M

C̄ ω̃MAB , (4.3)

ϕĀB̄C̄ ≡ V̄M
[Āω|M |B̄C̄] , ϕ̃ABC ≡ VM

[Aω̃|M |BC] . (4.4)

7We have slightly changed some of the (also surprising to the author) notation and conventions of [33].

In particular, our names for the doubled vielbeins are V ≡ R and V̄ ≡ L, and unlike in [33] we do not raise

indices with the generalised metric but with the O(D,D) structure.
8Note that this means that strictly speaking in order to show invariance of the action under spacetime

Lorentz transformations, one has to make a certain non-local transformation of the XM which only affects

the dual coordinates X̃µ, being of the form XM → XM +
∫ σ

dσ′∂MΛ(. . . ). As ultimately only X̃ ′µ appears

in the action, this is sensible.
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It is actually only these combinations that appear in the action (4.1). We can in fact

relate the above spin connections to projections of the double field theory covariant deriva-

tive [26, 27, 41, 42]. We will calculate the scalars (4.3) and (4.4) explicitly for the Newton-

Cartan background in appendix B.

The constraints then take the form:

2H =−X ′M P̄MNX
′N + ih̄ĀB̄ψ

Āψ′B̄ + iX ′M (PNMωNĀB̄ψ
ĀψB̄ − P̄NM ω̃NABψ̃Aψ̃B)

− 1

4
PMNωMĀB̄ωNC̄D̄ψ

ĀψB̄ψC̄ψD̄ +
1

4
P̄MN ω̃MABω̃NCDψ̃

Aψ̃Bψ̃Cψ̃D

− 1

2
FĀB̄CDψ

ĀψB̄ψ̃Cψ̃D ,

2H̃ =X ′MPMNX
′N − ihABψ̃Aψ̃′B + iX ′M (PNMωNĀB̄ψ

ĀψB̄ − P̄NM ω̃NABψ̃Aψ̃B)

− 1

4
PMNωMĀB̄ωNC̄D̄ψ

ĀψB̄ψC̄ψD̄ +
1

4
P̄MN ω̃MABω̃NCDψ̃

Aψ̃Bψ̃Cψ̃D

− 1

2
F̃ABC̄D̄ψ̃

Aψ̃BψC̄ψD̄ , (4.5)

where we have “curvatures” with flat indices:

FĀB̄CD = 2V̄M
[Ā∂M (Φ̃B̄]CD) + 2Φ̃[Ā|ECΦ̃|B̄]D

E + 3ϕĀB̄ĒΦ̃Ē
CD ,

F̃ABC̄D̄ = 2VM
[A∂M (ΦB]C̄D̄) + 2Φ[A|ĒC̄Φ|B]D̄

Ē + 3ϕ̃ABEΦE
C̄D̄ .

(4.6)

These are scalars under generalised diffeomorphisms, as they involve the quantities (4.3)

and (4.4) which are already scalars. Though it is tempting to think of these four-index

objects as curvatures, because they couple to the four-fermion terms in the action, strictly

speaking their relationship to genuine notions of curvature is more indirect. In particular,

in the geometry of double field theory the generalised Riemann tensor does not give a

well-defined generalised curvature tensor [41, 42]. If we were to unflatten the indices on

FĀB̄CD and F̃ABC̄D̄, we would obtain four-index generalised tensors, which however would

not be invariant under the local O(D) × O(D) generalised Lorentz transformations (as F

and F̃ are not [33]) and so could not be interpreted as a generalised Riemann tensor built

solely out of the generalised metric, instead involving also derivatives of the generalised

vielbeins.9

Finally, we have:

−
√

2Q = X ′MηMN V̄
N
Āψ

Ā +
i

2
ϕĀB̄C̄ψ

ĀψB̄ψC̄ +
i

2
Φ̃C̄ABψ̃

Aψ̃BψC̄ ,

√
2Q̃ = X ′MηMNV

N
Aψ̃

A +
i

2
ΦCĀB̄ψ

ĀψB̄ψ̃C +
i

2
ϕ̃ABC ψ̃

Aψ̃Bψ̃C .

(4.7)

These generate worldsheet translations and supersymmetries. This can be seen explicitly

by introducing symmetry parameters α, α̃ (bosonic) and ε, ε̃ (fermionic), and defining the

9In line with this, what one finds in the reduction to the standard string sigma model as in [33] (though

this result was not stated explicitly there), is that FĀB̄CD = 1
2
R±ĀB̄CD + 1

2
ω+iĀB̄ω−

i
CD = F̃CDĀB̄ , where

ω± denote torsionful spin connections, and R± the associated (identical) Riemann curvatures (with flat

indices).
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“smeared” quantities:

H(α) ≡
∫
dσα(σ)H(σ) , H̃(α̃) ≡

∫
dσα̃(σ)H̃(σ) , (4.8)

Q(ε) ≡
∫
dσε(σ)Q(σ) Q̃(ε̃) ≡

∫
dσε(σ)Q(σ) , (4.9)

Then for any quantity O we define its variations as:

δαO = {H(α),O}∗ , δεO = {Q(ε),O}∗ , δα̃O = {H̃(α̃),O}∗ , δε̃O = {Q̃(ε̃),O}∗ , (4.10)

using the Dirac brackets:

{XM (σ), XN (σ′)}∗ = −ηMNθ(σ − σ′) , (4.11)

{ψĀ(σ), ψB̄(σ′)}∗ = ih̄
ĀB̄
δ(σ − σ′) , {ψ̃A(σ), ψ̃B(σ′)}∗ = ihABδ(σ − σ′) , (4.12)

where ∂σθ(σ) = δ(σ), θ(−σ) = −θ(σ). Note this doubled Dirac bracket ensures that we

have the standard bracket {Xµ(σ), Pν(σ′)}∗ = {Xµ(σ), X̃ ′ν(σ′)}∗ = δµνδ(σ − σ′).
For instance, the supersymmetry variations of the constraints themselves are:

δεQ = iεH , δεH =
3

2
ε′Q+

1

2
εQ′ , δε̃Q̃ = iε̃H̃ , δε̃H̃ = −3

2
ε̃′Q̃ − 1

2
ε̃Q̃′ . (4.13)

Before integrating out the dual coordinates to obtain a standard Lagrangian form of the

action, we want to emphasise to the reader that the action (4.1) will automatically pro-

vide the Hamiltonian form of the string action on replacing X̃ ′µ = Pµ, and the bosonic

kinetic term with ẊµPµ. It is necessary just to evaluate the constraints explictly for the

background we are considering.

4.2 Integrating out the dual coordinates

The terms in the Lagrangian of (4.1) that involve the bosonic coordinates XM are:

LX =
1

2
ẊMηMNX

′N − 1

2
eHMNX

′MX ′N − 1

2
uηMNX

′MX ′N +X ′MfM , (4.14)

where the final term contains the coupling to the fermions, with

fM = −iePNMωNĀB̄ψĀψB̄ + ieP̄NM ω̃NABψ̃
Aψ̃A +

iξ√
2
V̄MĀψ

Ā − iξ̃√
2
VMAψ̃

A , (4.15)

which is a generalised vector.

We can proceed to integrate out the dual coordinates X̃µ using the same procedure

as for the bosonic string. The only difference is the appearance of terms involving the

fermions in fM , amounting to shifting the quantity Cµ defined in (2.28) to Cµ + fµ. The

end result is that the Lagrangian after this integration out is given by L = LX +L′, where

LX is given by:

LX =
1

2
Kµν

(
1

e
DτX

µDτX
ν − eX ′µX ′ν

)
+BµνẊ

µX ′ν

+
1

e
KµνDτX

µfν +X ′µf̊µ +
1

2e
Kµνf

µfν

+ βax
a
µ(D−X

µ + fµ) + β̄āx̄
ā
µ(D+X

µ + fµ) ,

(4.16)
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where now f̊µ = fµ − Bµνfν , Dτ ≡ ∂τ − u∂σ, D± ≡ Dτ ± e∂σ, and the remaining solely

fermionic terms are:

L′ =− i

2
h̄ĀB̄ψ

Ā(ψ̇B̄ − (u− e)ψ′B̄)− i

2
hABψ̃

A(
˙̃
ψB − (u+ e)ψ̃′B)

+
e

4

(
hEFΦEĀB̄ΦFC̄D̄ψ

ĀψB̄ψC̄ψD̄ + h̄
ĒF̄

Φ̃ĒABΦ̃F̄CDψ̃
Aψ̃Bψ̃Cψ̃D

)
+
e− u

4
FĀB̄CDψ

ĀψB̄ψ̃Cψ̃D +
e+ u

4
F̃ABC̄D̄ψ̃

Aψ̃BψC̄ψD̄

+
1

2
√

2
ξ
(
−ϕĀB̄C̄ψĀψB̄ψC̄ − Φ̃C̄ABψ̃

Aψ̃BψC̄
)

+
1

2
√

2
ξ̃
(

ΦCĀB̄ψ
ĀψB̄ψ̃C + ϕ̃ABC ψ̃

Aψ̃Bψ̃C
)
,

(4.17)

with the various geometric quantities here defined in (4.3), (4.4) and (4.6). Now, the

quantities fµ and f̊µ ≡ fµ − Bµνfν appearing in (4.16) are the components arising from

the vector fM , defined in (4.15), which we can write as

fM = −ieVMCfC − ieV̄MC̄ f̄C̄ , (4.18)

with

fC ≡ ΦCĀB̄ψ
ĀψB̄ +

ξ̃√
2e
ψ̃C , f̄C̄ ≡ Φ̃C̄ABψ̃

Aψ̃B − ξ√
2e
ψC̄ . (4.19)

Using the vielbein parametrisation of section 3.1, it follows that

fµ = − ie√
2
hµCfC −

ie√
2
h̄µC̄ f̄C̄ , f̊µ = − ie√

2
kµ

CfC +
ie√

2
k̄µ

C̄ f̄C̄ . (4.20)

Thus far this has been completely general. The resulting Lagrangian given by the sum

of (4.16) and (4.17) gives the full worldsheet supersymmetric Lagrangian for an arbitrary

(n, n̄) non-Riemannian doubled background. Although not immediately obvious, it can be

tidied up into a form which is manifestly covariant on the worldsheet and which contains

the expected sort of geometric couplings to the background in the form of generalised

spin connections, torsions and curvatures. We will not present the general details of this

procedure here, and instead will focus on the Newton-Cartan case, for which we will use a

slightly bespoke approach to manipulating our result into an understandable form.

4.3 Manipulations for the Newton-Cartan parametrisation

So, we now specialise to a Newton-Cartan parametrisation of our doubled background.

Our goal is to isolate all terms involving the additional worldsheet bosonic field V , so

that it only appears in the constraints. (Essentially, we want to isolate the combination

(xµ− x̄µ)Xµ which picks out the direction V . This is not an especially natural combination

in the doubled approach, because xµ and x̄µ are associated to the projectors P and P̄

respectively, which appear everywhere.) Let’s focus on the following combination in (4.16):

+
1

e
KµνDτX

µfν +X ′µf̊µ +
1

2e
Kµνf

µfν + βxµ(D−X
µ + fµ) + β̄x̄µ(D+X

µ + fµ) . (4.21)

We carry out the following manipulations:
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• We replace Dτ = 1
2(D+ +D−) and ∂σ = 1

2(D+ −D−)

• We expand Xµ = (Xi, V ) and insert the explicit Newton-Cartan parametrisations of

Kµν , hµC , h̄µC̄ , kµ
C and k̄µ

C̄ , using (2.16), (2.20) and (3.28), (3.29). We also expand

fC = (fm, fτ , fu) and f̄C̄ = (f̄m, f̄τ , f̄u).

• We note that the terms involving β and β̄ are:

1√
2
β
(
D−V + τiD−X

i − ie
√

2fu

)
− 1√

2
β̄
(
D+V − τiD−Xi + ie

√
2f̄u

)
. (4.22)

• Anywhere we have D±V appearing we add and subtract from it the extra terms

appearing in the brackets above, so that D±V only appears in the combinations

which are the equations of motion of β and β̄.

The result is that we can write (4.21) in terms of the parts that involve V :

1√
2

(
β +

i

2
(fτ + f̄τ )

)(
D−V + τiD−X

i − ie
√

2fu

)
− 1√

2

(
β̄ +

i

2
(fτ + f̄τ )

)(
D+V − τiD−Xi + ie

√
2f̄u

)
,

(4.23)

and the parts that involve only Xi, where now we also insert the explicit expressions for

the components of fC and f̄C̄ , giving:

− i√
2

(
D+X

i(ei
mΦmĀB̄ + τiΦτĀB̄)ψĀψB̄ +D−X

i(ei
mΦ̃mAB + τiΦ̃τAB)ψ̃Aψ̃B

)
− i

2e
ξ̃(ei

mψ̃m + τiψ̃τ )D+X
i − ξ̃

2
√

2
(ψ̃AΦAB̄C̄ψ

B̄ψC̄ + ψ̃AδD̄AΦD̄BC ψ̃
Bψ̃C)

+
i

2e
ξ(ei

mψm + τiψτ )D−X
i +

ξ

2
√

2
(ψĀΦ̃ĀBC ψ̃

Bψ̃C + ψĀδDĀ Φ̃DB̄C̄ψ
B̄ψC̄)

− e

4

(
ΦEĀB̄ΦE

C̄D̄ψ
ĀψB̄ψC̄ψD̄ + Φ̃ĒABΦ̃Ē

CDψ̃
Aψ̃Bψ̃Cψ̃D

+ 2hEF̄ΦEĀB̄Φ̃F̄CDψ
ĀψB̄ψ̃Cψ̃D

)
− 1

4e
ξ̃ξhAB̄ψ̃

AψB̄ .

(4.24)

Here we defined

hAB̄ ≡ hB̄A =

δmn 0 0

0 0 1

0 1 0

 , (4.25)

which captures cross-coupling between left and right projected sectors. This is numeri-

cally identical to h̄ĀB̄ and hAB. It is immediately clear that there are some cancellations

between (4.24) and (4.17), removing all terms involving ψψψψ, ψ̃ψ̃ψ̃ψ̃, ξψψ̃ψ̃ and ξ̃ψ̃ψψ.
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4.4 Lagrangian form of the worldsheet supersymmetric Newton-Cartan action

Our result for the Newton-Cartan worldsheet supersymmetric string action can thus be

written as:10

S =

∫
d2σ

1

2
hij

(
1

e
DτX

iDτX
j − eX ′iX ′j

)
+BµνẊ

µX ′ν

− i

2

(
ψĀh̄ĀB̄D+ψ

B̄ +D+X
iω+iĀB̄ψ

ĀψB̄
)

− i

2

(
ψ̃AhABD−ψ̃

B +D−X
iω−iABψ̃

Aψ̃B
)

− i

2e
ξ̃(eimψ̃

m + τiψ̃
u)D+X

i +
i

2e
ξ(eimψ

m + τiψ
u)D−X

i

− 1

12
TABC ξ̃ψ̃

Aψ̃Bψ̃C − 1

12
T̄ĀB̄C̄ξψ

ĀψB̄ψC̄ − 1

4e
ξ̃ξhAB̄ψ̃

AψB̄

+
e

2
RĀB̄CDψĀψB̄ψ̃Cψ̃D

+
1√
2

(
β +

i

2
(fτ + f̄τ )

)(
D−V + τiD−X

i − ie
√

2fu

)
− 1√

2

(
β̄ +

i

2
(fτ + f̄τ )

)(
D+V − τiD−Xi + ie

√
2f̄u

)
.

(4.26)

The information about the geometry is captured explicitly in the couplings to hij and Bµν
(which contains the field mi) and in the following quantities. We have spin connections,

ω+iĀB̄ ≡
√

2(ei
mΦmĀB̄ + τiΦτĀB̄) ,

ω−iAB ≡
√

2(ei
mΦ̃mAB + τiΦ̃τAB) ,

(4.27)

torsions,

TABC ≡
6√
2

(
−ϕ̃ABC + δ[A

D̄Φ̃|D̄|BC]

)
,

T̄ĀB̄C̄ ≡
6√
2

(
ϕĀB̄C̄ − δ[Ā

DΦ|D|B̄C̄]

)
,

(4.28)

and curvature

RĀB̄CD =
1

2

(
FĀB̄CD + F̃CDĀB̄ − 2hEF̄ΦEĀB̄Φ̃F̄CD

)
. (4.29)

In fact, it can be shown that FĀB̄CD = F̃CDĀB̄. The cheapest way to do this is to realise

that this is true in a standard Riemannian parametrisation as in [33] and our Newton-

Cartan background can be obtained from such a background by the null duality, which

does not change the value of F or F̃ .

In addition, we record that

fu = ΦuĀB̄ψ
ĀψB̄ +

ξ̃√
2e
ψ̃τ , fτ = ΦτĀB̄ψ

ĀψB̄ +
ξ̃√
2e
ψ̃u ,

f̄u = Φ̃uABψ̃
Aψ̃B − ξ√

2e
ψτ , f̄τ = Φ̃τABψ̃

Aψ̃B − ξ√
2e
ψu .

(4.30)

10We have kept everything written in one-component spinor notation: appendix A contains the infor-

mation needed to first rewrite these as projections of two-component Majorana spinors and thus write

everything in manifestly covariant worldsheet notation.
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All these quantities can be worked out explicitly in components using the results of ap-

pendix B. We use the parametrisation in which there is also a background B-field with

components Bij and field strength Hijk = 3∂[iBjk] (any components Biv can be absorbed

into a redefinition of mi) and for simplicity we assume that there are no off-diagonal com-

ponents of the B-field prior to the null dualisation, i.e. that the field Bi of section 2.3

is zero.

Then, we find for instance that the components of the torsions (4.28) turn out to be

equal and to contain the contribution of the field strength of the background B-field:

Tmnp = Hijke
i
me

j
ne
k
p , T̄mnp = Hijke

i
me

j
ne
k
p ,

Tmnτ = −Hijkeimejnvk , T̄mnτ = −Hijkeimejnvk ,
Tmnu = 0 , T̄mnu = 0 ,

Tmτu = 0 , T̄mτu = 0 . (4.31)

We can also straightforwardly calculate the components of the spin connections (4.27):

ω+imn = ek [m|(∂iek|n] − ∂kei|n])− hik(∂jek [m)ejn] + τie
j
[me

k
n]∂[jmk] −

1

2
Hijke

j
me

k
n ,

ω+imτ =
1

2
vk∂iekm + ∂[jhk]ie

j
mv

k − ejm∂[imj] + τiv
jekm∂[jmk] +

1

2
ejmv

kHijk ,

ω+imu = ejm∂[iτj] ,

ω+iτu = vj∂[jτi] , (4.32)

and

ω−imn = ek [m|(∂iek|n] − ∂kei|n])− hik(∂jek [m)ejn] + τie
j
[me

k
n]∂[jmk] +

1

2
Hijke

j
me

k
n ,

ω−imτ =
1

2
vk∂iekm + ∂[jhk]ie

j
mv

k − ejm∂[imj] + τiv
jekm∂[jmk] −

1

2
ejmv

kHijk ,

ω−imu = ejm∂[iτj] ,

ω−iτu = vj∂[jτi] . (4.33)

In fact, these are the components of the original spin connection of the background (2.1)

with the null isometry, except with pieces proportional to mi removed (this is related to

the redefinition of Pµ to P̃µ which means that terms proportional to the bare B-field end

up appearing multiplied by the constraints). We can turn around the definitions (4.32)

and (4.33) to now make sense of the scalar quantities that originally appeared in the

worldsheet action, based on the results listed in from appendix B. We can write:

ΦmĀB̄ = 1√
2
eimω+iĀB̄ , Φ̃mAB = 1√

2
eimω−iAB ,

ΦτĀB̄ = − 1√
2
viω+iĀB̄ , Φ̃τAB = − 1√

2
viω−iAB ,

(4.34)

while we also have

ϕmnp =
1√
2
ei[mω|i|np] −

1

6
√

2
Hijke

i
me

j
ne
k
p ,

ϕ̃mnp =
1√
2
ei[mω|i|np] +

1

6
√

2
Hijke

i
me

j
ne
k
p ,

(4.35)
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where we let ω±imn = ωimn ∓ 1
2Hijke

j
me

k
n, and

ϕmnτ =
1√
2

(
2ei[mω|i|n]τ − viωimn

)
+

1

6
√

2
Hijke

i
me

j
nv

k ,

ϕ̃mnτ =
1√
2

(
2ei[mω|i|n]τ − viωimn

)
− 1

6
√

2
Hijke

i
me

j
nv

k ,

(4.36)

where we let ω±imτ = ωimτ ± 1
2Hijke

j
mv

k. These are the only components in which Hijk
appears. We also have the components carrying a u index, for which:

Φumn = Φ̃umn = −3ϕmnu = −3ϕ̃mnu = − 1√
2
eime

j
n∂[iτj] ,

Φumτ = Φ̃umτ = −3ϕmτu = −3ϕ̃mτu =
1√
2
eimv

j∂[iτj] ,

(4.37)

with components involving the index u twice vanishing. In fact, if the Newton-Cartan

background is assumed to be “twistless” [17, 18] then

hikhjl∂[kτl] = 0⇔ τ[i∂jτk] = 0⇔ eime
j
n∂[iτj] = 0 (4.38)

and then we have Φumn = Φ̃umn = ϕmnu = ϕ̃mnu = 0.

What would be interesting now to do is to take the above torsionful spin connections,

which we may claim are the string’s preferred connections for the Newton-Cartan geome-

try, and use them as the building blocks appearing not only in the curvature (4.29) but in

the action and equations of motion of double field theory. Note that the background field

equations of the doubled string are the equations of motion of double field theory [43, 44].

This tells us that we can derive the field equations of a Newton-Cartan background by in-

serting the appropriate parametrisation of the generalised metric and generalised dilaton.

The results could then then be checked against the beta functional equations derived di-

rectly from the non-relativistic worldsheet theory starting with the bosonic Newton-Cartan

string [9, 11]. We defer detailed investigation of the geometry and dynamics for future work.

4.5 Supersymmetry transformations

General expressions. Let us write down the supersymmetry transformations following

from (4.10). The general expressions are [33]:

δεX
M =

ε√
2
V̄M

Āψ
Ā

−
∫
dσ′

ε(σ′)√
2
θ(σ − σ′)

(
ψĀX ′P∂M V̄PĀ

+
i

2
∂MϕĀB̄C̄ψ

ĀψB̄ψC̄ +
i

2
∂M Φ̃ĀBCψ

Āψ̃Bψ̃C
)

(σ′) ,

δεψ
Ā =

ε√
2

(
−iX ′M V̄MĀ +

3

2
ϕĀB̄C̄ψ

B̄ψC̄ +
1

2
Φ̃Ā

BC ψ̃
Bψ̃C

)
,

δεψ̃
A = − ε√

2
Φ̃C̄

A
Bψ

C̄ψ̃B ,

(4.39)
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δε̃X
M = − ε̃√

2
VM

Aψ̃
A

+

∫
dσ′

ε̃(σ′)√
2
θ(σ − σ′)

(
ψ̃AX ′P∂MVPA

+
i

2
∂M ϕ̃ABC ψ̃

Aψ̃Bψ̃C +
i

2
∂MΦAB̄C̄ψ̃

AψB̄ψC̄
)

(σ′) ,

δε̃ψ̃
A =

ε̃√
2

(
iX ′MVM

A − 3

2
ϕ̃ABC ψ̃

Bψ̃C − 1

2
ΦA

B̄C̄ψ
B̄ψ̃C̄

)
,

δε̃ψ
Ā = +

ε̃√
2

ΦC
Ā
B̄ψ̃

CψB̄ ,

(4.40)

while the worldsheet metric and gravitino components transform as:

δελ = ξε , δε̃λ̃ = ξ̃ε̃ ,

δεξ = i
(
D+ε− 1

2λ
′ε
)
, δε̃ξ̃ = i

(
D−ε̃+ 1

2 λ̃
′ε̃
)
.

(4.41)

The transformation of the coordinates XM involves non-local expressions. However, these

only affect the transformations of the components X̃µ, which (assuming the background

obeys the section condition and does not depend on these coordinates) only appear in the

action as the derivatives X̃ ′µ, and we do not see this non-locality in practice.

Supersymmetry transformations for Newton-Cartan background. Thus far

these supersymmetry expressions are entirely general and apply to any doubled RNS string

action. Now let’s specialise them to the Newton-Cartan background. The key to making

use of the expressions (4.39) and (4.40) is to recall that we had

X̃ ′µ ≡ Pµ = P̃µ +BµνX
′ν ,

=
1

e
Kµν(DτX

ν + fν) + xµβ + x̄µβ̄ +BµνX
′ν ,

(4.42)

as a result of integrating the dual coordinates out of the action. This can be inserted into

the transformation rules to determine the transformations of the fermions ψĀ and ψ̃A in

terms of (Xµ, β, β̄). Meanwhile, the transformations of β and β̄ can be determined using

the fact that our definitions imply β = yµ(X̃ ′µ−BµνX ′ν) and β̄ = ȳµ(X̃ ′µ−BµνX ′ν). Note

that we have

δε(X̃
′
µ −BµνX ′ν) = −1

2
k̄µĀ(εψĀ)′

+
1

2
εψĀ

(
2∂[µk̄ν]Ā − ∂µh̄νĀ(X̃ ′ν −BνρX ′ρ)− TµνρX ′ν h̄ρĀ

)
− i

2
√

2
ε
(
∂µϕĀB̄C̄ψ

ĀψB̄ψC̄ + ∂µΦ̃ĀBCψ
Āψ̃Bψ̃C

)
,

(4.43)

δε̃(X̃
′
µ −BµνX ′ν) = −1

2
kµA(ε̃ψA)′

+
1

2
ε̃ψ̃A

(
2∂[µkν]A + ∂µh

ν
A(X̃ ′ν −BνρX ′ρ) + TµνρX

′νhρA

)
+

i

2
√

2
ε̃
(
∂µϕABC ψ̃

Aψ̃Bψ̃C + ∂µΦAB̄C̄ψ̃
AψB̄ψC̄

)
,

(4.44)
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so the transformation rule for β and β̄ will in general be rather involved. We refrain from

going into the details.

For the other transformations, we will be more explicit. We have for Xµ=(Xi, V ) that

δX i =
1

2
ε(eimψ

m − viψτ )− 1

2
ε̃(eimψ̃

m − viψτ ) ,

δV = −1

2
εψτ − 1

2
ε̃ψ̃τ .

(4.45)

The fermion transformations work out as:

δψm = ε

(
− i

2e
ei
mD−X

i +
1

2
√

2
(3ϕmB̄C̄ − Φm

B̄C̄)ψB̄ψC̄ − 1

4e

(
ξ̃ψ̃m − ξψm

))
+

ε̃√
2

ΦC
m
B̄ψ̃

CψB̄ ,

δψ̃m = ε̃

(
i

2e
ei
mD+X

i +
1

2
√

2

(
−3ϕ̃mBC + Φ̃m

BC

)
ψ̃Bψ̃C +

1

4e
(ξ̃ψ̃m − ξψm)

)
− ε√

2
Φ̃C̄

m
Bψ

C̄ψ̃B ,

(4.46)

and

δψτ = ε

(
− i

2e
(V ′ −X ′iτi) +

1

2
√

2

(
3ϕτ B̄C̄ψ

B̄ψC̄ + Φ̃τ
BC ψ̃

Bψ̃C
))

+
ε̃√
2

ΦC
τ
B̄ψ̃

CψB̄ ,

δψ̃τ = ε̃

(
+
i

2e
(V ′ +X ′iτi)−

1

2
√

2

(
3ϕ̃τBC ψ̃

Bψ̃C + Φτ
B̄C̄ψ

B̄ψ̃C̄
))
− ε√

2
Φ̃C̄

τ
Bψ

C̄ψ̃B ,

(4.47)

and

δψu = ε

(
− i√

2
β̄ +

1

2
√

2

(
3ϕuB̄C̄ψ

B̄ψC̄ + Φ̃u
BC ψ̃

Bψ̃C
))

+
ε̃√
2

ΦC
u
B̄ψ̃

CψB̄ ,

δψ̃u = ε̃

(
+

i√
2
β − 1

2
√

2

(
3ϕ̃uBC ψ̃

Bψ̃C + Φu
B̄C̄ψ

B̄ψ̃C̄
))
− ε√

2
Φ̃C̄

u
Bψ

C̄ψ̃B .

(4.48)

Note that the combinations actually appearing in the action are:

β ≡ 1√
2

(
β +

i

2

(
ΦτĀB̄ψ

ĀψB̄ + +Φ̃τABψ̃
Aψ̃B +

1√
2e

(ξ̃ψ̃u − ξψu
))

,

β̄ ≡ 1√
2

(
β̄ +

i

2

(
ΦτĀB̄ψ

ĀψB̄ + +Φ̃τABψ̃
Aψ̃B +

1√
2e

(ξ̃ψ̃u − ξψu
))

,

(4.49)

in terms of which (4.48) take a form similar to (4.46). In particular we have that the terms

in the transformations involving ψĀψB̄ involve the following:

ΩmĀB̄ ≡ 3ϕmĀB̄ − ΦmĀB̄ , ΩτĀB̄ ≡ 3ϕτĀB̄ − ΦτĀB̄ , ΩuĀB̄ ≡ 3ϕuĀB̄ − ΦuĀB̄ , (4.50)

which has non-zero components

Ωmnp =
√

2eine
j
p∂[iej]m , Ωτmn = −

√
2eime

j
n∂[imj] Ωumn =

√
2eime

j
n∂[iτj] ,

Ωmnτ =
√

2viejn∂[iej]m , Ωτmτ =
√

2eimv
j∂[imj] Ωumτ =

√
2viejm∂[iτj] .

(4.51)

The quantities Ω̃mAB etc. with the analogous definition end up having identical compo-

nents.
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Global SUSY in a flat background. In superconformal gauge (e = 1, u = 0, ξ = ξ̃ = 0)

in a constant background, the action simplifies to:

S =

∫
d2σ
(1

2
hij(Ẋ

iẊj −X ′iX ′j)−mi(Ẋ
iV ′ − V̇ X ′i)

+
β√
2

(τi(Ẋ
i −X ′i) + V̇ − V ′) +

β̄√
2

(τi(Ẋ
i +X ′i)− V̇ − V ′)

− i

2

(
δmnψ

m(ψ̇n + ψ′n) + ψτ (ψ̇u + ψ′u) + ψu(ψ̇τ + ψ′τ )
)

− i

2

(
δmnψ̃

m(
˙̃
ψn − ψ̃′n) + ψ̃τ (

˙̃
ψu − ψ̃′u) + ψ̃u(

˙̃
ψτ − ψ̃′τ )

))
.

(4.52)

We can refine our presentation by defining

Xi ≡ Xi + viτjX
j , τiXi = 0 , (4.53)

γ ≡ V + τiX
i , γ̄ ≡ −V + τiX

i . (4.54)

In this case the (global) supersymmetry transformations are:

δXi =
1

2
εeimψ

m − 1

2
ε̃eimψ̃

m , δψm = − i
2
εei

m(Ẋi−X′i) , δψ̃m =
i

2
ε̃ei

m(Ẋi+X′i) , (4.55)

δγ = −ε̃ψ̃τ , δψ̃τ =
i

2
ε̃γ′ , (4.56)

δγ̄ = −εψτ , δψτ =
i

2
εγ̄′ , (4.57)

δβ = − 1√
2
ε̃ψ̃′u , δψ̃u =

i√
2
ε̃β , (4.58)

δβ̄ = − 1√
2
εψ′u , δψu = − i√

2
εβ̄ . (4.59)

One question that would naturally occur after thinking about the bosonic action would be

what is the superpartner of the “constraints” enforced by (in our notation) β and β̄. The

naive expectation would be that the fermions would also have to obey a constraint obtained

by the supersymmetry variation of the bosonic case. In some sense, this is true, because

for instance β imposes that ∂−γ = 0, and the supersymmetry variation of ∂−γ is ∂−ψ̃
τ .

The equation of motion for ψ̃u is indeed that ∂−ψ̃
τ = 0. What is really going on however

is that the bosonic constraints are really chirality conditions on certain combinations of

coordinates. The fermions ψ and ψ̃ are naturally chiral, and so no additional constraints are

needed. (Note that by working with this particular flat basis we are using, these facts are

especially clear. In curved indices one would need to identify the appropriate combinations

of the worldsheet fermions that become chiral together. This can be read off from (3.36).)

Ultimately what is happening (in this flat case) is that part of the usual string worldsheet

action involving ordinary coordinates has been replaced by a βγ system, as used in the

Gomis-Ooguri non-relativistic string [19], for example.

The constraints are obviously not so simple when the background is non-constant, but

we would expect that there are no further fermionic constraints (with their equations of

motion sufficing). We would argue that β and β̄ should be viewed as replacing the degrees
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of freedom lost by enforcing that γ and γ̄ are chiral, thus overall we have the same numbers

of degrees of freedom in the bosonic side and hence in the fermionic side by supersymmetry.

Viewed from the point of view of the parent doubled action, there is nothing unusual at

play. Nevertheless, this is something to investigate in future work.

Supersymmetric Gomis-Ooguri. Speaking of the Gomis-Ooguri string, it is a special

case of the flat Newton-Cartan background, as noted for the bosonic situation in [5]. Let’s

split i = (0, a) and take hab = δab, h0i = h00 = 0, vi = (−1, 0), τi = (1, 0). Then

γ ≡ V + X0, γ̄ ≡ −V + X0 and the action (4.52) is (dropping the total derivative term

involving mi):

S =

∫
d2σ
(1

2
δab(Ẋ

aẊb −X ′aX ′b) +
β√
2
∂−γ +

β̄√
2
∂+γ̄

− i

2

(
δmnψ

m∂+ψ
n + 2ψu∂+ψ

τ
)

− i

2

(
δmnψ̃

m∂−ψ̃ + 2ψ̃u∂−ψ̃
τ
))

.

(4.60)

Here we have dropped the term involving mi as it is a total derivative. However, we know

from [30] that we should take mi = (µ, 0) to generate the additional term −µ∂+γ∂−γ̄. Here

this follows from the redefinition

β = βGO +
1√
2
miv

i∂+γ̄ , β̄ = β̄GO +
1√
2
miv

i∂−γ , (4.61)

This is a covariant way of recalling that β and β̄ were obtained from the shifted momentum,

P̃µ = Pµ−BµνX ′. In either case, the action 4.60 then gives the supersymmetric version of

the Gomis-Ooguri non-relativistic string, which was studied (with µ = 0) in [45] by treating

(β, γ) and (b ≡ ψ̃u, c ≡ ψ̃τ ) as commuting βγ and anticommuting bc CFTs.

5 Discussion

5.1 Surprise?

The purpose of this paper was to follow the author’s sense of surprise and use methods

and results of the doubled approach to string theory to learn about non-relativistic strings.

Depending on your perspective, we either used a null duality in the O(D,D) covariant

action of [33] or else applied the Newton-Cartan generalised metric parametrisation of

section 2 directly to this same action. The result, after some tidying up, is a worldsheet

locally supersymmetric Newton-Cartan string, extending the bosonic action of [5].

Let’s now discuss some highlights and drawbacks of this approach, and sketch some

thoughts for future directions.

Advantages and disadvantages of our approach. The advantages of our approach

include:

• By starting with the doubled approach, we can easily implement the null duality.
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• The action of [33] also takes care of the worldsheet fermions without additional com-

plications. We also obtain a nice physical interpretation of the effect of the null duality

on the worldsheet fermions: after the duality the separate spacetime vielbeins in the

left- and right-moving sectors that the worldsheet fermions should couple to become

non-invertible, and cannot be related to each other by a Lorentz transformation. This

means that the effect of the background becoming non-relativistic is related to the

left- and right-moving sectors on the worldsheet becoming disconnected and “seeing”

different target spaces. In the bosonic sector, this manifests itself as the fact that the

directions τiX
i ± V become chiral/anti-chiral respectively.

• Our initial action (4.1) automatically gives the Hamiltonian form of the worldsheet

supersymmetric action, on replacing X̃ ′µ = Pµ. We also automatically know the

worldsheet constraints (4.5) and (4.7), the symmetry transformations they generate

and their algebra, with no need to rederive or recheck this.

• We obtain the worldsheet couplings to background geometric quantities such as spin

connections, torsions and curvatures. This tells us the string’s preferred structures

in a Newton-Cartan background.

• As we mentioned, we should be able to obtain an action and equations of motion

for the Newton-Cartan background by directly using our Newton-Cartan generalised

metric and generalised dilaton in the double field theory action and equations of

motion (which also can be respectively interpreted as a generalised Ricci scalar and

tensor, respectively). This could be analysed using the full geometric machinery

of double field theory [26, 27, 41, 42], as perhaps could extensions to the full type

II [46, 47] (with Ramond-Ramond fields and fermions) or heterotic [26, 27, 48] cases.

• The general results can be adapted to alternative parametrisations of the generalised

metric which appear to describe other variants of non-relativistic geometries [31].

The disadvantages include:

• After integrating out the dual coordinates, it is necessary to reconstruct the world-

sheet action in a manifestly covariant form including working out explicitly the com-

ponents of the doubled spin connections and related quantities. This is not entirely

trivial. It remains to compare the geometric quantities we obtain with for example

the spin connections obtained from the study of non-relativistic symmetry algebras

e.g. in [13].

• An alternative approach which would have bypassed this perhaps lengthy detour into

doubled geometry would simply have been to start with the usual locally supersym-

metric RNS string in background fields (see appendix A) and carry out the dualisation

procedure of [5] directly there! We believe this would give the same answer for the

Lagrangian form of the action.
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5.2 Exploring Newton-Cartan backgrounds in doubled geometry

It could be interesting to explore Newton-Cartan geometry using doubled strings as a

probe, or else directly using double field theory (as mentioned above). Let’s discuss first

the idea of generating non-relativistic backgrounds using duality transformations in the

doubled setting. Here we are inspired by a comment made in the conclusions of [13]

wondering about how the nature of the usual T-duality between the fundamental string

solution and that of a pp-wave changes if one considers a null duality. We can at least easily

carry out this duality in our set-up, though we will not draw any conclusions here about

whether the non-relativistic background obtained has something to do with a pp-wave.

The supergravity solution of a fundamental string is:

ds2 = H−1(−dt2 +dz2)+d~y8
2 , B = (H−1−1)dt∧dz , eφ = H , H ≡ 1+

h

|~y8|6
. (5.1)

Let w = (t+ z)/
√

2, u = (z − t)/
√

2, and xi = (w, ~y8). Then we have a Lorentzian metric

with a null isometry in u (there is also a null isometry in w), of the form (2.1) with

hij =

(
δab 0

0 0

)
, τi =

(
~0

H−1

)
, vi =

(
~0

−H

)
, mi = 0 , (5.2)

but also with a B-field Buw = 1 − H−1. The generalised metric after null duality on u

admits the general (1, 1) parametrisation with (here µ = (i, v) = (a,w, v) where v denotes

the direction dual to u as before)

Kµν =

(
hij 0

0 0

)
, Hµν =

(
hij 0

0 0

)
, Bµν = 0 , (5.3)

(where hab = δab and otherwise zero) and the null vectors

xµ =
1√
2

 ~0

2H−1 − 1

1

 , x̄µ =
1√
2

 ~0

1

−1

 , yµ =
1√
2

~0H
H

 , ȳµ =
1√
2

 ~0

H

H − 2

 .

(5.4)

This conforms to the parametrisation (2.44) and (2.45) incorporating the extra covector

Bi arising from the mixed components Biu of the original B-field. Here Bi = (~0, H−1− 1).

Thus the (bosonic) Newton-Cartan string action in such a background is given by (2.46).

Another intriguing possibility is to study backgrounds in which the string becomes

non-relativistic at a singular locus. The example we have in mind (based on [32, 49])

consists of the supergravity solutions that appear to describe negative branes, for instance

the negative F1 solution has the form (5.1) but with H replaced by H̃ = 1 − h
~y6

8
. These

can be obtained by acting with timelike dualities, for instance the Buscher rules applied on

both the t and z directions of (5.1) gives this negative F1 solution. At the point in such

a solution where H̃ = 0 there is a naked spacetime singularity. However, certain brane

probes do not see this singularity and as a result it has been argued that one can attempt
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to make some sense of them in string theory [50]. For example, a doubled string in the

negative F1 background has generalised metric and dilaton

HMN =



H̃ − 2 0 0 0 H̃ − 1 0

0 2− H̃ 0 H̃ − 1 0 0

0 0 I8 0 0 0

0 H̃ − 1 0 H̃ 0 0

H̃ − 1 0 0 0 H̃ 0

0 0 0 0 0 I8


, e−2d = 1 . (5.5)

At the point H̃ = 0, the bottom right block of the generalised metric is non-invertible,

and the generalised metric is exactly of the type (1, 1) form that describes the Newton-

Cartan geometry we have studied in this paper. This is therefore a background in which

for H̃ > 0 and H̃ < 0 we have strings probing a relativistic geometry (however with

different potentially “exotic” variants of string theory in each region, possibly with different

signatures of spacetime [50]), while at the naively singular region H̃ = 0 in spacetime the

string theory sees a non-relativistic background. It would be very interesting to find other

examples of such behaviour, and to understand whether such backgrounds should really be

taken seriously.

5.3 Other future directions

We considered a worldsheet supersymmetric string; it would be interesting now to compare

and perhaps generalise the work of [37] on the doubled Green-Schwarz string (see also [51]

for a non-relativistic superstring).

One direction in double field theory which would be particularly appealing to

pursue is whether one can adopt the techniques of generalised Scherk-Schwarz twists

to obtain deformations of the Newton-Cartan geometry. The idea here (for a re-

view see e.g. [52]) is to study factorisable doubled backgrounds, with HMN (X, X̃) =

UM
A(X, X̃)UN

B(X, X̃)ĤAB(X), where the twist matrices UM
A(X, X̃) must satisfy cer-

tain consistency conditions, including that they give rise to constant generalised fluxes

fABC . This gives a deformed theory involving the dynamical generalised metric ĤAB(X)

and these fluxes. In this setting, the section condition can be relaxed, and the twist ma-

trices can actually depend on a coordinate dual to those that appear in ĤAB. However

the consistency conditions ensure that this dual coordinate dependence does not explicitly

enter the action or symmetries. It would be interesting to apply this procedure in the

Newton-Cartan parametrisation (note that the mechanics of this sort of twisting has some

similarities to our treatment of the extra B-field in section 2.3). One initial suggestion

would be to consider whether it is consistent to let τi, mi or Bi have a linear dependence

on the null direction U .

We can also easily generalise the approach of this paper to the exceptional sigma

model [53, 54] which describes a U-duality covariant string action. Here we would need

to know the appropriate embedding of the Newton-Cartan geometry into the generalised

metrics of the U-duality groups - some possibilities were described in [32]. This would

presumably at least reproduce the (p, q) string actions of [34].

– 33 –



J
H
E
P
1
0
(
2
0
1
9
)
2
6
6

Our final suggestion is that it would be very interesting to continue building on [32] in

order to describe non-relativistic M-theory geometries and thus study the non-relativistic

non-perturbative duality web.
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A Worldsheet conventions

A.1 Conventions

We record here our worldsheet conventions, following our earlier paper [33]. The worldsheet

metric can be parametrised in terms of λ and λ̃ (for λ 6= −λ̃) as:

γαβ =

(
−λλ̃ 1

2(λ̃− λ)
1
2(λ̃− λ) 1

)
, (E−1)αᾱ =

(
2

λ+λ̃
0

λ−λ̃
λ+λ̃

1

)
. (A.1)

(We could also include a conformal scale, but this drops out of the action, so we exclude

it completely this appendix.) It is convenient to define e = 1
2(λ+ λ̃) and u = 1

2(λ̃− λ), in

terms of which the above are

γαβ =

(
u2 − e2 u

u 1

)
, (E−1)αᾱ =

(
1
e 0

−u
e 1

)
. (A.2)

The inverse metric is

γαβ = − 1

e2

(
1 −u
−u u2 − e2

)
. (A.3)

So for instance

√
−γγαβ∂Xµ∂βX

νgµν = −1

e
gµν(Ẋµ − uX ′µ)(Ẋν − uX ′ν) + egµνX

′µX ′ν . (A.4)

Flat gamma matrices γᾱ can be chosen as γ0̄ = iσ2, γ1̄ = −σ1 with γ3 = −σ3. Then the

curved ones are

γ0 =
1

e

(
0 1

−1 0

)
, γ1 =

(
0 −1− u

e

−1 + u
e 0

)
. (A.5)

These obey

γαγβ + γβγα = 2γαβ (A.6)
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For two component spinors, χ̄ = χTγ0̄. Then for instance

√
−γγα∂α =

(
0 ∂τ − (e+ u)∂σ

−∂τ − (e− u)∂σ 0

)
, (A.7)

such that

i

2

√
−γΨ̄Aγα∂αΨBηAB =

i

2

(
−ψA(ψ̇B+(−u+ e)ψ′B)− ψ̃A(

˙̃
ψB − (u+ e))ψ′B

)
ηAB (A.8)

for ΨA = (ψA, ψ̃A). Also,

√
−γΨ̄Aγα∂αXΨB = ψAψB(−Ẋ − (e− u)X ′) + ψ̃Aψ̃B(−Ẋ + (e+ u)X ′) , (A.9)

√
−γΨ̄Aγαγ3∂αXΨB = ψAψB(Ẋ + (e− u)X ′) + ψ̃Aψ̃B(−Ẋ + (e+ u)X ′) . (A.10)

We can similarly work out the bilinears:

Ψ̄AΨB = ψAψ̃B + ψBψ̃A , Ψ̄Aγ3ΨB = ψAψ̃B − ψBψ̃A . (A.11)

Just as we have excluded the conformal scale from our metric parametrisation (as it drops

out of the action), there are components of the gravitino which do not appear due to its

transformations under Weyl and super-Weyl transformations. The latter act as δηχα =

γαη (and trivially on all other fields), and it is convenient to think of having fixed these

transformations such that the gravitino is gamma-traceless, that is γαχα = 0. This imposes

the conditions

χ̃0 = (e+ u)χ̃1 , χ0 = (−e+ u)χ1 , (A.12)

on its components. One can calculate for instance

i
√
−γχ̄αγβγαΨ∂βX = i

√
−γχ̄αΨγαβ∂βX = 2iχ̃1ψ(Ẋ−(e+u)X ′)+2iχ1ψ̃(Ẋ+(e−u)X ′) .

(A.13)

A.2 Usual worldsheet supersymmetric string in background fields

The full action. The action for an RNS string in background metric and B-field is

(from [55] but here following the slightly different conventions of [33]):

S =− 1

2

∫
dτdσ

√
−γ
(
γαβ∂αX

µ∂βX
νgµν + εαβ∂αX

µ∂βX
νBµν

− iΨ̄µγα∂αΨνgµν − iΨ̄µγαΨρΓσρ
ν∂αX

σgµν −
i

2
Ψ̄µγαγ3Ψν∂αX

ρTµνρ

+
1

6
RµρνσΨ̄µΨνΨ̄ρΨσ +

1

8
∇ρTµσνΨ̄µΨρΨ̄νγ3Ψσ − 1

16
TµρκT

κ
νσΨ̄µγ3ΨρΨ̄νγ3Ψσ

− 2iχ̄αγ
βγαΨµ∂βX

νgµν −
1

6
χ̄αγ

βγαΨµΨ̄νγβγ3ΨρTµνρ +
1

2
χ̄αγ

βγαχβΨ̄µΨνgµν

)
.

(A.14)

Here Ψµ are two-component worldsheet Majorana spinors, and χα is the worldsheet grav-

itino. We denote the field strength of the B-field by Tµνρ = 3∂[µBνρ], the usual Levi-Civita
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connection by Γνρ
µ and define the Riemann tensor by Rµνρσ = 2∂[ρΓσ]ν

µ+2Γ[ρ|λ
µΓσ]ν

λ. In

components, we write the spinor Ψµ as Ψµ = (ψµ, ψ̃µ). We can introduce a spacetime viel-

bein eµ
A, so that Gµν = eµ

Aeν
BhAB where hAB is the flat Minkowski metric. Using this,

we flatten the spacetime indices on the worldsheet fermions, ψA = eµ
Aψµ, ψ̃A = eµ

Aψ̃µ.

In fact, one could flatten the different Weyl components by separate vielbein eµ
A and ēµ

Ā.

It is always possible to do this after the fact, by following the indices.

Fermion kinetic terms. These are

Lf =
i

2

√
−γ
(

Ψ̄µγα∂αΨνgµν + Ψ̄µγαΨν∂αX
ρΓρν

σgµσ +
1

2
Ψ̄µγαγ3Ψν∂αX

ρTµνρ

)
, (A.15)

With Dτ ≡ ∂τ − u∂σ, D± = Dτ ± e∂σ and

Γ±µν
ρ = Γµν

ρ ± 1

2
Tµ

ρ
ν , (A.16)

we have

Lf = − i
2

(
ψµ [D+ψ

ν +D+X
ρΓ−ρσ

νψσ] gµν + ψ̃µ
[
D−ψ

ν +D−X
ρΓ+ρσ

νψ̃σ
]
gµν

)
. (A.17)

If we then define ψµ = eµAψ
A and

ω±µ
A
B = eν

A∂µe
ν
B + Γ±µν

ρeρ
AeνB , (A.18)

we have

Lf = − i
2

(
ψAD+ψ

AhAB + ψAψBD+X
ρω−ρAB + ψ̃AD−ψ̃

BhAB + ψ̃Aψ̃BD−X
ρω+ρAB

)
.

(A.19)

Gravitino terms. These are

Lχ=
√
−γ
(
iχ̄αγ

βγαΨµ∂βX
νgµν +

1

12
χ̄αγ

βγαΨµΨ̄νγβγ3ΨρTµνρ −
1

4
χ̄αγ

βγαχβΨ̄µΨνgµν

)
.

(A.20)

One finds

Lχ = 2iχ̃1ψ
µD−X

νgµν + 2iχ1ψ̃
µD+X

νgµν

+
e

3
Tµνρ

(
χ1ψ̃

µψ̃νψ̃ρ − χ̃1ψ
µψνψρ

)
− 4eχ1χ̃1ψ

µψ̃νgµν .
(A.21)

The identification used in [33] and in the main body of the present paper is then:

χ̃1 =
ξ

4e
, χ1 = − ξ̃

4e
. (A.22)

Four-fermion terms. These are

Lψψψ̃ψ̃ =
√
−γ
(
− 1

12
RµρνσΨ̄µΨνΨ̄ρΨσ − 1

16
∇ρTµσνΨ̄µΨρΨ̄νγ3Ψσ

+
1

32
TµρκT

κ
νσΨ̄µγ3ΨρΨ̄νγ3Ψσ

)
=
e

4
R±µνρσψ

µψνψ̃ρψ̃σ ,

(A.23)

where R+µνρσ = R−µνρσ are the Riemann tensors for the torsionful connections (A.16)

defined above. These are equal by the Bianchi identity for the three-form field strength.
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B Details of the spin connections

The spin connections in terms of doubled vielbeins. We consider

ωMĀB̄ = −V̄NĀ∂M V̄ N
B̄ + V̄ N

[ĀV̄
P
B̄]∂PHMN ,

ω̃MAB = VNA∂MV
N
B + V N

[AV
P
B]∂PHMN . (B.1)

Writing HMN = V̄MĀV̄N
Ā + VMAVN

A we obtain the equivalent forms:

ωMĀB̄=−V̄NĀ∂M V̄ N
B̄−V̄ P

[Ā|∂P V̄M |B̄]+V̄M
C̄ V̄ N

[ĀV̄
P
B̄]∂P V̄NC̄+VM

C V̄ N
[ĀV̄

P
B̄]∂PVNC ,

ω̃MAB=+VNA∂MV
N
B−V P

[A|∂P V̄M |B]+VM
CV N

[AV
P
B]∂PVNC+V̄M

C̄V N
[AV

P
B]∂P V̄NC̄ .

(B.2)

We define the generalised diffeomorphism scalars:

ΦCĀB̄ ≡ VM
CωMĀB̄ = −VM

C V̄NĀ∂M V̄
N
B̄ − 2V̄M

[ĀV̄
N
B̄]∂MVNC ,

Φ̃C̄AB ≡ V̄M
C̄ ω̃MAB = +V̄M

C̄VNA∂MV
N
B + 2VM

[AV
N
B]∂M V̄NC̄ ,

(B.3)

and

ϕĀB̄C̄ ≡ V̄M
[Āω|M |B̄C̄] = −V̄M

[ĀV̄
N
B̄∂|M |V̄ |N |C̄] ,

ϕ̃ABC ≡ VM
[Aω̃|M |BC] = +VM

[AV
N
B∂|M |V |N |C] .

(B.4)

The spin connections in terms of the non-Riemannian parametrisation. We

insert the parametrisation

V̄MĀ =
1√
2

(
−k̄µĀ +Bµν h̄

ν
Ā

h̄µĀ

)
, VMA =

1√
2

(
kµA +Bµνh

ν
A

hµA

)
. (B.5)

We must have that kµAh
µ
B + kµBh

µ
A = hAB and assume further that we choose a

parametrisation as in section 3.1 such that kµAh
µ
B is constant. Then, with Tµνρ ≡ 3∂[µBνρ],

we have

ΦCĀB̄ =
1√
2

(
hµC h̄

ν
[Ā|∂µk̄ν|B̄] + h̄µ[Ā|k̄ν |B̄]∂µh

ν
C − h̄µ[Āh̄

ν
B̄]∂µkνC

)
− 1

2
√

2
h̄µĀh̄

ν
B̄h

ρ
CTµνρ ,

Φ̃C̄AB =
1√
2

(
h̄µC̄h

ν
[A|∂µkν|B] + hµ[A|kν |B]∂µh̄

ν
C̄ − hµ[Ah

ν
B̄]∂µk̄νC̄

)
+

1

2
√

2
hµAh

ν
Bh̄

ρ
C̄Tµνρ ,

(B.6)

and

ϕĀB̄C̄ =
1√
2
h̄µ[Āh̄

ν
B̄∂|µk̄ν|C̄] −

1

6
√

2
h̄µ[Āh̄

ν
B̄h̄

ρ
C̄]Tµνρ ,

ϕ̃ABC =
1√
2
hµ[Ah

ν
B∂|µkν|C] +

1

6
√

2
hµ[Ah

ν
Bh

ρ
C]Tµνρ .

(B.7)
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The spin connections in terms of the Newton-Cartan parametrisation. We use

the Newton-Cartan parametrisation of (2.16) and (2.20) with

hµA =

(
eim −vi 0

0 1 0

)
, h̄µĀ =

(
eim −vi 0

0 −1 0

)
, (B.8)

kµ
A =

(
ei
m τi 0

0 1 0

)
, k̄µ

Ā =

(
ei
m τi 0

0 −1 0

)
. (B.9)

The coordinates are Xµ = (Xi, V ), and we assume we only depend on the Xi. We may

write both flat indices as A = (m, τ, u) and Ā = (m, τ, u): the distinction between them

will be of relevance only on the worldsheet where they are (automatically) carried by

fermions of different chirality. Then for instance we have that him, hiτ and ki
m, ki

τ are

non-constant, similarly h̄im, h̄iτ and k̄i
m, k̄i

τ . Note that the flat metrics are taken in this

parametrisation to be off-diagonal in the (τ , u) components, thus kµu = kµ
τ and so on. We

will also easily incorporate the possibility of a background B-field with components

Bµν =

(
Bij −mi

mj 0

)
, (B.10)

containing both the covector field mi and an additional contribution Bij . (Any additional

piece Biv could simply be absorbed into a redefinition of mi. Note also that we are ex-

cluding the extra field Bi ≡ Biu that could arise from the null dualisation of a Lorentzian

background with background B-field, i.e. we take Bi = 0. This is a simplifying assumption

and could straightforwardly be relaxed.) We have Tijk = Hijk, Tijv = −2∂[imj] where

Hijk = 3∂[iBjk].

We can then calculate the components of the generalised diffeomorphism scalars defined

above. The end result is:

Φpmn =
1√
2

(
eipe

j
[m|∂iej|n] + ei[me|j|n]∂ie

j
p − ei[mejn]∂iejp

)
− 1

2
√

2
eime

j
ne
k
pHijk ,

Φpmτ =
1√
2

(
eipv

j∂[iej]m + eimv
j∂[iej]p − eipejm∂[imj]

)
+

1

2
√

2
eipe

j
mHijkv

k ,

Φpmu =
1√
2
eipe

j
m∂[iτj] ,

Φpτu =
1√
2
viejp∂[iτj] ,

Φτmn =
1√
2

(
vjei[m|(∂iej|n] − ∂jei|n]) + eime

j
n∂[imj]

)
+

1

2
√

2
eime

j
nHijkv

k ,

Φτmτ =
1√
2
eimv

j(−2∂[imj]) ,

Φτmu =
1√
2
vjeim∂[iτj] ,

Φumn = − 1√
2
eime

j
n∂[iτj] ,

Φumτ =
1√
2
eimv

j∂[iτj] , (B.11)
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with Φumu = Φuτu = Φττu = 0,

Φ̃pmn =
1√
2

(
eipe

j
[m|∂iej|n] + ei[me|j|n]∂ie

j
p − ei[mejn]∂iejp

)
+

1

2
√

2
eime

j
ne
k
pHijk ,

Φ̃pmτ =
1√
2

(
eipv

j∂[iej]m + eimv
j∂[iej]p − eipejm∂[imj]

)
− 1

2
√

2
eipe

j
mHijkv

k ,

Φ̃pmu =
1√
2
eipe

j
m∂[iτj] ,

Φ̃pτu =
1√
2
viejp∂[iτj] ,

Φ̃τmn =
1√
2

(
vjei[m|(∂iej|n] − ∂jei|n]) + eime

j
n∂[imj]

)
− 1

2
√

2
eime

j
nHijkv

k ,

Φ̃τmτ =
1√
2
eimv

j(−2∂[imj]) ,

Φ̃τmu =
1√
2
eimv

j∂[iτj] ,

Φ̃umn = − 1√
2
eime

j
n∂[iτj] ,

Φ̃umτ =
1√
2
eimv

j∂[iτj] , (B.12)

with Φ̃umu = Φ̃uτu = Φ̃ττu = 0, and

ϕmnp =
1√
2
ei[me

j
n|∂iej|p] −

1

6
√

2
eime

j
ne
k
nHijk ,

ϕmnτ =
1

6
√

2

(
2ei[m|v

j(∂iej|n] − ∂jei|n])− 2eime
j
n∂[imj]

)
+

1

6
√

2
eime

j
nHijkv

k ,

ϕmnu =
1

6
√

2
2eime

j
n∂[iτj] ,

ϕmτu =
1

6
√

2
2viejm∂[iτj] , (B.13)

ϕ̃mnp =
1√
2
ei[me

j
n|∂iej|p] +

1

6
√

2
eime

j
ne
k
nHijk ,

ϕ̃mnτ =
1

6
√

2

(
2ei[m|v

j(∂iej|n] − ∂jei|n])− 2eime
j
n∂[imj]

)
− 1

6
√

2
eime

j
nHijkv

k ,

ϕ̃mnu =
1

6
√

2
2eime

j
n∂[iτj] ,

ϕ̃mτu =
1

6
√

2
2viejm∂[iτj] , (B.14)

Note that the components of Φ and Φ̃, and ϕ and ϕ̃, are all equal except for the terms

involving Hijk, which change sign.
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[36] J. Klusoň, Non-Relativistic D-brane from T-duality Along Null Direction, JHEP 10 (2019)

153 [arXiv:1907.05662] [INSPIRE].

[37] J.-H. Park, Green-Schwarz superstring on doubled-yet-gauged spacetime, JHEP 11 (2016) 005

[arXiv:1609.04265] [INSPIRE].

– 41 –

https://doi.org/10.1063/1.1372697
https://arxiv.org/abs/hep-th/0009181
https://inspirehep.net/search?p=find+EPRINT+hep-th/0009181
https://doi.org/10.1088/1126-6708/2000/10/020
https://doi.org/10.1088/1126-6708/2000/10/020
https://arxiv.org/abs/hep-th/0009182
https://inspirehep.net/search?p=find+EPRINT+hep-th/0009182
https://doi.org/10.1088/1126-6708/2001/03/041
https://arxiv.org/abs/hep-th/0012183
https://inspirehep.net/search?p=find+EPRINT+hep-th/0012183
https://doi.org/10.1016/0370-2693(90)91454-J
https://doi.org/10.1016/0370-2693(90)91454-J
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B242,163%22
https://doi.org/10.1016/0550-3213(91)90266-Z
https://doi.org/10.1016/0550-3213(91)90266-Z
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B350,395%22
https://doi.org/10.1088/1126-6708/2005/10/065
https://arxiv.org/abs/hep-th/0406102
https://inspirehep.net/search?p=find+EPRINT+hep-th/0406102
https://doi.org/10.1088/1126-6708/2007/07/080
https://arxiv.org/abs/hep-th/0605149
https://inspirehep.net/search?p=find+EPRINT+hep-th/0605149
https://doi.org/10.1103/PhysRevD.48.2826
https://arxiv.org/abs/hep-th/9305073
https://inspirehep.net/search?p=find+EPRINT+hep-th/9305073
https://doi.org/10.1103/PhysRevD.47.5453
https://doi.org/10.1103/PhysRevD.47.5453
https://arxiv.org/abs/hep-th/9302036
https://inspirehep.net/search?p=find+EPRINT+hep-th/9302036
https://doi.org/10.1088/1126-6708/2009/09/099
https://arxiv.org/abs/0904.4664
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.4664
https://doi.org/10.1016/j.nuclphysb.2014.01.003
https://arxiv.org/abs/1307.8377
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.8377
https://doi.org/10.1007/JHEP12(2015)144
https://arxiv.org/abs/1508.01121
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.01121
https://doi.org/10.1140/epjc/s10052-017-5257-z
https://arxiv.org/abs/1707.03713
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.03713
https://doi.org/10.1007/JHEP07(2019)175
https://doi.org/10.1007/JHEP07(2019)175
https://arxiv.org/abs/1902.01867
https://inspirehep.net/search?p=find+EPRINT+arXiv:1902.01867
https://doi.org/10.1088/0264-9381/31/20/205011
https://arxiv.org/abs/1308.4829
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.4829
https://doi.org/10.1007/JHEP04(2019)163
https://doi.org/10.1007/JHEP04(2019)163
https://arxiv.org/abs/1901.11292
https://inspirehep.net/search?p=find+EPRINT+arXiv:1901.11292
https://doi.org/10.1007/JHEP06(2019)072
https://arxiv.org/abs/1903.12450
https://inspirehep.net/search?p=find+EPRINT+arXiv:1903.12450
https://doi.org/10.1007/JHEP10(2019)153
https://doi.org/10.1007/JHEP10(2019)153
https://arxiv.org/abs/1907.05662
https://inspirehep.net/search?p=find+EPRINT+arXiv:1907.05662
https://doi.org/10.1007/JHEP11(2016)005
https://arxiv.org/abs/1609.04265
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.04265


J
H
E
P
1
0
(
2
0
1
9
)
2
6
6

[38] T.H. Buscher, A Symmetry of the String Background Field Equations, Phys. Lett. B 194

(1987) 59 [INSPIRE].

[39] E. Hackett-Jones and G. Moutsopoulos, Quantum mechanics of the doubled torus, JHEP 10

(2006) 062 [hep-th/0605114] [INSPIRE].

[40] S.F. Hassan, T duality, space-time spinors and RR fields in curved backgrounds, Nucl. Phys.

B 568 (2000) 145 [hep-th/9907152] [INSPIRE].

[41] I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev. D

84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].

[42] O. Hohm and B. Zwiebach, On the Riemann Tensor in Double Field Theory, JHEP 05

(2012) 126 [arXiv:1112.5296] [INSPIRE].

[43] D.S. Berman, N.B. Copland and D.C. Thompson, Background Field Equations for the

Duality Symmetric String, Nucl. Phys. B 791 (2008) 175 [arXiv:0708.2267] [INSPIRE].

[44] N.B. Copland, A Double σ-model for Double Field Theory, JHEP 04 (2012) 044

[arXiv:1111.1828] [INSPIRE].

[45] B.S. Kim, Non-relativistic superstring theories, Phys. Rev. D 76 (2007) 126013

[arXiv:0710.3203] [INSPIRE].

[46] O. Hohm, S.K. Kwak and B. Zwiebach, Double Field Theory of Type II Strings, JHEP 09

(2011) 013 [arXiv:1107.0008] [INSPIRE].

[47] I. Jeon, K. Lee, J.-H. Park and Y. Suh, Stringy Unification of Type IIA and IIB

Supergravities under N = 2 D = 10 Supersymmetric Double Field Theory, Phys. Lett. B 723

(2013) 245 [arXiv:1210.5078] [INSPIRE].

[48] O. Hohm and S.K. Kwak, Double Field Theory Formulation of Heterotic Strings, JHEP 06

(2011) 096 [arXiv:1103.2136] [INSPIRE].

[49] C.D.A. Blair, Doubled strings, negative strings and null waves, JHEP 11 (2016) 042

[arXiv:1608.06818] [INSPIRE].

[50] R. Dijkgraaf, B. Heidenreich, P. Jefferson and C. Vafa, Negative Branes, Supergroups and the

Signature of Spacetime, JHEP 02 (2018) 050 [arXiv:1603.05665] [INSPIRE].

[51] J. Gomis and P.K. Townsend, The Galilean Superstring, JHEP 02 (2017) 105

[arXiv:1612.02759] [INSPIRE].
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