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1 Introduction

The purely leptonic B-meson decays Bu → `ν̄` and Bd,s → `+`− (` = e, µ, τ ) are among the

most valuable probes of the quark-mixing parameters in the Standard Model (SM), namely

the parameters of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The charged-current

mediated tree-level decays Bu → `ν̄` give direct access to the CKM element |Vub|, whereas

the flavour-changing neutral-current-mediated Bd,s → `+`− decays allow to determine the

combination |VtbV ∗td,ts| up to a perturbatively calculable short-distance factor that depends

on the top-quark mass [1]. Moreover the helicity suppression of the decay rate leads to a

high sensitivity to scalar- and pseudo-scalar interactions beyond the SM.

Their importance derives from the fact that the nonperturbative hadronic bound-

state effects of the Bq mesons due to the strong interaction (QCD) appear in theoretical

predictions at leading order (LO) in electromagnetic (QED) interactions only in the form

of the B-meson decay constant fBq . The most recent lattice-QCD values of fBu,d and fBs
of the FNAL/MILC Collaboration [2] have now reached the relative precision of about

0.7 % and 0.5 %, respectively. It is expected that this precision will be confirmed by other

lattice groups and reduced even further in the future thus paving the way to very precise

determinations of CKM parameters in the SM. Such a degree of theoretical control on

the QCD hadronic uncertainties in FCNC flavour physics is currently only available for

K → πνν̄ decays [3] and will be for the mass differences ∆Mq in neutral B-meson mixing

once lattice calculations achieve the required precision.

Given the small uncertainties due to fBq , it is mandatory to control all other correc-

tions, which arise from several energy scales spanned by the SM, at the percent level. Such

control is already achieved for perturbatively calculable higher-order QCD and electroweak

(EW) corrections in the framework of the effective theory (EFT) of electroweak interac-

tions of the SM for ∆B = 1 decays [4]. This comprises i) the decoupling of the heavy

W and Z bosons and the top quark at the electroweak scale µW ∼ mW for b → u`ν̄` [5–

7] and b → q`+`− [8, 9] and ii) the resummation of large logarithms under evolution of

QCD and QED down to the scale µb ∼ mb of the order of the bottom-quark mass using

renormalization-group (RG) improved perturbation theory [10, 11].

On the other hand, a consistent simultaneous treatment of QCD and QED correc-

tions is lacking for scales below µb. On general grounds, it is well understood that only
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Figure 1. Scheme of the multiple scales and the respective tower of effective theories applicable

to Bq → `+`− transitions and more generally also other b-hadron decays. See text for more

explanations. The range of ∆E is indicated for the case ∆E � ΛQCD that we consider here. The

degrees of freedom (dof) are hadronic at low energies in HHχPT.

a suitably defined decay rate Γ[Bq → `+`−] + Γ[Bq → `+`− + nγ(Eγ < ∆E)] that in-

cludes real and virtual photon radiation is infrared-finite and well-defined. It is subject

to the experimental setup in the form of a photon-energy cutoff ∆E that requires to in-

clude in theoretical predictions an arbitrary number of additional undetected real photons

with energy Eγ < ∆E. The soft-photon emission from the final-state leptons is currently

simulated in experimental analyses [12–17] with tools like PHOTOS [18], such that the

measured branching fraction is interpreted as the non-radiative one [19]. Further, the soft

initial-state radiation has been estimated to be very small based on heavy-hadron chiral

perturbation theory (HHχPT) [20] provided ∆E . 60 MeV. Thus the present knowledge of

QED corrections below the scale µb is restricted to very low (ultrasoft) scales µus � ΛQCD

below the QCD confinement scale, where virtual photons cannot resolve partons in the Bq
meson. Moreover, it relies entirely on a description in terms of hadronic degrees of freedom

(i.e. mesons), which, although it permits a perturbative treatment of QED effects, requires

in principle the knowledge of low-energy constants (LEC). The LECs include the impact of

the dynamics above the ultrasoft scales, but conceptually little is known of the consistent

theoretical treatment of the scales up to µb to reliably control the theoretical uncertain-

ties to the percent level. Although one might work perturbatively in a partonic picture

even below scales µb, at least at the (hard-collinear) scale µhc ∼ 1 GeV, a nonperturbative

regime sets in below µhc that still requires to use the partonic picture because photons

continue to resolve the constituents of the hadrons. In the nonperturbative regime, QED

corrections need the evaluation of non-local time-ordered products of the electromagnetic

quark currents. This spoils naive factorization of the QED and QCD effects based on

the soft-photon approximation. A more elaborate treatment based on effective field the-

ory (EFT) approach is necessary to perform the systematic expansion of the higher-order

QED matrix elements in powers of ΛQCD/mb. The theoretical treatment will also depend

on the actual magnitude of ∆E and its place within the hierarchy of the above scales. The

above discussion is summarized schematically in figure 1. The nonperturbative matching

to HHχPT and hence the hadronic picture at very low virtualities is optional if one param-

eterizes the low-energy physics in terms of matrix elements of the previous EFT, SCETII.

However, in this case the point-like coupling of ultrasoft photons to mesons is not manifest.
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The first step towards a systematic treatment of QED effects below the scale µb has

been taken in [21] exploiting the special kinematic situation of the Bq → µ+µ− decays. The

final-state muons are energetic, low mass (“collinear”) modes. Their dynamics at scales

below µb is described by soft-collinear effective theory (SCET). In a two-step decoupling,

similar to the treatment of QCD effects in heavy-to-light form factors and hadronic decays

(see, for instance, the review [22]), first hard virtualities O(m2
b) and subsequently hard-

collinear virtualities O(mbΛ) are removed perturbatively to arrive at SCETII that describes

muons with (collinear or soft) virtualities of at most O(Λ2). The scale Λ ∼ O(100 MeV)

represents a typical scale for the muon mass, the spectator quark mass and at the same

time hadronic bound-state effects ΛQCD.

The one-loop calculation of electromagnetic corrections below the scale µb performed

in [21] resulted in the expression (notation explained there)

iA =m`fBqN C10 [¯̀γ5`] +
αem

4π
Q`Qqm`mBqfBqN [¯̀(1 + γ5)`]

×
{∫ 1

0
du (1− u)Ceff

9 (um2
b)

∫ ∞
0

dω

ω
φ+(ω)

[
ln
mbω

m2
`

+ ln
u

1− u

]
− Q`C

eff
7

∫ ∞
0

dω

ω
φ+(ω)

[
ln2 mbω

m2
`

− 2 ln
mbω

m2
`

+
2π2

3

]}
+ . . .

(1.1)

for the Bs → µ+µ− decay amplitude. A surprising feature of the electromagnetic correc-

tion in this expression is that in the expansion Λ/mb it is power-enhanced by a factor of

mb/Λ relative to the well-known amplitude in the absence of QED effects, thereby par-

tially compensating the suppression with the electromagnetic coupling αem. The virtual

photon exchange between the final-state leptons and the spectator quark in the Bq meson

leads to a non-local annihilation over distances (mbΛ)−1/2 inside the Bq meson, different

from the local annihilation through weak currents. Whereas the latter is described by

fBq , the former involves the B-meson light-cone distribution amplitude (LCDA) φ+(ω),

showing that strong interaction effects cannot be solely described in terms of fBq once

QED effects below the scale µb are included. The power-enhanced QED contribution in-

volves two competing terms in the curly brackets, one from the semileptonic operator Q9

and one from the dipole operator Q7. Both terms are further enhanced by large logarithms

ln(mbω/m
2
` ) ∼ ln(mbΛ/m

2
` ), and interfere destructively, which reduces the size of the power

enhancement. It was also found that in b → u`ν̄` the structure of the semi-leptonic weak

currents does not give rise to such a power enhancement in Bu → µν̄µ.

In the present work, the SCET interpretation underlying the above result, which was

only briefly mentioned in [21], is provided in detail, together with the EFT treatment of

QED and the summation of logarithms. The SCET approach to QED differs from standard

QCD applications in several details and factorization theorems for QED effects are not

well established, unlike the case for the pure QCD corrections. Two crucial differences are

the presence of masses for leptons that regularize the collinear divergences in QED, and

the presence of electromagnetically charged external states. Additionally, the soft-photon

cutoff is typically below the scale of lepton masses, and thus real collinear photon radiation

may be excluded, while virtual collinear corrections can be still present. An additional
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challenge is related to the proper treatment of QED radiation from light quarks, where

nonperturbative QCD has to be consistently treated. Here we use SCET to resum the

leading logarithms for the power-enhanced contribution, which arises entirely from virtual

effects between the hard and soft/collinear scales. We focus on the contribution of the

semileptonic operator Q9, since one of the two logarithms enhancing the dipole operator

Q7 term is not a standard RG logarithm, in which case the summation with SCET methods

is presently not understood. However, from the numerical point of view, our main finding

is that higher-order QED logarithms appear to be negligibly small. The principal effect of

resummation arises from QCD evolution on top of the one-loop QED effect shown above.

This observation will allow us to also estimate the effect of resummation on the contribution

of the dipole operator.

As a by-product of this investigation, we find that hadronic matrix elements in the

presence of QED are less universal than is usually assumed. For example, the nonperturba-

tive matrix elements defining “the” B-meson decay constant and the LCDA depend on the

charges and directions of the outgoing energetic particles through light-like electromagnetic

Wilson lines.

The outline of the paper is as follows. After a short introduction to the conventions

for the ∆B = 1 EFT of b→ q`+`− decays in section 2.1, we introduce the power counting

set by the external kinematics of Bq → `+`− decays in section 2.2 and provide the power-

counting of the SCET fields in section 2.3. Section 2.4 briefly recapitulates and interprets

the findings of the fixed-order calculation [21] relevant to the SCET approach and provides

a short outlook on the various contributions in SCET, discussed in the main part later. We

proceed with the decoupling of hard virtualities and the RG evolution in SCETI in section 3

and further the decoupling of hard-collinear virtualities and the RG evolution in SCETII

in section 4. The definition of the B-meson decay constant and LCDA in the presence

of QED corrections is discussed in section 5. The factorization of the power-enhanced

amplitude is presented in section 6 and the combination with the leading amplitude together

with the ultrasoft parts given in section 7. Eventually we present the numerical impact

of QED corrections and updated calculations of the non-radiative and radiative branching

fractions in section 8. Technical details on SCET conventions and definitions as well as the

construction of SCET operators have been relegated to appendices.

2 Preliminaries

2.1 ∆B = 1 effective theory for b→ q`+`−

The effective theory for |∆B| = 1 decays b → q`+`− with q = d, s in the framework of

the SM,

L∆B=1 = N∆B=1

[
10∑
i=1

Ci(µb)Qi +
VubV

∗
uq

VtbV
∗
tq

2∑
i=1

Ci(µb)
(
Qui −Qci

)]
+ h.c. , (2.1)

includes operators Qi, which are charged-current (i = 1, 2), QCD-penguin operators (i =

3, . . . , 6), dipole operators (i = 7, 8) and semileptonic operators (i = 9, 10). These operators
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are sufficient for the treatment of the QED effects in Bq → `+`− discussed in this paper.

We follow the operator definitions of [23] and give only those of the three most relevant

operators for our purposes

Q7 =
e

(4π)2
mb

[
q̄σµνPRb

]
Fµν , (2.2)

Q9 =
αem

4π

(
q̄γµPLb

)∑
`

¯̀γµ`, (2.3)

Q10 =
αem

4π

(
q̄γµPLb

)∑
`

¯̀γµγ5`, (2.4)

where αem ≡ e2/(4π) and mb denotes the running MS b-quark mass. The overall normaliza-

tion factor is N∆B=1 ≡ 2
√

2GFVtbV
∗
ts. The term proportional to VubV

∗
uq enters Bq → `+`−

only through the QED correction. The Wilson coefficients Ci(µb) and running quark masses

need to be evaluated at the renormalization scale µb ∼ mb of the order of the b-quark mass.

In the SM they include NNLO QCD matching corrections [9, 24] at the electroweak scale

µW ∼ mW of the order of the W -boson mass, and C10 further includes the NLO EW

matching corrections [8]. The resummation of large logarithms between the scales µW and

µb has been taken into account to the corresponding order following [10, 11], see also [8]

for further details. Especially the inclusion of NLO EW corrections [8] to C10 requires

care in the choice of the numerical input of the electroweak parameters. It must respect

the adopted renormalization scheme as for example mW is not an independent parameter

any more.

2.2 Kinematics of Bq → `+`− and power counting

The two-body decay Bq(pB) → `+(p`)`
−(p`) implies lepton energies E` = E` = mBq/2,

such that for light leptons ` = e, µ the hierarchy m` � E` implies that the leptons are

actually “collinear” particles. At the partonic level,

b(pb) + q(lq) → `+(p`) + `−(p`), (2.5)

the mesonic bound state restricts the initial-state quarks to be soft. Writing pb = mbv+ lb,

both quarks move inside the Bq meson with soft residual momenta lb, lq ∼ ΛQCD of the

order of the strong binding energy ΛQCD. In the decomposition of pb, v is a normalized

time-like vector, v2 = 1, which can be interpreted as the four-velocity of the Bq meson.

The soft scaling of the residual b- and light-quark momenta can be expressed as

lb, lq ∼ mb λ
2
s (2.6)

in terms of the small dimensionless quantity

λs =

√
ΛQCD

mb
� 1 for ΛQCD ≈ (0.2− 0.4) GeV. (2.7)

In this picture both quarks are bound in the Bq and annihilate via the ∆B = 1 opera-

tors (2.1). The energy stored in the b-quark mass is released in the form of the energetic
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lepton pair, which is emitted back-to-back in the Bq rest frame thereby singling out a par-

ticular direction. This direction can be described by a pair of light-like vectors n2
+ = n2

− = 0

and n+ · n− = 2 and any four-vector can be decomposed as

pµ = (n+p)
nµ−
2

+ pµ⊥ + (n−p)
nµ+
2
. (2.8)

The components p ∼ (n+p, p
µ
⊥, n−p) of the lepton momenta then exhibit the scaling

p` ∼ mb(1, λ
2
` , λ

4
` ), p` ∼ mb(λ

4
` , λ

2
` , 1), (2.9)

referred to as collinear and anti-collinear, respectively. Here we introduced the small di-

mensionless quantity

λ` =

√
m`

mb
� 1 for ` = e, µ. (2.10)

The two cases of ` = e and ` = µ are quite different, given that

λe � λs, λµ ≈ λs ≡ λ . (2.11)

Subsequently we focus on ` = µ. We note that experimental prospects are best for the

decays Bq → µ+µ−, in particular for the CKM-enhanced mode q = s. The following

different virtualities are set by the kinematic invariants

p2
b ∼ p` · p¯̀ ∼ pb · p`,¯̀ ∼ m2

b , (2.12)

pb · lq ∼ lq · p`,¯̀ ∼ mbΛ, (2.13)

l2q ∼ p2
` ∼ p2

¯̀ ∼ Λ2, (2.14)

where Λ = (mµ,ΛQCD) stands for either of the two small scales, the muon mass mµ or

ΛQCD, which we assume to be parametrically of same size. Besides the hard virtuality m2
b

and the soft and collinear virtuality Λ2 there is also the hard-collinear virtuality mbΛ. In

consequence we will go through a two-step matching of EFTs,

full QED → SCETI → SCETII

hard: µ2
b ∼ m2

b hard-collinear: µ2
hc ∼ mbΛ soft/collinear: µ2

s ∼ µ2
c ∼ Λ2

involving two versions of SCET. We note that given the symmetry of the final state under

an exchange of n+ and n−, whenever a (hard-) collinear contribution exists the correspond-

ing (hard-) anti-collinear contribution from the configuration with lepton and anti-lepton

interchanged is implied.

The decay rate into the exclusive final state `+`− discussed up to now is not infrared

(IR) safe in the presence of QED. The IR-safe definition includes the emission of real

photons with energies below a certain value ∆E. Throughout we will restrict the discussion

to the case of ∆E � Λ that is we assume ∆E to be below the soft and collinear scale of

SCETII. Therefore only virtual corrections need to be considered above and at the scale Λ,

and for the most part of the paper we therefore focus on the non-radiative amplitude. Ultra-

soft photons, i.e. photons with virtuality much smaller than µ2
s,c ∼ Λ2, will be taken into

account at the very end when we put together the final expression for the QED-corrected

decay width.
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Field heavy quark light quark leptons photon (gluon)

hv χC χc qs `C `c AC (GC) Ac (Gc) As (Gs)

Scaling λ3 λ λ2 λ3 λ λ2 (1, λ, λ2) (1, λ2, λ4) λ2(1, 1, 1)

Table 1. Fields and their power counting in SCET. In addition there are anti-hard-collinear (χC ,

`C) and anti-collinear (χc, `c) quark and lepton fields with the same scaling as their (hard)-collinear

counterparts. The components for the photon field are (n+A, A
µ
⊥, n−A) and the gauge-invariant

building blocks AµC⊥ and Aµc⊥ scale as the ⊥-components of the fields AC⊥ ∼ λ and Ac⊥ ∼ λ2,

respectively. The light quark and lepton masses scale as mq,` ∼ λ2.

2.3 SCET: definitions and conventions

A systematic approach to the construction of SCETI operator bases was discussed in [25].

In this paper, we apply the same method, and we follow the same conventions and those

of [26] when possible. Capital letters C (C) refer to hard-collinear (anti-hard-collinear)

SCETI fields, respectively, which we assume to contain both, the hard-collinear SCETI

modes and the collinear SCETII modes. Collinear (anti-collinear) fields in SCETII are

denoted by the index c (c); these fields contain only collinear modes and thus the power-

counting of the SCETII fields is homogeneous. The index s denotes the soft fields. The λ

scaling of the heavy b-quark, light spectator quark as well as the lepton fields in SCETI

and SCETII is summarized in table 1.

The masses of leptons and light quarks scale like λ2. Accordingly, in SCETI collinear

mass terms are part of the power-suppressed collinear Lagrangian, while in SCETII they are

included in the leading-power collinear Lagrangian. Mass factors may also appear explicitly

in the operators. More details on the relevant parts of the SCET Lagrangian are given

in appendix A.1. For definitions of renormalization constants we refer to appendix A.2.

2.4 Heuristic discussion

Before we begin the detailed formal discussion of resummation and factorization in SCET,

we recapitulate and interpret the main finding (1.1) of the one-loop calculation [21] in the

framework of SCET.

The starting point is the one-loop virtual photon correction to the matrix elements of

the operators Q7,9,10 at the scale µb. The analysis based on the method of expansion by

regions [27, 28] shows that only the diagrams where the photon is exchanged between the

soft spectator quark and either of the final-state leptons can be power-enhanced, and that

the power-enhancement cannot originate from the hard loop-momentum region. Examples

are shown by the first two diagrams in figure 2. The calculation of these diagrams in full

QED, solving first the integrals analytically in full generality1 and performing the expansion

in λ only afterwards confirms this result. The one-loop expression contains logarithms of

the ratio of hard-collinear over collinear virtualities, ln(µhc/µc), for insertions of Q9 and

even double-logarithms ln2(µhc/µc,s) for Q7. Note that the virtual corrections do not lift

the helicity suppression of the leptonic Bq → `+`− decays.

1The analytic solutions of the one-loop integrals were also obtained with “Package X” [29, 30].
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b

Figure 2. Feynman diagrams that contain the power-enhanced electromagnetic correction. Sym-

metric diagrams with order of vertices on the leptonic line interchanged are not displayed.

The SCET approach is used here to factorize the short-distance contributions per-

turbatively to the leading non-vanishing order in the expansion in λ and to resum the

arising logarithms. Since the one-loop power-enhanced terms do not arise from the hard

region, the matching from full QED to SCETI operators relevant to these terms proceeds

at tree-level. Thereby the field content of the semileptonic and dipole operators changes

Q9,10 ∼ [q . . . b][` . . . `] → Oi ∼ [χC,C . . . hv][`C . . . `C ] ∼ λ6, (2.15)

Q7 ∼ [q . . . b]Fµν → Oi ∼ [χC,C . . . hv]A
µ

C⊥, C⊥ ∼ λ5, (2.16)

where the b-quark is represented by a heavy-quark hv in HQET and the spectator quark is

(anti-) hard-collinear χC,C , whereas the lepton `C is hard-collinear and the anti-lepton `C
is anti-hard-collinear. In the case of Q7 the photon AC⊥ in (2.16) is anti-hard-collinear for

hard-collinear χC and vice versa. Oi from (2.15) also appears in the matching of Q7. The

scaling of these operators in λ follows from the scaling of the fields as summarized in table 1.

The large logarithms between the hard and hard-collinear scales are then resummed with

the aid of RG equations (RGEs) in SCETI, as will be shown below. These logarithms

appear only in higher orders, i.e. they dress the diagrams shown figure 2.

Let us briefly remark on the two-loop diagram in figure 2, which is generated by

the four-quark operators Q1−6 in the effective Lagrangian (2.1). It is well-known from

B → Xs`
+`− decays that the quark loop can be fully absorbed into effective Wilson

coefficients Ceff
9 (q2) and Ceff

7 , so that these diagrams should be considered as one-loop

QED corrections, as has been done in (1.1). This is implicitly understood when we refer

to tree-level matching of Q7,9,10.

The second matching step from SCETI to SCETII produces the one-loop logarithms.

In the case of Q9,10 (first diagram in figure 2) there is a hard-collinear and a collinear

momentum region. The first belongs to a one-loop matching coefficient, while the second

must be reproduced by the matrix element of a SCETII operator. The SCETI operator Oi
from (2.15) contains a C-antiquark, which is converted into the external soft spectator anti-

quark through the subleading-power SCETI interaction L(1)
ξq [31], see (A.13), by emission

of a transverse hard-collinear or collinear photon AC⊥. The relevant SCETII operators are

[χC . . . hv][`C . . . `C ] → J B1
Aχ , J A1

mχ , (2.17)

where

J B1
Aχ ∼ [qs(in−

←−
∂ )−1 . . . hv][`cAc⊥ . . . `c] ∼ λ10, (2.18)

J A1
mχ ∼ m` [qs(in−

←−
∂ )−1/n−PLhv][`cPR`c] ∼ λ10. (2.19)
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full QED

µb
b ℓ+

ℓ−s

SCETI

µhc

SCETII

hv ℓ+

Figure 3. The scheme shows the tree-level matching steps from full QED → SCETI → SCETII

at the two scales µb and µhc horizontally from left to right. Vertically the RG evolution in SCETI

involves only self-mixing, whereas in SCETII a mixing takes place of the operators J B1
Aχ into J A1

mχ.

The notation and scaling of the SCET fields are given in table 1. The propagators of the fields

are chosen as double-solid for the heavy quark hv, double-dashed for hard-collinear fermions in

SCETI, whereas single-dashed for collinear fermions in SCETII. The double- and single-dashed

lines accompanied by a wavy line depict the hard-collinear and collinear photon fields in SCETI

and SCETII, respectively. The single-solid line depicts the soft spectator quark qs. The dotted line

in J A1
mχ indicates that this operator contains a factor of the lepton mass m`.

To reproduce the Ceff
9 term in (1.1), the matching to the first of these operators is needed

at tree-level. Its one-loop SCETII matrix element accounts for the collinear region. The

matching coefficient of the second operator is needed at the one-loop level to reproduce

the hard-collinear region. This leads to two important observations. First, the power-

enhanced contribution to Bq → `+`− decays requires a power-suppressed interaction in

SCET, because the usual, non-enhanced Bq → `+`− amplitude involving Q10 (first term

on the right-hand side of (1.1)) is in fact doubly suppressed due to helicity conservation and

the point-like annihilation of the heavy quark with a soft anti-quark. Second, even in the

collinear loop, the anti-quark propagator has hard-collinear virtuality — only the lepton

and photon propagators have collinear virtuality. This enables the perturbative calculation

of the collinear contribution including the non-logarithmic terms.

Note that in SCETI → SCETII matching, C-fields in the SCETI operator change to

fields with collinear virtualities (denoted by c) in SCETII, thereby increasing the power of

the SCETII operators in λ. In the above two SCETII operators we included the inverse soft

derivative in their definition to explicitly indicate the correct scaling of the operator.2 One

2Later on, we will move this enhancement factor to the coefficient function [32], which is more convenient

for calculations. This factor is responsible for the appearance of the 1/ω moment of the B-meson LCDA

in (1.1).
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might have expected that an operator [qsγ
⊥
µ PLhv][`cγ

µ
⊥γ5`c] ∼ λ10 is generated by tree-level

leading-power matching, but this operator has no overlap with the pseudo-scalar B-meson

in the process Bq → `+`−. An additional helicity suppression of m` ∼ λ2 is required.

In fact, also the operator (2.18) has no overlap with the external states of Bq → `+`−

because of the additional photon field Ac⊥. However, this operator mixes under QED

renormalization with J A1
mχ, which has the correct chiral properties, but nevertheless scales

as λ10 due the compensating λ−2 power from the inverse soft derivative. It is precisely the

anomalous dimension of this operator-mixing that reproduces the logarithms ln(µhc/µc) in

the one-loop QED correction (1.1). Below we will employ the RGEs of SCETII to resum

these logarithms.

The two-step matching of the operators Q9,10 and the RG evolution are schematically

summarized in figure 3. In the remainder of this work, we will derive the resummed result

in detail for these operators.

Before proceeding, we comment on why we do not discuss the summation of logarithms

for the electromagnetic dipole operator Q7. The relevant diagram is now the second one

in figure 2. While at first sight the hard-collinear and collinear regions appear similar to

the case discussed above, one finds that the additional photon propagator attached to the

dipole operator vertex causes an endpoint-singularity as u, that is, the virtuality um2
b of

the photon, goes to zero in the hard-collinear and collinear convolution integrals for the box

diagram. In this limit, the hard photon from the electromagnetic dipole operator becomes

hard-collinear. The singularity is cancelled by a soft contribution (virtuality Λ2 ∼ m2
` ),

where the leptons in the final state interact with each other through the exchange of a soft

lepton [21]. The relevance of soft-fermion exchange is interesting by itself since it is beyond

the standard analysis of logarithmically enhanced terms in QED. Moreover, the endpoint

or rapidity divergence encountered here is of a form that defies known methods to sum

such logarithms, since the breakdown of soft-collinear factorization arises from a singular

matching coefficient, rather than the soft or collinear propagators themselves. A very

similar phenomenon has subsequently been encountered in [33, 34]. The double logarithm

in the Ceff
7 term in (1.1) arises from this additional endpoint divergence. At the one-loop

order, the endpoint singularity can be regularized by a non-dimensional regulator [25],

which renders all integrals well-defined, with the result given in (1.1). We also verified this

logarithm from the expansion of the full one-loop amplitude, without using the split-up

into regions, as mentioned above. However, it is currently not known how to write down

RGEs for suitably defined renormalized objects for this situation, and hence resummation

cannot be performed.

3 SCETI

3.1 Operators

The first decoupling step involves integrating out the hard modes of the light quark and

lepton fields, as well as all other fields, in the matching on the SCETI operators. For

processes described by SCETII a complication in the construction of the relevant operators

in the intermediate SCETI appears, namely operators of different λ scaling may contribute

to the same order in λ after matching to SCETII [25]. The power-enhanced contribution
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requires only a single type of SCETI four-fermion operator where the light quark is either

hard-collinear or anti-hard-collinear. In position space, denoted by a tilde, they read for a

hard-collinear light quark

Õ9(s, t) = g⊥µν
[
χC(sn+) γµ⊥PL hv(0)

][
`C(tn+) γν⊥ `C(0)

]
, (3.1)

Õ10(s, t) = iε⊥µν
[
χC(sn+) γµ⊥PL hv(0)

][
`C(tn+) γν⊥ `C(0)

]
; (3.2)

for a anti-hard-collinear quark

Õ9(s, t) = g⊥µν
[
χC(sn−) γµ⊥PL hv(0)

][
`C(0) γν⊥ `C(tn−)

]
, (3.3)

Õ10(s, t) = iε⊥µν
[
χC(sn−) γµ⊥PL hv(0)

][
`C(0) γν⊥ `C(tn−)

]
. (3.4)

The definitions of g⊥µν and ε⊥µν are given in appendix A. In the classification scheme of [26, 31]

these are operators of the B1-type with two hard-collinear (or anti-hard-collinear) fields in

one of the directions, and of the A0-type in the opposite direction. The operators i = 9, 10

contain an anti-hard-collinear light quark field χC instead of a χC in operators i = 9, 10.

The Fourier-transformed SCETI operators are defined as

Oi(u) = n+pC

∫
dr

2π
e−iu r(n+pC) Õi(0, r) . (3.5)

Hard-collinear momentum conservation has been used to drop the dependence on the total

hard-collinear momentum n+pC = n+(pχ+p`) on the left-hand side and the first argument

of Õi is set to zero. The variable u should be interpreted as the fraction n+p`/n+pC of

n+pC carried by the lepton field, while the hard-collinear light anti-quark has momentum

fraction u ≡ (1 − u) = n+pχ/n+pC . For the operators Õi similar definitions apply after

replacing n+ by n−.

The SCETI Wilson coefficients of these operators, the so-called “hard functions”, are

introduced in momentum space as

LI
∆B=1 =

∑
i

∫
duHi(u, µ)Oi(u). (3.6)

They are found by matching full QED+QCD → SCETI at the hard scale µ = µb ∼ O(mb)

as described in section 3.2 below.

A complete basis of four-fermion operators when naive dimensional regularization with

anti-commuting γ5 is employed would include in addition also operators with Dirac matrices

vanishing in four dimensions, the so-called evanescent operators. However, the logarithms

that we aim to sum in this paper in SCETI are derived from one-loop anomalous dimensions,

which are given by the pole parts in 1/ε, where ε = (4 −D)/2 in terms of the number of

space-time dimension D, of the one-loop diagrams that are independent of the definition

of evanescent operators.

3.2 Matching

For the leading logarithmic accuracy it is sufficient to perform only the tree-level matching

of Q9 and Q10 operators on the SCETI operators Oi. One-loop matching is needed for the
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four-quark operators Qi (i = 1, . . . , 6), which can be included as is commonly done by the

replacement C9 → Ceff
9 [35] as mentioned above. The hard matching condition at the scale

µb is given by

N∆B=1

∑
k

Ck(µb)Qk =
∑
i

∫
duHi(u, µb)Oi(u). (3.7)

Evaluating this equation in the appropriate matrix element with a hard-collinear (anti-

hard-collinear) light quark state, we find, at tree-level

H9(u, µb) = N Ceff
9 (u, µb), H9 = H9,

H10(u, µb) = N C10(µb), H10 = H10 .
(3.8)

Here

N ≡ N∆B=1
αem(µb)

4π
, (3.9)

and
Ceff

9 (u, µb) =C9(µb) + Y (us``, µb)

−
VubV

∗
uq

VtbV
∗
tq

(
4

3
C1 + C2

)[
h(0, us``)− h(mc, us``)

]
,

(3.10)

with the dilepton invariant mass s`` ≡ (n+p`) (n−p`). We use the definition of the function

Y (us``) from [36]. The function h(mq, q
2) [24] depends on the light quark masses mu,d that

are set to zero, or the charm-quark mass mc.

3.3 RG evolution

The RGE in SCETI governs the evolution of the matching coefficient Hi(u, µ) from the hard

scale µb to the hard-collinear scale µhc. The renormalization constants and the anomalous

dimensions of the operators Oi can be computed similarly to the ones for N -jet opera-

tors [26, 37], with the addition of a soft heavy-quark field. Our conventions follow [26] and

are summarized in appendix A.2. We take into account both QCD and QED effects. The

evolution of the hard function is determined by

dHi(u, µ)

d lnµ
= ΓI

cusp

(
ln
mBq

µ
− iπ

2

)
Hi(u, µ) +

∫
du′ Γi(u

′, u)Hi(u
′, µ) . (3.11)

The B-meson mass in the cusp logarithm arises from the kinematic constraint s`` = m2
Bq

.

The imaginary parts arise from ln[−(s`` + i0+)/µ2] = ln(m2
Bq
/µ2) − iπ, and will be ne-

glected throughout, as they do not contribute at the leading logarithmic accuracy. For the

summation of the leading logarithms (LL) we require the one-loop cusp anomalous dimen-

sion

ΓI
cusp(αs, αem) = Γc(αem) + Γs(αs, αem), (3.12)

that has been split for later convenience into a part Γc ∝ Q2
` and the remainder Γs that

includes also the QCD cusp anomalous dimension,

Γc =
αem

π
2Q2

` , Γs =
αs
π
CF +

αem

π
Qq(2Q` +Qq), (3.13)
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expressed in terms of the electric quark and lepton charges, Qq and Q`, respectively, and

the QCD Casimir CF = 4/3. At the next-to-leading logarithmic (NLL) accuracy one would

also include

Γi(x, y) =
αsCF

4π

[
4 ln(1− x)− 5

]
δ(x− y) +

αem

4π
γi(x, y), (i = 9, 10), (3.14)

and the two-loop cusp part. The function γi(x, y) is provided for completeness in (A.31).

The general solution of the RGE (3.11) when only the cusp anomalous dimension is kept

(and the imaginary part neglected) reads

Hi(u, µ) = exp

[∫ µ

µb

dµ′

µ′
ΓI

cusp(µ′) ln
mBq

µ′

]
Hi(u, µb), (3.15)

and amounts to a global, momentum-fraction independent rescaling of the hard functions

Hi(u, µ) by a Sudakov factor. This property is particular to the LL approximation. From

NLL accuracy, when the non-cusp anomalous dimension Γi(u
′, u) is included, the QCD

logarithms lead to a momentum-fraction dependent rescaling from the ln(1 − x) term

in (3.14), while the QED corrections governed by γi reshuffle the momentum fractions

carried by the spectator quark and lepton.

The integral in (3.15) can in general be evaluated only numerically. When the running

of the strong coupling αs is included, but the one of αem as well as the influence of αem on

the QCD running is neglected, we obtain the solution given in (A.33). However, our aim is

to sum leading logarithms in QED to all orders. When the solution is written in the form

of (3.15) “LL accuracy” is defined by including all terms of the form log×(α log)n for any

n in the exponent, where α can be αs or αem. The “double logarithmic” approximation

corresponds to keeping only the first term n = 1 in the LL series.

In the LL approximation the one-loop cusp anomalous dimension is the sum of a QCD

and a QED term (not to be confused with the split into Γc and Γs above, which will be

useful later). The exponential factorizes into a QCD and a QED contribution. Even in this

approximation it is convenient to perform the integrals numerically, when the coupling runs

through flavour thresholds. We shall use such numerical solutions in the final numerical

results in section 8. For the purpose of discussion, we present the analytic solution, when

flavour thresholds in the interval [µ, µb] are neglected,

Hi(u, µ)

Hi(u, µb)
= exp

[
4π

αs(µb)

CF
β2

0

g0(ηs)

]
exp

[
4π

αem(µb)

[
2Q2

` +Qq(2Q` +Qq)
]

β2
0,em

g0(ηem)

]
, (3.16)

where g0(x) = 1 − x + lnx and ηi stands for ηi(µb, µ) ≡ αi(µb)/αi(µ) with i = s, em. To

obtain this expression from (3.15) we replace mBq in the cusp logarithm by µb and neglect

the non-enhanced logarithm ln (mBq/µb). The ambiguity in choosing the precise value of

the hard-matching scale µb ∼ mb is resolved only beyond the LL approximation.

Neglecting the running of the QED coupling in (3.16) amounts to the QED double-

logarithmic (DL) approximation and the approximation g0(x) = −(1−x)2/2+O((1−x)3).

In the above and similar expressions below we can always switch between the LL (left) and

DL (right) QED resummation by the replacement

exp

[
4π

αem(µ1)

Q
β2

0,em

g0(ηem)

]
←→ exp

[
− αem

2π
Q ln2 µ1

µ2

]
, (3.17)
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where now ηem denotes ηem(µ1, µ2) = αem(µ1)/αem(µ2), and Q stands for the appropriate

charge factor.

For later purposes it is convenient to pull out the part of the exponent with Γc ∝ αemQ
2
`

as follows

Hi(u, µ) = exp
[
S`(µb, µ) + Sq(µb, µ)

]
Hi(u, µb), (3.18)

thereby introducing the Sudakov exponents

S`(µb, µ) =
4π

αem(µb)

2Q2
`

β2
0,em

g0(ηem)

DL−→ −Γc
2

ln2 µb
µ
, (3.19)

Sq(µb, µ) =
4π

αs(µb)

CF
β2

0

g0(ηs) +
4π

αem(µb)

[
Qq(2Q` +Qq)

]
β2

0,em

g0(ηem)

DL−→ 4πCF
αs(µb)β

2
0

(1− ηs + ln ηs)−
αem

2π

[
Qq(2Q` +Qq)

]
ln2 µb

µ
. (3.20)

4 SCETII

The above equations are used to evolve the SCETI operators Õ9,10, Õ9,10 to the hard-

collinear scale µhc, at which the hard-collinear modes with virtuality O(mbΛ) are removed

and the SCETI operators are matched to SCETII.

An important distinction between SCETI and SCETII for the problem at hand is the

treatment of the lepton mass. Parametrically the muon mass is of the same order as the

soft/collinear scale mµ ∼ ΛQCD. Thus the lepton mass terms are part of the leading-power

collinear Lagrangian in SCETII, see (A.5). In consequence the muon mass is retained in the

denominators of the collinear lepton propagators and serves as a regulator of the collinear

divergences.

To develop an idea of operator matching to SCETII, we recall that the SCETI op-

erators Oi contain hard-collinear light quark fields, while the B-meson contains only soft

fields. The hard-collinear field in the SCETI operators must be converted into a soft quark

field through emission of a (hard-) collinear photon by the power-suppressed SCETI La-

grangian L(1)
ξq (definition in (A.13)) to obtain a non-vanishing overlap with the B-meson

state. Therefore, we match the time-ordered product of the SCETI operators Oi with

L(1)
ξq to SCETII operators. The tree-level matching relation is depicted in the second line

labelled “tree matching” in figure 3. Starting from the one-loop order, pure four-fermion

operators without collinear photons also appear (not shown). The systematic construction

of the SCETII operator basis is substantially more complicated than for SCETI, since one

must control the degree of non-locality of soft fields [25]. In the following we discuss the

operators, their renormalization and matching coefficients relevant to LL resummation.

Some further details are provided in appendices A and B.

4.1 Operators

We note that, quite generally, in SCETII operators also the soft fields are delocalized along

the direction of the light-cone. The small component n−p of the hard-collinear mode,
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which is integrated out, is of the same order as the soft momentum, hence the soft field

can be at any position in the n− direction. The roles of n− and n+ are reversed when the

anti-hard-collinear mode is integrated out.

A power-counting analysis similar to the one performed in [25] for heavy-to-light meson

form factors shows that only two different SCETII operators for each collinear direction

are relevant to the power-enhanced correction from the Q9 operator. The two SCETII

operators mix under renormalization. The technical arguments can be found in appendix B.

In position space, the two operators are defined as

J̃ A1
mχ(v) = qs(vn−)Y (vn−, 0)

/n−
2
PLhv(0)

[
Y †+ Y−

]
(0)
[
`c(0)(4m`PR) `c(0)

]
, (4.1)

J̃ B1
Aχ (v, t) = qs(vn−)Y (vn−, 0)

/n−
2
PLhv(0)

[
Y †+ Y−

]
(0)
[
`c(0)(g⊥µν + iε⊥µν)Aµc⊥(tn+)γν⊥`c(0)

]
= qs(vn−)Y (vn−, 0)

/n−
2
PLhv(0)

[
Y †+ Y−

]
(0)
[
`c(0)(2 /Ac⊥(tn+)PR)`c(0)

]
. (4.2)

For J̃ B1
Aχ the second line provides an equivalent representation which makes the chirality

of the leptons explicit. The analogous operators generated from the matching of O9,10 are

defined as

J̃ A1
mχ(v) = qs(vn+)Y (vn+, 0)

/n+

2
PLhv(0)

[
Y †+ Y−

]
(0)
[
`c(0)(4m`PR) `c(0)

]
, (4.3)

J̃ B1
Aχ (v, t) = qs(vn+)Y (vn+, 0)

/n+

2
PLhv(0)

[
Y †+ Y−

]
(0)
[
`c(0)(g⊥µν − iε⊥µν)Aµc⊥(tn−)γν⊥`c(0)

]
= qs(vn+)Y (vn+, 0)

/n+

2
PLhv(0)

[
Y †+ Y−

]
(0)
[
`c(0)(2PR /Ac⊥(tn−))`c(0)

]
. (4.4)

The A1-type operators are constructed from leading-power building blocks and multiplied

by a factor of the lepton mass where the factor of 4 is introduced for convenience. The

B1-type operators contain the (anti-) collinear photon field Aµc⊥ (c⊥). Both operators have

the same λ scaling. The product of Wilson lines [Y †+Y−](0) ≡ Y †+(0)Y−(0) appears after

decoupling of soft photons from the collinear and anti-collinear leptons in SCETI, see

also (A.15). These electromagnetic Wilson lines are defined as

Y±(x) = exp

[
−ieQ`

∫ ∞
0
ds n∓As(x+ sn∓)

]
. (4.5)

For the quark current the usual finite-distance Wilson line

Y (x, y) = exp

[
ieQq

∫ x

y
dzµA

µ
s (z)

]
P exp

[
igs

∫ x

y
dzµG

µ
s (z)

]
(4.6)

appears, which is necessary to maintain the QCD and QED gauge invariance of non-local

operators. Here P is the path-ordering operator and Gµs = GµAs TA is the soft gluon field.

The integral is evaluated along the straight line connecting the points x and y. We define

the Fourier transforms

J A1
i (ω) =

∫
dv

2π
ei ω v J̃ A1

i (v) , (4.7)

J B1
i (ω,w) = (n · p)

∫
dv

2π
ei ω v

∫
dt

2π
e−iw t(n·p) J̃ B1

i (v, t) (4.8)
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of the operators, where w corresponds to the collinear momentum fraction carried by the

lepton, and ω may be interpreted as the soft momentum of the light quark along the n+ or

n− direction, depending on the operator. Further (n·p) = n+pc = n+(p`+pAc⊥) for i = Aχ
and (n · p) = n−pc = n−(p` + pAc⊥) for i = Aχ, respectively. In this way, after taking the

matrix element, w = n+p`/n+pc denotes the momentum fraction of n+pc carried by the

collinear lepton and analogously for the anti-collinear case with appropriate replacements

n+ → n− and c→ c. We further defined w ≡ 1− w.

4.2 Renormalization

The SCETII operators (4.1)–(4.4) are composed of soft, collinear and anti-collinear field

products

J̃i = Ĵi,s ⊗ Ĵi,c ⊗ Ĵi,c , (4.9)

where the ⊗ symbol indicates potential summation/contractions over spinorial and/or

Lorentz indices. In SCETII, the soft, collinear and anti-collinear fields do not interact

with one another, which implies that the matrix elements of the SCETII operators factor-

ize accordingly into matrix elements of the separate factors on the right-hand side of (4.9)

in the respective soft, collinear and anti-collinear Hilbert space. The UV counterterms can

also be defined separately for each sector. However, a rearrangement is necessary due to the

factorization anomaly as discussed below. The renormalization of SCETII operators then

proceeds similarly to the SCETI case, see [26, 34, 37]. We next discuss the renormalization

of each sector separately and then present the combined result for the SCETII operators.

4.2.1 Soft sector

The soft part of the operators J A1
mχ and J B1

Aχ ,

Ĵs(v) = qs(vn−)Y (vn−, 0)
/n−
2
PLhv(0)

[
Y †+ Y−

]
(0), (4.10)

is common to both. We thus omit the subindex i, and write Ĵi,s = Ĵs. The discussion

for J A1
mχ and J B1

Aχ proceeds analogously after exchanging n− ↔ n+ in the qs[. . .]hv part of

the operator. The QED one-loop diagrams due to soft photons from the soft Wilson lines

contributing to the renormalization of Ĵs(v) are shown in figure 4(a). Not shown is the

vertex diagram from photon exchange between the heavy and light quark, and the field

renormalization contribution. The QCD one-loop diagrams are the same as those that

appear in the calculation of the renormalization of the leading-twist B-meson light-cone

distribution amplitude [38].

To find the UV poles in dimensional regularization, we evaluate the operator between

a heavy-light quark state and the vacuum, and regulate the infrared (IR) divergences by

taking the external lines slightly off-shell. See appendix A.4 for more details. Calculat-

ing in Feynman gauge, the dependence on the off-shell IR regulators cancels except for

the tadpole-type diagram (6) of figure 4(a). The remaining IR-regulator dependence is

cancelled by the diagrams in figure 4(b) and figure 4(c) with collinear and anti-collinear
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hv

qs

hv

qs

hv

qs

hv

qs

hv

qs

hv

qs

(1) (3) (5)

(6)

(4)(2)

(a)

ℓ+

(b)

ℓ+

Ac⊥

ℓ+

(c)

Figure 4. The diagrams in figure 4(a) show the parts of the SCETII operators Ji (i = mχ,Aχ)

with soft photon exchange (wavy lines) from i) the Wilson lines in the soft fields hv (double line) and

qs (single line) depicted by the square and ii) the product of soft Wilson lines Y †+(0)Y−(0) depicted

by the solid blob. They contribute to the ZQED
s (diagrams 1–5), and Zc, Z

c
mχ and ZcAχ (diagram 6

∝ Q2
`). Figure 4(b) shows diagrams relevant for Zc, Z

c
mχ and figure 4(c) diagrams relevant for ZcAχ

The dashed lines depict the lepton and anti-lepton and the wavy-dashed lines the (anti-) collinear

photons from the corresponding Wilson lines.

photons n+Ac and n−Ac, respectively. While at first sight, this appears to be in conflict

with the factorization of the soft and (anti-) collinear sectors, we can subtract the over-

lap between soft and collinear and anti-collinear regions by defining and renormalizing the

soft operator

J̃s(v) ≡ Ĵs(v)〈
0
∣∣[Y †+ Y−](0)

∣∣0〉 . (4.11)

For the operators i = mχ, Aχ we proceed in complete analogy using the respective soft

field product. The operator (4.11) is divided by the vacuum expectation value of the

gauge-invariant product of Wilson lines〈
0
∣∣[Y †+ Y−](0)

∣∣0〉 ≡ R+R−. (4.12)

At the one-loop order, this subtraction simply removes the tadpole diagram (6) in fig-

ure 4(a) from the soft operator. Beyond one-loop it ensures that the UV counterterm for

the soft operator is independent of the IR regulator as is required for consistent operator

renormalization. Further it ensures that the renormalization of the soft sector does not

depend on the structure of the (anti-) collinear parts of the SCETII operators, but only on

the total charge of the final state associated to the (anti-) collinear direction.

Using separate IR regulators for collinear and anti-collinear fields, we further factorized

the vacuum expectation value of the Wilson lines into factors R+ and R−, which depend

only on the collinear and anti-collinear IR regulators, respectively. This split can always

be performed. At the one-loop order one obtains the sum of two terms, each of which

depends only on one of the regulators; beyond, the one-loop IR divergence exponentiates.

There is a freedom in the choice of splitting the product R+R− into the separate factors
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R+ and R−, which affects the definition of the collinear and anti-collinear renormalization

constants discussed below.3 We adopt the symmetric convention, such that R+ equals R−
upon exchanging n+ ↔ n−. This corresponds to rearranging the SCETII operator (4.9) as

J̃i =
Ĵs

R+R−
⊗R+Ĵi,c ⊗R−Ĵi,c ≡ J̃s ⊗ J̃i,c ⊗ J̃i,c , (4.13)

where now in the soft, collinear and anti-collinear factors J̃ can be renormalized consis-

tently in contrast to the original Ĵ .

We denote by Zs the UV renormalization factor of the Fourier transform Js(ω) =∫
dv
2πe

iωvJ̃s(v) of the soft operator. At the one-loop order, Z
(1)
s is the sum

Z(1)
s =

αem

4π
ZQED
s +

αs
4π
ZQCD
s (4.14)

of the QED and QCD contribution. The expressions for ZQED
s and ZQCD

s are given in (A.36)

and (A.37), respectively. As explained above, the tadpole diagram 6 of figure 4(a) cancels

with the corresponding diagram in the denominator of (4.11). With the help of (A.28), the

corresponding anomalous dimension reads

Γs(ω, ω′) =

[
− Γs ln

ω

µ
− 5

(
αs
4π
CF +

αem

4π
Q2
q

)]
δ(ω − ω′)

− 4

[
αs
4π
CF +

αem

4π
Qq(Qq +Q`)

]
F (ω, ω′) , (4.15)

where F (ω, ω′) is given in (A.38). The anomalous dimension contains the cusp part Γs,

which appeared already in the anomalous dimension (3.13) of the SCETI operators. How-

ever, here it enters with the opposite sign and is multiplied by ln(ω/µ). Note that the

QED part of the anomalous dimension is proportional to the light-quark charge Qq.

The soft operator fulfils the RGE4

d

d lnµ
Js(ω;µ) = −

∫
dω′ Γs(ω, ω′)Js(ω′;µ) , (4.16)

which at the LL accuracy, i.e. keeping only the cusp part of the anomalous dimension,

admits a solution of the form

Js(ω;µ) = Us(µ, µs;ω)Js(ω;µs) . (4.17)

The LL soft RG evolution factor Us from an initial soft scale µs ∼ ω to µ is given by

Us(µ, µs;ω) = exp

[
4π

αs(µs)

CF
β2

0

(
g0(ηs) +

αs(µs)

2π
β0 ln ηs ln

ω

µs

)]
(4.18)

× exp

[
4π

αem(µs)

Qq (2Q` +Qq)

β2
0,em

(
g0(ηem) +

αem(µs)

2π
β0,em ln ηem ln

ω

µs

)]
DL−−→ exp

[
Γs
2

(
ln2 ω

µs
− ln2 ω

µ

)]
, (4.19)

3We note the similarity to the factorization of the soft function in the definition of the transverse

momentum-dependent parton distribution functions, see, for example, [39].
4The minus sign on the right-hand side appears in accordance with the general convention (A.29) for

the RGEs of operators and coefficient functions.
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where for soft evolution ηi stands for ηi(µs, µ) ≡ αi(µs)/αi(µ) with i = s, em. In the last

line we have taken the double-logarithmic approximation of the QCD and QED factor, but

we will not make use of this approximation later on.

The above result can be simplified by noting that ω, µs ∼ Λ, hence ln (ω/µs) is never

a large logarithm. Similar to the solution of the SCETI evolution equation, we may drop

such O(1) logarithms. In the present case, this renders the evolution factor independent

of the momentum variable ω, resulting in

Us(µ, µs) = exp

[
4π

αs(µs)

CF
β2

0

g0(ηs)

]
exp

[
4π

αem(µs)

Qq(2Q` +Qq)

β2
0,em

g0(ηem)

]
DL−−→ exp

[
4π

αs(µs)

CF
β2

0

g0(ηs)

]
exp

[
− αem

2π

[
Qq(2Q` +Qq)

]
ln2 µs

µ

]
. (4.20)

We note the same form as (3.16) for the hard-collinear evolution, except now the evolution

starts at µs, and there is no Q2
` term in the anomalous dimension.

4.2.2 Anti-collinear sector

The anti-collinear sector is the same for both operators and given by the anti-collinear

lepton field Ĵc = `c(0).5 We define the anti-collinear operator

Jc ≡ Ji,c = R−`c(0) , (4.21)

including the R− factor from the soft subtraction. The operator has a single open spinor

index which is omitted for simplicity, as the anomalous dimension is diagonal.

The one-loop diagrams needed to compute the anomalous dimension of the above oper-

ator correspond to the anti-collinear part of the two diagrams in figure 4(b) and figure 4(c)

involving n−Ac. The factor R−, which originates from the soft tadpole diagram (6), ensures

the cancellation of the off-shell IR regulator in the UV divergent part. We introduce the

renormalization constant Zc associated with the UV counterterm, for which the one-loop

result is given in (A.40).

The anti-collinear part obeys the RG equation

d

d lnµ
Jc(µ) = −Γc Jc(µ) , (4.22)

with the one-loop anomalous dimension

Γc =
Γc
2

(
ln
mBq

µ
− iπ

2

)
− αem

4π
3Q2

` , (4.23)

and the cusp anomalous dimension Γc previously defined in (3.13). The solution to LL

accuracy is

Jc(µ) = Uc(µ, µc)Jc(µc) , (4.24)

5We note that this refers to the field including the anti-collinear Wilson line, which is invariant under

anti-collinear gauge transformations, see (A.10).
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with

Uc(µ, µc) = exp

[
− 4π

αem(µc)

Q2
`

β2
0,em

(
g0(ηem) +

αem(µc)

2π
β0,em ln ηem ln

mBq

µc

)]
(4.25)

DL−−→ exp

[
−Γc

4

(
ln2 mBq

µc
− ln2 mBq

µ

)]
. (4.26)

Here ηem is ηem(µc, µ) = αem(µc)/αem(µ) for (anti-) collinear evolution. Note that we

cannot neglect the first term in the exponent in this case, since ln (mBq/µc) is a large log-

arithm.

4.2.3 Collinear sector

The collinear part of operators (4.1) and (4.2) consists of the two operators

J A1
c ≡ J A1

mχ,c = R+ `c(0) 4m`PR , (4.27)

J B1
c (w) ≡ J B1

Aχ,c = R+ (n+p)

∫
dt

2π
e−iwt n+p `c(0) 2 /Ac⊥(tn+)PR , (4.28)

with w ≡ 1 − w, which mix under renormalization. Similar to the anti-collinear part,

the factor R+ must be included to cancel the IR regulator dependence in the anomalous

dimension. The 2× 2 renormalization matrix has the structure([
J A1
c

]
ren[

J B1
c

]
ren

)
=

(
Zcmχ 0

ZcAχ,mχ Z
c
Aχ

)
⊗w′

([
J A1
c

]
bare[

J B1
c

]
bare

)
, (4.29)

where ⊗w′ indicates the presence of the convolution with respect to the collinear momen-

tum fraction. Both operators have in common the collinear lepton field `c(0), for which

the associated one-loop diagrams due to the collinear Wilson lines are the diagrams in fig-

ure 4(b) and figure 4(c) which involve n+Ac. Further, the operator J A1
c contains an explicit

factor of m` in the MS scheme, which we assign to the collinear sector as can be motivated

by the one-loop matching calculation for this operator in section 4.3. The operator J B1
c

contains the additional collinear photon field Aµc⊥(tn+), which gives two more one-loop

diagrams shown in figure 4(c). The one-loop result of the diagonal elements Z
c,(1)
mχ and

Z
c,(1)
Aχ are given in (A.41) and (A.42), respectively.

For massless fermions in SCETI, the mixing of B1-type operators into A1-type opera-

tors is absent. In SCETII with non-zero fermion mass, we find the non-vanishing one-loop

off-shell collinear matrix element of B1-type operator shown as the middle diagram in the

column labelled “SCETII” in figure 3. Its divergent part is proportional to the tree-level

matrix element of the mass-suppressed A1-type operator. Explicitly, the matrix element is

given by

n+p

∫
dt

2π
e−iwt (n+p)

〈
`(p)

∣∣`c(0)Aµc⊥(tn+)
∣∣0〉

= −αem

4π
Q`w

[
1

ε
+ ln

µ2

w
(
m2
` − p2w

)]m` uc(p)γ
µ
⊥ , (4.30)

yielding the mixing counterterm

Z
c(1)
Aµχα,mχβ (w) =

αem

4π

Q`
ε
w
[
γµ⊥
]
αβ

(4.31)
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for the general case with open Dirac and Lorentz indices. Contracting them with 2γ⊥µPR,

the SCETII mixing counterterm pertinent to the operators (4.27) and (4.28) is

Z
c(1)
Aχ,mχ(w) =

αem

4π

Q`
ε
w . (4.32)

The renormalization of the collinear fields leads to the coupled system of RGEs,

d

d lnµ

(
J A1
c (µ)

J B1
c (w;µ)

)
= −

(
Γcmχ 0

ΓcAχ,mχ ΓcAχ

)
⊗w′

(
J A1
c (µ)

J B1
c (w′;µ)

)
, (4.33)

with the one-loop collinear anomalous dimensions given by6

Γcmχ =
Γc
2

(
ln
mBq

µ
− iπ

2

)
+
αem

4π
3Q2

` , (4.34)

ΓcAχ,mχ(w) =
αem

4π
2Q`w , (4.35)

ΓcAχ(w,w′) = δ(w − w′)
[

Γc
2

(
ln
mBq

µ
− iπ

2

)
+
αem

4π
Q2
` (4 lnw − 6)

]
− αem

4π
2Q2

` γAχ,Aχ(w,w′) . (4.36)

The non-cusp anomalous dimension γAχ,Aχ(w,w′) is provided for completeness in (A.43).

The opposite sign of the non-cusp term in (4.34) compared to (4.23) arises from the anoma-

lous dimension of the MS lepton mass in the definition of J A1
c .

At LL accuracy, keeping only the cusp anomalous dimension terms, the system of

RGEs (4.33) is easily solved first for J A1
c (µ), and subsequently for J B1

c (w, µ), yielding

J A1
c (µ) = Uc(µ, µc)J A1

c (µc) , (4.37)

J B1
c (w;µ) = Uc(µ, µc)

[
J B1
c (w;µc)−

Q`w

β0,em
ln ηem J A1

c (µc)

]
. (4.38)

Here ηem equals ηem(µc, µ) = αem(µc)/αem(µ) and Uc(µ, µc) = Uc(µ, µc) defined in (4.24)

with LL accuracy, because the cusp part of the anomalous dimensions Γcmχ, ΓcAχ is the

same as of Γc in (4.23).

Naively, the second term in the bracket in (4.38) appears suppressed as it contains αem

times a single logarithm. However, the tree-level matrix element of the operator J B1
c (µc)

vanishes for Bq → µ+µ−. Hence, the second term is actually the leading term, as outlined

in figure 3. The matrix element of the B1-operator contributes at the one-loop order, and

does not contain large logarithms because it is evaluated at the collinear scale. For the

LL accuracy, it is then enough to choose the initial condition J B1
c (w;µc) = 0. In the

double-logarithmic approximation, we could further replace

1

β0,em
ln ηem

DL−−→ αem

2π
ln
µ

µc
. (4.39)

6A very similar operator mixing calculation appears in the SCET analysis of power-suppressed two-jet

operators sourced by a new heavy particle [33]. In this application, the insertion of an external Higgs field

operator corresponds to the lepton mass factor. The off-diagonal anomalous dimension in [33] misses the

factor w, because the one-particle reducible diagram with the Higgs insertion on the external leg was not

included.
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4.2.4 Complete SCETII operator and evolution

For convenience, we summarize the renormalization and RGEs for the full SCETII operators

J A1
mχ and J B1

Aχ . The operator mixing in the collinear sector leads to a 2 × 2 renormaliza-

tion matrix [J A1
mχ

]
ren[

J B1
Aχ

]
ren

 =

(
Zmχ,mχ 0

ZAχ,mχ ZAχ,Aχ

)
⊗ω′,w′

[J A1
mχ

]
bare[

J B1
Aχ

]
bare

 , (4.40)

where appropriate convolutions are indicated by ⊗. The renormalization constants are the

products of the soft, collinear and anti-collinear factors discussed before,

Zmχ,mχ(ω, ω′) = Zs(ω, ω
′)Zc Z

c
mχ , (4.41)

ZAχ,Aχ(ω, ω′;w,w′) = Zs(ω, ω
′)Zc Z

c
Aχ(w,w′) , (4.42)

ZAχ,mχ(ω, ω′;w) = Zs(ω, ω
′)Zc Z

c
Aχ,mχ(w) , (4.43)

and the anomalous dimension matrix becomes the sum of the soft, collinear, and anti-

collinear anomalous dimensions. We can write this in the form

ΓII = Γs(ω, ω′)

(
1 0

0 δ(w − w′)

)
+δ(ω − ω′)

(
Γc + Γcmχ 0

ΓcAχ,mχ(w) δ(w − w′) Γc + ΓcAχ(w,w′)

)
,

(4.44)

with entries defined in (4.15), (4.23) and (4.34)–(4.36). Since the soft part is independent

of the collinear and anti-collinear building blocks, it enters only the diagonal entries. Both

operators J A1
mχ and J B1

Aχ contain the cusp anomalous dimension parts Γs and Γc from (3.13),

which appeared already in the anomalous dimension of the SCETI operators. Contrary to

SCETI, in SCETII Γs enters with the opposite sign and is multiplied by ln(ω/µ), but Γc
is multiplied by ln(mBq/µ) as in SCETI. Finally we note that the soft and (anti-)collinear

anomalous dimensions are separately gauge invariant.

We collect at this point all evolution factors, including the evolution in SCETI. From

Hi(µb)Oi(µb) = Hi(µ)Oi(µ) and (3.18), we obtain

Oi(µb) = exp
[
S`(µb, µ) + Sq(µb, µ)

]
O(µ)

= exp
[
S`(µb, µ) + Sq(µb, µ)

] [
Js ⊗ J B1

c ⊗ Jc
]
(µ) . (4.45)

In passing to the second line, we have matched the SCETI operator at the scale µ � µb
at tree level to the SCETII operator. We also omitted the SCETII matching coefficient,

which does not change the structure of the result. (The precise matching relation will be

given in the following subsection.) Next we use the SCETII evolution factors to write

Oi(µb) = exp
[
S`(µb, µ) + Sq(µb, µ)

]
Us(µ, µs)Js(µs) ⊗ Uc(µ, µc)Jc(µc)

⊗Uc(µ, µc)
[
J B1
c (w;µc)−

Q`w

β0,em
ln ηem J A1

c (µc)

]
= exp

[
S`(µb, µc)

]
exp

[
Sq(µb, µ)

]
Us(µ, µs)Js(µs)Jc(µc)

⊗
[
J B1
c (w;µc)−

Q`w

β0,em
ln ηem J A1

c (µc)

]
. (4.46)
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In the final expression we combined the part of the hard-collinear evolution contained in

S`(µb, µ) with the collinear and anti-collinear factors making use of7

exp
[
S`(µb, µ)

]
Uc(µ, µc)Uc(µ, µc) = exp

[
S`(µb, µc)

]
. (4.47)

This shows that the logarithms proportional to Q2
` involving only the final-state leptons

arise from uniform evolution from the hard scale mBq to the collinear scale m`. In the final

expression (4.46), we may drop the term J B1
c (w;µc), since in the LL approximation the

initial condition of the B1-operator at the collinear scale can be set to zero, as discussed

above. When one takes the matrix element of (4.46), no large logarithms appear in the

matrix elements of the J , since they are evaluated at their natural scale, and all large

logarithms are already summed.

4.3 Matching

We match the SCETI operators Oi at the hard-collinear scale µhc on the SCETII operators

in momentum space. The matching equations read

Oi(u) =

∫
dω

[
Jm(u;ω)J A1

mχ(ω) +

∫
dw JA(u;ω,w)J B1

Aχ (ω,w)

]
, (4.48)

Oi(u) =

∫
dω

[
Jm(u;ω)J A1

mχ(ω) +

∫
dw JA(u;ω,w)J B1

Aχ (ω,w)

]
, (4.49)

with perturbative matching coefficients Ji, also called “jet functions”, which account for

the (anti-) hard-collinear modes. There are no leading-power interactions between soft and

hard-collinear fermions in SCETI, hence to obtain the power-enhanced contribution we

must include a single insertion of the power-suppressed Lagrangian L(1)
ξq (x), given in (A.13),

to convert the hard-collinear quark into a soft quark. The jet functions Jm,m(u;ω) start

at the one-loop order, while JA,A(u;ω,w) coincide at tree level with expressions

J
(0)
A (u;ω,w, µ) = J

(0)

A
(u;ω,w, µ) = −Qq

ω
δ(u− w) (4.50)

from the lower diagram depicted in the column labelled “SCETI” in figure 3. The explicit

calculation shows that both operators Oi for i = 9, 10 contribute equally to J B1
Aχ , whereas

i = 9, 10 contribute to J B1
Aχ with an opposite sign. Summarizing, we find

H9 ⊗u O9 +H10 ⊗u O10 → (H9 +H10)⊗u JA ⊗ω,w J B1
Aχ , (4.51)

H9 ⊗u O9 +H10 ⊗u O10 → (H9 −H10)⊗u JA ⊗ω,w J B1
Aχ . (4.52)

Here we anticipate that the relative minus sign in front of H10 andH10 to the right-hand side

of the arrows, together with (3.8), is the origin of the cancellation of the Wilson coefficient

C10 at the amplitude level after adding the collinear and anti-collinear contributions. Thus

we reproduce in the SCET approach our previous finding [21] that the power-enhanced

contribution (1.1) does not depend on C10.

7To obtain the following identity exactly, we make use of the freedom to replace mBq by µb in (4.25) in

the LL approximation. Alternatively, we may choose µb = mBq .
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As an aside, we note that for the charged B-meson leptonic decay Bu → µν̄µ, the

anti-collinear parts are not present because the anti-lepton is replaced by the chargeless

neutrino, thus (4.52) will not contribute. Further, there is only a single operator with

Wilson coefficient C and the Dirac structure γµ(1− γ5) in the lepton current. This implies

the replacements C9 = C and C10 = −C, such that H9 +H10 = 0 and no power-enhanced

contribution arises for this process.

Returning to Bq → µ+µ−, let us briefly discuss also the one-loop matching of the

coefficients Jm,m(u;ω). The one-loop matrix elements of the left-hand sides of (4.51)

and (4.52) in a 〈`¯̀| . . . |q̄b〉 state used to extract Jm,m(u;ω) contain an IR divergence. This

divergence is reproduced on the right-hand side in SCETII by the scaleless one-loop matrix

element and the renormalization constant (4.32) convoluted with the tree-level (anti-) hard-

collinear jet function (4.50). After we include these contributions in the matching, the IR

divergence cancels and we find

J (1)
m (u;ω;µ) =

αem

4π
Q`Qq

1− u
ω

[
ln

(
ω n+p`
µ2

)
+ ln [u(1− u)]

]
θ(u) θ(1− u). (4.53)

The result for J
(1)
m is obtained by the replacement n+p` → n−p`. The cancellation of

the IR divergence in the matching of SCETI on SCETII confirms the short-distance na-

ture of the jet function, and serves as a check of the EFT setup. We note that when

µ � µhc, the one-loop expression above contains a large logarithm. This is precisely the

logarithm that is generated by RG evolution and correctly taken into account by the LL

result (4.38), (4.39). The non-logarithmic term ln [u(1− u)] enters (1.1) together with the

non-logarithmic contributions from the collinear matrix element (6.4) below.

5 QED effects and the B-meson decay constant and LCDA

Before turning to the factorized matrix element for the power-enhanced part of the Bq →
µ+µ− amplitude, we discuss the hadronic matrix element of the soft operator J̃s(v) (4.11),

which is related to the B-meson decay constant and the leading-twist B-meson LCDA [40,

41]. However, the additional soft Wilson lines in the SCETII operators (4.1)–(4.4) and

J̃s(v) imply that the hadronic matrix element does not coincide with the universal B-meson

LCDA that would appear in the absence of electromagnetic interactions, and indicate a

dependence on the final-state particles of the specific process. We discuss these issues in

this section.

We thus define the generalized and process-dependent B-meson LCDA Φ+(ω) by the

soft matrix element of the operator J̃s(v)

(−4)
〈
0
∣∣J̃s(v)

∣∣Bq(p)
〉

=

〈
0
∣∣qs(vn−)Y (vn−, 0)/n−γ5 hv(0)Y †+(0)Y−(0)

∣∣Bq(p)
〉〈

0
∣∣[Y †+ Y−](0)

∣∣0〉
≡ imBq

∫ ∞
0
dω e−iωv FBqΦ+(ω) . (5.1)

The analogous definition holds for the anti-collinear case after interchanging n+ ↔ n− in

the qs[. . .]hv part of the operator, but with the same function Φ+(ω). As an overall factor

– 24 –



J
H
E
P
1
0
(
2
0
1
9
)
2
3
2

we include the generalized process-dependent B-meson decay constant FBq in the presence

of electromagnetic corrections, defined through the local matrix element〈
0
∣∣qs(0)γµγ5 hv(0)Y †+(0)Y−(0)

∣∣Bq(p)
〉〈

0
∣∣[Y †+ Y−](0)

∣∣0〉 = iFBqmBqv
µ, (5.2)

where p = mBqv, and vµ is the four-velocity label of the heavy-quark field. Since we are

working with the heavy quark field in HQET, FBq is the so-called static B-meson decay

constant. It is related to the decay constant in full QCD and QED by matching corrections

at the hard scale. The generalized B-meson LCDA satisfies the RGE (4.16),

d

d lnµ

[
FBq(µ) Φ+(ω;µ)

]
= −

∫ ∞
0
dω′ Γs(ω, ω′) FBq(µ) Φ+(ω′;µ), (5.3)

with the anomalous dimension kernel Γs given in (4.15) at the one-loop order. Note that

it depends on the charges Q` of the leptons in the final state. Keeping only the cusp part

as before, the solution is

FBq(µ) Φ+(ω;µ) = Us(µ, µs;ω) FBq(µs) Φ+(ω;µs) (5.4)

with Us(µ, µs;ω) from (4.18).

In practice, owing to the smallness of αem, we can treat QED effects on hadronic matrix

elements perturbatively. Since we wish to sum logarithmic QED effects to all orders, the

expansion of the matrix element in αem must be done at the soft scale µs ∼ Λ, where the

matrix element contains no large logarithms. We can then use the RGE including the QED

anomalous dimension to sum the large logarithms between the soft and the hard-collinear

and hard scale. We therefore define the expansions

FBq(µs) =
∞∑
n=0

(
αem(µs)

4π

)n
F

(n)
Bq

(µs) , (5.5)

FBq(µs)Φ+(ω;µs) =
∞∑
n=0

(
αem(µs)

4π

)n
F

(n)
Bq

(µs)φ
(n)
+ (ω;µs) , (5.6)

of the B-meson decay constant and LCDA. The leading terms in the expansion coincide

with the standard B-meson decay constant FBq(µ) and LCDA φ+(ω;µ) defined in the

absence of QED at the soft scale, that is, F
(0)
Bq

(µs) ≡ FBq(µs) and φ
(0)
+ (ω;µs) ≡ φ+(ω;µs),

respectively. However, they evolve differently to µ� µs, since the RGE for φ+(ω;µ) does

not include QED effects. To be specific, write

Us(µ, µs;ω, ω
′) = UQCD

s (µ, µs;ω, ω
′)UQED

s (µ, µs;ω, ω
′) , (5.7)

where UQCD
s (µ, µs;ω, ω

′) is defined as Us(µ, µs;ω, ω
′) with the electromagnetic coupling

αem set to zero, and UQED
s (µ, µs;ω, ω

′) as the rest.8 In other words, UQED
s (µ, µs) fulfils the

8Note that this definition implies that in general UQED
s (µ, µs;ω, ω

′) depends on the strong coupling,

although not at the LL accuracy. It is defined as the additional evolution caused by QED, and therefore

includes mixed QED-QCD effects. We also added the second argument ω′, such that these general definitions

are valid beyond the LL approximation.
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RGE
d

d lnµ
UQED
s (µ, µs;ω, ω

′) = −
[
Γs − Γs

∣∣
αem→0

]
UQED
s (µ, µs;ω, ω

′) (5.8)

with initial condition UQED
s (µs, µs;ω, ω

′) = δ(ω − ω′). Since UQCD
s (µ, µs;ω, ω

′) is the

evolution factor for the standard B-meson LCDA in the absence of QED, we have the

relation

F
(0)
Bq

(µ)φ
(0)
+ (ω;µ) = UQCD

s (µ, µs;ω, ω
′)UQED

s (µ, µs;ω, ω
′) ⊗ω′

[
F

(0)
Bq

(µs)φ
(0)
+ (ω;µs)

]
= UQED

s (µ, µs;ω, ω
′)UQCD

s (µ, µs;ω, ω
′) ⊗ω′

[
FBq(µs)φ+(ω;µs)

]
= UQED

s (µ, µs;ω, ω
′)⊗ω′

[
FBq(µ)φ+(ω′;µ)

]
, (5.9)

at an arbitrary scale.

Higher-order terms in the expansion (5.5), (5.6) define non-universal, non-local QCD

(more precisely, HQET) matrix elements that have to be evaluated nonperturbatively.

Since αem is small, only a few terms will be needed in practice. For example, the com-

putation of the time-ordered product of the electromagnetic current jem
µ (x) with the soft

quark fields contained in the SCETII operators contributes to φ
(1)
+ (ω) and F

(1)
Bq

. The decay

constants F
(n)
Bq

(µs) and LCDAs φ
(n)
+ (ω) at the scale µs provide a basis of initial conditions

for the systematic inclusion and resummation of QED effects. At the leading and next-to-

leading logarithmic (NLL) accuracy, only the universal objects FBq(µs) and φ+(ω) need to

be known. For Nk+1LL or fixed-order NkLO accuracy, the expansions (5.5), (5.6) can be

truncated at n = k.

The above discussion, applicable to Bq → `+`−, illustrates some complications related

to the factorization of QED corrections for exclusive B-meson decays. Only the leading and

next-to-leading QED logarithms can be computed without introducing new QED-specific

nonperturbative hadronic matrix elements. To be more explicit on the process dependence

of the B-meson LCDA and the decay constant in the presence of QED, we consider defining

the QED gauge-invariant generalization of the standard LCDA by〈
0
∣∣qs(vn−)Y (vn−, 0)/n−γ5 hv(0)

∣∣Bq(p)
〉
≡ imBq

∫ ∞
0
dω e−iωv F 0

BqΦ
0
+(ω) , (5.10)

where the matrix element should be evaluated with the QCD and QED Lagrangians. At

least the local matrix elements, defining F 0
Bq

, could be computed with lattice QCD. This

is indeed a valid definition, however, it would be relevant in factorization theorems for

processes like Bq → γγ or Bq → νν with no charged particles in the final state. It

cannot be used for Bq → `+`−. In fact, the functions Φ0
+ and Φ+, when evolved to scales

µ � µs differ already in the LL approximation, since they have different cusp anomalous

dimensions. The one for Φ0
+ does not contain the terms proportional to QqQ`; in particular,

at the one-loop order, the diagrams 3–5 in figure 4(a) are absent. In general, the presence

of non-local Wilson lines even in the definition of naively local objects such as the B-meson

decay constant, see (5.2), provides a serious obstacle to any attempt to include QED effects

in lattice computations of hadronic matrix elements for processes with energetic, charged

particles in the final state.
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Another interesting example is the leptonic charged B-meson decay Bu → `ν̄`. In this

case, we need to introduce an auxiliary Wilson line to achieve soft-collinear factorization.

The LCDA is then defined via the soft matrix element〈
0
∣∣q′s(vn−)Ỹ (vn−, 0)/n−γ5 hv(0)Y †+(0)

∣∣Bu(p)
〉〈

0
∣∣Yv(0)Y †+(0)

∣∣0〉 ≡ imBu

∫ ∞
0
dω e−iωvF±BuΦ±+(ω) . (5.11)

The QCD+QED Wilson line that ensures gauge invariance is now given by

Ỹ (vn−, 0) = Y q′+(vn−)Y QCD+(vn−)Y
†
QCD+(0)Y

†
q+(0), (5.12)

where Qq′ is the charge of the soft u-quark denoted by q′s in the Bu meson. The explicit

definitions of soft Wilson lines can be found in appendix A.1. The new auxiliary Wilson

line Yv(0) is defined with the time-like vector v and carries the charge of the Bu meson.

The dependence of the LCDA on the arbitrary vector v cancels after convolution with the

collinear matrix element. It is clear that the arbitrary vector v breaks the boost invariance

of the collinear matrix element, which includes the factor Rv+ ≡
〈
0
∣∣Yv(0)Y †+(0)

∣∣0〉 that was

removed above from the soft matrix element. The same breaking occurs also for Bq → `+`−

since the boost-invariant vacuum expectation value of the Wilson lines is factorized into

the boost non-invariant quantities R±. This is a consequence of the SCETII factorization

anomaly [39, 42–44], which frequently appears when there are collinear and soft modes with

equal invariant mass, which cannot be uniquely separated in dimensional regularization.

Finally, let us comment on the dipole operator contribution proportional to C7.

From appendix B, we expect that for this case yet another generalized LCDA should

be defined containing the soft leptons of the operator in (B.16). Thus, the set of required

LCDAs is not only process-dependent but also depends on the operator at the hard scale.

6 Resummed power-enhanced Bq → `+`− amplitude

6.1 Factorization of the amplitude

Having defined the soft matrix element in terms of the generalized B-meson LCDA, we now

focus on the collinear and anti-collinear matrix elements. As they involve only the leptons

and their interactions with collinear/anti-collinear photons, they are free of QCD effects

at the considered order. As is the case for other low-energy electromagnetic quantities,

hadronic vacuum polarization and other strong interaction effects would become relevant

in higher orders in the electromagnetic coupling. In SCETII, the A1-type operators contain

either a single collinear (anti-collinear) lepton field, and B1-type operators a product of

both collinear (anti-collinear) lepton and photon fields. In each case, we are interested only

in the matrix element of Bq(p)→ `+(p`)`
−(p`) with only leptons in the final state.9 Thus,

9We recall that the power-enhanced QED corrections are purely virtual. By assumption, we define the

IR finite observable through a narrow signal window in the di-muon invariant mass around the mass of

the Bq meson. This allows photons with ultrasoft energy Eγ < ∆E � Λ in the final state, but excludes

final-state radiation of real collinear photons with virtuality of order Λ2. We consider ultrasoft photons

in section 7.
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we define the renormalized collinear and anti-collinear on-shell matrix elements related to

J A1
mχ as 〈

`−(p`)
∣∣R+`c(0)

∣∣0〉 = Z` uc(p`),
〈
`+(p`)

∣∣R−`c(0)
∣∣0〉 = Z` vc(p`), (6.1)

and those related to J B1
Aχ as

R+

∫
dt

2π
e−itw (n+p`)

〈
`−(p`)

∣∣`c(0)Aµc⊥(tn+)
∣∣0〉 = Z`MA(w) m`

[
uc(p`)γ

µ
⊥
]
,

R−

∫
dt

2π
e−itw (n−p`)

〈
`+(p`)

∣∣Aµc⊥(tn−)`c(0)
∣∣0〉 = Z`MA(w) m`

[
γµ⊥vc(p`)

]
.

(6.2)

We note that the second equation in (6.1) simply defines the matrix element of Jc
from (4.21), while the first and (6.2) gives the matrix elements of (4.27), (4.28) after

straightforward multiplications and contractions. Explicit computation to the required

order gives

Z` = Z` = 1 +O(αem), (6.3)

M
(1)
A (w;µ) = M

(1)

A
(w;µ) = −αem

4π
Q`w

(
ln
µ2

m2
`

− lnw2

)
, (6.4)

with w ≡ 1 − w. In the case of J B1
Aχ , the matrix element starts at the one-loop order, as

indicated by the superscript. The bare matrix element is UV divergent and rendered finite

by the operator mixing counterterm (4.32). When evaluated at the collinear scale µ ∼ Λ,

the matrix elements do not contain large logarithmic corrections.

With the above collinear matrix elements and the parametrization (5.1) of the soft

matrix element at hand, we can now derive the factorized expression for the matrix elements

of the Fourier transforms (4.7), (4.8) of the SCETII operators (4.1), (4.2) in the form〈
`+(p`) `

−(p`)
∣∣J A1
mχ(ω)

∣∣Bq(p)
〉

= T+mBqFBqΦ+(ω) , (6.5)〈
`+(p`) `

−(p`)
∣∣J B1
Aχ (ω,w)

∣∣Bq(p)
〉

= T+MA(w)mBqFBqΦ+(ω) . (6.6)

All scale-dependent quantities are understood to be evaluated at the scale µ, and we defined

the common factor

T+(µ) ≡ (−i)m`(µ)Z`(µ)Z`(µ) [uc(p`)PRvc(p`)] . (6.7)

Note that 〈J A1
mχ〉 contributes at tree level, whereas 〈J B1

Aχ 〉 starts to contribute only from the

one-loop order. The same result holds for the anti-collinear operators i = mχ, Aχ owing

to (6.4) and the definition of the soft matrix element (5.1).

The complete expression for the power-enhanced Bq → `+`− amplitude due to the

operators Q9,10 of the effective weak interaction Lagrangian is now obtained by adding the

hard (H9,10) and hard-collinear (Jm,A) matching coefficients according to (3.7) and (4.48),

and by summing over all contributions i = 9, 9, 10, 10 in the general factorized form

iA9 = T+

[
(H9 +H10)⊗u (Jm + JA ⊗wMA)

+ (H9 −H10)⊗u
(
Jm + JA ⊗wMA

) ]
⊗ω mBqFBqΦ+ ,

(6.8)
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where we have suppressed all arguments, which will be shown explicitly below. The for-

mula simplifies considerably when accounting for several relations between the matching

coefficients of the collinear and anti-collinear sectors, which show up at tree level: for the

hard functions H
(0)
9 = H

(0)

9
and H

(0)
10 = H

(0)

10
from (3.8) and for the jet functions J

(0)
A = J

(0)

A

from (4.50), and J
(0)
m = J

(0)
m = 0. In fact, higher-order QED corrections are symmetric

under the exchange of the collinear and anti-collinear sectors once hard fluctuations are

decoupled, such that the relations H9 = H9 and H10 = H10 are valid even beyond tree level.

Thus the hard functions in both sectors will exhibit the same u-dependence. Concerning

the jet functions and matrix elements of the SCETII operators, the explicit one-loop re-

sults show that J
(1)
m = J

(1)
m upon the identification of n+p` = n−p` = mBq in (4.53), while

M
(1)
A = M

(1)

A
according to (6.4). Again we expect these relations to extend to higher orders

in QED, because of the symmetry between the collinear and anti-collinear sectors. Making

use of these relations we find that (6.8) simplifies to

iA9 = T+

∫ 1

0
du 2H9(u)

∫ ∞
0
dω

[
Jm(u;ω) +

∫ 1

0
dw JA(u;ω,w)MA(w)

]
mBqFBqΦ+(ω)

(6.9)

even beyond leading logarithmic approximation. The contribution from the operator Q10

has cancelled and a factor of two arises for the Q9 term, as anticipated earlier. All momen-

tum fraction arguments and convolutions have now been made explicit. Every factor is

understood to be evaluated at the same scale µ. In this form there is no value of µ in which

not at least one of the factors contains large logarithms. For example, if µ is chosen of

order of the soft and collinear scale Λ, large logarithms occur in the hard and hard-collinear

coefficients functions. On the other hand, if µ is chosen at the hard-collinear scale
√
mbΛ,

H9(u) and the matrix element factors T+, MA(w) and FBqΦ+(ω) contain large logarithms.

6.2 Resummed amplitude

We will now use the solutions to the renormalization group equations derived earlier to

convert (6.9) into a formula in which large logarithms are summed. The explicit result is

given in the LL approximation, but the essence of the manipulations is general. We shall

take the common scale to be the hard-collinear scale µhc ∼
√
mbΛ, hence we have to evolve

the hard function from µb ∼ mb down to µhc and the soft and collinear functions up from

µs ∼ µc ∼ Λ to µhc.

To implement this procedure into (6.9), we use (3.18), and include the hard-function

evolution to µhc via the substitution

H9(u)→ exp
[
S`(µb, µhc) + Sq(µb, µhc)

]
H9(u, µb) . (6.10)

For the soft matrix element, we use (5.4), (5.9) to obtain

FBq Φ+(ω) → Us(µhc, µs;ω) FBq(µs) Φ+(ω;µs)

→ UQED
s (µhc, µs;ω)FBq(µhc)φ+(ω;µhc) . (6.11)
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After the second arrow, we expressed the initial condition for the generalized B-meson

LCDA at the soft scale in terms of the standard LCDA in the absence of QED corrections,

which can be done at LL accuracy, as discussed section 5, and evolved the latter back to

the hard collinear scale. The advantage of this procedure is that while pure QED quantities

can be evaluated perturbatively at low scales of order Λ ∼ m`, the soft scale is generally

nonperturbative in QCD. The above form requires only that the standard B-meson LCDA

φ+(ω;µhc) is provided at the hard-collinear scale by some nonperturbative method, or by

extracting it from data directly at this scale [45]. Finally, for the anti-collinear part we

use (4.24) to substitute Z` → Uc(µhc, µc)Z`(µc), which together with (4.37), (4.38) for the

collinear part amounts to

T+ → Uc(µhc, µc)Uc(µhc, µc)T+(µc), (6.12)

T+MA(w)→ Uc(µhc, µc)Uc(µhc, µc)T+(µc)

[
MA(w;µc)−

Q`w

β0,em
ln ηem

]
, (6.13)

where ηem = αem(µc)/αem(µhc). After these replacements, the result contains the scales µb,

µc and µs where the initial conditions of the various evolutions are set. This dependence

cancels between the evolution factors, matching coefficients and matrix elements up to

residual dependence of higher order than LL accuracy.

Putting this together in (6.9) and making use of (4.47) results in the all-order LL-

resummed amplitude

iA9 = eS`(µb, µc) T+(µc)

×
∫ 1

0
du eSq(µb, µhc) 2H9(u;µb)

∫ ∞
0
dω UQED

s (µhc, µs;ω)mBqFBq(µhc)φ+(ω;µhc)

×
[
Jm(u;ω;µhc) +

∫ 1

0
dw JA(u;ω,w;µhc)

(
MA(w;µc)−

Q`w

β0,em
ln ηem

)]
. (6.14)

We note that the prefactor exp [S`(µb, µc)] sums the purely leptonic leading-logarithms

proportional to Q2
` between the hard scale µb and the collinear scale µc. They originate from

virtual QED corrections in SCETI and SCETII. In section 7 it will be combined with the

remaining final-state contributions due to ultrasoft photons to provide the radiative Bq →
`+`− branching fraction including the fully resummed double-logarithmic QED corrections

to all orders in perturbation theory.

The resummation of the leading-logarithmic QED (and QCD) corrections to all orders

in perturbation theory is achieved by keeping the one-loop expressions of the cusp part of

the anomalous dimensions together with tree-level results for the hard and jet functions. In

addition, due to the presence of operator mixing, the leading off-diagonal elements in the

anomalous dimension matrix must also be kept. Otherwise, iA9 = 0, because M
(0)

A,A
(µc) = 0

and J
(0)
m,m(µ) = 0 for all µ when the one-loop mixing of ΓcAχ,mχ in (4.33) is neglected.

In the following we obtain from (6.14) an expression that is both LL-accurate and NLO-

accurate, thus generalizing the previous NLO result (1.1) to include the leading logarithms

to all orders. This can be achieved by keeping the non-logarithmic one-loop corrections to
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Jm and MA given in (4.53) and (6.4), respectively. First using (4.50) removes the w-integral

in the second line of (6.14), such that the square bracket turns into

Jm(u;ω;µhc)−
Qq
ω
JA(u;ω, u;µhc)

(
MA(u;µc)−

Q`u

β0,em
ln ηem

)
. (6.15)

With LL accuracy it is also justified to apply (4.39) with µ = µhc in the last term. Insert-

ing (4.53) and (6.4) produces

αem

4π
Q`Qq

1− u
ω

[
ln
ω n+p`
µ2
hc

+ lnuū+

[
ln
µ2
c

m2
`

− 2 ln ū

]
+ ln

µ2
hc

µ2
c

]
. (6.16)

After combining the logarithms and setting n+p` = mBq , we recognize the factor that

appears in (1.1).10 This allows us to put (6.14) into the final form

iA9 =
αem(µc)

4π
Q`Qqm` (−i)mBqfBq e

S`(µb, µc)N [uc(1 + γ5)vc]

× eSq(µb, µhc)
∫ 1

0
du (1− u)Ceff

9 (u, µb)

×
∫ ∞

0

dω

ω
UQED
s (µhc, µs;ω)φ+(ω;µhc)

[
ln
ωmBq

m2
`

+ ln
u

1− u

]
.

(6.17)

At LL accuracy the scale of the overall factor of αem is arbitrary and we have chosen the

collinear scale. Within the same LL approximation, we can also replace the HQET decay

constant by the QCD decay constant fBq . The one-loop QED result of [21] in (1.1) is

obtained from the above expression when setting the Sudakov exponentials and the soft

evolution factor UQED
s to unity, apart from the term proportional to Ceff

7 that was not

considered up to now. The explicit result for S`(µb, µc) and Sq(µb, µhc) can be inferred

from (3.19) and (3.20), respectively. The residual QED evolution from the B-meson LCDA

is obtained from (4.18) or the simpler version (4.20) by setting αs = 0, see (5.8). Explicitly

UQED
s (µhc, µs;ω) = exp

[
4π

αem(µs)

Qq (2Q` +Qq)

β2
0,em

(
g0(ηem) +

αem(µs)

2π
β0,em ln ηem ln

ω

µs

)]
DL−−→ exp

[
ΓQED
s

2

(
ln2 ω

µs
− ln2 ω

µhc

)]
, (6.18)

where for soft evolution ηem stands for ηem(µs, µhc) ≡ αem(µs)/αem(µhc), or, more simply,

by dropping the O(1) logarithm of ω/µs,

UQED
s (µhc, µs) = exp

[
4π

αem(µs)

Qq(2Q` +Qq)

β2
0,em

g0(ηem)

]
DL−−→ exp

[
− αem

2π

[
Qq(2Q` +Qq)

]
ln2 µs

µhc

]
. (6.19)

Here, similarly to (5.8), ΓQED
s ≡ Γs(αs, αem)− Γs(αs, αem = 0) is obtained at the one-loop

order from Γs in (3.13) by setting αs = 0.

10The present analysis clarifies that mBq should appear in the logarithm, because it arises from the

kinematic lepton momentum rather than the bottom quark mass.
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7 Bq → µ+µ− decay width

In the decay Bq → µ+µ− we encounter the peculiar situation that the numerically leading

amplitude at tree-level in αem, discussed in more detail below as A10 ∝ C10, is power-

suppressed compared to the amplitude A9 in (6.9), which on the other hand is suppressed

by αem, hence

A10 ∼ 1 · λ12, A9 ∼
αem

π
· λ10 · ln µhc

µc
. (7.1)

Indeed the hierarchy αem/π ∼ 1/420 compared to λ2 ∼ ΛQCD/mb ∼ 1/20 confirms that

A10 is numerically the most relevant amplitude, but in an imaginary world with a much

larger value of mb or a much larger electromagnetic coupling, the amplitude A9 would be

largest. As the decay width is proportional to |A10 +A9|2, the dominant effect of A9 is the

interference with A10. The investigation of the full QED effects at the subleading power in

1/mb, as would be required for A10 in the SCET approach, is a rather daunting task and

we leave it for the future. However, based on our derivations in the previous sections, we

discuss the leading effect, which requires only tree-level matching and leading-logarithmic

resummation.

7.1 Tree-level amplitude to Bq → µ+µ−

Here we derive the LL resummation of the formally power-suppressed but numerically

dominant amplitude A10 for Bq → `+`−. At this accuracy it is sufficient to match at tree

level and to employ the one-loop cusp anomalous dimensions of the relevant operators.

The fact that we restrict ourselves to the operators obtained from tree-level matching in

αem simplifies the operator structure; in particular it implies that in the SCETI operator

the light quark field must be soft, since otherwise the operator could not overlap with

the B-meson state at tree level. Due to the chiral structure of the weak EFT operators,

the lepton-mass term appears already after the hard matching leading to the well-known

helicity suppression of the amplitude. Hence, the relevant SCETI operator is

Õm = m`

[
qs(0)PR hv(0)

][
`C(0) γ5 `C(0)

]
, (7.2)

with the matching coefficient

Hm(µb) = N 2C10(µb)

mBq

(7.3)

at the hard scale µb. As one works to subleading order in λ, one must use the O(λ) relation

between the full theory fields and SCET fields, as derived for example in [25], to obtain

the above result. The SCETI RGE of the coefficient Hm at LL accuracy, i.e. neglecting

non-cusp parts of the anomalous dimension and possible operator mixing, reads

d

d lnµ
Hm(µ) = Γc ln

mBq

µ
Hm(µ) . (7.4)

It is governed by the collinear cusp anomalous dimension (3.13) encountered previously for

the power-enhanced amplitude in SCETI and SCETII.
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The decoupling of the hard-collinear modes of SCETI is trivial and yields the SCETII

operator (in position space)

J̃ A1
m = m` qs(0)PRhv(0)

[
Y †+Y−

]
(0)
[
`c(0)γ5 `c(0)

]
, (7.5)

with unit matching coefficient. Note that the jet function cannot depend on the soft quark

position along the light-cone at tree level, hence the operator remains local, unlike for

SCETI to SCETII matching of the power-enhanced amplitude A9. The RG evolution of

the matrix element of J A1
m is governed by the same cusp anomalous dimension as in SCETI

in (7.4). The amplitude in SCETII at the collinear scale is then given by

iA10 =
1

2
(−i)mBqFBq(µhc)m`[Z`Z`](µhc)Hm(µhc)[uc(p`)γ5vc(p`)]

=
1

2
(−i)mBqm` fBq e

S`(µb, µc)Hm(µb)[uc(p`)γ5vc(p`)]. (7.6)

In the first line the hard function is meant to be evaluated at the hard-collinear scale by

means of its SCETI RGE and further a SCETII RG evolution is implied for the matrix

element of 〈J A1
m 〉 ∝ Z`Z`FBq from the soft and collinear scale to the hard-collinear scale.

In the second line, we make use of the LL solution of the RGEs discussed in section 6.2 and

set [Z`Z`](µc) = 1. In particular, the same Sudakov factor eS`(µb, µc) between the hard and

collinear scales as in the power-enhanced amplitude (6.14) appears as an overall factor.

Moreover the hard function Hm enters now at the hard scale with value given in (7.3).

The static B-meson decay constant FBq(µhc) = F
(0)
Bq

(µhc) + αem/(4π)F
(1)
Bq

(µhc) +O(α2
em)

contains the term F
(1)
Bq

that contributes at the same order in αem as A9, but is power-

suppressed by λ2 compared to A9, and for this reason will be omitted. Further we replace

F
(0)
Bq

(µhc) by FBq(µhc), the static decay constant in the absence of QED, because the

difference in RG evolution does not contribute double logarithms. For the same reason, we

equate FBq(µhc) to the full QCD decay constant fBq , which is usually calculated on the

lattice within QCD.11 This is exact to the considered accuracy of tree-level matching at

the hard scale µb.

Since both, A9 and A10, share the same overall leptonic Sudakov factor, it proves

advantageous for later purposes to factor it from the sum of both amplitudes. We write

i(A10 +A9) ≡ eS`(µb, µc)
(
A10 [ucγ5vc] +A9 [uc(1 + γ5)vc]

)
, (7.7)

where we introduced the scalar reduced amplitudes A9,10, which can be extracted

from (6.14) and (7.6). An analogous reduced amplitude A7 is defined for the part of

the amplitude proportional to Ceff
7 . Its non-resummed one-loop expression can be read off

from (1.1). Moreover, the resummation of the leading logarithmic QCD (but not QED)

corrections in SCETI is also possible for the A7 contribution, because the operators which

give rise to the A7 part in SCETI have the same QCD anomalous dimension as the cor-

responding operators of the A9 part. Therefore, the amplitude A7 also receives the factor

eSq(µb, µhc) defined in (3.20), but its QED part should be dropped.

11The lattice calculation [2] includes electromagnetic contributions to meson masses to fix quark masses,

which leads to some isospin breaking for the Bq meson decay constants.
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7.2 Decay width and ultrasoft photons

So far we ignored ultrasoft photons below the soft scale µs. We now turn to the radiative

Bq → `+`− decay amplitude, and consider the matrix element with an arbitrary ultrasoft

state Xs consisting of photons and possibly electrons and positrons. It factorizes into the

non-radiative amplitude Ai discussed before and an ultrasoft matrix element

N∆B=1Ci
〈
``Xs

∣∣Qi∣∣Bs

〉
= Ai

〈
Xs

∣∣S†v`(0)Sv`(0)
∣∣0〉 , i = 9, 10. (7.8)

To prove this factorization formally we should match SCETII at a scale of order ΛQCD ∼ m`

to an effective theory that contains the B-meson field and heavy lepton fields with fixed

velocity label, in analogy with heavy-quark effective theory. In this theory ultrasoft photons

with virtuality much below m2
` ∼ Λ2

QCD have leading-power couplings to the charged leptons

but not to the electrically neutral B-meson. The decoupling of the ultrasoft photons from

the heavy leptons, `C → Sv``
(0)
C , gives rise to the ultrasoft Wilson lines Sv` in (7.8). The

lepton-velocity v` is defined via p` = E`v` and similarly for v`. At leading power in the 1/mb

expansion, the radiation originates only from the final-state leptons as the ultrasoft photons

do not couple to the neutral initial state. Formally, the matching of SCETII with quark

fields to the EFT with point-like meson fields is nonperturbative. We can nevertheless sum

the leading logarithms, because the B-meson is neutral and decoupled in the far infrared,

so we know that the IR logarithms arise from perturbative QED only.

The partial decay width is obtained after squaring the full amplitude (7.8) and sum-

ming over all ultrasoft final states with total energy less than ∆E

Γ[Bq → µ+µ−](∆E) =
mBq

8π
βµ

(∣∣A10 +A9 +A7

∣∣2 + β2
µ

∣∣A9 +A7

∣∣2)
×
∣∣∣eS`(µb, µc)∣∣∣2S(v`, v`,∆E), (7.9)

where βµ =
√

1− 4m2
µ/m

2
Bq

. We include here the amplitude A7 even though we do not

attempt to sum QED corrections for this amplitude. However we compute the leading

logarithmic QCD corrections to A7 and comment on this in section 8. The terms propor-

tional to |A9 + A7|2 are formally of O(α2
em). The first term in the parenthesis is due to

the pseudo-scalar lepton current [ucγ5vc] in (7.7), the second term β2
µ |A9 +A7|2 due to the

scalar term [ucvc]. The ultrasoft function

S(v`, v`,∆E) =
∑
Xs

∣∣〈Xs

∣∣S†v`(0)Sv`(0)
∣∣0〉∣∣2 θ(∆E − EXs) (7.10)

accounts for the emission of an arbitrary number of ultrasoft photons with total energy

EXs < ∆E.

The ultrasoft function should be further factorized to sum large logarithmic corrections

with the RG technique. This could be achieved by introducing another EFT below the

muon-mass scale similar to the SCET treatment of soft radiation in top-quark jets [46].

Instead, to avoid further technical complications, we use the QED exponentiation theorem

to write the full soft function as the exponent of the one-loop result

S(v`, v`,∆E) = exp

[
αem

4π
Q2
` S

(1)(v`, v`,∆E)

]
. (7.11)
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The one-loop result in the appropriate limit E` � mµ � ∆E is given by (for a result in

dimensional regularization, see e.g. [47])

S(1)(v`, v`,∆E) = 8

(
1 + ln

m2
µ

s``

)
ln

(
µ

2∆E

)
− 2

(
2 + ln

m2
µ

s``

)
ln
m2
µ

s``
− 4

3
π2 , (7.12)

where s`` denotes the invariant mass squared of the lepton pair. The µ dependence of the

ultrasoft function is cancelled by the explicit µc dependence of the non-radiative amplitude,

as seen in (7.13) below to the accuracy considered here, hence we set µ = µc. The second

line of (7.9), which multiplies the reduced amplitude squared, can be rewritten as the single

exponential. In the leading approximation we neglect the constant factor −4
3π

2 in S(1).

Then we find∣∣∣eS`(µb, µc)∣∣∣2S(v`, v`,∆E,µc)

= exp

{
αem

4π
Q2
`

[
8

(
1+ln

m2
µ

s``

)
ln

(
µc

2∆E

)
−2

(
2+ln

m2
µ

s``

)
ln
m2
µ

s``
− 4

3
π2−8 ln2 µb

µc

]}

= exp

{
2αem

π
Q2
`

[(
1 + ln

m2
µ

m2
Bq

)
ln

(
mBq

2∆E

)
+ 2 ln

mBq

µb
ln
µb
µc

+ ln2 mBq

µb
−
(

1 + ln
mµ

µc

)
ln
mµ

µc
− π2

6

]}
. (7.13)

Notice that since (7.12) is given only in the one-loop and not the formal LL approximation,

we use the double-logarithmic approximation (3.19) for S`(µb, µc), which gives the last term

in square brackets after the first equality. Within the same DL approximation, all terms in

the last line should be dropped, since they are at most single-logarithmic, given µc ∼ mµ,

µb ∼ mBq . We also set s`` = m2
Bq

,12 since the dependence of the RG evolution factors

and ultrasoft function on the hard scale arises from the kinematic variables entering the

cusp anomalous dimension, rather than from mb quark mass factors. This allows us to

rewrite (7.9) in the conventional form (Q2
` = 1)

Γ[Bq → µ+µ−](∆E) = Γ(0)[Bq → µ+µ−]

(
2∆E

mBq

)− 2αem
π

(
1+ln

m2
µ

m2
Bq

)
, (7.14)

with the non-radiative decay width

Γ(0)[Bq → µ+µ−] ≡ mBq

8π
βµ

(∣∣A10 +A9 +A7

∣∣2 + β2
µ

∣∣A9 +A7

∣∣2) . (7.15)

The universal ultrasoft photon corrections, which depend on ∆E, are now explicitly fac-

torized in the usual manner [19]. In [19] and other works based on Yennie-Frautschi-Suura

exponentiation [48], the scale mBq in the base 2∆E/mBq of the exponential is obtained by

extrapolating the cutoff of the point-like meson theory, which should be below ΛQCD, to

mBq . The EFT framework developed in this paper justifies this extrapolation in part, but

12The dependence of s`` on ∆E is a negligible power-suppressed effect.
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it also shows that there are additional, structure-dependent double logarithms. In (7.14),

these process-specific resummed leading-logarithmic QED corrections that depend on the

soft/collinear and hard-collinear scales are included in the amplitudes A9,10. The decay rate

is then written as the product of the resummed non-radiative decay width Γ(0)[Bq → µ+µ−]

and the exponentiated ultrasoft photon corrections. The SCET framework can in principle

be systematically extended to cover next-to-leading and higher-order logarithms, as well

as power corrections mµ/mBq .

8 Numerical results

The framework of SCET allows for a systematic factorization and resummation of leading

logarithmic QED and QCD corrections to the amplitude (7.7). In particular it allowed the

identification of three resummed contributions:

i) common virtual SCETI and SCETII QED corrections among the final-state leptons

to the amplitudes A9 and A10 between hard and soft/collinear scales in the Sudakov

factor eS`(µb, µc), which are combined with the contributions of ultrasoft photons at

the level of the decay width in section 7.2.

ii) virtual SCETI QED and QCD corrections to the power-enhanced amplitude A9 be-

tween the hard and hard-collinear scales given by the overall Sudakov factor eSq(µb, µhc)

in (6.17).

iii) virtual QED and QCD corrections within SCETII between the hard-collinear and

soft/collinear scales, for which the RG equation was used such as to arrange that

the input of the nonperturbative quantities is required at the hard-collinear scale,

avoiding in this way the necessity of QCD RG evolution below the hard-collinear

scale, as explained section 6.2. This part is given by the ω-dependent soft Sudakov

factor UQED
s (µhc, µs; ω) in (6.18) or the ω-independent version (6.19), which are both

equivalent at the LL accuracy.

We will start with the impact of points ii) and iii) on the power-enhanced amplitude A9

in section 8.1 and turn to point i) afterwards in section 8.2 when considering the branching

fraction of Bq → µ+µ−.

Throughout αs and αem denote the running couplings in the MS scheme with RGEs

given in appendix A.3. We use as initial value αs(mZ) = 0.1181, with mZ = 91.1876 GeV

and number of quark flavours nf = 5, and perform the running with the four-loop ex-

pressions, including threshold corrections from quark masses (MS scheme) at the threshold

crossings at µ4 = µb (nf = 4) and µ3 = 1.2 GeV (nf = 3). The RGEs for the hard function

in SCETI (3.16) and the matrix elements in SCETII (6.12)–(6.13) had been solved to LL

accuracy. In the numerical evaluation we will use values of αem at the typical scales of

SCETI and SCETII. For this purpose, we use as initial value 1/αem(mZ) = 127.955, and

perform the RG evolution to lower scales with the one-loop expression. In addition to the

quark thresholds given above, the τ -lepton is decoupled at its mass µτ ≈ 1.777 GeV.
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µhc
λB(µ0)
λB(µhc)

eSq(µb, µhc) eSq(µb, µhc) αs 1/αem

[GeV] QCD+QED only QCD QCD+QED

1.0 0.815 0.817 0.815 0.474 134.05

1.5 0.815 0.817 0.904 0.350 133.65

2.0 0.769 0.769 0.946 0.302 133.29

Table 2. The size of the SCETI Sudakov factor for fixed µb = 5.0 GeV and three different choices

of µhc. The column “only QCD” shows the effect when setting αem = 0 in the cusp anomalous

dimensions in (3.15). For convenience we provide αs and 1/αem (MS scheme) at the scale µhc.

8.1 Resummation effects for power-enhanced amplitude

The resummation of virtual QED and QCD corrections in SCETI to A9 in (6.17) is given

by the overall Sudakov factor eSq(µb, µhc) from (3.20). Evaluating this factor thus provides

a direct measure of the size of these corrections compared to the fixed-order result (1.1).

We calculate the Sudakov factor via numerical integration of the part of (3.15) which

containsQq, i.e. that corresponds to eSq(µb,µhc). The numerical integration includes the scale

dependence and threshold crossings of both gauge couplings. Since the µhc dependence of

the Sudakov factor is cancelled in large parts by the one of the B-meson LCDA φ+(ω;µhc),

which in turn is mainly driven by the scale dependence of its first inverse moment λB(µhc),

1

λB(µ)
≡
∫ ∞

0

dω

ω
φ+(ω; µ), (8.1)

the relevance of resummation is better assessed by multiplying eSq(µb,µhc) with the ratio

λB(µ0)/λB(µhc), where µ0 = 1 GeV is a fixed reference scale. The µhc dependence of

λB(µhc) due to QCD is approximated following [45], using as numerical inputs λB(µ0) and

σ1(µ0) given in table 3 below.

The numerical impact of the resummation in SCETI is a suppression of the fixed-order

result of A9 by about 20% as tabulated in the second column of table 2. The dependence

on µhc is also shown in figure 5 (solid line), where it reaches a maximal value of about

0.82 around µhc ≈ 1.2 GeV. In the relevant hard-collinear scale range µhc ∈ [1, 2] GeV,

the scale variation is relatively small. Note that for µhc < 1 GeV the strong coupling

αs increases rapidly, reaching for example αs ≈ 0.75 at µhc ≈ 0.7 GeV, such that the

perturbative evaluation becomes unreliable. As expected, the Sudakov factor itself has a

larger µhc dependence, varying in the larger range (0.80 − 0.95), as listed in the fourth

column of table 2 and shown in figure 5 (dashed line). The resummation effect is by far

dominated by the QCD evolution as is evident from comparing the columns “QCD+QED”

and “only QCD”. The difference of both implies that the resummation of only QED effects

yields tiny suppression of (0.1 − 0.3)% in agreement with the natural expectation of the

size of a logarithmically enhanced QED correction QqQ` × αem/π × ln2(µb/µhc) ∼ 0.2%.

The residual dependence on µhc displayed by the results in table 2 appears due to

the missing next-to-leading logarithmic corrections, as well as the approximation made to
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Figure 5. The SCETI Sudakov factor λB(µ0)
λB(µhc)e

Sq(µb, µhc) (solid) and eSq(µb, µhc) (dashed).

compute the scale-dependence of λB. In addition, the QED correction in (6.17) depends

also on the first logarithmic moment of the LCDA,

σ1(µ)

λB(µ)
≡
∫ ∞

0

dω

ω
ln

(
µ0

ω

)
φ+(ω; µ), (8.2)

where the latter involves the reference scale µ0 = 1 GeV. The scale dependence due to σ1

is not captured by the results in table 2. Further, a small residual QED µhc-dependence is

compensated by the SCETII QED evolution UQED
s (µhc, µs;ω) in (6.17).

Turning to point iii), we recall that the resummation of virtual QED and QCD cor-

rections in SCETII to A9 has been organized in (6.17) such that the nonperturbative

input to the B-meson LCDA is required at the scale µhc to avoid QCD evolution below

µhc. The resummation of QED effects from the soft/collinear to the hard-collinear scales

are contained in the Sudakov factor B-meson LCDA momentum-fraction dependent fac-

tor UQED
s (µhc, µs;ω) given in (6.18) or the LL-equivalent momentum-fraction independent

version (6.19).

To estimate the effect of QED resummation in SCETII, we use the simple exponential

model for the LCDA (see e.g. [40])

φ+(ω) =
ω

ω2
0

e−ω/ω0 , (8.3)

where ω0 = λB and evaluate the ratio of the amplitude (6.17) with the evolution factor to

the amplitude without it,

rω ≡

∫ ∞
0

dω

ω
UQED
s (µhc, µs;ω)φ+(ω)

[
ln
ωmBq

m2
`

− 1

]
∫ ∞

0

dω

ω
φ+(ω)

[
ln
ωmBq

m2
`

− 1

] . (8.4)

For simplicity we assumed that Ceff
9 is constant. On the other hand, if we use the ω-

independent and equally valid expression (6.19) for the evolution factor, we simply obtain
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r = UQED
s (µhc, µs), independent of the form of the B-meson LCDA. Evaluation of (8.4)

results in very small deviations of rω from unity. For µs = λB and µhc = 1 GeV, the rω is a

unity minus (1− 3)‰ depending on the value of λB. For µhc = 2 GeV, the rω differs from

unity by about (3−5)‰. The simpler expression r agrees with these deviations from unity

within about 25%, independent of whether one uses the LL or the DL versions of (6.18)

and (6.19). We conclude that the numerical impact of the resummation of QED corrections

in SCETII compared to the fixed-order result is very small. As reference value we quote

UQED
s (µhc, µs) = 1− 0.0015 at µhc = 1 GeV for λB = 275 MeV.

In summary, the discussion of points ii) and iii) has shown that the main numerical

effect of resummation on the power-enhanced amplitude A9 comes from the resummation

of QCD corrections in SCETI together with QCD running of the LCDA, constituting an

overall suppression factor

S9 ≡
λB(µ0)

λB(µhc)
eSq(µb, µhc) ∈ [0.77, 0.82] , (8.5)

that leads to a reduction of A9 of about 20 %, whereas SCETII QED resummation

from (6.18) can be safely neglected in (6.17). Thus, from the phenomenological perspective

it is justified to consider only QCD resummation on top of the one-loop QED correction,

once the leptonic Sudakov factor eS`(µb, µc) is extracted, see point i).

This observation allows us to give a result for the A7 amplitude including QCD resum-

mation, while the combined QCD and QED resummation is not yet feasible. Indeed, the

endpoint divergences, which spoil the factorization of the A7 amplitude are only related to

the QED effects.13 From the QCD perspective, the problem is equivalent to resummation

for the heavy-to-light tensor current instead of the (axial-) vector current relevant to A9.

This implies that the QCD cusp anomalous dimension is the same as in the A9 case14

and accordingly the leading-logarithmic Sudakov factors are equal, S7 = S9. The result is

then a uniform reduction of the power-enhanced QED correction “A9 +A7” relative to the

fixed-order result [21].

8.2 Branching fractions Bq → µ+µ−

We first provide the so-called non-radiative branching fraction for Bq → µ+µ− that is

found from the non-radiative decay width (7.15) as

Br
(0)
qµ ≡

Γ(0)[Bq → µ+µ−]

Γtot
q

. (8.6)

For the Bd meson the total decay width Γtot
d is given in by the average width of the light

and heavy Bd mass eigenstates. In case of the Bs meson the large decay-width difference

13The operator basis for the amplitude A7 is more complicated than for A9, see appendix B, but one can

prove that additional soft, collinear and hard-collinear fields that enter the SCETI and SCETII operators

relevant to A7 do not carry color charge.
14The non-cusp QCD anomalous dimensions are different for A9 and A7, due to different Dirac struc-

ture and normalization, but in principle next-to-leading logarithmic resummation of QCD effects could be

performed as well for both amplitudes, see for example [49].
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Parameter Value Ref. Parameter Value Ref.

GF 1.166379 · 10−5 GeV−2 [51] mZ 91.1876(21) GeV [51]

α
(5)
s (mZ) 0.1181(11) [51] mµ 105.658 . . .MeV [51]

α
(5)
em(mZ) 1/127.955(10) [51] mt 173.1(6) GeV [51]

mBs 5366.89(19) MeV [51] mBd 5279.63(15) MeV [51]

fBs |Nf=2+1 228.4(3.7) MeV [52] fBd |Nf=2+1 192.0(4.3) MeV [52]

fBs |Nf=2+1+1 230.3(1.3) MeV [52] fBd |Nf=2+1+1 190.0(1.3) MeV [52]

1/ΓsH 1.615(9) ps [53] 2/(ΓdH + ΓdL) 1.520(4) ps [53]

|Vcb|incl 0.04200(64) [54] λB(µ0) 275(75) MeV [45]

|VtbV ∗ts/Vcb| 0.982(1) [55, 56] σ1(µ0) 1.5(1.0) [45]

|VtbV ∗td| 0.0087(2) [55, 56] σ2(µ0) 3(2) [45]

VubV
∗
ud/VtbV

∗
td 0.018− i 0.414 [55, 56]

Table 3. Numerical input values for parameters: note that α
(5)
em(mZ) has been determined with

α
(5)
s (mZ) = 0.1187(16) in [51] and the corresponding ∆α

(5)
em,hadr(mZ) = 0.02764(7). The B-

meson decay constants are averages from the FLAG group for Nf = 2 + 1 from [57–61] and

for Nf = 2 + 1 + 1 from [2, 62–64]. The Bs,d lifetimes are prepared by HFLAV for the PDG

2018 review [51]. The same numerical values of λB and σ1,2 at the reference scale µ0 = 1 GeV

are used for Bs and Bd mesons. The values of the Wilson coefficients at µb = 5.0 GeV are

C1−6 = {−0.25, 1.01, −0.005, −0.077, 0.0003, 0.0009}, Ceff
7 = −0.302, C9 = 4.344 and C10 =

−4.198 from [21].

requires a time-integration that can be accounted for by using instead of Γtot
s the decay

width ΓHs of the heavy Bs-mass eigenstate [50]. According to the results of section 8.1, the

non-radiative part of the amplitude (7.7) is

A10 [ucγ5vc] +
(
S9A

fix
9 + S7A

fix
7

)
[uc(1 + γ5)vc] , (8.7)

where the numerically relevant resummation is now factored out explicitly as S7,9 from

the one-loop QED amplitudes Afix
7,9, which were found in [21], see (1.1). We have added

the fixed-order result of Afix
7 in the numerical analysis and keep S7 separately, although at

leading logarithmic order in QCD S7 = S9 as mentioned above.

The non-radiative time-integrated branching fraction of Bs → µ+µ− for central values

of the parameters collected in table 3 and using the Nf = 2 + 1 + 1 lattice result of fBs is

Br
(0)
sµ = 3.677 · 10−9 ×

(
1 +

GeV

103 · λB
[
S9 (−6.46 +1.27σ1)+S7 (4.74−1.54σ1+0.15σ2)

])
= 3.677 · 10−9 ×

(
1− 0.0166S9 + 0.0105S7

)
= 3.660 · 10−9. (8.8)

In the first line we keep the B-meson LCDA parameters and the Sudakov factors unevalu-

ated. The second line shows that A9 interferes destructively with A10 whereas A7 interferes

constructively. The separate contributions to the branching fraction due to A9 and A7 are
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rather large, about −1.7S9 % and +1.0S7 % as found previously [21]. Both contributions

cancel in part and lead to an overall reduction of the branching fraction of 0.5%, when

accounting for the Sudakov factor S9 ≈ S7 ≈ 0.8. The non-radiative branching fraction of

Bd → µ+µ− for central values of the parameters is

Br
(0)
dµ = 1.031 · 10−10 ×

(
1+

GeV

103 · λB
[
S9 (−6.04+1.18σ1)+S7 (4.67−1.51σ1+0.15σ2)

])
= 1.031 · 10−10 ×

(
1− 0.0155S9 + 0.0103S7

)
= 1.027 · 10−10. (8.9)

The numerical difference between Bs and Bd decays for the contribution proportional to

S9 is due to the terms proportional to the CKM factor VubV
∗
uq in (3.10).

Let us for completeness provide also a detailed error budget of the non-radiative branch-

ing fractions Bq → µ+µ−. We find

Br
(0)
sµ =

(
3.599

3.660

)[
1 +

(
0.032

0.011

)
fBs

+ 0.031|CKM + 0.011|mt

+ 0.006|pmr + 0.012|non-pmr
+0.003
−0.005|LCDA

]
· 10−9, (8.10)

Br
(0)
dµ =

(
1.049

1.027

)[
1 +

(
0.045

0.014

)
fBd

+ 0.046|CKM + 0.011|mt

+ 0.003|pmr + 0.012|non-pmr
+0.003
−0.005|LCDA

]
· 10−10, (8.11)

where we group uncertainties as follows:

i) main parametric long-distance (fBq) and short-distance (CKM and mt);

ii) remaining non-QED parametric (Γq, αs) and non-QED non-parametric (µW , µb and

higher order, see [4]);

iii) from the B-meson LCDA parameters λB and σ1,2 entering the power-enhanced QED

correction.

We provide two values of the branching fraction depending on the choice of the lattice

calculation of fBq for Nf = 2 + 1 (upper) and Nf = 2 + 1 + 1 (lower), employing averages

from FLAG 2019 [52]. Note that the small uncertainties of the Nf = 2 + 1 + 1 results

are currently dominated by a single group [2] and confirmation by other lattice groups

in the future is desirable. It can be observed that in this case the largest uncertainties

are due to CKM parameters, such that in principle they can be determined, provided the

experimental accuracy of the measurements is at the one-percent level. Still fairly large

errors are due to the top-quark mass mt = (173.1 ± 0.6) GeV, here assumed to be in the

pole scheme [4], where an additional non-parametric uncertainty of 0.2% is included (in

“non-pmr”) for the conversion to the MS scheme as in [4]. Further “non-pmr” contains a
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Figure 6. The radiative factor in (8.13) for Bs → µ+µ− in the range ∆E ∈ [10, 100] MeV for the

two values α−1
em = 134.28 (solid) and α−1

em = 136.0 (dashed).

0.4% uncertainty from µW variation and 0.5% further higher order uncertainty, all linearly

added, see also [4].

The radiative Bq → µ+µ− branching fraction including ultrasoft radiation with total

energy EXs < ∆E is obtained from (7.15) and (8.6) as

Brqµ(∆E) ≡ Br
(0)
qµ × Ω(∆E;αem) , (8.12)

with radiative factor

Ω(∆E;αem) ≡
(

2∆E

mBq

)− 2αem
π

(
1+ln

m2
µ

m2
Bq

)
(8.13)

from (7.14). ∆E corresponds to a window in the dilepton invariant mass s`` = (p` + p`)
2

around s`` = m2
Bq

defining the signal region in the experimental analysis for which our

effective theory framework is set up. The dependence of the radiative factor Ω on ∆E =

(m2
Bq
− s``)1/2 is shown in figure 6 for Bs mesons. One might consider ∆E ' 60 MeV as

an example of a larger value for the theory framework that requires ∆E � ΛQCD. In this

case the signal window contains about 88% of the non-radiative rate, whereas for example

the smaller signal window with ∆E ' 10 MeV still contains 84%. The sizes of the signal

windows in the first LHCb [12, 65] and CMS [13] analyses of Bs → µ+µ− were about ∆E '
±60 MeV and ∆E ' +83

−67 MeV around mBs , respectively.15 In comparison, the experimental

resolution in the dilepton-invariant mass is reported to be about 25 MeV in LHCb and

depending on the muon direction about (32− 75) MeV in CMS. More recent experimental

analyses do not use signal windows, but rather fit the modelled signal components of

Bs → µ+µ− and Bd → µ+µ− simultaneously with background components over a wide

15In the experimental analysis the signal window extends also above the upper boundary (s``)max = m2
Bq

of the phase space for Bq → `+`− + nγ due to resolution effects in the reconstruction of s``.
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range of s``. The modelling of the components involves also the simulation of photon

radiation with the help of PHOTOS [18]. We note that the systematic framework developed

in this work makes it advantageous to compare experimental data in a signal window to

corresponding theoretical predictions without the need for modeling or simulation.

Finally, we point out that the dependence on the value of αem in the exponent of

Ω(∆E;αem) slightly changes the value of the radiative factor. The associated parametric

uncertainty for ∆E = 60 MeV and the two values α−1
em = {134.28, 136.0}

Ω(60 MeV;αem) =

{
{0.8838, 0.8852} for Bs

{0.8848, 0.8862} for Bd
(8.14)

amounts to less than 0.2% for the two choices of αem. The first choice corresponds to

αem(1.0 GeV), whereas 1/αem(µc) = 136.0 represents the running at one-loop to the muon

mass scale, spanning a range of values that covers the renormalization scheme dependence

of αem. This uncertainty is comparable to the parametric QED uncertainties due to the

B-meson LCDA parameters in (8.10) and (8.11). It must be added when comparing the

predictions of Brqµ(∆E) with measurements, i.e. it must be accounted for when extracting

the non-radiative rate by experiments.

8.3 Rate asymmetries in Bq → µ+µ−

The decay of neutral Bq mesons into a muon pair µ+
λ µ
−
λ in a helicity configuration λ =

L,R allows to investigate further observables in measurements of its time-dependent rate

asymmetry

Γ[Bq(t)→ µ+
λ µ
−
λ ]− Γ[Bq(t)→ µ+

λ µ
−
λ ]

Γ[Bq(t)→ µ+
λ µ
−
λ ] + Γ[Bq(t)→ µ+

λ µ
−
λ ]

=
Cλq cos(∆mBq t) + Sλq sin(∆mBq t)

cosh(yq t/τBq) +Aλq sinh(yq t/τBq)
, (8.15)

provided the initial flavour of the Bq is tagged. The decay-width difference ∆Γq enters via

yq = τBq∆Γq/2, which is rather sizeable for the Bs system, ys = 0.066 ± 0.004 [51], but

can be neglected for the Bd system yd . 0.005 [51]. We refer to [50] for definitions and

further details.

The three observables are related by |Cλq |2 + |Sλq |2 + |Aλq |2 = 1. Note that a muon pair

µ+
λ µ
−
λ with definite helicity λ = L,R is not a CP eigenstate, but both are related under CP

transformation as CP (|µ+
Lµ
−
L 〉) = eiδCP (µ+µ−)|µ+

Rµ
−
R〉 with a convention-dependent phase

δCP (µ+µ−). Thus the observables Cλq , Sλq and Aλq are not CP asymmetries. The SM

predictions based on the LO QED amplitude A10 alone lead to vanishing Cλq = Sλq = 0.

The mass-eigenstate rate asymmetry Aλq = 1 because only the heavier Bq mass-eigenstate

can decay into leptons. The NLO QED amplitude A9 contains in addition to the dominant

amplitude involving VtbV
∗
tq the term proportional to the CKM element product VubV

∗
uq, and

hence a second weak (CP-violating) phase, as well as scattering (CP-conserving) phases

through Ceff
9 in (3.10), potentially changing these predictions. For the future it is important

to know at which level QED corrections in the SM induce a deviation from Cλq = Sλq = 0

and Aλq = 1 to disentangle them from new physics effects.

The suppression factors αem and (VubV
∗
uq)/(VtbV

∗
tq) in A9 suggest that the deviations

from the LO SM predictions will be very small. Due to the presence of a scattering phase
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we must generalize the results of [50] that were based on the assumption of only additional

weak phases. The muon-helicity dependent observables are given as

Cλq =
1− |ξλq |2
1 + |ξλq |2

, Sλq =
2 Im ξλq

1 + |ξλq |2
, Aλq =

2 Re ξλq
1 + |ξλq |2

, (8.16)

where

ξλq = −S + ηλP

S − ηλP
, with ηL/R = ±1 . (8.17)

The barred quantities P = P [ϕW → −ϕW ] and S = S[ϕW → −ϕW ] are obtained from the

unbarred ones after reverting the signs of all CP-violating phases ϕW . We introduced here

P =
A10 +A9 +A7

m`mBqfBqN
, S = βµ

A9 +A7

m`mBqfBqN
. (8.18)

The generalized expressions (8.16) in terms of P , P and S, S can be derived straight-

forwardly. We find

Cλq =
Bλ −Bλ
Bλ +Bλ

, Sλq =
2 Im B̃λ

Bλ +Bλ
, Aλq =

2 Re B̃λ

Bλ +Bλ
, (8.19)

where

Bλ = |P |2 + |S|2 + ηλ
(
PS∗ + SP ∗

)
, (8.20)

Bλ = |P |2 + |S|2 − ηλ
(
PS
∗

+ SP
∗)
, (8.21)

B̃λ = PP
∗ − SS∗ + ηλ

(
SP
∗ − PS∗

)
. (8.22)

The linear combinations Cq ≡ 1
2(CLq + CRq ) and Sq ≡ 1

2(SLq + SRq ) are CP-odd, while

∆Cq ≡ 1
2(CLq − CRq ) and ∆Sq ≡ 1

2(SLq − SRq ) are CP-even quantities, see for example the

related discussion [66] on time-dependent rates in the B0 → π∓ρ± systems.

The assumption of only weak phases implies P = P ∗ and S = S∗, and leads to

significant simplifications as shown in [50]. In the following we do not make this general

assumption, but we use that the amplitudes A10 and A7 are real within the approximations

adopted in this paper, i.e. do not contain neither weak nor scattering phases, and further

that the amplitudes A7,9 � A10 are suppressed by a factor αem. The expansion in αem

yields

Cλq = −Re
[
A9 −A9 + ηλ

(
2A7 +A9 +A9

)]
A10

,

Sλq =
Im
[
A9 −A9 + ηλ

(
A9 +A9

)]
A10

, (8.23)

Aλq = 1− 2(A7)2 + (1 + ηλ)|A9|2 + (1− ηλ)|A9|2 + 2A7 Re
[
(1 + ηλ)A9 + (1− ηλ)A9

]
(A10)2

,

where we further use βµ ≈ 1 in S, which is numerically well justified for muons. Note that

for Aλq the first non-vanishing deviation from unity appears only at O(α2
em).
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The expressions show that in the absence of a weak phase difference (i.e. when A9 =

A9), the QED corrections imply a modification of the observables

Cλq = −ηλ
2 Re[A7 +A9]

A10
, Sλq = ηλ

2 Im[A7 +A9]

A10
, Aλq = 1− 2

|A7 +A9|2
(A10)2

. (8.24)

from their naive values 0, 0, 1. We added ImA7 = 0 in the numerator of Sλq to make the

result appear in line with Cλq and Aλq . As expected, the CP-odd observables Cq, Sq vanish,

since there is no CP-violating phase, while ∆Cq = CLq , ∆Sq = SLs are non-zero though

small. Cλq and Sλq still depend on the muons’ helicity through ηλ, whereas Aλq becomes

independent on the helicity. The expressions (8.24) are very good approximations for the

case of Bs mesons, where the VubV
∗
us term in the amplitude is negligible due to the strong

suppression |(VubV ∗us)/(VtbV ∗ts)| . 0.005 in (3.10). In consequence [21]16

Cλs = +ηλ 0.6% , Sλs = −ηλ 0.1% , As = 1− 2.0 · 10−5 . (8.25)

While the first measurement of As = 8.2 ± 10.7 from LHCb [16] suffers from huge errors,

a future deviation from the SM prediction As = 1 at LO in QED can be safely attributed

to non-standard effects in view of the tiny QED contributions.

On the other hand, for the Bd system the expressions (8.23) must be used. Here

the weak phase in (VubV
∗
ud)/(VtbV

∗
td) leads to differences among the two helicities, and we

therefore provide

Cd = −0.08% , Sd = +0.03% , ALd = 1− 1.4 · 10−5 ,

∆Cd = +0.60% , ∆Sd = −0.13% , ARd = 1− 2.4 · 10−5 .
(8.26)

We find similar magnitudes as for the Bs system, but non-vanishing CP asymmetries Cd
and Sd, which are suppressed by a factor of a few compared to the CP-conserving quantities

∆Cd, ∆Sd.

In summary we find tiny contributions from the power-enhanced NLO QED amplitudes

A7,9 to the rate asymmetries in Bq → µ+µ− decays, leaving these observables as “null

tests” at the percent level of the SM. The generated CP asymmetries in Bd → µ+µ− are

about |Cd|, |Sd| ≈ 0.1% and are strongly suppressed in Bs → µ+µ−. Note that there are

other, even smaller higher-order corrections to the rate asymmetries in the SM, such as

for example neutral Higgs boson penguin diagrams, which give rise to higher-dimensional

operators than dimension six at the electroweak scale, suppressed by (mb/mW )2 ∼ 10−3.

9 Summary and conclusions

We have developed a systematic treatment of virtual and real QED effects for the power-

enhanced QED contribution to Bq → µ+µ−, previously reported in [21], for the case when

the energy of undetected photons ∆E is small compared to the typical scale of the QCD

binding energy and the muon mass. The treatment includes the resummation of large

QED logarithms from various scales. The effects from the process-specific energy scales set

16Note the missing factor ηλ in eq. (20) of [21].

– 45 –



J
H
E
P
1
0
(
2
0
1
9
)
2
3
2

by the external kinematics and internal dynamics of Bq → µ+µ− are factorized with the

help of soft-collinear effective theory (SCET) starting at the hard scale of order of the B-

meson mass mBq in a two-step matching. First hard fluctuations on the heavy meson mass

scale are decoupled in the matching on SCETI, and subsequently hard-collinear modes

with virtuality mBqΛ are decoupled in the matching onto SCETII, which contains collinear

and soft degrees of freedom of order Λ. Finally we treat the remaining ultrasoft QED

interactions in the limit of static heavy leptons.

Due to the double helicity and annihilation suppression of the Bq → µ+µ− amplitude

in the absence of QED corrections, the power-enhanced amplitude analyzed in this paper

is actually an example of subleading-power resummation in SCET. The SCET framework

allows us to resum the large QCD and QED logarithmic corrections systematically and

reveals a lepton-mass induced operator mixing between so-called A-type and B-type SCET

collinear operators as the origin of the leading logarithmic correction. We derive a SCETII

factorization theorem for the non-radiative amplitude, for the contributions due to the

weak semileptonic operators Q9 and Q10. The formula includes “structure-dependent” log-

arithms beyond the standard Yennie-Frautschi-Suura (YFS) exponentiation. After squar-

ing the amplitude, the result is organized such that the standard exponentiated logarithms

are factorized and the process-specific terms are made explicit. We provide the relevant

operator definitions, which facilitates the reuse of existing results within our formalism

avoiding double-counting. We emphasize that the standard YFS approach contains the

implicit assumption that the cutoff on virtual photon effects, which should be below the

scale of the inverse size of the B-meson for the latter to be treated as point-like, can be

raised to the B-meson mass scale. Our result justifies this procedure to a certain extent

and gives a precise expression for the corrections to this extrapolation.

On the quantitative side, we performed the resummation at the leading-logarithmic

level in both, the QCD and the QED coupling. We find that once the standard YFS expo-

nent is extracted, the relevant effect comes from QCD logarithms. For practical purposes it

is therefore sufficient to improve the previous one-loop QED calculation [21] by QCD loga-

rithms, which results in an approximately 20% reduction of the power-enhanced amplitude.

We updated the Bs,d → µ+µ− branching fractions and provided an estimate of the present

theoretical uncertainty. We also discussed various rate asymmetries, including CP violation

at the permille level in the Bd decay mode that arises entirely from the power-enhanced

QED correction. These results quantify the SM background to New Physics searches in

what would be “null observables” in the absence of QED.

The derivation of the SCETII factorization theorem shows the need of generalizing the

concepts of the B-meson decay constant and light-cone distribution amplitudes (LCDA) in

the presence of QED. We establish that even in very simple processes QED corrections are

non-universal beyond the leading logarithmic approximation. The coupling of soft photons

to final-state charged particles renders the B-meson matrix elements dependent on the

soft Wilson lines, which carry information on the charge and direction of the final-state

particles. Upon expansion in the QED coupling, this necessitates the inclusion of hadronic

matrix elements, which are non-local time-ordered products. This has to be considered

when these quantities are evaluated with nonperturbative methods, such as lattice gauge
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theory. The situation becomes even more complicated for exclusive semileptonic decays,

where different process-dependent nonperturbative objects have to be defined for different

phase-space regions. The number of nonperturbative objects will proliferate, as in this case

it will also be necessary to include QED effects for the final-state hadrons.
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A SCET conventions and results

Throughout we use the definitions

g⊥µν ≡ gµν −
nµ+n

ν
−

2
− nµ−n

ν
+

2
, ε⊥µν ≡ εµναβ

nα+n
β
−

2
, (A.1)

and the convention ε0123 = −1 such that

Tr[γµγνγαγβγ5] = −4iεµναβ , σµνγ5 =
i

2
εµναβ σ

αβ . (A.2)

The running QCD and QED couplings in the MS scheme are denoted as αs and αem,

respectively. They obey the RG equations

dαi
d lnµ

= βi(αs, αem) = −2αi
αi
4π
β0,i +O(α3

i ), i = (s, em), (A.3)

which decouple at the leading order. The one-loop contributions are

β0 =
11

3
Nc −

2

3
nf , β0,em = −4

3

[
Nc(nuQ

2
u + ndQ

2
d) + n`Q

2
`

]
, (A.4)

where Nc = 3 and nf = nu +nd is the total number of active quark flavours. The separate

up-type quark (Qu = +2/3), down-type quark (Qd = −1/3) and charged lepton (Q` = −1)

numbers are denoted as nu, nd and n`, respectively.

A.1 Lagrangians

The leading-power Lagrangian of a hard-collinear fermion fC in SCETI reads [67, 68]

L(0)
f = f̄C

(
in−D + i /DC⊥

1

in+DC
i /DC⊥

)
/n+

2
fC . (A.5)

The capital subscript C is used in SCETI to denote collinear fields with hard-collinear

and collinear scaling. The field fC represents either the light quark or the lepton fields

in table 1. The corresponding anti-hard-collinear field is denoted by C → C and its

Lagrangian is obtained by the replacement n+ ↔ n−. The covariant derivatives are

in−D = in−∂ + eQf
[
n−AC + n−As(x−)

]
+ gs

[
n−GC + n−Gs(x−)

]
, (A.6)

iDC = i∂ + eQfAC + gsGC , (A.7)
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where Aµ and Gµ = GAµT
A denote the photon and gluon fields, respectively, and their

subscripts C and s distinguish the hard-collinear and soft fields. The Qf denotes the

electric charge of f , whereas the generators of QCD for the fundamental representation are

denoted as TA. The QED and QCD coupling constants are e =
√

4παem and gs =
√

4παs,

respectively. Fields without argument are taken at position x. For the soft fields, their

multipole expansion in SCETI interactions with collinear fields [68] is made explicit by the

argument x∓ ≡ (n±x)n∓/2.

The operators in SCETI have to be gauge-invariant under hard-collinear QED and

QCD gauge transformations, which is achieved by combining fC with appropriate Wilson

lines of hard-collinear photons and gluons

WfC(x) ≡ exp

[
ieQf

∫ 0

−∞
ds n+AC (x+ sn+)

]
, (A.8)

WC(x) ≡ P exp

[
igs

∫ 0

−∞
ds n+GC (x+ sn+)

]
, (A.9)

respectively. The Wilson lines WfC in QED depend on the charge Qf of fC , whereas the

QCD Wilson lines WC involve the path-ordering operator P. There are analogous anti-

hard-collinear Wilson lines WfC and WC , obtained by n+ → n−. Depending on fC , the

following invariant building blocks under hard-collinear gauge transformations appear

lepton: fC = lC → `C = W †`C lC , (A.10)

quark: fC = ξC → χC =
[
WξCWC

]†
ξC , (A.11)

with analogous building blocks for anti-hard-collinear leptons `C and quarks χC that involve

WfC and WC . The collinear fields in the main text refer to these collinear-gauge invariant

fields including these collinear Wilson lines.

The leading-power Lagrangian of the soft light quark qs with mass mq and the heavy

quark hv

Ls = q̄s(i /Ds −mq)qs + h̄v(iv ·Ds)hv (A.12)

contains the covariant derivative with soft gauge fields only. It is the same for SCETI

and SCETII.

In addition we need the subleading SCETI interaction involving both, the soft and

hard-collinear light quarks [31]

L(1)
ξq = qs(x−)

[
WξCWC

]†
(x) i /DC⊥ ξC(x) + h.c. (A.13)

and analogously for anti-hard-collinear fields with the replacements C → C, n+ ↔ n−
and x− → x+. Further the mass-suppressed Lagrangian [69] for the hard-collinear leptons

is needed

L(1)
m = m` lC

[
i /DC⊥,

1

in+DC

]
/n+

2
lC . (A.14)
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In SCETI the hard-collinear and soft fields are decoupled at leading power by the field

redefinitions [70]

fC(x) = Yf+(x−)YQCD+(x−) f
(0)
C (x), fC(x) = Yf−(x+)YQCD−(x+) f

(0)

C
(x), (A.15)

if fC (fC) creates an outgoing antiparticle. If it destroys an incoming particle, Y instead

of Y is used. Here the QED Wilson lines with soft gauge fields are defined as follows:

outgoing particles: Y †f±(x) = exp

(
+ieQf

∫ ∞
0

ds n∓As(x+ sn∓) e−εs
)
, (A.16)

outgoing antiparticles: Yf±(x) = exp

(
−ieQf

∫ ∞
0

ds n∓As(x+ sn∓) e−εs
)
, (A.17)

incoming particles: Y f±(x) = exp

(
+ieQf

∫ 0

−∞
ds n∓As(x+ sn∓) eεs

)
, (A.18)

incoming antiparticles: Y
†
f±(x) = exp

(
−ieQf

∫ 0

−∞
ds n∓As(x+ sn∓) eεs

)
, (A.19)

where ε is introduced to ensure the convergence of the integral. Similarly, for QCD,

outgoing particles: Y †QCD±(x) = P exp

(
+igs

∫ ∞
0

ds n∓Gs(x+ sn∓) e−εs
)
, (A.20)

outgoing antiparticles: YQCD±(x) = P exp

(
−igs

∫ ∞
0

ds n∓Gs(x+ sn∓) e−εs
)
, (A.21)

incoming particles: Y QCD±(x) = P exp

(
+igs

∫ 0

−∞
ds n∓Gs(x+ sn∓) eεs

)
, (A.22)

incoming antiparticles: Y
†
QCD±(x) = P exp

(
−igs

∫ 0

−∞
ds n∓Gs(x+ sn∓) eεs

)
. (A.23)

The new hard-collinear fields with superscript (0) do not have interactions with soft fields at

leading power, and after the decoupling transformation the superscript is dropped. Further,

in the main text we omit the label f on Yf±, whenever fC = `C is a lepton or anti-lepton,

see (4.5).

The SCETII is obtained from SCETI by integrating out the modes with hard-collinear

virtuality. The leading-power Lagrangian of a collinear fermion fc in SCETII now includes

its mass mf [68, 69],

L(0)
f = f c

[
in−Dc + (i /Dc⊥ −mf )

1

in+Dc
(i /Dc⊥ +mf )

]
/n+

2
fc . (A.24)

The SCETII covariant derivative iDc = i∂ + eQfAc + gsGc does not contain the soft

gauge field, in distinction to the case of SCETI in (A.6), because the interaction between a

single soft mode and collinear modes would necessarily create a mode with hard-collinear

virtuality. Thus in SCETII there is no need to perform a decoupling transformation to

achieve factorization of soft and collinear sectors. The gauge-invariance of the SCETII

operators under collinear gauge transformations is achieved analogously to the case of
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SCETI with the help of collinear QED and QCD Wilson lines Wfc and Wc, respectively,

which are obtained from (A.8) and (A.9) by the replacement C → c. The collinear gauge-

invariant building block `c for leptons is then formed analogously to (A.10).

The collinearly gauge-invariant building block

Aµc⊥ = e

[
Aµc⊥ −

i∂µ⊥n+Ac
in+∂

]
, (A.25)

of the collinear QED gauge field appears in SCETII operators as well as the anti-collinear

version defined through the replacements c → c and n+ → n−. As a consequence of

the decoupling of hard-collinear modes, the SCETII soft fields are dressed by soft Wilson

lines. For the qs[. . .]hv bilinear they combine to the finite-distance Wilson line Y (x, y)

introduced in (4.6). The relation of this finite-distance Wilson line Y (vn−, 0) that appears

in (4.1), (4.2) to the infinite-distance Wilson lines defined above can be seen from the

identity

qs(vn−)Y (vn−, 0)hv(0) =
[
qs(vn−)Y q+(vn−)Y QCD+(vn−)

][
Y
†
QCD+(0)Y

†
q+(0)hv(0)

]
.

(A.26)

These soft Wilson lines are necessary to maintain invariance of the non-local soft operators

under soft QCD and QED gauge transformations.

A.2 Renormalization conventions

The convention of the operator renormalization follows [26]. The renormalization condition

of the matrix element of an operator OP with a suitable choice of external states denoted

by
〈
. . .
〉

is given as

〈OP ({φren}, {gren})〉ren =
∑
Q

ZPQ
∏
φ∈Q

Z
1/2
φ

∏
g∈Q

Zg〈OQ,bare({φren}, {gren})〉 . (A.27)

Here φren and gren denote the renormalized fields and parameters, such as coupling constant

or masses, out of which the operator OQ is composed. The mixing of operators OQ into

OP is given by the corresponding entries ZPQ = (Z)PQ of the renormalization matrix of

the operators. The anomalous dimension matrix Γ is defined as

Γ = −
(

d

d lnµ
Z

)
Z−1 = Z

d

d lnµ
Z−1, (A.28)

which implies renormalization group equations for the operators and Wilson coefficients as

d

d lnµ
OP = −

∑
Q

ΓPQOQ,
d

d lnµ
CP =

∑
Q

ΓQPCQ. (A.29)

Operators in SCET depend on continuous variables such as light-cone positions or their

Fourier-conjugates, the momentum fractions. These are included in the index P . When

necessary, the sums in the above equations should therefore be understood as convolutions

either in position or in momentum space.
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The renormalization condition of the one-loop matrix element of an operator OP is

determined from

finite = 〈OP,bare〉1-loop +
∑
Q

δZPQ + δPQ

1

2

∑
φ∈P

δZφ +
∑
g∈P

δZg

 〈OQ,bare〉tree ,

(A.30)

where at one-loop the renormalization constants are expanded as ZPQ = δPQ + δZPQ and

Zi = 1 + δZi for i = φ, g.

A.3 SCETI renormalization

The one-loop anomalous dimension of the SCETI operators O9,10 and O9,10 of section 3.1

can be obtained by adapting [26, 34, 37] to the case of QED. These operators contain two

collinear sectors and one soft sector, the latter consisting of the heavy quark field hv. For

example, in O9,10, the collinear sector in n+ direction comprises the light quark field χC
and the lepton field `C , thus representing an F = 2 operator of the form considered in [26],

whereas the second collinear sector (called anti-collinear) in the n− direction contains the

single anti-lepton `C . The one-loop diagrams that determine the renormalization constant,

fall into two classes: i) with soft photon exchange between all four external lines17 and

ii) from collinear photon exchange that is restricted to each collinear sector separately.

The dependence of the soft and collinear contributions on the infrared regulator cancels in

their sum.

The SCETI operators do not mix due to their particular Dirac structure. Besides the

cusp part of the anomalous dimension given in (3.12), the remainder of the QED part of

the one-loop anomalous dimension in (3.14) reads

γi(x, y) = δ(x− y)
[
Q2
` (4 lnx− 6) +Q`Qq4 lnx+Q2

q(4 lnx− 5)
]

+ 4Q`Qq

[
θ(x− y)

x

y

([
1

x− y

]
+

− 1

)
+ θ(y − x)

x

y

([
1

y − x

]
+

− 1

)]
.

(A.31)

We use bar-notation for momentum fractions, x ≡ 1 − x etc. The plus distribution is

defined as

[f(x, y)]+ = f(x, y)− δ(x− y)

∫ 1

0
dzf(z, y) . (A.32)

This result can be obtained from [26]. However, there the N -jet operator does not contain

soft fields. Introducing the heavy quark field as a possible building block modifies the soft,

but not the collinear one-loop contribution. Since soft loops do not change the momentum

fraction of the collinear fields, only the part proportional to δ(x − y) is modified. For

diagrams with soft photon exchange with the soft heavy quark the coefficient of the cusp

logarithm is one half of that for soft loops connecting two different collinear directions, and

one has to replace sij → µ(n−v)(n+pj). In addition, the colour generators are replaced

by appropriate electric charge factors and one has to contract spinor indices according to

17Soft photon exchange within a single collinear direction vanishes.
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the definition of the operator. It is permitted to use four-dimensional identities to reduce

the basis of Dirac matrices. We also checked this procedure by explicit computation of the

anomalous dimension of the SCETI operators without using results of [26].

The general solution of the RGE (3.11) of the hard functions due to the cusp anomalous

dimension, neglecting the running of αem, can be written as

Hi(u, µ)

Hi(u, µb)
=

(
mBq

µb

)aΓ

exp

[
−
∫ αs(µ)

αs(µb)
dαs

ΓI
cusp(αs, αem)

βs(αs)

∫ αs

αs(µb)

dα′s
βs(α′s)

]
, (A.33)

with

aΓ =

∫ αs(µ)

αs(µb)
dαs

ΓI
cusp(αs, αem)

βs(αs)
(A.34)

and βs(αs) the beta function of the strong coupling as defined in (A.3).

A.4 SCETII renormalization

The regularization of UV and IR divergences in SCETII is not as simple as in SCETI. First

we note that the presence of the lepton mass in the collinear and anti-collinear contributions

in figure 4(b) and figure 4(c) does not regularize all IR divergences. We therefore use an

IR regulator inspired by introducing an off-shellness for external lines in corresponding

diagrams in SCETI before performing the decoupling transformation. In the diagrams with

soft photon exchange in figure 4(a), the IR regulator has to be introduced by modifying

the i0+ prescription in a manner consistent with SCETI, i.e. the appropriate Wilson lines

are regularized by a parameter related to the off-shell momentum p2
` of the original hard-

collinear fields before the decoupling of the soft modes. This implies a regulator in the

propagators that originate from soft Wilson lines Y± in the following way:

diagram 3 : [n+`− i0+] → [n+`− δ` − i0+]

[n−`− i0+] → [n−`− δ` − i0+]

diagram 4 : [n+`+ i0+] → [n+`+ δ` + i0+]

[n−`+ i0+] → [n−`+ δ` + i0+]

diagram 5 : [n+`− i0+] → [n+`− δ` − i0+]

diagram 6 : [n+`− i0+][n−`+ i0+] → [n+`− δ` − i0+][n−`+ δ` + i0+] ,

(A.35)

where ` denotes the loop momentum, and δ` ≡ p2
`/n+p` and δ` ≡ p2

`
/n−p`. The cancellation

of the IR regulators then takes place between the soft-photon exchange diagrams 3, 4 and

5 of figure 4(a). Another cancellation occurs between diagram 6 of figure 4(a) and the

collinear/anti-collinear diagrams in figure 4(b) and figure 4(c).

The results for the renormalization constants entering (4.14) are

ZQED
s (ω, ω′) = δ(ω′ − ω)

[
Q2
q

(
1

ε2
+

1

ε
ln
µ2

ω2
− 1

ε

5

2

)
+ 2Q`Qq

(
1

ε2
+

1

ε
ln
µ2

ω2

)]
−Qq(Qq +Q`)

2

ε
F (ω, ω′)

(A.36)
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for the QED contribution, while the universal QCD part coincides with the well-known

expression [38]

ZQCD
s (ω, ω′) = δ(ω′ − ω)CF

[
1

ε2
+

1

ε
ln
µ2

ω2
− 1

ε

5

2

]
− 2CF

ε
F (ω, ω′) . (A.37)

The common function F is

F (ω, ω′) ≡
[
θ(ω − ω′)
(ω − ω′) +

ω θ(ω′ − ω)

ω′(ω′ − ω)

]
+

. (A.38)

The plus distribution for the soft convolutions is defined as∫ ∞
0

dω′
[
f(ω, ω′)

]
+
g(ω′) =

∫ ∞
0

dω′f(ω, ω′)
[
g(ω′)− g(ω)

]
. (A.39)

The collinear renormalization constants in (4.41) and (4.42) are

Z
(1)
c = −αem

4π
Q2
`

[
1

ε2
+

1

ε
ln

−µ2

(n−pc)(n+pc)
+

3

2ε

]
, (A.40)

Zc,(1)
mχ = −αem

4π
Q2
`

[
1

ε2
+

1

ε
ln

−µ2

(n−pc)(n+pc)
− 3

2ε

]
, (A.41)

Z
c,(1)
Aχ (w,w′) = −αem

4π
Q2
`

{[
1

ε2
+

1

ε
ln

−µ2

w2(n−pc)(n+pc)
+

3

2ε

]
δ(w − w′)

+
1

ε
γAχ,Aχ(w,w′)

}
. (A.42)

We note that Z
c,(1)
mχ receives also a contribution due to the renormalization of the lepton

mass appearing in the definition J A1
mχ. The anomalous dimension γAχ,Aχ,

γAχ,Aχ(w,w′)

2
= −w + θ[w′ − w]

w′ − w
w′

+ θ[w − w′] 1

w′

(
w′

w
− w − w′

)
, (A.43)

can be extracted from the results given in [26, 37], and is due to the two diagrams in fig-

ure 4(c) with Ac⊥ in the loop.

B SCET operators

In this appendix, we discuss the construction of the SCETII operator basis for the power-

enhanced correction to Bq → µ+µ−. We first note that classifying the operators in SCETI

→ SCETII matching is substantially more complicated than classifying SCETI operators

in the matching of the effective weak Hamiltonian to SCETI. The reason is that although

SCETI operators are non-local, the non-locality of collinear fields is related to the O(1)

inverse derivative 1/(in+∂). For a SCETI operator that scales as λn, the power of n

can therefore never be smaller than the scaling of the products of fields contained in the

operator. In SCETI → SCETII matching, however, integrating out the hard-collinear

modes leads to non-locality of soft fields related to 1/(in−∂s) ∼ 1/λ2 from the hard-

collinear propagators, hence the above statement does not hold. Part of the construction
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of the operator basis therefore consists in constraining the number of times such inverse

derivatives can occur in the operator. A systematic procedure for constructing the SCETII

operator basis when there is a single collinear and a soft sector, has been described in [25].

We adapt this procedure developed for heavy-to-light form factors to the present situation.

Here we are interested in SCETII operators with the scaling λ10 of the power-enhanced

Bq → µ+µ− amplitude, which can arise in the matching of Q9,10 and Q7.

We first consider the possibility of a SCETI operator without hard-collinear or hard-

anti-collinear fields. Since the collinear, anti-collinear and soft fields do not interact, such

operators must have the flavour quantum numbers of the external state to have non-

vanishing overlap. The operator with the smallest λ scaling is qsΓshv `cΓ`c ∼ λ10. However,

the chiral structure of the effective weak Hamiltonian implies that the operator has overlap

with a pseudoscalar B meson only after a chirality flip by the lepton mass term. Since

in matching to SCETI the λ2-suppression cannot be compensated by 1/(in−∂s) ∼ 1/λ2,

this results in a λ12 operator, which is, in fact, the operator (7.2) that contributes to the

standard non-enhanced Bq → µ+µ− amplitude in the absence of QED effects. We conclude

that any SCETI operator relevant to the power-enhanced amplitude must contain at least

one hard-collinear field, which leads to non-trivial SCETI → SCETII matching.

Any relevant SCETI operator must contain the heavy quark field hv, at least one hard-

collinear field as concluded above, and at least one anti-collinear or anti-hard-collinear field.

As always, the corresponding operators with (hard-) collinear and anti(-hard)-collinear

modes interchanged also exist. The following discussion is phrased for the first case and

holds with obvious modifications for the second. With the power counting of fields as given

in table 1, the field content of the operators with the smallest λ scaling is

λ5 : χhchvAhc⊥ ,
λ6 : 1) χhchv`hc`hc, 2) χchvAhc⊥, 3) χhchvAc⊥,

4) χhchvAhc⊥ × {Ahc⊥,Ahc⊥},
(B.1)

and so on. For every operator there is another operator with (hard-) collinear and anti

(hard-) collinear fields exchanged. We then need to determine the λ suppression factors

incurred when the hard-collinear fields convert into soft and collinear fields through SCETI

time-ordered products. From the discussion below it will become clear that operators that

scale as λ7 cannot match to SCETII operators with λ10 scaling.

We begin with the derivation of the SCETII operator basis for the matching of the semi-

leptonic operators Q9,10 in the effective weak Hamiltonian, which is the case discussed in

the main text. We first note that the operator with field content χ̄hchvAhc⊥ cannot be

generated at O(λ5) from the operators Q9,10. To obtain χ̄hchvAhc⊥ from hard matching

to SCETI the lepton fields in Q9,10 must be contracted and a anti-hard-collinear photon

field attached. For the vectorial operators Q9,10 this results in ∂µAµ or ml σ
µνFµν , which

both lead to SCETI operator that count as λ7. We will come back to the O(λ5) operator

below, where we briefly discuss the operator basis in the matching of Q7, but for now we

proceed with the O(λ6) operators in the above list.
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The operators 2) and 3) can immediately be discarded, since the collinear (case 2))

or anti-collinear (case 3)) field content does not have the correct lepton flavour number to

overlap with the `+`− state. For example, the collinear antiquark field χc can never turn

into a collinear state with lepton number one. In case of operator 4) adding more fields to

the O(λ5) operator does not allow one to overcome the above suppression. This leaves the

operator χhchv`hc`hc as the only candidate O(λ6) SCETI operator.

It is easy to see that this operator does contribute at O(λ10) to the amplitude in

question. At tree-level, this involves the SCETI → SCETII matching relations

`hc
λ→ `c, `hc

λ→ `c, χhc
λ2

→ 1

in−∂
QqeA/c⊥

n/−
2
qs (B.2)

and their hermitian conjugates. The last relation is taken from section 3.2.1 of [25], and

describes the splitting of the hard-collinear quark field into a collinear photon and a soft

quark.18 The power of λ indicated above the arrow gives the λ suppression from the

left- to the right-hand side as a consequence of SCETI → SCETII matching. Thus, the

O(λ6) SCETI operator turns into a O(λ10) SCETII operator with the field content of

J̃ B1
Aχ defined in (4.2). The present discussion in fact corresponds to the matching shown

in the SCETI column of figure 3 and shows that one must obtain an inverse derivative

factor 1/in−∂ ∼ 1/λ2, which corresponds to the factor 1/ω in the tree-level matching

coefficient (4.53). Another way to obtain a O(λ10) SCETII operator consists of

`hc
1→ `hc, `hc

λ→ `c, χhc
λ→ 1

in−∂
QqeA/hc⊥

n/−
2
qs (B.3)

followed by the fusion

`hc +A/hc⊥
λ2

→ m` `c (B.4)

through a hard-collinear one-loop diagram.

To find the basis of the SCETII operators, these considerations have to be generalized

to arbitrary loop order. To this end we follow [25] and classify all possible building blocks

according to their scaling in λ, canonical dimension d and transformation property under

type-III reparametrization transformations

n− → αn−, n+ → α−1n+, (B.5)

of the reference vectors, which must be preserved in the matching due to reparametrization

symmetry of SCET. Accounting for the flavour quantum numbers of the initial and final

state in the Bq → `+`− process, we can write the possible SCETII operators in the form

O(α) = [objects]×
(
qs Γ(α)

s hv
)(
`c Γc `c

)
, α = ±1, 0 (B.6)

with Dirac structures given in table 4. The “objects” can be chosen from the factors,

operators and field products listed in table 5.

18For simplicity of notation, all collinear and soft Wilson lines are set to unity here. They can be restored

unambiguously by making the operator invariant under the SCETII gauge symmetries.
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Class Elements α

Γc 1, γ5, γ
µ
⊥ 0

Γ
(0)
s 1, γ5, γ

µ
⊥, γ

µ
⊥γ5, σ

µν
⊥ , /n+/n− 0

Γ
(+1)
s /n−, /n−γ5, /n−γ

µ
⊥ 1

Γ
(−1)
s /n+, /n+γ5, /n+γ

µ
⊥ −1

Table 4. Dirac matrices and their scaling αn under “boost” or type-III RPI transformations.

OA Object λ α d

I (n−∂s)
−1 −2 −1 −1

II (n+∂c)
−1 0 +1 −1

III ∂⊥, Ac⊥, As⊥, m`, mq 2 0 1

IV n+∂s, n+As 2 −1 1

V n−∂c, n−Ac 4 +1 1

VI f c
/n+

2 Γcfc 4 −1 3

VII f sΓ
(−1)
s fs 6 −1 3

VIII f sΓ
(+1)
s fs 6 +1 3

IX f sΓ
(0)
s fs 6 0 3

Table 5. Building blocks that can be added to (B.6). The column λ denotes the λ scaling of the

object, α its scaling under type-III reparametrizations, and d its canonical dimension. The Dirac

matrices Γ are defined in table 4. The counting refers to matching of the hard-collinear sector.

The SCETI operator χhchv`hc`hc, which is generated in the matching of Q9,10 to

SCETI, has d = 6 and boost scaling α = 0. Requiring these to match those of (B.6),

allows us to solve for n1 and n2, the number of times the objects I and II appear in (B.6),

in the form

n1 =
n3 + α

2
+ n5 + n6 + n7 + 2n8 +

3

2
n9 , (B.7)

n2 =
n3 − α

2
+ n4 + 2n6 + 2n7 + n8 +

3

2
n9 . (B.8)

Eliminating n1, n2 in the expression for the λ scaling [λ] of (B.6), we obtain

[λ] = 10− α+ n3 + 2n4 + 2n5 + 2n6 + 4n7 + 2n8 + 3n9 (B.9)

in terms of the number of times ni the objects III to IX appear in (B.6). Since we are

looking for solutions with [λ] = 10, the following cases arise:

• α = −1: since all ni are positive and non-negative integers, solutions to (B.9) have

at least [λ] = 12. This case does not contribute to the power-enhanced amplitude.
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• α = 0: all ni must be zero for a [λ] = 10 solution.

• α = +1: the solution [λ] = 9, and ni = 0 for all ni is excluded, because n1,2 must be

integer. This leaves the [λ] = 10 solution with n3 = 1, ni = 0 for i = 4, . . . , 9. In this

case further n1 = 1, n2 = 0.

Thus we identified the following two O(λ10) SCETII operators:

O(0) =
[
qs Γ(0)

s hv
][
`c Γc `c

]
, (B.10)

O(+1) =
OIII

in−∂s

[
qs Γ(+1)

s hv
][
`c Γc `c

]
. (B.11)

Note that this analysis implicitly assumed that in the anti-collinear direction the SCETI

→ SCETII matching was trivial, `hc → `c. This is justified, since any non-trivial matching

would lead to further λ suppression.

At this point we have to invoke helicity conservation, which implies that for O(0) only

Γc = γµ⊥ has a non-vanishing matching coefficient to any order in αem. However, this

Dirac structure cannot contribute to the decay rate of a (pseudo-) scalar B-meson, which

excludes this operator.

In the case of O(+1), the helicity structure of the lepton current depends on OIII. For

OIII = m` helicity conservation implies Γc ∈ {1, γ5} ≡ ΓS/P , and the operator has a non-

vanishing matrix element for the Bq → `+`− transition. For all other members of object

class III, only Γc = γµ⊥ is allowed by helicity conservation. However, only OIII = Ac⊥ has

a non-vanishing matrix element for the (pseudo-) scalar B-meson decay. In summary, we

find the following SCETII operators with λ10 suppression:

OA1
− = m`

[
1

in−∂s
qs /n−ΓS/Phv

][
`c ΓS/P `c

]
, (B.12)

OB1
− = Tµν

[
1

in−∂s
qs /n−ΓS/Phv

][
Aνc⊥ `c γµ⊥ `c

]
, (B.13)

with ΓS/P ∈ {1, γ5} and Tµν ∈ {g⊥µν , ε⊥µν}. When the Wilson lines and non-localities are

restored these two operators correspond to (4.1) and (4.2) in the main text. The present

analysis also implies that to any order in the matching, only a single power of 1/in−∂s can

appear, modified by logarithms, together with the leading-twist B-meson LCDA. Hence,

similar to the case of heavy-to-light form factors discussed in [25], the power-enhanced

correction from the operators Q9,10 can be expressed in terms of the inverse moment λB
and the logarithmic moments, (8.1) and (8.2), respectively. Upon exchanging the collinear

and anti-collinear sectors, we obtain the corresponding two operators

OA1
+ = m`

[
1

in+∂s
qs /n+ΓS/P hv

][
`c ΓS/P `c

]
, (B.14)

OB1
+ = Tµν

[
1

in+∂s
qs /n+ΓS/P hv

][
Aνc⊥ `c γµ⊥ `c

]
. (B.15)

The all-order analysis of the O(λ5) operator χ̄hchvAhc⊥ from (B.1), which arises in

SCETI from the tree-level matching of Q7, is substantially more complicated. This is be-

cause the operator involves a hard-collinear quark and an anti-hard-collinear photon field,
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which both must undergo not-trivial SCETI → SCETII matching to obtain an operator

that overlaps with the external state of the Bq → `+`− decay. Since the collinear and anti-

collinear sector interact with the same soft fields, the analysis above must be extended to

keep track from which sector a soft field and its corresponding non-localities arises. In par-

ticular, since the collinear final state must have lepton number +1, and the hard-collinear

sector of the SCETI does not carry lepton number, likewise for the anti-collinear direction,

the SCETII operator must necessarily contain a soft lepton pair, which is generated in

SCETI → SCETII matching. We are therefore led to consider operators of the form

O(s, t, u) = [objects]×
[
qs(sn±) Γs hv(0)

][
`s(tn+) Γ′s `s(un−)

][
`c(0) Γc `c(0)

]
, (B.16)

where here we kept the position arguments to indicate the non-locality of the fields. Not

counting the “objects”, this operator has dimension d = 9 and [λ] = 16, while the initial

operator has d = 5. For this operator to contribute to the power-enhanced amplitude, it

must contain a number of inverse derivatives 1/(in−∂s) acting on soft fields that arise from

hard-collinear matching, or 1/(in+∂s) from the matching of the anti-hard-collinear sector.

That this possibility is indeed realized can be seen from tree-level matching. The

relevant splitting of the hard-collinear quark field is (B.3) above, followed by

Aµhc⊥
λ2

→ Q` e

(in+∂c)(in−∂s)

{
`cγ

µ
⊥`s + h.c.

}
(B.17)

from section 3.2.2 of [25]. For the splitting of the anti-hard-collinear photon, (B.17) adapted

to the anti-collinear sector applies. All together this provides a λ5 suppression of the initial

operator, resulting in [λ] = 10 and the correct dimension. Putting everything together,

we obtain

χ̄hchvAhc⊥ → qsi
←−−
n−∂

−1
s hv

[
1

(in+∂c)(in−∂s)
`c`s

] [
1

(in−∂c)(in+∂s)
`s`c

]
. (B.18)

The QED one-loop calculation of the matrix element of Q7 performed in [21] corresponds

to evaluating the one-loop SCETII matrix element of this operator, obtained by contracting

the soft lepton fields. The endpoint divergence in the one-loop integral found there is a

consequence of the large number of inverse derivative operators in (B.18). We performed a

general analysis of SCETI → SCETII also for Q7 and find that the above operator together

with those discussed above for Q9,10 are the only SCETII operators relevant to the power-

enhanced Bq → `+`− amplitude.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] T. Inami and C.S. Lim, Effects of superheavy quarks and leptons in low-energy weak

processes KL → µ+µ−, K+ → π+νν̄ and K0 ↔ K
0
, Prog. Theor. Phys. 65 (1981) 297

[Erratum ibid. 65 (1981) 1772] [INSPIRE].

– 58 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1143/PTP.65.297
https://inspirehep.net/search?p=find+J+%22Prog.Theor.Phys.,65,297%22


J
H
E
P
1
0
(
2
0
1
9
)
2
3
2

[2] A. Bazavov et al., B- and D-meson leptonic decay constants from four-flavor lattice QCD,

Phys. Rev. D 98 (2018) 074512 [arXiv:1712.09262] [INSPIRE].

[3] A.J. Buras, M. Gorbahn, U. Haisch and U. Nierste, Charm quark contribution to

K+ → π+νν̄ at next-to-next-to-leading order, JHEP 11 (2006) 002 [Erratum ibid. 11 (2012)

167] [hep-ph/0603079] [INSPIRE].

[4] C. Bobeth et al., Bs,d → `+`− in the standard model with reduced theoretical uncertainty,

Phys. Rev. Lett. 112 (2014) 101801 [arXiv:1311.0903] [INSPIRE].

[5] A. Sirlin, Current algebra formulation of radiative corrections in gauge theories and the

universality of the weak interactions, Rev. Mod. Phys. 50 (1978) 573 [Erratum ibid. 50

(1978) 905] [INSPIRE].

[6] A. Sirlin, Large mW , mZ behavior of the O(α) corrections to semileptonic processes mediated

by W , Nucl. Phys. B 196 (1982) 83 [INSPIRE].

[7] W.J. Marciano and A. Sirlin, Radiative corrections to π(`2) decays, Phys. Rev. Lett. 71

(1993) 3629 [INSPIRE].

[8] C. Bobeth, M. Gorbahn and E. Stamou, Electroweak corrections to Bs,d → `+`−, Phys. Rev.

D 89 (2014) 034023 [arXiv:1311.1348] [INSPIRE].

[9] T. Hermann, M. Misiak and M. Steinhauser, Three-loop QCD corrections to Bs → µ+µ−,

JHEP 12 (2013) 097 [arXiv:1311.1347] [INSPIRE].

[10] C. Bobeth, P. Gambino, M. Gorbahn and U. Haisch, Complete NNLO QCD analysis of

B̄ → Xs`
+`− and higher order electroweak effects, JHEP 04 (2004) 071 [hep-ph/0312090]

[INSPIRE].

[11] T. Huber, E. Lunghi, M. Misiak and D. Wyler, Electromagnetic logarithms in B̄ → Xs`
+`−,

Nucl. Phys. B 740 (2006) 105 [hep-ph/0512066] [INSPIRE].

[12] LHCb collaboration, Measurement of the B0
s → µ+µ− branching fraction and search for

B0 → µ+µ− decays at the LHCb experiment, Phys. Rev. Lett. 111 (2013) 101805

[arXiv:1307.5024] [INSPIRE].

[13] CMS collaboration, Measurement of the B0
s → µ+µ− branching fraction and search for

B0 → µ+µ− with the CMS experiment, Phys. Rev. Lett. 111 (2013) 101804

[arXiv:1307.5025] [INSPIRE].

[14] CMS and LHCb collaborations, Observation of the rare B0
s → µ+µ− decay from the

combined analysis of CMS and LHCb data, Nature 522 (2015) 68 [arXiv:1411.4413]

[INSPIRE].

[15] ATLAS collaboration, Study of the rare decays of B0
s and B0 into muon pairs from data

collected during the LHC Run 1 with the ATLAS detector, Eur. Phys. J. C 76 (2016) 513

[arXiv:1604.04263] [INSPIRE].

[16] LHCb collaboration, Measurement of the B0
s → µ+µ− branching fraction and effective

lifetime and search for B0 → µ+µ− decays, Phys. Rev. Lett. 118 (2017) 191801

[arXiv:1703.05747] [INSPIRE].

[17] ATLAS collaboration, Study of the rare decays of B0
s and B0 mesons into muon pairs using

data collected during 2015 and 2016 with the ATLAS detector, JHEP 04 (2019) 098

[arXiv:1812.03017] [INSPIRE].

– 59 –

https://doi.org/10.1103/PhysRevD.98.074512
https://arxiv.org/abs/1712.09262
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.09262
https://doi.org/10.1088/1126-6708/2006/11/002
https://arxiv.org/abs/hep-ph/0603079
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0603079
https://doi.org/10.1103/PhysRevLett.112.101801
https://arxiv.org/abs/1311.0903
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.0903
https://doi.org/10.1103/RevModPhys.50.573
https://inspirehep.net/search?p=find+J+%22Rev.Mod.Phys.,50,573%22
https://doi.org/10.1016/0550-3213(82)90303-0
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B196,83%22
https://doi.org/10.1103/PhysRevLett.71.3629
https://doi.org/10.1103/PhysRevLett.71.3629
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,71,3629%22
https://doi.org/10.1103/PhysRevD.89.034023
https://doi.org/10.1103/PhysRevD.89.034023
https://arxiv.org/abs/1311.1348
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.1348
https://doi.org/10.1007/JHEP12(2013)097
https://arxiv.org/abs/1311.1347
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.1347
https://doi.org/10.1088/1126-6708/2004/04/071
https://arxiv.org/abs/hep-ph/0312090
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0312090
https://doi.org/10.1016/j.nuclphysb.2006.01.037
https://arxiv.org/abs/hep-ph/0512066
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0512066
https://doi.org/10.1103/PhysRevLett.111.101805
https://arxiv.org/abs/1307.5024
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.5024
https://doi.org/10.1103/PhysRevLett.111.101804
https://arxiv.org/abs/1307.5025
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.5025
https://doi.org/10.1038/nature14474
https://arxiv.org/abs/1411.4413
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.4413
https://doi.org/10.1140/epjc/s10052-016-4338-8
https://arxiv.org/abs/1604.04263
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.04263
https://doi.org/10.1103/PhysRevLett.118.191801
https://arxiv.org/abs/1703.05747
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.05747
https://doi.org/10.1007/JHEP04(2019)098
https://arxiv.org/abs/1812.03017
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.03017


J
H
E
P
1
0
(
2
0
1
9
)
2
3
2

[18] P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z

and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].

[19] A.J. Buras, J. Girrbach, D. Guadagnoli and G. Isidori, On the standard model prediction for

BR(Bs,d → µ+µ−), Eur. Phys. J. C 72 (2012) 2172 [arXiv:1208.0934] [INSPIRE].

[20] Y.G. Aditya, K.J. Healey and A.A. Petrov, Faking Bs → µ+µ−, Phys. Rev. D 87 (2013)

074028 [arXiv:1212.4166] [INSPIRE].

[21] M. Beneke, C. Bobeth and R. Szafron, Enhanced electromagnetic correction to the rare

B-meson decay Bs,d → µ+µ−, Phys. Rev. Lett. 120 (2018) 011801 [arXiv:1708.09152]

[INSPIRE].

[22] M. Beneke, Soft-collinear factorization in B decays, Nucl. Part. Phys. Proc. 261-262 (2015)

311 [arXiv:1501.07374] [INSPIRE].

[23] K.G. Chetyrkin, M. Misiak and M. Münz, Weak radiative B meson decay beyond leading

logarithms, Phys. Lett. B 400 (1997) 206 [Erratum ibid. B 425 (1998) 414]

[hep-ph/9612313] [INSPIRE].

[24] C. Bobeth, M. Misiak and J. Urban, Photonic penguins at two loops and mt dependence of

BR[B → Xs`
+`−], Nucl. Phys. B 574 (2000) 291 [hep-ph/9910220] [INSPIRE].

[25] M. Beneke and T. Feldmann, Factorization of heavy to light form-factors in soft collinear

effective theory, Nucl. Phys. B 685 (2004) 249 [hep-ph/0311335] [INSPIRE].

[26] M. Beneke, M. Garny, R. Szafron and J. Wang, Anomalous dimension of subleading-power

N-jet operators, JHEP 03 (2018) 001 [arXiv:1712.04416] [INSPIRE].

[27] M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold,

Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].

[28] B. Jantzen, Foundation and generalization of the expansion by regions, JHEP 12 (2011) 076

[arXiv:1111.2589] [INSPIRE].

[29] H.H. Patel, Package-X: a Mathematica package for the analytic calculation of one-loop

integrals, Comput. Phys. Commun. 197 (2015) 276 [arXiv:1503.01469] [INSPIRE].

[30] H.H. Patel, Package-X 2.0: a Mathematica package for the analytic calculation of one-loop

integrals, Comput. Phys. Commun. 218 (2017) 66 [arXiv:1612.00009] [INSPIRE].

[31] M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and

heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431

[hep-ph/0206152] [INSPIRE].

[32] R.J. Hill and M. Neubert, Spectator interactions in soft collinear effective theory, Nucl. Phys.

B 657 (2003) 229 [hep-ph/0211018] [INSPIRE].

[33] S. Alte, M. König and M. Neubert, Effective field theory after a new-physics discovery, JHEP

08 (2018) 095 [arXiv:1806.01278] [INSPIRE].

[34] M. Beneke, M. Garny, R. Szafron and J. Wang, Violation of the Kluberg-Stern-Zuber theorem

in SCET, JHEP 09 (2019) 101 [arXiv:1907.05463] [INSPIRE].

[35] A.J. Buras and M. Münz, Effective hamiltonian for B → Xse
+e− beyond leading logarithms

in the NDR and HV schemes, Phys. Rev. D 52 (1995) 186 [hep-ph/9501281] [INSPIRE].

[36] M. Beneke, T. Feldmann and D. Seidel, Systematic approach to exclusive B → V l+l−, V γ

decays, Nucl. Phys. B 612 (2001) 25 [hep-ph/0106067] [INSPIRE].

– 60 –

https://doi.org/10.1140/epjc/s2005-02396-4
https://arxiv.org/abs/hep-ph/0506026
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0506026
https://doi.org/10.1140/epjc/s10052-012-2172-1
https://arxiv.org/abs/1208.0934
https://inspirehep.net/search?p=find+EPRINT+arXiv:1208.0934
https://doi.org/10.1103/PhysRevD.87.074028
https://doi.org/10.1103/PhysRevD.87.074028
https://arxiv.org/abs/1212.4166
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.4166
https://doi.org/10.1103/PhysRevLett.120.011801
https://arxiv.org/abs/1708.09152
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.09152
https://doi.org/10.1016/j.nuclphysBPS.2015.03.021
https://doi.org/10.1016/j.nuclphysBPS.2015.03.021
https://arxiv.org/abs/1501.07374
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.07374
https://doi.org/10.1016/S0370-2693(97)00324-9
https://arxiv.org/abs/hep-ph/9612313
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9612313
https://doi.org/10.1016/S0550-3213(00)00007-9
https://arxiv.org/abs/hep-ph/9910220
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9910220
https://doi.org/10.1016/j.nuclphysb.2004.02.033
https://arxiv.org/abs/hep-ph/0311335
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0311335
https://doi.org/10.1007/JHEP03(2018)001
https://arxiv.org/abs/1712.04416
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.04416
https://doi.org/10.1016/S0550-3213(98)00138-2
https://arxiv.org/abs/hep-ph/9711391
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9711391
https://doi.org/10.1007/JHEP12(2011)076
https://arxiv.org/abs/1111.2589
https://inspirehep.net/search?p=find+EPRINT+arXiv:1111.2589
https://doi.org/10.1016/j.cpc.2015.08.017
https://arxiv.org/abs/1503.01469
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.01469
https://doi.org/10.1016/j.cpc.2017.04.015
https://arxiv.org/abs/1612.00009
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.00009
https://doi.org/10.1016/S0550-3213(02)00687-9
https://arxiv.org/abs/hep-ph/0206152
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0206152
https://doi.org/10.1016/S0550-3213(03)00116-0
https://doi.org/10.1016/S0550-3213(03)00116-0
https://arxiv.org/abs/hep-ph/0211018
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0211018
https://doi.org/10.1007/JHEP08(2018)095
https://doi.org/10.1007/JHEP08(2018)095
https://arxiv.org/abs/1806.01278
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.01278
https://doi.org/10.1007/JHEP09(2019)101
https://arxiv.org/abs/1907.05463
https://inspirehep.net/search?p=find+EPRINT+arXiv:1907.05463
https://doi.org/10.1103/PhysRevD.52.186
https://arxiv.org/abs/hep-ph/9501281
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9501281
https://doi.org/10.1016/S0550-3213(01)00366-2
https://arxiv.org/abs/hep-ph/0106067
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0106067


J
H
E
P
1
0
(
2
0
1
9
)
2
3
2

[37] M. Beneke, M. Garny, R. Szafron and J. Wang, Anomalous dimension of subleading-power

N -jet operators. Part II, JHEP 11 (2018) 112 [arXiv:1808.04742] [INSPIRE].

[38] B.O. Lange and M. Neubert, Renormalization group evolution of the B meson light cone

distribution amplitude, Phys. Rev. Lett. 91 (2003) 102001 [hep-ph/0303082] [INSPIRE].
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