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1 Introduction

Understanding the description of finite subsystems in diffeomorphism invariant theories is

an important problem in both classical and quantum gravity. Over the years there has been

a lot of progress in uncovering various aspects of gravitational subsystems by studying the

covariant phase space formalism in the presence of boundaries [1–10]. The presence of a

boundary promotes a subset of the boundary preserving diffeomorphisms to symmetries of

the covariant phase space. These boundary symmetries then result in non-trivial boundary

charges which can be thought of as capturing aspects of the degrees of freedom contained

within the subregion.

Null boundaries are particularly important as they play a fundamental role in gravi-

tational thermodynamics [11–14], as well as in holography and quantum gravity [15–17].

Moreover, it was recently conjectured that the symmetries and charges at stationary event

horizons are relevant to the black hole information problem [18–20]. A particularly impor-

tant class of null surfaces are the boundaries of causal diamonds, which are fundamental

to the description of gravitational subregions. Black hole thermodynamics [2, 11, 21, 22]

and entanglement entropy in AdS/CFT [23] have demonstrated that geometric properties

of causal horizons are deeply related to the thermodynamic and statistical properties of
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spacetime. This strongly suggests that these deep connections generalize to any causal dia-

mond in any spacetime. While there have been important insights in this direction [24–26],

a complete understanding for arbitrary gravitational subregions remains elusive. A poten-

tial avenue of progress lies in the covariant phase space formalism applied to gravity at the

boundaries of causal diamonds.

In [27] the covariant phase space of general relativity at null boundaries was studied

in detail. There it was shown that there exists an infinite-dimensional symmetry algebra

for general relativity at all null boundaries, including non-stationary event horizons, in

any spacetime. For null boundaries of the form N = Z × R, where Z is the space of null

generators, the algebra takes the form diff(Z) n s with the “supertranslation” subalgebra

s consisting of angle-dependent translations and rescalings of affine parameter along the

null surface. The charges (at cross-sections of the null surface) and fluxes associated to the

symmetries were computed from the covariant phase space formalism using the prescription

given by Wald and Zoupas [3].

In this paper we use the results of [27] at the boundaries of causal diamonds. We

consider causal diamonds obtained from the intersection of the chronological past and

future of timelike separated points in a convex normal neighborhood. The boundary of

such a causal diamond is a null surface N with a 2-sphere bifurcation edge B. We use

Gaussian null coordinates adapted to the causal diamond boundary to show that both N

and B for any causal diamond in any spacetime can be identified. The resulting reduced

symmetry algebra which preserves B takes the form diff(S2) n b with b consisting of the

angle-dependent rescalings along the null generators. The angle-dependent translations

along the null generators are eliminated by requiring the bifurcation edge B to be preserved.

By considering the behavior of geometric fields on N near its corners, we show that

the boundary charges and the boundary presymplectic potential vanish in the limit to the

corners of the causal diamond. From this we show that the Wald-Zoupas fluxes are Hamil-

tonian generators on the covariant phase space, which in particular provides an infinite

family of boost generators for any smooth causal diamond in general relativity. This is

similar in spirit to the boost generator at Killing horizons, which is also the vacuum modu-

lar Hamiltonian, where in the present context the boost generators act on the gravitational

data associated to the causal diamond. Furthermore, we show that the reduced symmetry

algebra at N has a non-trivial center. The charges associated to the elements of the center

are precisely the boost generators, whose values are proportional to the area of B. Thus

there exists a Wald entropy [2], and a quasi-local first law, for any smooth causal diamond

in general relativity.

Using the smoothness of the spacetime metric and the vector fields representing the

null boundary symmetries we then show that the Wald-Zoupas fluxes associated to the

symmetries are conserved between the past and future components of N . This gives an

infinite set of conservation laws for finite subregions in general relativity on any spacetime.

This is analogous to the conservation laws between past and future null infinity [28–31]

except, in this case, the smoothness of fields at B are much simpler to analyze. Just as

the asymptotic conservation laws between past and future null infinity place an infinite

number of constraints on gravitational scattering (conjectured to hold even in the quan-
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tum theory [28]), the conservation laws we derive for finite causal diamonds likely place

important constraints on the properties of scattering in local gravitational subsystems.

The rest of the paper is organized as follows. In section 2 we review the formulation of

symmetries and the associated charges and fluxes in general relativity from [27], and refor-

mulate them in terms of Gaussian null coordinates. In section 3 we adapt this formalism

to the boundaries of causal diamonds and detail the reduction of the symmetry algebra of

a general null surface to a subalgebra which preserves the structure on a causal diamond.

We also investigate the behavior of the fields and charges near the corners of the causal

diamond and show that the fluxes associated to the symmetries at a causal diamond are

also Hamiltonian generators on the corresponding phase space. In section 4 we show that

the smoothness of the spacetime metric at the causal diamond implies an infinite number

of conservation laws for the fluxes through the null boundaries. In section 5 we compute

the charges associated to the central elements of the symmetry algebra and show that

these take the form of a “first law”. We end with section 6 summarizing and discussing

the potential applications of our results. In appendix A we collect the essential ingredients

of the covariant phase space formalism and the Wald-Zoupas prescription for calculating

charges and fluxes. In appendix B we analyze the structure of the symmetry algebra at a

causal diamond and show how it arises as a non-trivial central extension.

Notation and conventions. We follow the conventions of [32]. We use abstract indices

a, b, . . . to denote tensor fields, e.g. gab is the spacetime metric, and indices A,B, . . . to

denote components of tensor fields in some coordinate system on S2, e.g. qAB is a metric

on S2. Boldface quantities like ω will denote differential forms.

We also use the following terminology for the charges associated to the symmetry

algebra at a null boundary N . Quantities associated to null boundary symmetries evaluated

as integrals over cross-sections of the null boundaries will be called “charges”, while the

difference of these charges on two cros-sections evaluated as an integral over a portion of

the null boundary will be called “fluxes”. When certain conditions are satisfied the fluxes

can also be considered as Hamiltonian generators on the null boundary phase space (see

eqs. (A.10) and (A.11)).

2 Null boundary symmetries and charges

In this section we briefly review the basic formalism and results of [27], namely the sym-

metries and charges at a null boundary in general relativity. We then recast the null

boundary phase space, and the resulting symmetries and charges, in terms of Gaussian

null coordinates. This will prove to be useful when considering causal diamonds.

The relationship between the covariant approach of [27] which is intrinsic to the null

boundary and the coordinate-based approach in sections 2.2 and 2.3 is the same as that

between the intrinsic universal structure approach [33–35] and one based on Bondi co-

ordinates [36–38] or the conformal Gaussian null coordinates [39, 40] at null infinity in

asymptotically-flat spacetimes.
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2.1 Universal structure and symmetries on null boundaries

Consider a spacetime (M, gab) with null boundary N . For now we will assume the null

generators of N are complete, i.e. N ∼= Z × R, where Z is the space of null generators.

Later we will consider null surfaces with boundary, which is the relevant setting for causal

diamonds. The null boundary N is naturally equipped with the equivalence class [`a, κ]

where `a is the null generator of N , κ is the non-affinity defined by1

`b∇b`a =̂ κ`a, (2.1)

and the equivalence class [`a, κ] is defined by the rescaling freedom

`a 7→ eβ`a , κ 7→ eβ(κ+ £`β) (2.2)

where β is a smooth function on N .

In [27] it was shown that the structure [`a, κ] is universal in the sense that different

such structures on N , as induced by different background metrics, are all related by dif-

feomorphisms (we shall show this explicitly in section 2.2 in a Gaussian null coordinate

system). We can then define the field configuration space F to be the set of smooth

metrics gab on a manifold M with null boundary N which is equipped with the universal

structure [`a, κ]. The covariant phase space is the subset F ⊂ F consisting of on-shell

metrics satisfying the vacuum Einstein equation.

The group of symmetries on a null boundary N is the subgroup of diffeomorphisms on

M which preserves the null boundary N and the universal structure on it. It will be easier

to work with the symmetry algebra instead of the group. The symmetry algebra on the

null boundary consists of vector fields ξa on M which are tangent to N and preserve the

linearized version of the equivalence relation eq. (2.2). This results in the conditions

£ξ`
a =̂ β`a

£ξκ =̂ βκ+ £`β,
(2.3)

where β is some smooth function on N which depends on the vector field ξa. The detailed

structure of the resulting symmetry algebra g was derived in [27] and can be summarized

as follows. The vector fields of the form ξa =̂ f`a with £`(£` + κ)f =̂ 0 form an infinite-

dimensional abelian Lie ideal s ⊂ g of supertranslations. The quotient algebra g/s is

isomorphic to diff(Z), the algebra of smooth diffeomorphisms of the space of null generators

Z. There is an additional Lie ideal s0 ⊂ s of affine supertranslations given by ξa =̂ f`a

with (£` + κ)f =̂ 0. Hence the symmetry algebra g can be written as

g ∼= diff(Z) n (bn s0) (2.4)

where b ∼= s/s0.

The charges and fluxes associated to this symmetry algebra were also derived in [27]

using the Wald-Zoupas procedure. Writing the covariant expression for these charges would

require introducing a significant amount of formalism and notation. Instead we will derive

the symmetry algebra, and express the charges and fluxes, using Gaussian null coordinates

in section 2.3.
1We use the notation =̂ to mean ‘equality on N ’ throughout the paper.
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2.2 Gaussian null coordinates

It will be convenient to introduce coordinates adapted to the null surface N called Gaussian

null coordinates (GNC) [41], which have been used in a variety of contexts [40, 42–45]. We

briefly review the construction of GNC below. Since our main interest is in causal diamonds,

we will now restrict (for convenience) to the case of 4-dimensional spacetimes where the

space of null generators is a 2-sphere Z = S2, but our results can be readily generalized.

Let `a be an affinely-parameterised (κ = 0) null normal to N and let v be an affine

parameter along these null generators i.e., v is some function on N such that `a∇av =̂ 1.

Now let S ∼= S2 be a cross-section of N such that v|S = 0, and let xA be a coordinate

system on S. We extend the coordinate functions xA to all of N by parallel-transport

along the null generators, `a∇axA =̂ 0. This defines a coordinate system (v, xA) on N .

To define a coordinate system in a neighborhood of N , let u be a function in such a

neighborhood so that u|N = 0 on N . Then, `a ≡ −du is the normal to N and the vector

field na ≡ ∂/∂u is transverse (i.e. not tangent) to N . To fix coordinates away from N

we choose u such that na is an affinely-parameterised null vector field i.e. nana = 0 and

nb∇bna = 0. Then we extend the coordinates (v, xA) away from N by parallel transport

along na. The coordinate functions (u, v, xA) define a GNC in a neighborhood of the null

surface N . It follows from the above definition of the GNC that in these coordinates the

spacetime metric satisfies [45]

guu = guA = 0 , guv = −1

gvv =̂ gvA =̂ ∂ugvv =̂ 0
(2.5)

and thus we can write the line element in the form (this is equivalent to the form in [41])

ds2 = −Wdv2 − 2dudv + qAB(dxA −WAdv)(dxB −WBdv)

where W |u=0 = ∂uW |u=0 = WA|u=0 = 0
(2.6)

and W , WA, qAB are functions of (u, v, xA), and can be considered as tensors on S2 which

depend on (u, v). The tensor qAB defines a Riemannian metric on the 2-spheres of constant

u and v. The extensions of the null generator `a and the auxilliary null vector na in the

neighborhood of N are given by

`a ≡ ∂v −
1

2
W∂u +WA∂A , na ≡ ∂u (2.7)

The shear σAB and expansion θ of N are given by the relation

1

2
∂vqAB =̂ σAB +

1

2
qABθ (2.8)

where σABq
AB = 0, while the Há́iček rotation 1-form of the u = constant cross-sections is

given by

ωA =̂ −qAanb∇a`b = −1

2
∂u(qABW

B) (2.9)

We emphasize that the above construction of the GNC can be carried out in any

spacetime in a neighborhood of any null surface. Now let (M1, g1) and (M2, g2) be two
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spacetimes with null surfaces N1 and N2 along with the GNCs (u1, v1, x
A
1 ) and (u2, v2, x

A
2 ),

as constructed above, respectively. Without any loss of generality we can identify a neigh-

borhood of N1 in (M1, g1) with that of N2 in (M2, g2) by identifying the corresponding

GNCs (u1, v1, x
A
1 ) = (u2, v2, x

A
2 ). Thus, we can identify all the spacetimes under considera-

tion, and work on a single manifold M with boundary N such that the configuration space

F consists of all the metrics in M for which N is a null surface and the metrics take the

form eq. (2.6) in a GNC in a neighborhood of N . From the above construction we see that

while the induced metric qAB depends on the particular choice of the spacetime metric in

F , the null generator `a is common to all metrics in F . Thus, the null surface N along

with the affine null generator `a are universal. Note that we can construct the GNC even

with a non-affinely parametrized `a, which leads to the universal structure used in [27] as

described in section 2.1.

2.3 Null boundary symmetries, charges and fluxes in GNC

The symmetry algebra at the null boundary N consists of the vector fields ξa generating

infinitesimal coordinate transformations which preserve the GNC form of the metric in

eq. (2.6). We expand the vector field ξa in the GNC to first order in u as,

ξa ≡ (f0 + uf1)∂v + (β0 + uβ1)∂u + (XA
0 + uXA

1 )∂A +O(u2) (2.10)

To preserve the location u = 0 of the null surface N , ξa must be tangent to N and hence

β0 = 0. To preserve the form of the metric eq. (2.6) we have

£ξguu = £ξguv = £ξguA = 0 (2.11a)

£ξgvA = O(u) (2.11b)

£ξgvv = O(u2) (2.11c)

Evaluating eq. (2.11a) at u = 0 we have

£ξguu = 0 =⇒ f1 = 0 (2.12a)

£ξguv = 0 =⇒ β1 = −∂vf0 (2.12b)

£ξguA = 0 =⇒ qABX
A
1 = ∂Af0 (2.12c)

The conditions eq. (2.11b) imply

∂vX
A
0 = 0 (2.13)

while eq. (2.11c), evaluated to O(u) using eq. (2.13), gives

∂vβ1 = 0 =⇒ ∂2
vf0 = 0 (2.14)

where the second condition follows from eq. (2.12b). Similar conditions were derived inde-

pendently in [45].

From eqs. (2.13) and (2.14) we conclude that the symmetries on the null boundary N

are characterized by (α, β,XA) where α and β are functions and XA is a vector field on

– 6 –
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S2. In a neighborhood of N this symmetry is represented by a vector field ξa, which in

GNC takes the form

ξa ≡ (α− vβ)∂v + uβ∂u +
[
XA + uqAB∂B(α− vβ)

]
∂A +O(u2) (2.15)

Note that the vector field ξa at N , i.e. u = 0, is parametrized entirely by (α, β,XA) and is

independent of the choice of metric in the configuration space F .

We now analyze the structure of the symmetry algebra g generated by such vector

fields. Consider two symmetries ξ1 = (α1, β1, X
A
1 ) and ξ2 = (α2, β2, X

A
2 ) in g. Their

Lie bracket can be computed using their representations in terms of vector fields as in

eq. (2.15). A straightforward computation gives[
(α1, β1, X

A
1 ), (α2, β2, X

A
2 )
]

= (α, β,XA) (2.16a)

where α = −α1β2 + α2β1 +XA
1 ∂Aα2 −XA

2 ∂Aα1 (2.16b)

β = XA
1 ∂Aβ2 −XA

2 ∂Aβ1 (2.16c)

XA = [X1, X2]A = XB
1 ∂BX

A
2 −XB

2 ∂BX
A
1 (2.16d)

where the last line is the Lie bracket of vector fields on S2. Note that the sign of β in

eq. 4.10b [27] is incorrect and has been corrected in eq. (2.16c) above.

From eq. (2.16) it is easy to deduce the following structure of g. IfXA
1 = 0 thenXA = 0,

i.e. symmetries of the form (α, β, 0) form an abelian Lie ideal s ⊂ g of supertranslations.

The quotient g/s is then isomorphic to the Lie algebra diff(S2) represented by symmetries

of the form (0, 0, XA). There is an additional Lie ideal in g which is given as follows. In

eq. (2.16), taking β1 = XA
1 = 0 we get β = XA = 0, that is, symmetries of the form (α, 0, 0)

are also an abelian Lie ideal s0 ⊂ g called affine supertranslations. The quotient b ∼= s/s0

of all the supertranslations by s0 is represented by symmetries of the form (0, β, 0). Thus,

the symmetry algebra g on any null boundary has the structure (same as in eq. (2.4))

g ∼= diff(S2) n (bn s0) (2.17)

It was shown in [27] that this symmetry algebra coincides with the definition given by Wald

and Zoupas [3], reviewed below eq. (A.4).

Remark 2.1 (Symmetry group at N). The symmetry group can also be obtained by consid-

ering finite coordinate transformations of the GNC which preserve the metric form eq. (2.6).

In particular at N , i.e. u=0, we have the coordinate transformations (v, xA) 7→(v, xA) with

v = α(xA) + e−β(xA)v , xA = xA(xB) (2.18)

Thus, the symmetry group consists of arbitrary diffeomorphisms of S2 along with angle-

dependent translations (given by α(xA)) and angle-dependent rescalings (given by β(xA))

along the null generators.

When the null surface N has additional structure which is also universal — i.e., com-

mon to all the spacetimes under consideration — the symmetry algebra can be reduced

further. For instance, when all the spacetimes have a Killing vector field in a neighborhood

– 7 –
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of N which becomes tangent to N , the symmetries proportional to this Killing field pro-

vide a preferred 1-dimensional subalgebra of g (see section 4.4 [27]). Similarly, if the null

surface is stationary for all spacetimes, so that the shear and expansion of N vanish, then

the symmetry algebra can be reduced so that β = constant and XA is a conformal Killing

field on S2 i.e., an element of the Lorentz algebra (see section IV.B [46]).2 We show in

section 3.1 that when N is the null boundary of causal diamonds a similar reduction of the

symmetry algebra occurs due to the presence of a preferred cross-section corresponding to

the bifurcation edge. Specifically, since the bifurcation edge is a preferred cross-section of

the null boundary of a causal diamond, only those symmetry vector fields which preserve

its location i.e. are tangent to the bifurcation surface are permitted in the symmetry alge-

bra. This has the effect of eliminating the affine supertranslations ξa ≡ α∂v ∈ s0 from the

symmetry algebra (see also section 4.5 [27]).

The charges and fluxes associated to the null boundary algebra g were computed in [27]

using the covariant phase space formalism along with the Wald-Zoupas prescription. It was

also shown that the ambiguities in the symplectic current and the Wald-Zoupas prescription

do not affect the resulting charges and fluxes. We do not repeat the full analysis of [27],

but below we write down the relevant expressions for the boundary presymplectic potential

Θ(g; δg), the Wald-Zoupas (WZ) charges Qξ and fluxes Fξ for vacuum general relativity,

derived in [27], in terms of GNC.

The boundary presymplectic potential on N is given by

Θ(g; δg) =
1

16π
ε3

(
σAB − 1

2
qABθ

)
qA

aqB
bδgab (2.19)

where ε3 ≡ εabc is the 3-volume element on N .

Let S be any cross-section of N with area-element ε2 ≡ εab and ∆N be a region of N

bounded by two cross-sections. The charges (on S) and fluxes (through ∆N) associated

to a supertranslation ξa =̂ f`a = (α− vβ)`a are

Qf [S] =
1

8π

∫
S

ε2 [(α− vβ)θ + β]

Ff [∆N ] =
1

8π

∫
∆N

ε3 (α− vβ)

(
σABσ

AB − 1

2
θ2

) (2.20)

while those associated to a diff(S2) generator XA (taken to be tangent everywhere to the

v = constant cross-sections of N) are given by

QX [S] =
1

8π

∫
S

ε2

(
−ωAXA

)
FX [∆N ] =

1

8π

∫
∆N

ε3

(
σAB −

1

2
θqAB

)
DAXB

(2.21)

2Note that the reduction of diff(S2) to the Lorentz algebra in the stationary case relies crucially on the

S2 topology of the cross-sections.
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where the Há́iček rotation 1-form ωA (in the GNC foliation) is as defined in eq. (2.9), and

DA is the derivative operator with respect to qAB in the foliation given by the GNC.

Note that the supertranslation charge expression eq. (2.20) can be evaluated on any

choice of cross-section, while the charge expression eq. (2.21) only holds on the cross-

sections of the v = constant foliation.3 If the diff(S2) charge is to be evaluated on some

arbitrary foliation of N with normal n̂a such that `an̂a =̂ −1, then we have instead

QX̂ [Ŝ] =
1

8π

∫
Ŝ

ε̂2

(
βX̂ − ω̂AX̂

A
)

(2.22)

where now X̂A is taken to be tangent to the cross-sections of the chosen foliation, ω̂A is

the corresponding Há́iček rotation 1-form, while βX̂ is given by

βX̂ = −X̂Aq̂A
a£`n̂a (2.23)

Remark 2.2 (Fluxes from the charges). Given the charge expressions eqs. (2.20) and (2.21),

the corresponding fluxes can be obtained using the vacuum Einstein equations Rab = 0 on

N . Specifically we have

Rab`
a`b = 0 =⇒ ∂vθ = −1

2
θ2 − σABσAB

RabqA
a`b = 0 =⇒ ∂vωA = −θωA −DBσAB +

1

2
DAθ

(2.24)

where DA is the derivative operator with respect to qAB in the foliation given by the

GNC. These are the Raychaudhuri equation and the Damour-Navier-Stokes equation re-

spectively [47, 48].

3 Causal diamonds

In this section we apply the above results to the boundaries of causal diamonds, with the

appropriate modifications necessary for null surfaces with boundary. We begin by recalling

the definition of causal diamonds and the structure on their null boundaries.

In a given spacetime (M, g), consider two points p+, p− ∈M such that p+ is in a convex

normal neighborhood of p− and is in its chronological future, i.e., p+ is “inside the future

light cone” of p−. The intersection of the chronological past of p+ with the chronological

future of p− defines a causal diamond or a double cone (see for instance [25, 26, 49, 50]). We

assume that the causal diamond is “small enough” so that the null generators emanating

from p± form smooth null surfaces N± respectively, which intersect at a smooth 2-surface

B, the bifurcation edge, which is topologically S2. We denote the null boundary of the

causal diamond by N = N+ ∪N− (see figure 1).

We now investigate the null boundary symmetries and charges defined in [27] for the

null boundary N of a causal diamond. It will be convenient to use the formulation in terms

of GNC as detailed in section 2.2, which we adapt to a causal diamond as follows.

3The dependence of the diff(S2) charge expression on the foliation is a result of the semidirect structure

of g in eq. (2.6), that is, there does not exist any unique choice of a diff(S2) subalgebra of g. This is similar

to the status of the Lorentz algebra within the BMS algebra at null infinity.
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Figure 1. Diagram of a causal diamond in a spacetime (M, g). The points p± denote the corners

of the causal diamond and B is the bifurcation edge while N± denote the future/past null surfaces

joining B to p±, respectively. The functions v and u are affine coordinates with affine null normals

`a and na on N±.

Unlike a general null surface, the boundary of a causal diamond has a preferred cross-

section determined by the bifurcation edge B. At B there exist unique null vector fields

`a and na both future-directed such that `a is tangent to N+, na is tangent to N−, and

`ana|B = −1. We can extend these vector fields to N± so that `a is the affine null generator

of N+, na is the affine null generator of N−, and `ana|N = −1. Let xA be some coordinates

on B; we pick the affine parameter v of `a ≡ ∂/∂v on N+, and similarly u of na ≡ ∂/∂u on

N−, such that B ≡ (u = 0, v = 0). Since, `a is future-directed, the coordinate v increases

moving towards p+ from v = 0 at B. Note that in a general spacetime N+ will have both

a shear and an expansion, which depend on the space of generators, hence the value of

the affine-parameter v at the corner p+ will depend on the null generator along which we

approach p+ i.e. v|p+ = V (xA). Similarly, on N− the affine parameter u along na decreases

moving towards p− from u = 0 at B and p− lies at u|p− = U(xA). These are depicted

in figure 1.

As described in section 2.2, we can extend (u, v, xA) to form a GNC in a neighborhood

of the causal diamond.4 Since we have two null surfaces we obtain two different GNCs,

one based on N+ which we denote by (u+, v+, x
A
+) and another based on N− denoted by

(u−, v−, x
A
−). In general, these two coordinate systems will not agree in a neighborhood of

B and will be related by a coordinate transformation that preserves neither GNC. We will

not need the explicit form of the transformations between these coordinates but we note

that (by construction)

(u±, v±)|B = (u = 0, v = 0) , xA+
∣∣
B

= xA−
∣∣
B

(3.1)

and

`a ≡ ∂v = ∂v+
∣∣
B

= ∂v−
∣∣
B
, na ≡ ∂u = ∂u+

∣∣
B

= ∂u−
∣∣
B

(3.2)

The spacetime metric gab, which we assume is smooth written in either coordinate system,

coincides at B.
4To define the GNC in a neighborhood of B, we need to extend the null surface N+ smoothly “a little” to

the past of B, and similarly extend N− to the future of B. We assume, henceforth, that this has been done.
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We define the 3-volume elements ε±abc on N± and the 2-area elements ε±ab on the cross-

sections of N± as follows:

on N+ : ε+
abc = ndεdabc , ε+

ab = −`cε+
cab = −`cndεdcab

on N− : ε−abc = −`dεdabc , ε−ab = −ncε−cab = nc`dεdcab
(3.3)

Note that on N+ these conventions are the same as those of [27] while on N− the sign

of ε−abc is the opposite of that in [27]. We have chosen these conventions so that the area

elements on the bifurcation edge B induced from N± coincide, that is,

ε+
ab

∣∣
B

= ε−ab
∣∣
B

(3.4)

Similar to the case of a general null surface, we can now identify the boundaries of any

two causal diamonds in any two spacetimes by identifying the GNCs (u±, v±, x
A
±). Note

that with this identification the bifurcation edge B ≡ (u = 0, v = 0) is common to all

causal diamonds and is universal, but the corners u = U(xA) and v = V (xA) depend on

the specific choice of causal diamond and spacetime metric, and are thus not universal.

Henceforth we will work with the covariant phase space F of general relativity at the

boundary N of a causal diamond where the bifurcation edge B is a common universal

surface for all spacetimes in F .

3.1 Reduced symmetry algebra gCD at causal diamonds

Since the bifurcation edge B is universal the symmetry algebra for a causal diamond must

preserve B. Consider the null boundary symmetry algebra on the future null surface N+.

From the form of the vector fields ξa in eq. (2.15) we see that the symmetries on N+ which

preserve the surface B ≡ (v = 0) are the ones which satisfy α(xA)|N+ = 0. In other words,

the bifurcation edge B breaks the affine supertranslation symmetry. Similarly, the affine

supertranslations of the symmetry algebra at the past surface N− are also broken.

A priori it seems we have two independent symmetries for the causal diamond: one

induced from N+ and the other from N−, with the respective affine supertranslations set to

vanish. However, there is a natural isomorphism between the future and past symmetries

which follows from the smoothness of the vector field ξa in spacetime. To see this let ξa

be a smooth vector field in the spacetime M which is a representative of a symmetry on

N± respectively, preserving the bifurcation edge B. In the GNCs (u±, v±, x
A
±) based on

the null surfaces N± we have (see eqs. (2.15) and (3.2))

ξa ≡ β+(−v+∂v+ + u+∂u+) +XA
+∂A+ + . . .

≡ β−(−u−∂u− + v−∂v−) +XA
−∂A− + . . .

(3.5)

where as before . . . denotes the subleading terms in the respective GNCs. Note that

while the GNCs do not match in a neighborhood of B, from eqs. (3.1) and (3.2) and the

smoothness of ξa at B we can conclude that

β+|B = − β−|B , XA
+

∣∣
B

= XA
−
∣∣
B

(3.6)
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This implies a natural isomorphism between the symmetry algebras on N+ and N− given

by the matching conditions eq. (3.6) at B. Thus the elements of the symmetry algebra

gCD on the boundary of a causal diamond are given by (β,XA); for definiteness we choose

(β,XA) = (β+, X
A
+) = (−β−, XA

−) to represent an element in gCD.

The Lie brackets of the algebra gCD can be derived from eq. (2.16) by setting α1 =α2 =0.

We have [
(β1, X

A
1 ), (β2, X

A
2 )
]

= (β,XA)

where β = XA
1 ∂Aβ2 −XA

2 ∂Aβ1

XA = [X1, X2]A = XB
1 ∂BX

A
2 −XB

2 ∂BX
A
1

(3.7)

If XA
1 = 0 then XA = 0 hence symmetries of the form (β, 0) form an infinite-dimensional

abelian Lie ideal b of boost supertranslations. Thus,

gCD
∼= diff(S2) n b (3.8)

Further, if β1 = constant and XA
1 = 0 then β = XA = 0, that is, the symmetries of the form

(β = constant, 0) commute with any element of gCD and thus form a 1-dimensional Lie

subalgebra b0 of central elements which we call boosts.5 Consider the quotient gCD/b0
∼=

diff(S2) n (b/b0). Then gCD has the structure of a central extension of gCD/b0 by the

abelian Lie algebra b0; the fact that this is a non-trivial central extension is shown in

appendix B.6

We show in section 5 that the charges associated to the central elements in b0 can be

interpreted as providing a “first law” for causal diamonds.

3.2 Behavior of the fields and charges near the corners

In this section we analyze the behavior of the relevant fields and charges on N+ near the

corner p+; similar results hold also for N− at p−. Essentially, for causal diamonds in

smooth spacetimes the behavior of the fields of interest near p+ is the same as that of a

light cone in Minkowski spacetime with some subleading corrections away from p+. We

invoke the results of [51, 52] below. The main consequence of interest for our purposes is

that in the limit to the corner p+ along N+ we have

Qξ → 0 , iξΘ(δg)→ 0 (3.9)

for all symmetries ξ ∈ gCD, and all metric perturbations δgab which are smooth at p+ in

any spacetime. The limit Qξ → 0 near the corner ensures that the total flux Fξ associated

to the symmetries through all of N+ is finite and is, in fact, equal to the charge at B.

As we will show in section 4, along with smoothness of the spacetime at B, this gives

infinitely many conservation laws between the incoming and outgoing fluxes through any

5The terminology “boosts” for elements of b0 is motivated by the fact that if one considers a bifurcate

Rindler horizon in Minkowski spacetime, instead of a causal diamond, then Lorentz boosts which preserve

the Rindler horizon are precisely elements in b0.
6Note that if one eliminates the non-constant boost supertranslations, for instance by imposing a weakly

isolated horizon structure when N is stationary, then the central extension also becomes trivial (see for

instance section IV.B [46]).
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causal diamond. The implication of the limit iξΘ(δg)→ 0 is as follows: a perturbation of

the total flux on N+ can be written as (see eq. (A.10))

δFξ =

∫
N+

ω(g; δg,£ξg) +

∫
B

iξΘ(δg)−
∫
p+

iξΘ(δg) (3.10)

where the integral over the corner p+ should be interpreted as a limit of integrals on cross-

sections of N+ which suitably limit to p+ as described below. Since iξΘ(δg) → 0 in the

limit to p+ and iξΘ(δg)|B = 0 (as ξa is tangent to B for any symmetry in gCD), we have

δFξ =

∫
N+

ω(g; δg,£ξg) (3.11)

for all symmetries ξ ∈ gCD and all perturbations δgab which are smooth at p+ and B.

Thus the flux Fξ, viewed as a function on the covariant phase space on N+, generates a

Hamiltonian flow associated to the symmetry ξa (see eq. (A.11)).

We now describe the arguments leading to the above described result, referring

to [51, 52] for the details. Since the value of the GNC coordinate v at the corner is direction-

dependent, v not a regular coordinate at p+. Similarly, the cross-sections v = constant do

not limit to p+. Thus, to analyze the behavior of the symmetries and charges we need a

coordinate system on N+ which is more suited to the structure near p+. In a neighborhood

of p+ such a coordinate system can be constructed as follows. Consider the tangent space

Tp+ at p+, and let yi = (y0, y1, y2, y3) be coordinates in Tp+ so that yi|+p = 0 and the

coordinate vector fields ∂i are orthonormal, with ∂0 being timelike and future-directed.

Defining

r2 = (y1)2 + (y2)2 + (y3)2 , u = y0 − r (3.12)

the past-directed light cone in Tp+ from p+ is then given by u = 0, and coordinatized

by (r, xA) where xA are coordinates on the space of past-directed null directions at p+

isomorphic to S2.

There exists an exponential map from Tp+ to a sufficiently small neighbourhood of

p+ so that yi are coordinates in this neighborhood, called Riemann normal coordinates.

In such a neighborhood, using (u, r, xA) as coordinates, the metric gab takes the form

(see [51, 52], note we have changed some signs to conform to our orientation conventions)

ds2 = µdu2 − 2νdudr − 2νAdudx
A + qABdx

AdxB (3.13)

The analysis of [51, 52] then shows that near the corner p+ the metric components in

eq. (3.13) behave as

µ = 1 +O(r2) , ν = 1 +O(r4) , νA = O(r3) , qAB = r2q0
AB +O(r4) (3.14)

where q0
AB is the unit-metric on S2. Here, for any tensor TAB... we use O(rk) to denote that

TAB... = rktAB... for some tAB... which, in general, has a non-vanishing limit as a tensor

field on S2 as r → 0. Roughly speaking, to leading order the metric gab near p+ behaves

as the Minkowski metric at the corner of a light cone.
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The expansion and shear of N+ have the behavior

θ = −2

r
+O(r3) , σAB = O(r3) (3.15)

The normal to the foliation by r = constant surfaces is n̂a = dr. The Há́iček rotation 1-

form on N+ relative to the foliation by r is essentially the quantity denoted by ξA in [51, 52],

which satisfies

ω̂A = O(r2) (3.16)

We have put a “hat” on the rotation 1-form to emphasize its dependence on the foliation.

To consider the limit of the charges associated to the symmetries on N+, we now relate

these coordinates to the GNC used in the main arguments above. The non-affinity κ̂ of

the null generator ˆ̀a ≡ −∂r is given by

κ̂ = −∂r ln ν = O(r3) (3.17)

and thus ˆ̀a is an affine null generator of N+ up to O(r3). Thus near p+, we can identify
ˆ̀a with the GNC null generator `a ≡ ∂v and the coordinate r with GNC coordinate v as

`a = ˆ̀a +O(r3) , v − V (xA) = −r +O(r4) (3.18)

Note that, as is to be expected, the cross-sections of N+ given by r = constant and those

given by v = constant do not coincide. In particular, their normals n̂a ≡ dr and na ≡ −dv
are related by

na = n̂a + ∂AV dx
A +O(r3) (3.19)

Now consider a symmetry ξa = −vβ∂v+XA∂A in GNC where, as before, XA is tangent

to the v = constant cross-sections. We rewrite this vector field as ξa = f̂ ˆ̀a+ X̂A∂A so that

X̂A is tangent to the r = constant cross-sections. From eqs. (3.18) and (3.19) we have

f̂ = −(V − r)β −XA∂AV +O(r3) , X̂A = XA +O(r3) (3.20)

and also

βX̂ = −X̂Aq̂A
b£ˆ̀n̂b = O(r2) (3.21)

The WZ charge Qξ (see eqs. (2.20) and (2.22)) evaluated on some cross-section Sr with

r = constant is then

Qξ[Sr] =
1

8π

∫
Sr

ε̂2

[
f̂ θ + β + β̂X̂ − ω̂AX̂

A
]

(3.22)

From eqs. (3.20) and (3.21) we see that

Qξ[p+] = lim
r→0
Qξ[Sr] = 0 (3.23)

where we have used that ε̂2 = r2ε0
2 +O(r4) with ε0

2 the area-element of the unit-sphere.
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Next consider the integral of iξΘ(δg) on the cross-sections Sr∫
Sr

iξΘ(δg) = − 1

16π

∫
Sr

ε̂2 f̂

(
σAB − 1

2
qABθ

)
q̂A

aq̂B
bδgab (3.24)

Any metric perturbation δgab which is smooth at p+ has smooth components in the Rie-

mann normal coordinates yi described above, and its spherical components behave as

q̂A
aq̂B

bδgab = O(r2). Thus, we have

lim
r→0

∫
Sr

iξΘ(δg) = 0 (3.25)

4 Conservation laws at causal diamonds

We now show that there exist an infinite-number of conservation laws associated to the

symmetry algebra gCD between fluxes through N− and N+ for any causal diamond. These

conservation laws follow directly from the smoothness of the relevant fields at the bifurca-

tion edge B.

First we show that the smoothness of the spacetime at B implies that the charges

corresponding to the symmetries in gCD evaluated at B are equal. From eqs. (2.20), (2.21)

and (3.6), the charges at B induced from N± are

Qξ[B] = +
1

8π

∫
B

ε+
2

(
+β − ω+

AX
A
)

Qξ[B] = − 1

8π

∫
B

ε−2
(
−β − ω−AX

A
) (4.1)

where the difference in the sign of these expressions is due to our conventions for the area

elements on N± given in eq. (3.3) and the matching conditions on the symmetries eq. (3.6).

To show that these charges are equal we need to consider the relation between the Há́iček

rotation 1-forms ω+
A and ω−A which can be obtained as follows. Let `a± and na± be the

extensions in the respective GNCs of the null vector fields `a and na on B. Then we can

compute

ω+
A

∣∣
B

= −(q+)A
cn+
b ∇

+
c `

b
+ = (q+)A

c`+b ∇
+
c n

b
+

= (q+)A
c`−b ∇

+
c n

b
−

= (q−)A
c`−b ∇

−
c n

b
−

= − ω−A
∣∣
B

(4.2)

where in the first line we have used n+
a `

a
+|B = na`

a = −1, in the second line we have used

the fact that `a and na are continuous at B (see eq. (3.2)), in the third line the continuity

of the induced metric qab and the spacetime derivative operator ∇ (which follows from the

smoothness of the metric gab) and in the last line the definition of ω−A at B. Thus, from
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the smoothness of the spacetime metric and the continuity of the GNCs at B we have7

ω+
A

∣∣
B

= − ω−A
∣∣
B

(4.3)

Combining eq. (4.3) with eqs. (3.4), (3.6) and (4.1) we have

Qξ[B] from N+ = Qξ[B] from N− (4.4)

Next, we consider the fluxes through N± given by

Fξ[N+] = Qξ[B]−Qξ[p+]

Fξ[N−] = Qξ[B]−Qξ[p−]
(4.5)

Note that the flux on N+ is outgoing while that on N− is incoming relative to the causal

diamond (in accordance with our conventions eq. (3.3)). As shown in section 3.2 the charges

at the corners p± vanish and thus from eq. (4.4) we have

Fξ[N+] = Fξ[N−] (4.6)

That is, the incoming flux through N− is equal to the outgoing flux through N+ for any

symmetry in gCD. Thus, there are infinitely-many conservation laws associated to the

symmetry algebra on any causal diamond in any spacetime in general relativity.

Remark 4.1 (Affine supertranslations). Note that in section 3.1 we eliminated the affine

supertranslations α(xA) 6= 0 from the symmetry algebra of the causal diamond by de-

manding that the bifurcation surface B be preserved under the symmetries. If we had

kept α then iξΘ(δg)|B 6= 0 — since such vector fields are not tangent to B — and thus,

the flux of the affine supertranslations is not a Hamiltonian generator on the phase space

of the null boundary. Furthermore, the affine supertranslations α+`
a defined on N+ and

α−n
a defined on N− cannot be matched at B, as the corresponding vector fields are not

continuous. Even if one imposes the condition α+(xA) = α−(xA) by hand, the charges

corresponding to the affine supertranslations at B (see eq. (2.20)) do not match since the

expansions θ± along N± need not be equal at B in general. Thus, there do not exist any

conservation laws at a causal diamond in general spacetimes analogous to eq. (4.6) for the

affine supertranslations.

Remark 4.2 (Non-affine parametrization of the null generators). For convenience we chose

the null generators of N± to be affinely-parametrized, but our result is invariant under this

choice. One can construct a GNC on a null surface relative to an arbitrarily parametrized

null generator (with κ 6= 0). The resulting symmetry algebra is then as described in [27]

and section 2.1. The affine supertranslations are eliminated by the condition f |B = 0, in

which case the boost supertranslations in b are parametrized by the function −(£` + κ)f

which is invariant under arbitrary rescalings of the null generators. For the boosts in b0 we

have −(£` + κ)f = constant. The remainder of our analysis can also be generalized in a

similar fashion; we only note that since f |B = 0, the non-affinities κ± of the generators of

N± do not enter into the matching of the symmetries and charges at B and the resulting

conservation laws.
7In the Newman-Penrose notation [53] eq. (4.3) is simply the identity β + α = −(−β − α), while in

the Geroch-Held-Penrose notation [54] it is β − β′ = −(−β + β
′
), which follow from the continuity of the

spin-coefficients of the spacetime derivative operator ∇ at B.
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5 Central charges and area of the bifurcation edge

As discussed in section 3.1, the symmetry algebra gCD at the boundary of the causal

diamond can be viewed as a non-trivial central extension of gCD/b0 by the 1-dimensional

abelian subalgebra b0 of boosts. One expects the charges of such central elements to be

of special significance. We show below that these charges are directly related to the area

of B, in analogy with the Wald entropy formula for black holes [2]. A similar result was

found in [6] through different considerations.

From the results of section 4 we have that8

Fβ [N+] = Qβ [B] =
β

8π
Area(B) (5.1)

for any (β = constant, XA = 0) ∈ b0. This can be written in a more illuminating form

as follows: consider the vector field ξa|N+ = −vβ`a corresponding to an element in b0, so

that

ξb∇bξa = κ(β)ξ
a , κ(β) = −β = constant (5.2)

and thus

Fβ [N+] = Qβ [B] = −
κ(β)

2π
× 1

4
Area(B) (5.3)

If we interpret the charge Qβ [B] as an “energy”, the 1
4Area(B) as an “entropy” and −κ(β)

2π

as a “temperature”, relative to the vector field ξa, then eq. (5.3) takes the form of a

“first law” [2, 32, 47]. Note that if ξa is future-directed on N+ we have β < 0 and

so κ(β) > 0 and the temperature is negative. This difference in sign compared to the

temperature of bifurcate Killing horizons essentially arises due to the fact that the future-

directed null generator `a points “inwards” on N+. Such a negative temperature was also

found for causal diamonds in maximally symmetric spacetimes in [25]. Also note that for

asymptotically-flat stationary black holes the scaling of the horizon Killing vector field Ka

is fixed by the requirement that at spatial infinity Ka asymptotes to a future-directed unit-

normalized timelike Killing vector field (plus a rotational vector field). This completely fixes

the scaling of the surface gravity, and hence the temperature, of the black hole. In contrast,

there is no natural normalization for the boost vector fields at a causal diamond so we get

an entire 1-dimensional family of surface gravities κ(β) and temperatures corresponding to

the symmetries b0.

The charges Qβ [B] associated to elements of b0 are central even in the sense of a

Poisson bracket on the phase space of N+, i.e. the boost charges Poisson-commute with

all the other charges. This can be seen as follows: since the fluxes Fξ are Hamiltonian on

the phase space of N+ (see eq. (3.11)), we can define their Poisson bracket as (see also

section 8 [27])

{Fξ1 ,Fξ2} = −
∫
N+

ω(g; £ξ1g,£ξ2g) (5.4)

8It can be verified that for a causal diamond in Minkowski spacetime where B is a sphere of radius R,

our conventions eq. (3.3) give
∫
B

ε+
2 = Area(B) = +4πR2.
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for any two symmetries ξ1, ξ2 ∈ gCD. Since iξΘ|B = 0 and Fξ[N+] = Qξ[B] for any such

symmetry it follows from the analysis of section 8 [27] that

{Qξ1 [B],Qξ2 [B]} = Q[ξ1,ξ2][B]−
∫
B

£ξ1Qξ2 (5.5)

where in the final term Qξ is the 2-form whose integral on B gives the charges eq. (4.1). If

this term is vanishing then the Poisson algebra of charges is isomorphic to the Lie algebra

of spacetime symmetries in gCD (see section 8 [27] for details). In the present case this

term does indeed vanish; we have∫
B

£ξ1Qξ2 =

∫
B

[iξ1dQξ2 + d (iξ1Qξ2)] = 0 (5.6)

where the first term vanishes since any ξ1 ∈ gCD is tangent to B, while the second term van-

ishes upon integration over B. Thus the Poisson algebra of the charges on B is isomorphic

to the Lie algebra gCD. The boost charges eq. (5.3) associated to the central elements in b0

are then also central charges on the phase space on N+ in the sense of the Poisson algebra.

We emphasize that the appearance of central charges in the above analysis is quite

different from that of previous approaches. In particular, we work in full nonlinear general

relativity at any causal diamond in any spacetime satisfying the vacuum Einstein equations

without any restriction to “near horizon” geometries of stationary black holes (as done

in [4, 55, 56]). Since the Einstein equations are not conformally invariant there is no

conformal symmetry or Virasoro algebra at the causal diamond in the general case we have

considered. In fact, since we have allowed for non-vanishing shear, the induced 2-metrics

on the cross-sections of the causal diamond are not conformally related (see eq. (2.8)). We

always work with smooth vector fields as representatives of the symmetries (as opposed to

the singular vector fields considered in [20]). Furthermore, as discussed above, the Poisson

algebra of the charges in our case is isomorphic to the Lie algebra of symmetries with no

additional central extension (in contrast with [4, 7, 20]). The central extension we obtain

already exists in the structure of the spacetime symmetry algebra gCD.

6 Discussion

We studied the covariant phase space formalism at the boundaries of causal diamonds in

vacuum general relativity. In suitable Gaussian null coordinates, we showed that one can

identify all causal diamonds and their bifurcation edges across all spacetimes, and that

the symmetry algebra at the null boundaries of the casual diamond takes the form gCD
∼=

diff(S2) n b where diff(S2) maps different null generators of the causal diamond boundary

into each other and b consists of angle-dependent rescalings of the affine parameter along

the null generators. Suitable smoothness conditions at the corners of the causal diamond

imply that the Wald-Zoupas charges vanish at the corners — so that the total flux across the

null boundary is equal to the charge at the bifurcation edge — and that the Wald-Zoupas

fluxes define Hamiltonian generators of the symmetries on the null boundary phase space.
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The smoothness of the symmetry vector fields and the fields at the bifurcation edge then

give rise to an infinite-number of conservation laws for the Wald-Zoupas fluxes between

the past and future components of the causal diamond boundary. We also showed that

the charge associated to the central elements of the symmetry algebra — i.e. the elements

of the subalgebra b0 consisting of the angle-independent supertranslations — is related to

the area of the bifurcation edge through a “first law” similar to the Wald entropy formula

for stationary black holes.

While our analysis focused on causal diamonds in classical vacuum general relativity

we expect that it can be generalized to include matter fields described by a suitable QFT

on curved spacetimes. For instance, it was shown in [50] that a comparison of suitable

states defined on causal diamonds in different spacetimes can be used to extract properties

of the local curvature of the spacetimes. Similarly, in [57] it was shown that the relative

entropy of quantum states in linearized general relativity in an asymptotically-flat black

hole spacetime is related to the area of the black hole and Bondi flux at null infinity. The

infinite-dimensional symmetry algebra at the causal diamond could be useful to analyze

other properties of a QFT on curved spacetimes.

It has been conjectured that the conservation laws at null infinity strongly constrain

the scattering matrix of quantum gravity in asymptotically-flat spacetimes [28]. Similarly,

we expect the conservation laws derived in section 4 can be used to constrain the tran-

sition amplitudes in quantum gravity on local causal diamonds. To do this one needs

to suitably quantize the gravitational degrees of freedom on the null boundary (see for

instance [15, 17, 58]) and promote the charges and fluxes to operators with the bracket

structure eq. (5.5) in the corresponding quantum theory. We leave further investigation of

this problem to future work.

We also expect that our analysis can be extended to causal diamonds at an asymptotic

boundary in a spacetime, an interesting example of which arises in the AdS/CFT duality. In

this context, for an asymptotically-AdS spacetime, the entanglement entropy of a CFT state

defined on a causal diamond lying on the asymptotic boundary (conformal to Minkowski

spacetime with one fewer dimensions) is dual to the area of the Ryu-Takayanagi surface in

the bulk spacetime [23, 59]. The Ryu-Takayanagi surface can itself be considered as the

bifurcation edge of an “entanglement wedge”. Presumably, our analysis can be suitably

generalized to this case, taking into account the asymptotic AdS boundary conditions. We

expect that the resulting symmetries are related to the boundary modular Hamiltonian,

and that the associated charges and fluxes could provide further insight into the bulk dual

of boundary modular flow following [60–62].
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A Covariant phase space formalism and the Wald-Zoupas charges

The computation of boundary charges and their fluxes makes use of the covariant phase

space formalism [1] and the Wald-Zoupas prescription [3]. We quickly review the main

ingredients needed for null boundaries, and refer the reader to [27] for details.

Consider a diffeomorphism covariant theory of the metric gab as a dynamical field

which is described by a Lagrangian 4-form L(g) that depends locally and covariantly on

gab. Under perturbations g 7→ g + δg the Lagrangian changes as

δL = Eabδgab + dθ(g; δg) (A.1)

where Eab is a 4-form presenting the equations of motion of the theory and the 3-form

θ(g, δg) is the presymplectic potential. The 3-form presymplectic current is defined by

ω(g; δ1g, δ2g) = δ1θ(g; δ2g)− δ2θ(g; δ1g) (A.2)

where δ1g and δ2g are any two independent perturbations.

Given a vector field ξa, one can then show that

ω(g; δg,£ξg) = d[δQξ − iξθ(δg)] (A.3)

where the 2-form Qξ is the Noether charge [1–3].

Consider now a null boundary N in the spacetime and a spacelike hypersurface Σ that

intersects N at some cross-section S. Integrating eq. (A.3) we get∫
Σ

ω(g; δg,£ξg) =

∫
S

δQξ − iξθ(δg) (A.4)

Two vector fields ξa and ξ̃a are equivalent representatives of symmetries on N if ξa|N = ξ̃a|N
and the right-hand-side of eq. (A.4) evaluated with ξa and ξ̃a are equal for all backgrounds

g ∈ F , all perturbations δg within F and all cross-sections S of N . The boundary

symmetries on N are then given by vector fields ξa factored out by the above equivalence

relation.

From the above identity it would be “natural” to define a charge at S associated to a

symmetry ξa as a function Qξ[S] on phase space so that

δQξ[S] =

∫
S

δQξ − iξθ(δg) (A.5)

for all perturbations δg within F and all cross-sections S. Unfortunately, in general, the

right-hand-side of eq. (A.5) is not integrable in phase space and no function Qξ satisfying

eq. (A.5) exists on the phase space. As shown in [3] the integrability condition for the

existence of a charge Qξ[S] for some symmetry ξa is

0 = (δ1δ2 − δ2δ1)Qξ = −
∫
S

iξω(g, δ1g, δ2g) (A.6)
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for all perturbations δ1g, δ2g within F and all cross-sections S. This above criteria is not

satisfied, even at null infinity in general relativity, except in very special cases [3].

Nevertheless, Wald and Zoupas [3] developed a prescription for defining a modified

charge which is always integrable. Define a boundary presymplectic potential Θ(g; δg) for

the pullback to N of the presymplectic current,

ω(g, δ1g, δ2g) = δ1Θ(g, δ2g)− δ2Θ(g, δ1g) (A.7)

where ω denotes the pullback to N . Then define the Wald-Zoupas charge (WZ charge) by

δQξ[S] =

∫
S

δQξ − iξθ(δg) + iξΘ(δg) (A.8)

It can be shown using eqs. (A.4) and (A.7) that δQξ[S] is integrable in phase space. Thus

eq. (A.8) determines a function Qξ[S] up to a constant of integration on F , which can be

fixed by choosing a reference solution g0 such that Qξ[S]
∣∣
g0

= 0 for all symmetries ξa and

all cross-sections S.

The prescription given by Wald and Zoupas is to choose the 3-form Θ such that

Θ(g; δg) vanishes for all perturbation δgab for any background gab which is stationary, and

to choose the reference solution g0 to also be stationary. The consistency conditions for

such choices and the ambiguities in them are detailed in [3].

If the above choices can be made then the flux Fξ[∆N ] of the WZ charge Qξ through

a part of the null boundary N is given by [3]

Fξ[∆N ] =

∫
∆N

Θ(g; £ξg) (A.9)

It can also be shown that the perturbed flux δFξ for any symmetry ξa and any perturbation

δgab satisfies (see eq. 29 [3])

δFξ =

∫
N

ω(g; δg,£ξg) +

∫
∂N

iξΘ(δg) (A.10)

If iξΘ(δg) → 0 on ∂N for all perturbations δgab then Fξ is a function on the covariant

phase space F satisfying

δFξ =

∫
N

ω(g; δg,£ξg) (A.11)

for all perturbations δgab, that is, Fξ defines a Hamiltonian which generates the flow on

the covariant phase space F associated to the symmetry ξa.

In [3] this procedure was applied to the asymptotic symmetries at null infinity in

general relativity to derive the charges and symmetries for the BMS algebra. The case

of finite null boundaries in vacuum general relativity was handled in [27], where it as

shown that the notion of symmetries defined below eq. (A.4) coincides with those defined

in section 2 and the Wald-Zoupas prescription gives the charges and fluxes described in

eqs. (2.20) and (2.21). In [27] the reference solution (used in the Wald-Zoupas prescription)
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was chosen to be the horizon of a Schwarzschild black hole in the limit that the mass tends

to zero. It was shown that this reference solution satisfies all the criteria given by Wald

and Zoupas [3]. In this paper, we simply adopt the formulae for the charges and fluxes

from [27] and do not analyze the choice of reference solution in detail.

B Structure of gCD as a central extension

In this section we explore the structure of the summetry algebra gCD of the causal diamond

as a non-trivial extension of gCD/b0 by the boosts b0.

Recall from section 3.1 that the elements of gCD
∼= diff(S2)nb are of the form (β,XA)

where β is a smooth function and XA a vector feld on S2. The central elements (i.e.

those which commute with all other elements in gCD) of boosts in b0 are the ones given

by (β = constant, 0). Consider the quotient gCD/b0 which consists of equivalence classes

given by the relation (β,XA) ∼ (β + constant, XA). Thus, gCD is a central extension of

gCD/b0 by the abelian algebra b0. We now show that this central extension is, in fact, a

non-trivial central extension. What this means is the following:

Does the bracket of two representative elements belonging to gCD/b0, computed

in gCD, have a non-vanishing b0-part?

If the answer is ‘no’ then the central extension is trivial and gCD will be a direct product

of gCD/b0 and b0. If the answer is ‘yes’ then gCD has the structure of a non-trivial central

extension of gCD/b0 by b0.9

Since the symmetry algebra gCD is independent of the metric qAB on N the null

boundary of the causal diamond, we can deduce its structure in any choice of metric, in

particular it is convenient to choose qAB to be the metric of a unit-sphere in the standard

(θ, φ) coordinates on S2. We now compute the bracket of any two elements in gCD/b0, with

the only relevant case being the bracket between an element of b/b0 with an element of

diff(S2) which gives (see eq. (3.7))

[(β1, 0), (0, XA
2 )] = (β, 0) with β = −XA

2 ∂Aβ1 (B.1)

To answer the above question we expand in terms of spherical harmonics Yl,m(θ, φ).

Note that elements of b0 are purely l = 0 spherical harmonics. Now let β1 be a l1-harmonic

with l1 ≥ 1 and XA
2 be a l2-vector harmonic. We can write XA

2 = ∂AX + εAB∂BX̃ where

X, X̃ are l2-harmonics with l2 ≥ 1. We want determine whether β can have a non-trivial

l = 0 part, that is a non-vanishing constant piece.

Before considering the general case, we note the following example

β1 = cos θ , XA
2 ≡ − sin θ∂θ =⇒ β = sin2 θ (B.2)

Thus, β has non-vanishing l = 0, 2 parts in terms of spherical harmonics. This already

shows that gCD is a non-trivial central extension of gCD/b0 by b0.

9In a more mathematical language, every central extension of gCD/b0 by the abelian algebra b0 corre-

sponds to a 2-cocycle in the cohomology group H2(gCD/b0, b0) (see section IV.2 [63]). Our computation in

this section amounts to showing that the cocycle which gives the Lie algebra structure of gCD is non-trivial.
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For the general situation, first consider the case X = 0, XA
2 = εAB∂BX̃. Then we

have, by integrating-by-parts on the unit-sphere (we leave the area element implicit for

notational convenience)∫
β Y l=0,m ∝

∫
β = −

∫
εAB∂BX̃∂Aβ1 = −

∫
∂B(εABX̃∂Aβ1) = 0 (B.3)

Thus, β always has a vanishing l = 0 component for XA
2 = εAB∂BX̃.

Next consider the case X̃ = 0, XA = ∂AX we have∫
β Y l=0,m ∝

∫
β = −

∫
∂AX∂Aβ1 =

∫
X∂2β1

= −l1(l1 + 1)

∫
Xβ1

(B.4)

Expanding the functions X and β1 in terms of the corresponding spherical harmonics, and

using the orthonormality and completeness of the spherical harmonic basis we conclude

that, the right-hand-side is non-vanishing if and only if

l1 = l2 ≥ 1 , m2 = −m1 (B.5)

Thus, β has a non-vanishing constant (l = 0) part whenever eq. (B.5) is satisfied, which has

many solutions; taking l1 = l2 = 1 and m1 = m2 = 0 gives the above example eq. (B.2).

Thus, gCD is a non-trivial central extension of gCD/b0 by b0 as we wished to show.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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