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1 Introduction

The continuity between moderate x and low x observables has been the subject of many

studies in perturbative QCD. The factorization schemes involved in both cases seem indeed

very different at first sight. For processes where the center-of-mass energy s is of the same

order as the hard partonic scale Q2, i.e. at moderate x = Q2/s, and for inclusive enough

observables, colinear factorization applies. The simplicity of having a single hard scale

carried by a single hard momentum allows for a standard Operator Product Expansion

(OPE) to be performed. Such an OPE consists in the expansion of a bilocal operator into

a discrete set of local operators On, usually ordered according to their twist (dimension −
spin). For example for quark currents J the OPE has the form:

J(z)J(0) →
∑

n

Cn (z, µ)On (µ) , (1.1)

where µ is a renormalization scale and where divergences from the loop corrections to

the Wilson coefficient Cn (z, µ) are cancelled via the renormalization of the local operator

On (µ). This renormalization allows to resum large logarithms of the hard scale Q. In the

low x limit, the hardest scale of the process is given by s, and the previous OPE is not

convenient to address logarithms of this scale. The low x OPE developed in [1–3], to which

we will refer as the shockwave framework, has a very different form:

J(z)J(0) → C0 (z, Yc)O0 (Yc) + αsC1 (z, Yc)O1 (Yc) + . . . , (1.2)
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where Yc is a rapidity separation scale and where the spurious rapidity divergence from the

1-loop correction to the Cn+1 coefficient is cancelled by the Leading Logarithmic (LL) Yc
evolution of the n-th operator On, and so on and so forth. Such an evolution in Yc allows

to resum large logarithms of s.

It is possible to take the low x limit in eq. (1.1) and to match it to the first powers

of the partonic hard scale in eq. (1.2). However, eq. (1.1) is usually valid for the first few

powers at best while eq. (1.2) is valid for all powers of Q. On the flip side so far only the

first few subleading s−1/2 corrections to eq. (1.2) have been computed [4–13] while eq. (1.1)

is valid for all powers of s.

The main difficulty in finding a general continuity between both schemes is the nature

of the operators involved. While the moderate x factorization schemes involve operators

which consist of parton fields with the appropriate gauge links, the low x schemes involve

full Wilson line operators. This difficulty is the one we will address in this article.

For several processes and in several kinematic regimes, a matching between the low x

Wilson line operators and some standard moderate x distributions have been found. Trans-

verse Momentum Dependent (TMD) distributions were first recovered in [14, 15] via a so-

called correlation expansion, which was extended in [16] for 3-particle final states and to in-

finite kinematic twist accuracy in [17]. The correspondance between low x and TMD obser-

vables is the subject of many recent studies [18–23]. For a review on TMD gluon distribu-

tions at small x, the reader is referred to [24]. The off-forward generalization of TMD distri-

butions (Generalized TMD distributions, GTMD) and their Fourier transforms, the Wigner

distributions, were also found in [25, 26]. Generalized Parton Distributions (GPD), the off-

forward extension of PDFs, were extracted via a twist expansion in [27]. In this article, we

develop a method to rewrite low x physics in terms of TMD andWigner distributions, which

are known to span PDFs and GPDs as well [28, 29], allowing for a completely systematic

rewriting of low x observables in terms the distributions involved in the moderate x regime

as well. Our formulation of low x physics is that of an infinite twist (G)TMD framework.

The question of gluon saturation is one of the most exciting topics in low x physics.

While the original Balitsky Fadin Kuraev Lipatov (BFKL) description [30, 31] did not

involve saturation effects, the more recent dipole [32–34] and shockwave [1–3] frameworks

contain non-linear effects embedded in their evolution equation. More strikingly, the ef-

fective Feynman rules and Wilson line operators involved in the shockwave framework

were shown to be perfectly compatible with earlier results [35–37] describing scattering

off a heavy ion with large gluon occupancy taken into account as the very starting point.

The low x description of scattering off nuclear targets, known as the Color Glass Con-

densate (CGC) [38], also has the exact same hierarchy of evolution equations as in [1–

3], the Balitsky-Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (B-JIMWLK)

evolution equation [39–46], which reduces in the mean field approximation to the Balitsky-

Kovchegov (BK) equation, the evolution equation in the dipole framework.

Saturation is usually understood as combined effects: gluon recombinations via non-

linearities in the evolution equation due to x being small [47], and the importance of

multiple scatterings due to the large gluon occupancy number for dense targets [35–37]. In

this article, we will give a new point of view on saturation in terms of TMD physics. In par-
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ticular, we will distinguish 3 origins of saturation, whose effects can be studied separately.

We will also discuss the linear BFKL limit as a kinematic limit rather than a dilute limit.

We will restrict ourselves to so-called dilute-dense collisions where either the projectile

is a photon (with or without virtuality), or where in a hadron-hadron collision the observed

particles are forward enough for the so-called hybrid factorization ansatz [48, 49] to apply.

This ansatz relies on the assumption that the incoming projectile parton was produced close

enough to the projectile hadron beam to be reliably described via collinear factorization.

Then the observables are described as the convolution of a collinear parton distribution

with a low x amplitude where the incoming parton is treated as the projectile. The hybrid

ansatz was successfully applied to one-loop order [50–59] For central production, a more

involved formalism similar to the one developed in [9, 10] should be used, and will be

investigated in future studies.

The article is organized as follows. In section 2 we give the computation steps to

rewrite low x amplitudes in a form which is compatible with an infinite twist TMD ampli-

tude, involving all kinematic twist corrections to the 1-body and 2-body (half-)operators.

In section 3 we derive the cross section in the inclusive case, involving 2-body, 3-body and

4-body TMD distributions. We then show how PDFs appear in more inclusive observa-

bles. We also discuss inclusive diffraction. In section 4 we derive the cross section in the

exclusive case, which involves a GTMD. We then show how GPDs appear for less exclusive

observables. In section 5 we show how the BFKL limit can be understood as a kinematic

limit in the Wandzura-Wilczek approximation, and we give predictions beyond the WW

approximation in terms of 2-body, 3-body and 4-body unintegrated PDFs. Finally in sec-

tion 6 we discuss how saturation can be understood in terms of TMD physics and how one

kind of saturation could also appear in the kinematic BFKL limit.

Notations and conventions. We will use the most generic small x limit: s is assumed

to be much larger than any other scale, and our processes are assumed to have at least one

partonic hard scale Q. Any number of hard or semi-hard scales can be involved.

We define lightcone directions + and − such that the projectile (resp. target) has a

large momentum along the + direction p+0 ∼ √
s (resp. along the − direction P− ∼ √

s).

We denote transverse components as with a ⊥ subscript in Minkowski space and by bold

characters in Euclidean space. We will thus write scalar products as

x · y = x+y− + x−y+ + x⊥ · y⊥ = x+y− + x−y+ − x · y. (1.3)

Our treatement of low x physics relies on the covariant shockwave effective approach, very

similar to the Color Glass Condensate approach. These frameworks are based on the

separation of gluon fields in rapidity space: the QCD Lagrangian is separated1 into fast

fields (|k+| > e−Ycp+0 ) and slow fields (|k+| < e−Ycp+0 ). We will use the lightcone gauge

A+ = 0, in which slow fields have the form

Aµ
Yc
(x) = δ(x+)A−

Yc
(x⊥)δ

µ− +O
(

mT /
√
s
)

, (1.4)

1For central production in hadron-hadron collisions, additional separations would be introduced.
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where mT is a typical mass in the target. Note that the δ(x+) function is a shorthand

notation to account for the fact that the field is peaked around x+ = 0, and should be

treated as such rather than a distribution. The slow field is then treated as an external

field, which allows for multiple interactions to be resummed into path-ordered Wilson lines.

For a color representation R, the finite Wilson line operators are defined as

[

a+, b+
]R

x,Yc
≡ Peig

∫ b+

a+
dz+Ta

R
Aa−

Yc
(z+,x), (1.5)

and we define the more standard infinite lines

UR
x,Yc

= [−∞,+∞]Rx,Yc
. (1.6)

Large logarithms of s are resummed via the Yc evolution of the Wilson line operators, given

by the B-JIMWLK hierarchy of evolution equations [1–3, 39–46] , which can be written in

a compact form as the action of the JIMWLK Hamiltonian H on a functional of Wilson

line operators
d

dYc

(

UR1
x1,Yc

. . . URn

xn,Yc

)

= −H ·
(

UR1
x1,Yc

. . . URn

xn,Yc

)

. (1.7)

Then the observables are given as the convolution of the hard part HYc
(x1, . . . ,xn), ob-

tained through effective Feynman rules in the external slow (classical) field with a lower

rapidity cutoff Yc for the fast (quantum) gluon fields, and the action of Wilson line operators

at rapidity Yc on target states
〈

P (′)|P
〉

:

A =

∫

d2x1 . . . d
2xnHYc

(x1, . . . ,xn)

〈

P (′)
∣

∣

∣
UR1
x1,Yc

. . . URn

xn,Yc

∣

∣

∣
P
〉

〈P |P 〉 , (1.8)

where for exclusive observables A is the amplitude and the matrix element is off-diagonal,

and for inclusive observables A is the cross section and the matrix element is diagonal.

Throughout this article, we will drop the Yc subscripts for reader’s convenience. We will

normalize our target states such that

〈

P ′|P
〉

= 2P− (2π)3 δ
(

P ′− − P−
)

δ2
(

P ′ − P
)

, (1.9)

and use extensively relations similar to

∫

dx+1 dx
+
2 d

2x1d
2x2

〈

P
∣

∣

∣

[

x+2 , x
+
1

]

x2
F i− (x1)

[

x+1 , x
+
2

]

x1
F j− (x2)

∣

∣

∣
P
〉

〈P |P 〉

∣

∣

∣

∣

∣

∣

x−

1,2=0

=
1

2P−

∫

dr+d2r
〈

P
∣

∣

[

0+, r+
]

0
F i− (r)

[

r+, 0+
]

r
F j− (0)

∣

∣P
〉∣

∣

r−=0
, (1.10)

as a result of normalization (1.9) and translation invariance. We will also use the fact that

in lightcone gauge A+ = 0 and in the eikonal approximation given in eq. (1.4), the gluon

field F i− simply reads

F i−(x) = ∂iA−(x). (1.11)

– 4 –



J
H
E
P
1
0
(
2
0
1
9
)
2
0
8

Finally, the connection to standard parton distributions is always obtained by using small

x limits of these distributions as given by relations of type:

∫

dr+d2reixP
−r+

〈

P ′
∣

∣

∣
F i− (r)U±

[r,0]F
j− (0)U±

[0,r]

∣

∣

∣
P
〉
∣

∣

∣

r−=0
(1.12)

→
∫

dr+d2r
〈

P ′
∣

∣F i− (r)
[

r+,±∞
]

r

[

±∞, 0+
]

0
F j− (0)

[

0+,±∞
]

0

[

±∞, r+
]

r

∣

∣P
〉
∣

∣

r−=0
,

where U±
[x,y] are staple gauge links:

U±
[x,y]=

[(

x+,x−,x
)

,
(

±∞,x−,x
)][(

±∞,x−,x
)

,
(

±∞,x−,y
)][(

±∞,x−,y
)

,
(

y+,x−,y
)]

,

(1.13)

whose transverse parts are subeikonal in A+ = 0 axial gauge. Noting the expression for

the transverse derivative of a Wilson line operator

(∂iUb1) = igs

∫ +∞

−∞
db+1

[

−∞, b+1
]

b1
F i−

(

b+1 , 0
−, b1

) [

b+1 ,+∞
]

b1
, (1.14)

and that the transverse links are subeikonal, it is possible to combine Wilson lines and

derivatives of Wilson lines into TMD distributions. For example, eqs. (1.12) and (1.14)

allow to write the Weizsäcker-Williams TMD, defined as in eq. (1.12) with U+ and U+

staple gauge links, in terms of Wilson lines:

F (3)
gg (x, k⊥) = − 4

g2

∫

d2xd2y

(2π)3
e−ik·(x−y)

〈

P
∣

∣

∣
Tr

[

(∂iUx)U
†
y (∂iUy)U

†
x

]∣

∣

∣
P
〉

〈P |P 〉 (1.15)

or for the dipole TMD, defined as in eq. (1.12) with U− and U+ staple gauge links:

F (1)
qg (x, k⊥) =

4

g2

∫

d2xd2y

(2π)3
e−ik·(x−y)

〈

P
∣

∣

∣
Tr

[

(∂iU
†
x) (∂iUy)

]∣

∣

∣
P
〉

〈P |P 〉 . (1.16)

It also allows to write TMD distributions with more complicated gauge links structures,

as explained in details in the recent review [24].

2 Low x amplitudes as (G)TMD amplitudes

All the computation steps which will be performed here would apply for generic shockwave

amplitudes. We will restrict ourselves to processes with 1 incoming particle of momentum

p0 in color representation R0 and 2 outgoing particles of respective momenta p1 and p2 and

in respective color representations R1 and R2, in the external field of a hadronic target. In

the shockwave and CGC formulations of low x physics, the amplitude for such a process

has the form [17]

A = (2π) δ
(

p+1 + p+2 − p+0
)

∫

d2b d2r e−i(q·r)−i(k·b)H (r) (2.1)

×
[(

UR1
b+z̄rT

R0UR2
b−zr

)

−
(

UR1
b TR0UR2

b

)]

,

– 5 –
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where H (r) is the hard part, and we defined

k ≡ p1 + p2, (2.2)

and

q ≡ p+1 p1 − p+2 p2

p+1 + p+2
, (2.3)

and where

z ≡ p1+

p+0
, z̄ ≡ p+2

p+0
= 1− z. (2.4)

The study we will perform here is independent on H and thus valid for any process with 2

outgoing particles, with or without masses or virtualities. Note that final state partons can

hadronize for example via fragmentation functions, distribution amplitudes or NRQCD,

without changing the validity of present study either. Also note that the true amplitude is

given by the action of the Wilson line operators on target states, which we will introduce

later in section 3 in the inclusive case and in section 4 in the exclusive case. For the

moment, it is enough to keep the amplitude as an operator.

The equivalence we want to prove here relies on the following rewriting of Wilson lines

in terms of their derivatives:

UR1
b+z̄r = UR1

b − irα⊥

∫

d2k1

(2π)2

∫

d2b1 e
−ik1·(b1−b) e

iz̄(k1·r) − 1

(k1 · r)
(

∂αU
R1
b1

)

, (2.5)

and

UR2
b−zr = UR2

b − irα⊥

∫

d2k2

(2π)2

∫

d2b2 e
−ik2·(b2−b) e

−iz(k2·r) − 1

(k2 · r)
(

∂αU
R2
b2

)

. (2.6)

Indeed derivatives of Wilson line operators are the main quantities to consider when trying

to match the TMD formalism, as shown in [15]. The derivative of a Wilson line in color

representation R is given by

(

∂iU
R
b1

)

= igs

∫ +∞

−∞
db+1

[

−∞, b+1
]R

b1
T a
RF

i−
a

(

b+1 , 0
−, b1

) [

b+1 ,+∞
]R

b1
, (2.7)

which allows to identify the F i−
a (b1) field as the actual gluon field in a TMD operator.

At moderate x this gluon would be isolated from the slow gluons in the gauge links. The

amplitude (2.1) can be rewritten into 3 pieces:

A ≡ Ag +A(1)
k +A(2)

k , (2.8)

where the 3 pieces are defined respectively as

Ag = (2π) δ
(

p+1 + p+2 − p+0
)

∫

d2b d2r e−i(q·r)−i(k·b)H (r) (2.9)

×
(

UR1
b+z̄r − UR1

b

)

TR0

(

UR2
b−zr − UR2

b

)

,

A(1)
k = (2π) δ

(

p+1 + p+2 − p+0
)

∫

d2b d2r e−i(q·r)−i(k·b)H (r) (2.10)

×
(

UR1
b+z̄r − UR1

b

)

TR0UR2
b ,

– 6 –



J
H
E
P
1
0
(
2
0
1
9
)
2
0
8

and

A(2)
k = (2π) δ

(

p+1 + p+2 − p+0
)

∫

d2b d2r e−i(q·r)−i(k·b)H (r) (2.11)

× UR1
b TR0

(

UR2
b−zr − UR2

b

)

.

The first piece is easy to rewrite thanks to eqs. (2.5) and (2.6):

Ag = (2π) δ
(

p+1 + p+2 − p+0
)

∫

d2k1

(2π)2
d2k2

(2π)2
(2π)2 δ2 (k1 + k2 − k)

×
∫

d2b1d
2b2 e

−i(k1·b1)−i(k2·b2)
(

∂iU
R1
b1

)

TR0

(

∂jU
R2
b2

)

(2.12)

×
∫

d2r e−i(q·r)

[

−rirjH (r)

(

eiz̄(k1·r) − 1
) (

e−iz(k2·r) − 1
)

(k1 · r) (k2 · r)

]

.

This contribution is perfectly compatible with an all-kinematic-twists-resummed TMD am-

plitude for the first subleading-twist TMD half-operator.

The second and third pieces A(1)
k and A(2)

k contain both 1-gluon and 2-gluon contri-

butions. The 1-gluon contributions were extracted and resummed in [17], then compared

to predictions from the kinematic-twist-resummed TMD framework developped in [60, 61]

for several concrete examples. Let us recall the method which was used, and resum the

2-gluon contributions as well. Let us write the Taylor expanded form of the Wilson line

operator involved in A(1)
k :

(

UR1
b+z̄r − UR1

b

)

TR0UR2
b =

∞
∑

n=1

z̄n

n!

[

(r⊥ · ∂⊥)n UR1
b

]

TR0UR2
b ≡

∞
∑

n=1

Un. (2.13)

Keeping in mind that Un will be integrated as
∫

d2b e−i(k·b) Un, we can use integrations by

parts to write

Un =
−iz̄ (k⊥ · r⊥)

n
Un−1 −

z̄n

n!

[

(r⊥ · ∂⊥)n−1 UR1
b

]

TR0 (r⊥ · ∂⊥)UR2
b . (2.14)

Then an easy recursion shows

Un =
[−iz̄ (k⊥ · r⊥)]n−1

n!
U1 (2.15)

− rirj
z̄n

n!

n−1
∑

m=1

[i (k · r)]n−1−m
[

(r⊥ · ∂⊥)m−1
(

∂iUR1
b

)]

TR0

(

∂jUR2
b

)

.

Using

(r⊥ · ∂⊥)m−1
(

∂iU
R1
b

)

=

∫

d2b1

∫

d2k1

(2π)2
(ik1 · r)m−1 eik1·(b−b1)

(

∂iU
R1
b1

)

, (2.16)

and
(

∂jU
R2
b

)

=

∫

d2b2

∫

d2k2

(2π)2
eik2·(b−b2)

(

∂jU
R2
b2

)

, (2.17)

– 7 –
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one can obtain

Un =
[iz̄ (k · r)]n−1

n!
U1 − rirj

z̄2

n!

∫

d2k1

(2π)2
d2k2

(2π)2
ei(k1+k2)·b

∫

d2b1d
2b2 e

−i(k1·b1)−i(k2·b2)

×
n−1
∑

m=1

[iz̄ (k · r)]n−1−m (iz̄k1 · r)m−1
(

∂iU
R1
b1

)

TR0

(

∂jU
R2
b2

)

. (2.18)

A final resummation, using the relations

∞
∑

n=1

Xn−1

n!
=

eX − 1

X
, (2.19)

and
∞
∑

n=1

n−1
∑

m=1

Xm−1Y n−1−m

n!
=

Y
(

eX − 1
)

−X
(

eY − 1
)

XY (X − Y )
, (2.20)

leads to

(

UR1
b+z̄r − UR1

b

)

TR0UR2
b = iri

eiz̄(k·r) − 1

(k · r)
(

∂iUR1
b

)

TR0UR2
b (2.21)

− rirj
∫

d2k1

(2π)2
d2k2

(2π)2
ei(k1+k2)·b

∫

d2b1d
2b2 e

−i(k1·b1)−i(k2·b2)

× (k · r)
(

eiz̄(k1·r) − 1
)

− (k1 · r)
(

eiz̄(k·r) − 1
)

(k1 · r) (k · r) (k − k1) · r
(

∂iU
R1
b1

)

TR0

(

∂jU
R2
b2

)

.

Plugging (2.21) into (2.9) finally yields

A(1)
k = (2π) δ

(

p+1 + p+2 − p+0
)

∫

d2b e−i(k·b)
(

∂iUR1
b

)

TR0UR2
b

×
[

i

∫

d2r e−i(q·r)riH (r)

(

eiz̄(k·r) − 1

(k · r)

)]

+ (2π) δ
(

p+1 + p+2 − p+0
)

∫

d2k1

(2π)2
d2k2

(2π)2
(2π)2 δ (k1 + k2 − k) (2.22)

×
∫

d2b1d
2b2 e

−i(k1·b1)−i(k2·b2)
(

∂iUR1
b1

)

TR0

(

∂jUR2
b2

)

×
[

∫

d2r e−i(q·r)rirjH (r)
(k1 · r)

(

eiz̄(k·r) − 1
)

− (k · r)
(

eiz̄(k1·r) − 1
)

(k1 · r) (k2 · r) (k · r)

]

,

where a 1-gluon contribution and a 2-gluon contribution were explicitely extracted and

power-resummed. Applying exactly the same method to the remaining piece, we obtain

A(2)
k = (2π) δ

(

p+1 + p+2 − p+0
)

∫

d2b e−i(k·b)UR1
b TR0

(

∂iUR2
b

)

×
[

i

∫

d2r e−i(q·r)riH (r)
e−iz(k·r) − 1

(k · r)

]
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+ (2π) δ
(

p+1 + p+2 − p+0
)

∫

d2k1

(2π)2
d2k2

(2π)2
(2π)2 δ2 (k1 + k2 − k) (2.23)

×
∫

d2b1d
2b2 e

−i(k1·b1)−i(k2·b2)
(

∂iUR1
b1

)

TR0

(

∂jUR2
b2

)

×
[

∫

d2r e−i(q·r)H (r) rirj
(k2 · r)

(

e−iz(k·r) − 1
)

− (k · r)
(

e−iz(k2·r) − 1
)

(k1 · r) (k2 · r) (k · r)

]

.

We can finally gather the 1-gluon and 2-gluon amplitudes. The 1-gluon amplitude reads:

A1 = (2π) δ
(

p+1 + p+2 − p+0
)

∫

d2b e−i(k·b)(−i)

∫

d2r e−i(q·r)rα⊥H (r) (2.24)

×
[(

eiz̄(k·r) − 1

(k · r)

)

(

∂αU
R1
b

)

TR0UR2
b +

(

e−iz(k·r) − 1

(k · r)

)

UR1
b TR0

(

∂αU
R2
b

)

]

.

Single-scattering contributions like those in eq. (2.24) were extracted for explicit processes

in [17] and the consistency of the results was checked by comparing single-scattering cross

sections derived with our method to those obtained in the so-called improved TMD formal-

ism, which is a method to incorporate kinematic twists in TMD factorization. A perfect

match was found for all processes considered.

The 2-gluon amplitude is given by:

A2 = (2π) δ
(

p+1 + p+2 − p+0
)

∫

d2k1

(2π)2
d2k2

(2π)2
(2π)2 δ2 (k1 + k2 − k)

×
∫

d2b1d
2b2e

−i(k1·b1)−i(k2·b2)
(

∂iUR1
b1

)

TR0

(

∂jUR2
b2

)

(2.25)

×
[

−
∫

d2re−i(q·r)rirjH (r)

(

e−iz(k·r)

(k · r)
ei(k1·r) − 1

(k1 · r)
+

eiz̄(k·r)

(k · r)
e−i(k2·r) − 1

(k2 · r)

)]

.

The crucial point to note is that eqs. (2.24), (2.25) sum up exactly to the low x amplitude

in (2.1). As a result, we showed that any low x amplitude of the form of eq. (2.1) can be

rewritten as the sum of all kinematic twist corrections to the single-scattering (G)TMD

amplitude and to the double-scattering (G)TMD amplitude (i.e. the first genuine twist cor-

rection). The notable absence of triple or higher scattering amplitudes is due to the eikonal

approximation: a contribution with two derivatives hitting the same line i.e. with 2 low x

TMD gluons hitting the same parton, constitutes a gauge invariance fixing contribution:

it was already taken into account either as part of a gauge link or as a kinematic twist

correction. We thus expect a low x amplitude with n final state particles to have at most

an n-scattering operator in its amplitude in the eikonal approximation. With subeikonal

corrections, one could have higher genuine twist contributions.

In principle, eqs. (2.24), (2.25) conclude the long-sought equivalence between low x

and moderate x formulations of factorization: modern formulations of low x amplitudes

are nothing but the sum over all twists of (G)TMD amplitudes in their small x limit.

For reader’s convenience, we will use more compact notations in the following sections.

We introduce

Ii
H (q,p) ≡ i

∫

d2r e−i(q·r)riH (r)

(

ei(p·r) − 1

(p · r)

)

, (2.26)
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and

J ij
H (q,k,p) ≡

∫

d2r e−i(q·r)rirjH (r)
ei(k·r)

(

ei(p·r) − 1
)

(p · r) (k · r) , (2.27)

so that

A1 = (2π) δ
(

p+1 + p+2 − p+0
)

∫

d2b e−i(k·b) (2.28)

×
[

z̄ Ii
H (q, z̄k)

(

∂iUR1
b

)

TR0UR2
b − z Ii

H (q,−zk)UR1
b TR0

(

∂iUR2
b

)]

,

and

A2 = (2π) δ
(

p+1 + p+2 − p+0
)

∫

d2k1

(2π)2
d2k2

(2π)2
(2π)2 δ2 (k1 + k2 − k)

×
∫

d2b1d
2b2 e

−i(k1·b1)−i(k2·b2)
(

∂iUR1
b1

)

TR0

(

∂jUR2
b2

)

(2.29)

×
[

zJ ij
H (q,−zk,k1) + z̄J ij

H (q, z̄k,−k2)
]

.

3 Inclusive cross sections

It is easy to obtain inclusive cross sections from our amplitudes (2.24) and (2.25). In order

to account for the possible use of our results in the hybrid factorization ansatz, we will

average over incoming projectile color states, with an averaging factor C0 = Nc for a quark,

C0 = N2
c −1 for a gluon, and C0 = 1 for a photon. We will also use the rapidities y1 and y2

of the outcoming particles. We can distinguish 4 contributions, depending on the number of

gluons in the TMD half-operator in the amplitude and in the complex conjugate amplitude.

3.1 TMD cross sections

The 2-body contribution, given by the 4 diagrams in figure 1, reads:

dσ11
dy1dy2d2qd2k

=
δ
(

p+1 + p+2 − p+0
)

8 (2π)C0p
+
0

∫

d2b′

(2π)2
d2b

(2π)2
eik·(b

′−b) (3.1)

×



z̄2 Ii
H (q, z̄k) Ij∗

H (q, z̄k)

〈

P
∣

∣

∣
Tr

[(

∂iUR1
b

)

TR0UR2
b UR2†

b′
TR0†

(

∂jUR1†
b′

)]
∣

∣

∣
P
〉

〈P |P 〉

− zz̄ Ii
H (q, z̄k) Ij∗

H (q,−zk)

〈

P
∣

∣

∣
Tr

[(

∂iUR1
b

)

TR0UR2
b

(

∂jUR2†
b′

)

TR0†UR1†
b′

]
∣

∣

∣
P
〉

〈P |P 〉

− zz̄ Ii
H (q,−zk) Ij∗

H (q, z̄k)

〈

P
∣

∣

∣
Tr

[

UR1
b TR0

(

∂iUR2
b

)

UR2†
b′

TR0†
(

∂jUR1†
b′

)]
∣

∣

∣
P
〉

〈P |P 〉

+z2 Ii
H (q,−zk) Ij∗

H (q,−zk)

〈

P
∣

∣

∣
Tr

[

UR1
b TR0

(

∂iUR2
b

)(

∂jUR2†
b′

)

TR0†UR1†
b′

]
∣

∣

∣
P
〉

〈P |P 〉



 ,
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Figure 1. 2-body contributions to the inclusive cross section. The gray blobs represent interactions

with low k+ gluons via Wilson lines, and the gluon line is isolated from the gauge link contributions

by differenciation of a Wilson line.

the 3-body contributions are given by the diagrams with 1 gluon in the amplitude and 2

gluons in the complex conjugate amplitude, as in figure 2, which add up to:

dσ12
dy1dy2d2qd2k

=
δ
(

p+1 + p+2 − p+0
)

8 (2π)C0p
+
0

∫

d2k′
1

(2π)2
d2k′

2

(2π)2
(2π)2 δ2

(

k′
1 + k′

2 − k
)

×
∫

d2b

(2π)2
d2b′1d

2b′2

(2π)2
e−i(k·b)+i(k′

1·b
′

1)+i(k′

2·b
′

2)

×
[

zJ kl∗
H

(

q,−zk,k′
1

)

+ z̄J kl∗
H

(

q, z̄k,−k′
2

)

]

(3.2)

×



z̄ Ii
H (q, z̄k)

〈

P
∣

∣

∣
Tr

[(

∂iUR1
b

)

TR0UR2
b

(

∂lUR2†
b′2

)

TR0†
(

∂kUR1†
b′1

)]
∣

∣

∣
P
〉

〈P |P 〉

−z Ii
H (q,−zk)

〈

P
∣

∣

∣
Tr

[

UR1
b TR0

(

∂iUR2
b

)(

∂lUR2†
b′2

)

TR0†
(

∂kUR1†
b′1

)]
∣

∣

∣
P
〉

〈P |P 〉



 ,

– 11 –



J
H
E
P
1
0
(
2
0
1
9
)
2
0
8

k k′
2

k′
1

b′
1

b′
2

b

k k′
2

k′
1

b′
1

b′
2

b

Figure 2. 3-body contributions with 2 gluons in the complex conjugate amplitude.

k1 k2 k

b1

b2

b′

k1 k2 k

b1

b2

b′

Figure 3. 3-body contributions with 2 gluons in the amplitude.

and by those with 2 gluons in the amplitude and 1 in the complex conjugate amplitude as

in figure 3, which yield:

dσ21
dy1dy2d2qd2k

=
δ
(

p+1 +p+2 −p+0
)

8(2π)C0p
+
0

∫

d2k1

(2π)2
d2k2

(2π)2
(2π)2 δ2 (k1+k2−k)

×
∫

d2b′

(2π)2
d2b1d

2b2

(2π)2
ei(k·b

′)−i(k1·b1)−i(k2·b2) (3.3)

×
[

zJ ij
H (q,−zk,k1)+ z̄J ij

H (q, z̄k,−k2)
]

×



z̄Ik∗
H (q, z̄k)

〈

P
∣

∣

∣
Tr

[(

∂iUR1
b1

)

TR0

(

∂jUR2
b2

)

UR2†
b′

TR0†
(

∂kUR1†
b′

)]∣

∣

∣
P
〉

〈P |P 〉

−zIk∗
H (q,−zk)

〈

P
∣

∣

∣
Tr

[(

∂iUR1
b1

)

TR0

(

∂jUR2
b2

)(

∂kUR2†
b′

)

TR0†UR1†
b′

]
∣

∣

∣
P
〉

〈P |P 〉



 .
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Figure 4. 4-body contribution.

Finally the 4-body contribution from the diagram in figure 4, reads

dσ22
dy1dy2d2qd2k

=
δ
(

p+1 + p+2 − p+0
)

8 (2π)C0p
+
0

∫

d2k1

(2π)2
d2k2

(2π)2
(2π)2 δ2 (k1 + k2 − k)

×
∫

d2k′
1

(2π)2
d2k′

2

(2π)2
(2π)2 δ2

(

k′
1 + k′

2 − k
)

(3.4)

×
∫

d2b1d
2b2

(2π)2
d2b′1d

2b′2

(2π)2
ei(k

′

1·b
′

1)+i(k′

2·b
′

2)−i(k1·b1)−i(k2·b2)

×
[

zJ ij
H (q,−zk,k1) + z̄J ij

H (q, z̄k,−k2)
] [

zJ kl∗
H

(

q,−zk,k′
1

)

+ z̄J kl∗
H

(

q, z̄k,−k′
2

)

]

×

〈

P
∣

∣

∣
Tr

[(

∂iUR1
b1

)

TR0

(

∂jUR2
b2

)(

∂lUR2†
b′2

)

TR0†
(

∂kUR1†
b′1

)]
∣

∣

∣
P
〉

〈P |P 〉 .

The inclusive (or incoherent) diffractive case is very similar to the fully inclusive case.

The difference lies in the TMD operators: where the fully inclusive cross section involves

〈P |tr(OxO†
y)|P 〉, the inclusive diffractive cross section involves 〈P |tr(O(1)

x O(1)†
y )|P 〉, where

O(1)
x and O(1)†

y are the color singlet projections of the operators. In the CGC and dipole de-

scriptions of low x physics, this matrix element is often described as the b-dependent dipole

scattering amplitude N (b, r). It is important to note that the b variable which appears

in these matrix elements is the Fourier conjugate to the partonic transverse momentum in

a TMD. As a result, it must not be interpreted as the physical impact parameter, which

is the Fourier conjugate to the transverse momentum imbalance in incoming and outgoing

traget states in a GTMD or GPD. Instead, the b variable involved in inclusive diffraction

is actually the tranverse coordinate variable involved in the Collins-Soper equation. This

remark does not invalidate the description as N (b, r), but it is important to keep in mind

the nature of b when interpreting this quantity for inclusive observables.

3.2 Cross sections with a PDF

A parton distribution function (PDF) is the integral of a TMD w.r.t. its partonic

transverse momenta. To obtain a cross section with a PDF instead of a TMD, one
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should consider an inclusive process where momentum k is not measured, and expand

eqs. (3.1), (3.2), (3.3), (3.4) in twists, by taking the leading power in the hard scale. Said

hard scale Q can be given by a virtuality, an invariant mass. . . and thus the expansion

is process-dependant, however we can easily see how the leading kinematic twist part of

the leading genuine twist cross section (3.1) can be rewritten with a PDF: one considers

|k| ≪ Q in the hard factors Ii
H then integrates the cross section w.r.t. |k|. For example for

a photon-induced process the leading twist cross section becomes:

∫

d2k

(

dσ11
dy1dy2d2qd2k

)

LT

=
αsδ

(

p+1 + p+2 − p+0
)

4C0p
+
0

Ii
H (q,0) Ij∗

H (q,0) (3.5)

×
∫

db+
〈

P
∣

∣Tr
[

F i− (b)F j− (0)
]∣

∣P
〉

2P− (2π)2

∣

∣

∣

∣

∣

b−=0,b=0

,

where one can easily identify a PDF in the x ∼ 0 approximation in the second line.

4 Exclusive cross sections

4.1 GTMD cross sections

For exclusive cross sections, only the 2-body amplitudes contribute since the target matrix

elements is that of a color singlet operator. The off-diagonal matrix elements of the 2-body

operators can easily be identified as GTMDs. Here, we denote the momentum imbalance

as ∆⊥ rather than k⊥ to match more standard notations for the GTMD. The exclusive

cross section reads:

dσexcl
dy1dy2d2qd2∆

=
δ
(

p+1 + p+2 − p+0
)

8 (2π)C0p
+
0

∫

d2k1

(2π)2
d2k2

(2π)2
(2π)2 δ2 (k1 + k2 −∆)

×
∫

d2k′
1

(2π)2
d2k′

2

(2π)2
(2π)2 δ2

(

k′
1 + k′

2 −∆
)

×
∫

d2b1d
2b2

(2π)2
d2b′1d

2b′2

(2π)2
ei(k

′

1·b
′

1)+i(k′

2·b
′

2)−i(k1·b1)−i(k2·b2) (4.1)

×
[

zJ ij
H (q,−z∆,k1) + z̄J ij

H (q, z̄∆,−k2)
] [

zJ kl∗
H

(

q,−z∆,k′
1

)

+ z̄J kl∗
H

(

q, z̄∆,−k′
2

)

]

× trc

〈

P −∆
∣

∣

∣

[(

∂iUR1
b1

)

TR0

(

∂jUR2
b2

)](1)∣
∣

∣
P
〉

〈P |P 〉

〈

P
∣

∣

∣

[(

∂lUR2†
b′2

)

TR0†
(

∂kUR1†
b′1

)](1)∣
∣

∣
P −∆

〉

〈P |P 〉 ,

where trc is the trace over all remaining open color indices in the product of distributions.

For example in a g → qq̄ cross section the last line in eq. (4.1) would read

δab

〈

P −∆
∣

∣

∣

1
2Tr

[

(

∂iUb1

)

T a
(

∂jU †
b2

)]∣

∣

∣
P
〉

〈P |P 〉

〈

P
∣

∣

∣

1
2Tr

[(

∂lUb′2

)

T b†
(

∂kU †
b′1

)]∣

∣

∣
P −∆

〉

〈P |P 〉 .

(4.2)

The non-perturbative matrix elements involved in eq. (4.1) are GTMDs. We would like to

emphasize the fact that eq. (4.1) is exact. Here, it shows a perfect match between exclusive

low x cross sections and twist-resummed GTMD cross sections in the small x limit.
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4.2 Cross sections with a GPD

The GPD limit is obtained from a GTMD cross section the same way the PDF limit is

obtained from a TMD cross section, noting that a GPD is the integral of a GTMD w.r.t.

partonic transverse momenta. One performs a twist expansion by taking k
(′)
1,2/Q → 0

in the hard parts, then integrates over partonic transverse momenta. For example for

photon-induced processes at leading twist:

(

dσGPD
excl

dy1dy2d2qd2∆

)

LT

=
α2
sδ

(

p+1 + p+2 − p+0
)

8 (2π)C0p
+
0

[

zJ ij
H (q,−z∆,0) + z̄J ij

H (q, z̄∆,0)
]

×
[

zJ kl∗
H (q,−z∆,0) + z̄J kl∗

H (q, z̄∆,0)
]

(4.3)

×
∫

db+

2πP−

〈

P −∆
∣

∣Tr
[

F i− (b)
[

b+, 0+
]

0
F j− (0)

[

0+, b+
]

0

]∣

∣P
〉∣

∣

b−=0,b=0

×
∫

db′+

2πP−

〈

P
∣

∣

∣
Tr

[

F l−
(

b′
) [

b′+, 0+
]

0
F k− (0)

[

0+, b′+
]

0

]∣

∣

∣
P −∆

〉∣

∣

∣

b′−=0,b′=0
.

At leading twist the gauge links do not contribute, and one can easily recognize leading

twist GPDs in the last two lines.

5 The BFKL limit as a kinematic limit

The BFKL limit is usually understood as a weak field limit gF ∼ 0, known as the dilute

limit. In a previous study [17], the authors showed how this limit could also be recovered

by using the Wandzura-Wilczek approximation in the CGC and identifying all gluon distri-

butions as the unintegrated PDF, which is justified at large |k|. In this section, we aim at

describing the BFKL limit as a kinematic limit rather than a weak field limit. BFKL is valid

when all transverse momenta are of the order of the hard scale, and we want to study BFKL

beyond the WW approximation, so let us consider the limit of large partonic transverse mo-

menta. By Fourier conjugation, this limit leads to the shrinking of transverse gauge links:

[

x+,±∞
]

bi

[

±∞, y+
]

bj
∼

[

x+, y+
]

bi∼bj∼0
. (5.1)

This makes all gauge links unidimensional and in the same direction, which means all

2-body distributions can be rewritten as

∫

d2k

(2π)2
e−i(k·x)

∫

dx+
〈

P
∣

∣F i− (x)
[

x+, 0+
]

0
F j− (0)

[

0+, x+
]

0

∣

∣P
〉

∣

∣

∣

∣

x−=0

(5.2)

since the modification of gauge links between x and 0 in the transverse plane is free up

to small corrections. This unique distribution is the 2-body unintegrated PDF. In A+ = 0

gauge, it can be rewritten as

∫

d2k

(2π)2
e−i(k·x)k

ikj

k2 k2
〈

P
∣

∣A− (x)
[

x+, 0+
]

0
A− (0)

[

0+, x+
]

0

∣

∣P
〉

∣

∣

∣

∣

x−=0

, (5.3)

where one can explicitely identify the so-called nonsense polarization vector in lightcone

gauge ki

|k| .
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The importance of gauge links at small k⊥ and the shrinking of all TMD distributions

into the unique unintegrated PDF was observed and confirmed numerically in [21, 23].

Similarly to eq. (5.2), all 3-body distributions become

∫

d2k1

(2π)2
d2k2

(2π)2
e−i(k1·x1)−i(k2·x2)

∫

dx+1 dx
+
2 (5.4)

×
〈

P
∣

∣

∣
F i− (x1)

[

x+1 , x
+
2

]

0
gsF

j− (x2)
[

x+2 , 0
+
]

0
F k− (0)

[

0+, x+1
]

0

∣

∣

∣
P
〉

∣

∣

∣

∣

x−

1,2=0

,

where it is important to keep gs in the operator rather than the hard part. Indeed genuine

twist corrections do not come with a perturbative gs suppression: the gs factor is in the non-

perturbative matrix element, which means the 3-body contributions are of the same order

of perturbation theory as the 2-body contributions. We are not aware of studies from the

BFKL literature where such genuine higher twist, 3- and 4- Reggeon distributions are taken

into account for proton impact factors. In that sense, the BFKL limit for hadronic targets

can be understood as a Wandzura-Wilczek approximation, as already observed in [17]. This

approximation can be interpreted as a non-perturbative weak field approximation: it is the

non-quantifiable hypothesis that gFµν ≪ 1 in the non-perturbative target. Here, we would

like to emphasize that this approximation does not lead to the power expansion of gauge

links which is performed to obtain the so-called dilute limit in the Color Glass Condensate

framework. Instead, we observe that the gauge link structure is kinematically suppressed in

the large momentum transfer regime, regardless of how gFµν scales like in the target. Un-

derstanding BFKL as a kinematic limit means that all genuine twist corrections should be

taken into account. For example for photon-induced processes in the BFKL kinematic limit

and in axial gauge, eqs. (3.1), (3.2), (3.3), (3.4) become respectively the 2-body contribution

dσ11
dy1dy2d2qd2k

∼ αsδ
(

p+1 + p+2 − p+0
)

4 (2π)C0p
+
0

kikj

k2

×
[

z̄ Ii
H (q, z̄k) + z Ii

H (q,−zk)
]

[

z̄ Ij∗
H (q, z̄k) + z Ij∗

H (q,−zk)
]

(5.5)

× k2

2P−

∫

d2b

(2π)2
e−i(k·b)

∫

db+

2π

〈

P
∣

∣Tr
[

A− (b)
[

b+, 0+
]

0
A− (0)

[

0+, b+
]

0

]
∣

∣P
〉

∣

∣

∣

∣

b−=0

,

the 3-body contributions

dσ12
dy1dy2d2qd2k

=
αsδ

(

p+1 + p+2 − p+0
)

4C0p
+
0

∫

d2k′
1

(2π)2
d2k′

2

(2π)2
(2π)2 δ2

(

k′
1 + k′

2 − k
)

(5.6)

×
(

kik′k
1 k

′l
2

k2

)

[

z̄ Ii
H (q, z̄k) + z Ii

H (q,−zk)
]

[

z̄J kl∗
H

(

q, z̄k,−k′
2

)

+ zJ kl∗
H

(

q,−zk,k′
1

)

]

× k2

2P−

∫

d2b

(2π)2
d2b′

(2π)2
e−i(k·b)+i(k′

2·b
′)

∫

db+db′+

×
〈

P
∣

∣Tr
[

A− (b)
[

b+, b′+
]

0
gsA

−
(

b′
) [

b′+, 0+
]

0
A− (0)

[

0+, b+
]

0

]
∣

∣P
〉

∣

∣

∣

∣

b(′)−=0

,
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and

dσ21
dy1dy2d2qd2k

=
αsδ

(

p+1 + p+2 − p+0
)

2C0p
+
0

∫

d2k1

(2π)2
d2k2

(2π)2
(2π)2 δ2 (k1 + k2 − k) (5.7)

×
(

ki
1k

j
2k

k

k2

)

[

z̄J ij
H (q, z̄k,−k2) + zJ ij

H (q,−zk,k1)
] [

z̄ Ik∗
H (q, z̄k) + z Ik∗

H (q,−zk)
]

× k2

2P−

∫

d2b

(2π)2
d2b′

(2π)2
e−i(k1·b)−i(k2·b

′)

∫

db+db′+

×
〈

P
∣

∣Tr
[

A− (b)
[

b+, b′+
]

0
gsA

−
(

b′
) [

b′+, 0+
]

0
A− (0)

[

0+, b+
]

0

]∣

∣P
〉

∣

∣

∣

∣

b(′)−=0

,

and finally the 4-body contribution

dσ22
dy1dy2d2qd2k

=
αsδ

(

p+1 + p+2 − p+0
)

2C0p
+
0

∫

d2k1

(2π)2
d2k2

(2π)2
(2π)2 δ (k1 + k2 − k)

×
∫

d2k′
1

(2π)2
d2k′

2

(2π)2
(2π)2 δ

(

k′
1 + k′

2 − k
)

(5.8)

× ki
1k

j
2

k2

[

zJ ij
H (q,−zk,k1) + z̄J ij

H (q, z̄k,−k2)
]

× k′k
1 k

′l
2

k2

[

zJ kl∗
H

(

q,−zk,k′
1

)

+ z̄J kl∗
H

(

q, z̄k,−k′
2

)

]

×
∫

d2b1d
2b2

(2π)2
d2b′

(2π)2
ei(k

′

2·b
′)−i(k1·b1)−i(k2·b2)

∫

db+1 db
+
2 db

′+

× k4

2P−

〈

P
∣

∣

∣
Tr

(

A− (b1)
[

b+1 , b
+
2

]

0
gsA

− (b2)
[

b+2 , b
′+
]

0

× gsA
−
(

b′
) [

b′+, 0+
]

0
A− (0)

[

0+, b+1
]

0

)
∣

∣

∣
P
〉

∣

∣

∣

∣

b−1,2=b′−=0

.

We emphasize that all 4 contributions are of the same order in perturbation theory, and

neglecting the contributions from genuine higher twist unintegrated PDFs is justified as a

Wandzura-Wilczek approximation rather than a perturbative suppression. The validity of

this approximation should be evaluated for each process. For example if one considers the

production of a dijet in Deep Inelastic Scattering at large momentum transfer, deviations

from Leading Logarithmic BFKL predictions could be due to the non-validity of the

Wandzura Wilczek approximation, at the same perturbative order. On the other hand

since the large momentum transfer is what is usually understood as the dilute regime in

the Color Glass Condensate, the 3- and 4- body contributions would also be missing from

the perturbative expansion of the Wilson lines unless the WW approximation is valid.

Since there is no model independent way to estimate the validity this approximation, only

comparisons of present results to data will confirm whether genuine higher twists could

be neglected at large momentum transfer.

6 The origins of saturation

In our formulation of low x physics, saturation can be understood as 3 distinct effects.
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k⊥ k⊥

Figure 5. Saturation effects from the evolution: the non-linearities in the evolution equation

account for recombination effects in the target.

k⊥ k⊥

b⊥ ∼ 1/k⊥ ∼ 1/Qs

Figure 6. Kinematic saturation: the separation between the TMD gluons is filled by multiple soft

scatterings.

First of all, a well known form of saturation is evolutional, and arises from the non-

linearity of the B-JIMWLK hierarchy of evolution equations and its truncated and approx-

imated daughter equations. See figure 5. This non-linearity is expected to slow down the

growth in s of low x cross sections [47], thus contributing to restoring the Froissart bound.

The other effects are due to multiple scattering via interactions with slow gluons, but

we will distinguish two types of such effects. We will refer to the first type, described in

figure 6, as the kinematic saturation. It is linked to the gauge link structures of the gluon

distributions. Indeed, the gauge links account for multiple scatterings from slow gluons, and

the importance of such gauge links are, in that sense, a probe for multiple scattering effects.

These effects were recently investigated in [21, 23]. They are expected to appear at small |k|,
since all TMD distributions reduce to the unintegrated PDF in the large |k| limit regardless

of their gauge link structure, as discussed earlier. By studying the behavior of different dis-

tributions all along the |k| range, it was shown that indeed distributions with distinct gauge

link structures have to be distinguished at low |k| while at large |k| all distributions are

the same. This kind of multiple scattering is thus due to the presence of a large transverse

coordinate region, conjugate to |k|, to fill with the soft gluons in that kinematic regime.

Finally the last type of saturation, described in figure 7, to which we will refer as

genuine saturation, is due to genuine twist corrections. In addition to the gluons forming

the gauge links, the extra gluons from higher twist operators can contribute to multiple

scattering effects. Given that the genuine twist corrections in an operator are obtained in

physical gauges by the insertion of a gluon field along with the coupling constant gs and the

appropriate gauge links, the genuine twist corrections are not perturbatively suppressed as
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k⊥ − k1⊥ k⊥k1⊥

Figure 7. Genuine saturation: for dense targets where gluon occupancy is large, the probability

to extract more gluons is enhanced, hence an expected enhancement of genuine twist corrections.

assumed implicitely in most studies involving unintegrated PDFs:2 the gs factor is part

of the non-perturbative matrix elements and neglecting them is tantamount to using the

Wandzura-Wilczek approximation. This kind of saturation effects would appear even in the

high |k| BFKL regime if one does not restrict oneself to this unquantified approximation,

whose validity should be tested in a process-dependent way. In the CGC picture, the large

gluon occupancy number in a dense target leads to the scaling gsF ∼ 1, which leads to an

expected enhancement of genuine twist corrections. In that sense, genuine saturation can

be understood as the invalidation of the Wandzura-Wilczek approximation.

7 Discussion

We have found that any low x cross section for a process of type p0H → p1p2X, where

H is a hadron and X remnants are not measured, can be rewritten into an infinite twist

TMD cross section. Similarly, any low x exclusive cross section for a process of type

p0H → p1p2H
′, where H (resp. H ′) is an incoming (resp. outgoing) hadron, was rewritten

into an infinite twist GTMD cross section. All the steps which were involved in this study

could be applied for processes with more than 2 particles in the final state, or more than

1 in the initial state. We thus bridged one of the main gaps between low x and moderate

x formulations of perturbative QCD: the apparent difference between the involved non-

perturbative matrix elements.

We have also given a new interpretation of saturation in the low x regime and distin-

guished 3 types of saturation: evolutional, kinematic and genuine.

Each type of saturation can in principle be studied separately from the others, and there

are easy ways to distinguish them. For example studying high |k| processes on dense targets

and on dilute targets would probe genuine saturation alone. Small |k| observables would

be probes of both genuine and kinematic saturation on dense targets, and of kinematic

saturation alone on dilute targets.

Angular correlations can be studied similarly to [20], in the whole kinematic range in

|k| using our results and a tensorial decomposition of the involved TMD distributions.

2Obviously this remark only concerns non-perturbative targets. BFKL resummation is valid in full

generality for soft gluon exchanges between perturbative objects, for example Mueller Navelet jets [62].
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It would be very insightful in future studies to focus on subeikonal corrections to low x

physics and try to match a TMD framework, similarly to what was performed in this article.

Subeikonal corrections should be particularly interesting to study in terms of (G)TMD

distributions. There is no reason to believe that beyond the eikonal limit, the distributions

can be exponentiated into simple Wilson lines. Rather, they will be given as what was

named decorated Wilson lines in [4–6, 63], see also [11]. The most interesting correction to

the small x limit of TMD distributions will be the phases xP−r+ from eq. (1.12). Beyond

the leading twist, contributions with more than two physical TMD gluon will have more

than one of such phases, rendering them explicitely distinct from the leading genuine twist

distributions, even when written as derivatives of Wilson lines as in eq. (2.25). Subeikonal

phases in eqs. (2.24), (2.25) are thus the origin of the breaking of exponentiation. On the

other hand, the present computation proved that in the eikonal approximation, there is

at most two physical TMD gluons for processes with two fast partons. This means that

there is only a finite number of genuine twist corrections. This observation might be broken

beyond the eikonal approximation, which would make it extremely difficult to work directly

at infinite twist as is done in the eikonal limit.

Finally, the most powerful feature of our formulation in terms of standard parton

distributions is the possibility to resum easily logarithms of Q and |k| using the known

evolution equations for TMD distributions and Sudakov resummations. This could help

solve the observed negativity issues for low x cross sections (see for example [52, 53, 55, 56]).

Indeed the resummation of collinear logarithms via a similarly collinearly-improved low x

evolution equation [64–67] is one of the most efficient tools to deal with the issue. A

complementary approach to the improved-JIMWLK evolution would be to first apply the

Yc evolution using the regular JIMWLK equation, then rewrite the evolved observables in

terms of TMD distributions as was done in this article, and finally resum logarithms of the

hard scale and Sudakov logarithms using standard TMD methods. For the leading twist

TMD operators, one could also in principle use the evolution equations derived in [7, 8].
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[19] E. Akcakaya, A. Schäfer and J. Zhou, Azimuthal asymmetries for quark pair production in

pA collisions, Phys. Rev. D 87 (2013) 054010 [arXiv:1208.4965] [INSPIRE].

– 21 –

https://doi.org/10.1016/0550-3213(95)00638-9
https://arxiv.org/abs/hep-ph/9509348
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9509348
https://doi.org/10.1103/PhysRevLett.81.2024
https://arxiv.org/abs/hep-ph/9807434
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9807434
https://doi.org/10.1103/PhysRevD.60.014020
https://arxiv.org/abs/hep-ph/9812311
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9812311
https://doi.org/10.1007/JHEP07(2014)068
https://arxiv.org/abs/1404.2219
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.2219
https://doi.org/10.1007/JHEP01(2016)114
https://arxiv.org/abs/1505.01400
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.01400
https://doi.org/10.1103/PhysRevD.94.074032
https://arxiv.org/abs/1512.00279
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.00279
https://doi.org/10.1007/JHEP10(2015)017
https://arxiv.org/abs/1505.02151
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.02151
https://doi.org/10.1007/JHEP06(2016)164
https://arxiv.org/abs/1603.06548
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.06548
https://doi.org/10.1007/JHEP07(2017)095
https://arxiv.org/abs/1706.01415
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.01415
https://doi.org/10.1007/JHEP05(2018)150
https://arxiv.org/abs/1712.09389
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.09389
https://doi.org/10.1007/JHEP01(2019)118
https://arxiv.org/abs/1807.11435
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.11435
https://doi.org/10.1007/JHEP01(2016)072
https://arxiv.org/abs/1511.06737
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.06737
https://doi.org/10.1103/PhysRevD.95.014033
https://arxiv.org/abs/1610.06197
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.06197
https://doi.org/10.1103/PhysRevLett.106.022301
https://arxiv.org/abs/1009.2141
https://inspirehep.net/search?p=find+EPRINT+arXiv:1009.2141
https://doi.org/10.1103/PhysRevD.83.105005
https://arxiv.org/abs/1101.0715
https://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0715
https://doi.org/10.1007/JHEP07(2019)079
https://arxiv.org/abs/1810.11273
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.11273
https://doi.org/10.1007/JHEP05(2019)156
https://arxiv.org/abs/1901.01175
https://inspirehep.net/search?p=find+EPRINT+arXiv:1901.01175
https://doi.org/10.1103/PhysRevD.84.051503
https://arxiv.org/abs/1105.1991
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.1991
https://doi.org/10.1103/PhysRevD.87.054010
https://arxiv.org/abs/1208.4965
https://inspirehep.net/search?p=find+EPRINT+arXiv:1208.4965


J
H
E
P
1
0
(
2
0
1
9
)
2
0
8

[20] A. Dumitru and V. Skokov, cos(4ϕ) azimuthal anisotropy in small-x DIS dijet production

beyond the leading power TMD limit, Phys. Rev. D 94 (2016) 014030 [arXiv:1605.02739]

[INSPIRE].

[21] C. Marquet, E. Petreska and C. Roiesnel, Transverse-momentum-dependent gluon

distributions from JIMWLK evolution, JHEP 10 (2016) 065 [arXiv:1608.02577] [INSPIRE].

[22] D. Boer, P.J. Mulders, J. Zhou and Y.-J. Zhou, Suppression of maximal linear gluon

polarization in angular asymmetries, JHEP 10 (2017) 196 [arXiv:1702.08195] [INSPIRE].

[23] C. Marquet, C. Roiesnel and P. Taels, Linearly polarized small-x gluons in forward

heavy-quark pair production, Phys. Rev. D 97 (2018) 014004 [arXiv:1710.05698] [INSPIRE].

[24] E. Petreska, TMD gluon distributions at small x in the CGC theory,

Int. J. Mod. Phys. E 27 (2018) 1830003 [arXiv:1804.04981] [INSPIRE].

[25] Y. Hatta, B.-W. Xiao and F. Yuan, Probing the small-x gluon tomography in correlated hard

diffractive dijet production in deep inelastic scattering, Phys. Rev. Lett. 116 (2016) 202301

[arXiv:1601.01585] [INSPIRE].

[26] R. Boussarie, Y. Hatta, B.-W. Xiao and F. Yuan, Probing the Weizsäcker-Williams gluon
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[58] B. Ducloué et al., Use of a running coupling in the NLO calculation of forward hadron

production, Phys. Rev. D 97 (2018) 054020 [arXiv:1712.07480] [INSPIRE].
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