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Abstract: We investigate the solvability of the event kinematics in missing energy events

at hadron colliders, as a function of the particle mass ansatz. To be specific, we reconstruct

the neutrino momenta in dilepton tt̄-like events, without assuming any prior knowledge of

the mass spectrum. We identify a class of events, which we call extreme events, with the

property that the kinematic boundary of their allowed region in mass parameter space

passes through the true mass point. We develop techniques for recognizing extreme events

in the data and demonstrate that they are abundant in a realistic data sample, due to

expected singularities in phase space. We propose a new method for mass measurement

whereby we obtain the true values of the mass parameters as the focus point of the kine-

matic boundaries for all events in the data sample. Since the masses are determined from

a relatively sharp peak structure (the density of kinematic boundary curves), the method

avoids some of the systematic errors associated with other techniques. We show that this

new approach is complementary to previously considered methods in the literature where

one studies the solvability of the kinematic constraints throughout the mass parameter

space. In particular, we identify a problematic direction in mass space of nearly 100%

solvability, and then show that the focus point method is effective in lifting the degeneracy.
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1 Introduction

At the Large Hadron Collider (LHC), information about the underlying physics is extracted

by studying the kinematic properties of the final state objects (jets, leptons, photons, etc.)

which are reconstructed in each collision. Therefore, understanding the unique kinematic

features arising from different event topologies is an important step in any LHC data

analysis, be it for a new physics search, or a parameter measurement.
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For example, the traditional method to discover a new heavy resonance (as well as

to measure its mass) is to look for a bump in the invariant mass distribution of its decay

products (daughter particles). This procedure is straightforward if the daughter particles

are all visible in the detector and their energies and momenta are measured. However,

things become more involved if some of the daughter particles are invisible, e.g., they can

be neutrinos or new weakly interacting massive particles, as predicted in many models of

new physics with dark matter candidates and/or dark sectors [1]. A prime example of

this situation is provided by semi-leptonic tt̄ events, in which one of the top quarks, say t̄,

decays hadronically, while the other decays as

t→ bW+ → b`+ν, (1.1)

where a neutrino ν goes missing. At this point a natural approach would be to attempt to

compute the momentum of the neutrino from the available kinematic information in the

event, perhaps supplemented with some theoretical assumptions. For example, assuming

that there are no other invisible particles in the event, we can identify the measured missing

transverse momentum /~PT in the event with the transverse component ~pνT of the neutrino

momentum

~pνT = /~PT . (1.2)

On the other hand, the neutrino arises from the decay of a W -boson, which is typically

produced on-shell, in turn implying that

(p`+ + pν)2 = m2
W , (1.3)

where p`+ and pν are the 4-momenta of the lepton and neutrino, respectively, and mW

is the physical mass of the W -boson. Finally, the energy Eν and 3-momentum ~pν of the

neutrino are related by the mass shell condition

p2
ν = m2

ν , (1.4)

where pν = (Eν , ~pν). Equations (1.2)–(1.4) provide a total of 2 + 1 + 1 = 4 constraints on

the four components of pν , allowing to solve for the neutrino 4-momentum, up to discrete

ambiguities.1 In practice, this is typically done through an eventwise kinematic fit which

accounts for the detector resolution and the combinatorial uncertainties [2–4].

Now and for the rest of the paper we shall turn our attention to the much more

challenging case of dilepton tt̄ events, in which both top quarks decay leptonically as in (1.1).

This event topology is relevant not only for top physics, but also for new physics searches

where the decay chains of the newly produced particles terminate in a generic dark matter

candidate, i.e., a stable, neutral, weakly interacting particle which is invisible in the detector

just like the neutrino. In many such models, e.g., supersymmetry (SUSY) with R-parity [5],

universal extra dimensions with KK-parity [6–8], Little Higgs with T -parity [9–12], etc., the

1The mass constraints (1.3) and (1.4) lead to a quadratic equation, which in general has two solutions.

Additional discrete combinatorial ambiguities arise if there are more than one lepton and/or more than one

b-jet present in the event.
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lifetime of the dark matter particle is protected by an exact Z2 symmetry, which ensures

that new particles are pair-produced at the LHC, leading to symmetric events with two

decay chains. From that point of view, dilepton tt̄ events are an excellent testbed which

allows us to test ideas originally developed for the study of new physics signatures, see,

e.g., [13].

Once we consider dilepton tt̄ events, we have to face the complication that now there

are twice as many unknown momentum components, i.e., the four momenta, pν and pν̄ , of

the two missing neutrinos. The number of on-shell constraints is also doubled — (1.3) is

replaced by

(p`+ + pν)2 = m2
W , (1.5a)

(p`− + pν̄)2 = m2
W , (1.5b)

while (1.4) is replaced by

p2
ν = m2

ν , (1.6a)

p2
ν̄ = m2

ν . (1.6b)

We also gain a new constraint, that the two parent particles (top quarks) have equal mass:

(pb + p`+ + pν)2 = (pb̄ + p`− + pν̄)2, (1.7)

but the missing transverse momentum constraint (1.2) remains a single 2D vector equation:

~pνT + ~pν̄T = /~PT . (1.8)

As a result, the seven constraints (1.5)–(1.8) are not sufficient to determine the eight

unknown components pν and pν̄ uniquely, and therefore, one cannot reconstruct the top

as a mass bump. The problem is exacerbated in new physics applications, where a priori

one does not know the masses of the new particles playing the roles of the W -boson and

the neutrino, so that the best one can do is to apply the equal mass constraints

p2
ν = p2

ν̄ (1.9)

(p`+ + pν)2 = (p`− + pν̄)2 (1.10)

in place of (1.5)–(1.6), leaving us with only 5 constraints (1.7)–(1.10) for 8 unknowns.

There are several possible approaches to tackle this conundrum [14]:

• Gain additional constraints. This can be done in several ways. First, one may

consider longer decay chains which may occur in new physics scenarios. The classic

examples are the three-step squark decay chain and the four-step gluino decay chain

in supersymmetry, where the trick of analyzing several events simultaneously could

provide the required number of constraints to solve for all unknown momenta, up to

discrete ambiguities [15–20]. One may also impose constraints resulting from existing

preliminary measurements of the kinematic endpoints of suitable variables [21–23].

Finally, one could preselect a sub-sample of events with special properties, e.g., events

located at the kinematic endpoint of a suitable variable, in which case the kinematics

of the decays is further constrained [24, 25].

– 3 –
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• Adopt an ansatz for the undetermined components of the invisible momenta. The idea

here is to assign values for the remaining invisible momentum components through a

suitable ansatz which preserves some useful property, e.g., that a parent mass bound

is not exceeded [26, 27]. Operationally the values are assigned by extremizing some

relevant function of the invisible momenta. Often the minimum of the function itself

becomes a useful kinematic variable — some well-known examples include the Cam-

bridge MT2 variable [28, 29] and its variants [30–33], the
√
smin variable [34–36], a va-

riety of constrained transverse mass variables [37–40], the MCT2 variable [41, 42], the

M2C variable [43, 44], the MAOS method [45–48], the M2 class of variables [49–56],

etc. While this approach has useful practical applications, it still only represents an

approximate treatment and does not lead to a mass reconstruction through a bump.

• Use kinematic endpoints of observable invariant mass distributions. Another logical

possibility is to ignore the invisible momenta altogether and design the analysis en-

tirely in terms of the measured momenta of the reconstructed visible objects in the

event. Historically this was the original approach which led to the classic analyses

of SUSY mass measurements from kinematic endpoints in invariant mass distribu-

tions [57–63]. However, as in the previous case, the method relies on the measure-

ment of kinematic endpoints instead of mass bumps. Endpoint measurements are

generally challenging — they may be difficult to extract in the presence of back-

ground, their location is rather sensitive to the effects of particle widths and detector

resolution, and they require fitting to a suitable profile [64, 65], which introduces

additional systematics.

• Check the solvability of an enlarged set of kinematic constraints. Here the idea is first

to enlarge the existing set of kinematic constraints by assuming test values for the

unknown masses, and then instead of focusing on the actual solutions for the invisible

momenta, simply ask the question whether such solutions exist or not. If solutions do

not exist, the corresponding test ansatz for the particle masses is inconsistent with

the kinematics of the particular event and those masses are disfavored [16, 17, 66].

By repeating the procedure over the full event sample, one can gradually restrict the

allowed mass parameter space, hopefully until it shrinks to a point.2 Indeed, the true

masses should be compatible with every signal event, while for any wrong choice of

particle masses, one would hope that, given sufficient statistics, there would be at

least one signal event in the data which would have incompatible kinematics. We

will illustrate these ideas more explicitly later on in sections 3 and 4. For now we

just mention that this method appears to have the desired property that the true

particle masses are revealed by a bump in mass parameter space (for example, when

plotting the fraction of compatible events). However, as we shall show in section 4,

this expectation is misleading, as there is generally a whole “flat direction” of near

100% solvability in mass parameter space.

2A variant of this technique assigns weights derived from the parton distribution functions to different

points in the allowed region of mass parameter space in order to arrive at the most likely value of the

particle masses [67].
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In this paper we present a new approach to measuring masses in events with /~PT , by

building up on the solvability method discussed in the last bullet above. Our method makes

crucial use of the singularities in the phase space density which arise from projecting the

full phase space of final state momenta into the visible phase space [68]. This method,

which we shall call the “kinematic focus points method”,3 has similarities to a traditional

mass-bump search in the sense that the density of an appropriately defined quantity will

peak at the true values of the unknown masses in the event topology. Previous attempts

to design an analysis for measuring the unknown masses in SUSY-like events with missing

energy from such bump-like features were limited to the case of a single decay chain [71–75].

Instead, here we will be interested in the more typical situation of two symmetric decay

chains. While our method is applicable more generally, we shall introduce it in the context

of the dilepton tt̄ event topology discussed above.

The paper is organized as follows. In section 2 we specify the process under study,

introduce our conventions and terminology, and provide some details on our simulations.

In section 3 we list the kinematic constraints for our event topology, and briefly review

the idea of using their solvability in order to perform mass measurements (or at the very

least, to restrict the allowed region of mass parameter space). In section 4 we discuss

the expected outcome from this approach and highlight its advantages as well as potential

pitfalls. In particular, we identify a flat direction in mass parameter space of nearly 100%

solvability, along which the masses are consistent with the kinematics of nearly all events

in the data. We then show that by performing complementary measurements of kinematic

endpoints one is able to lift the flat direction and identify the true mass point.4

In the remaining sections, we define the kinematic focus point method and illustrate

its performance. First in section 5 we discuss the event-wise kinematic boundaries in mass

parameter space, and introduce the notion of “extreme” events, i.e., events for which the

kinematic boundary passes through the true mass point. We argue that extreme or near-

extreme events are quite abundant in a realistic data sample. More importantly, we show

that the density of extremeness boundaries in the mass parameter space is singular at the

true mass point.5 Using the results from section 5, in section 6 we motivate the kinematic

focus points method and proceed to investigate its performance for two cases — a SUSY-

like mass spectrum (where top events are part of the SM background) as well as for top

pair-production itself, thus allowing for a measurement of the top, W -boson and neutrino

masses independently.6 In section 7, we present our conclusions and outlook for future

studies. In appendix A we derive the parametric equation for the flat direction of low mass

sensitivity encountered in sections 4 and 6.

3Not to be confused with the focus point phenomenon in the RGE running of certain SUSY mass

parameters [69, 70].
4To the careful reader, this should not come as a surprise, since kinematic endpoint measurements by

themselves are already able to fully determine the mass spectrum [13, 30].
5This is a purely mathematical statement which is valid in the zero width approximation and in the

absence of detector smearing. Both of those effects will lead to some smearing of the singularity, the extent

of which is studied later on in sections 6.4 and 6.5.
6An analogous procedure based on kinematic endpoints was advertised in [30] and tested in [13].
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Figure 1. A schematic depiction of the dilepton tt̄ event topology. Two heavy particles, A1 and A2,

are pair-produced, and each Ai decays via two successive two-body decays as Ai → aiBi → aibiCi.

In general, Ai, Bi and Ci are new particles of a priori unknown masses. The two branches are

assumed to be identical and the intermediate resonances Ai and Bi are assumed to be on-shell.

The final state particles ai and bi are visible Standard Model particles which for simplicity will be

assumed massless throughout the analysis. The final state particles Ci are invisible in the detector

and their momenta are not measured.

2 Notations and setup

2.1 Conventions

In this paper, we consider the tt̄-like event topology depicted in figure 1. A pair of heavy

particles, A1 and A2, is initially produced, and each Ai decays via two successive two-

body decays:

pp → A1A2, (2.1a)

Ai → aiBi → aibiCi (i = 1, 2), (2.1b)

to two visible Standard Model particles ai and bi and an invisible particle Ci. The two

branches in figure 1 are assumed to be identical and the intermediate resonances Ai and

Bi will be taken to be on-shell. The true masses of particles Ai, Bi and Ci are a priori

unknown, and will be denoted by mA, mB and mC , respectively. The goal is to measure

mA, mB and mC independently from a sample of events with the topology of figure 1.

Since the final state particles ai and bi are visible in the detector, their 4-momenta, pai
and pbi , are measured known quantities for each event. In many new physics models with

this event topology, ai and bi are bottom quarks and leptons, respectively, just like the case

of dilepton tt̄ events. Then, the a’s can be distinguished from the b’s, but there remains

a twofold ambiguity in partitioning the two a’s and the two b’s into the two branches. As

there are already several suggestions in the literature on how to address this combinatorial

issue [76–78], we shall not dwell on the combinatorial problem any further. Note that our

proposed method below will be robust against combinatorial issues, since it will rely on

detecting a peak structure which is absent from the combinatorial background. Therefore,

for clarity of the presentation, in what follows we shall assume that the visible particles

have been properly assigned to the two branches.

– 6 –
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The final state particles Ci are invisible in the detector (C is typically a dark matter

candidate). Consequently, their 4-momenta, qi, are a priori unknown. The 4-momenta of

Bi and Ai are denoted by qBi(≡ pbi + qi) and qAi(≡ pai + pbi + qi), respectively. Note that

the notation here follows that of [26], where the letter p is used to denote known momenta,

while q is used for a priori unknown momenta. An overhead arrow will be used to denote

the spatial component ~p of a 4-momentum p. The beam axis (the longitudinal direction)

is chosen to be the z axis, while the transverse components of a 4-momentum p will be

denoted by ~pT . The product of two 4-momenta will refer to their Lorentz inner product.

We shall often consider hypothesized values for the a priori unknown masses, i.e., test

or trial masses, which will be denoted by a tilde: m̃A, m̃B, and m̃C . For convenience, the

singular form true mass and test mass will sometimes be used to refer to a set of true

masses (mA,mB,mC) and a set of test masses (m̃A, m̃B, m̃C). For notational convenience, qi,

qBi and qAi will be used interchangeably as variables or particular values for these variables,

and the meaning will be clear from the context.

2.2 Simulation details

The analyses in this study were performed on events generated as follows.

• Obviously, the event topology of figure 1 can be applied directly to the study of top

quark pair production, in which case the particles A, B and C are the top quark,

the W -boson and the neutrino, respectively. While their masses mt, mW and mν ,

are already known, the techniques discussed below can still be used to perform more

sensitive measurements of those SM parameters. Our primary target, however, is a

new physics event topology of the type shown in figure 1, where the three masses mA,

mB and mC are a priori unknown. For example, in SUSY A can be a top squark, B

a chargino and C a sneutrino. Thus for our main simulation we choose a study point

with a spectrum of mA = 1000 GeV, mB = 800 GeV and mC = 700 GeV. Note that

the mass differences are relatively modest, so that the pT and energy distributions of

the jets and leptons in the signal are similar to those of the main background (dilepton

tt̄ events), so that a template-matching method is unlikely to be very sensitive.

• For clarity of the presentation, the resonances Ai and Bi were kept on-shell. Includ-

ing small widths for these particles will lead to a slight smearing of the peaks and

endpoints discussed in the study [79, 80].

• The visible final state particles ai and bi were taken to be massless. This is a very

good approximation in the typical scenario where ai and bi are bottom quarks and

leptons, respectively. Regardless, the mass measurement methods considered here do

not rely on this choice, and this assumption can be easily relaxed if needed.

• For definiteness the decay vertices were taken to be non-chiral, i.e., there are no

non-trivial spin effects. This assumption also does not impact our results, since the

methods studied below are based on purely kinematics arguments and are therefore

model independent.

– 7 –
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• The parent particles Ai were pair produced at LHC center of mass energy of 13 TeV.

For simplicity, initial state radiation (ISR) was not turned on. Again, this assumption

has little bearing on our results — for example the ISR jets are unlikely to be b jets

in which case one might worry that they can be confused with particles ai in figure 1,

complicating the combinatorial issue.

• The events were generated at the parton level with MadGraph [81] and resonances

were decayed by phase space. Initially, we will show results with no detector simu-

lation applied, before studying the effects of the detector resolution in sections 6.4

and 6.5.

3 Solvability of kinematic constraints

The general problem with missing energy events is that there exist final state momenta (qi
in our case) which are not measured. However, if we could somehow calculate the invisible

momenta qi (and from there qBi and qAi), the unknown masses can be simply obtained by

m2
A = q2

Ai
, m2

B = q2
Bi

and m2
C = q2

i . This motivates us to study the kinematic constraints

obeyed by the invisible momenta.

With the notation from section 2, the five kinematic constraints (1.7)–(1.10) for the

event topology in figure 1 become

q2
1 = q2

2 (3.1a)

(pb1 + q1)2 = (pb2 + q2)2 (3.1b)

(pa1 + pb1 + q1)2 = (pa2 + pb2 + q2)2 (3.1c)

~q1T + ~q2T = ~
��PT (3.2)

These five constraints are clearly insufficient to determine all 8 unknown components of qi.

To this end, we introduce test masses (m̃A, m̃B, m̃C) with m̃A > m̃B > m̃C . The constraints

in eq. (3.1) are thus enlarged to

q2
1 = m̃2

C , (3.3a)

q2
2 = m̃2

C (3.3b)

(pb1 + q1)2 = m̃2
B (3.3c)

(pb2 + q2)2 = m̃2
B (3.3d)

(pa1 + pb1 + q1)2 = m̃2
A (3.3e)

(pa2 + pb2 + q2)2 = m̃2
A (3.3f)

Together with eq. (3.2), these six constraints make up a total of 8 kinematic constraints

which can be solved by standard means [82–84] in order to yield test values for the unknown

momenta qi corresponding to the given choice of test masses (m̃A, m̃B, m̃C).

At this point it might seem that we have not made much progress, since we have traded

one set of unknowns for another. The key idea now is to focus not on the actual solutions

– 8 –
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Figure 2. Solvability plots for two different events, showing the number of solutions allowed by

different values of (m̃B, m̃A). The test mass m̃C has been fixed to be the true mass, m̃C = mC =

700 GeV. Uncolored areas in the plots correspond to zero real solutions, while green (yellow) regions

correspond to two (four) solutions. The cross marks the true mass point (mB,mA). For the event

on the left, the plot only shows an allowed region with 2 real solutions (the allowed region with four

solutions is outside the plot range). For the event on the right, both a region with 2 solutions and

a region with 4 solutions can be seen.

for the invisible momenta, but on the existence (or lack thereof) of viable solutions in the

first place [16, 17, 66]. Indeed, not all choices of test masses will lead to real solutions

for qi. In general, the kinematic constraints (3.2) and (3.3) allow four complex solutions.

Non-real solutions come in complex conjugate pairs [3], and therefore, there can be either

zero, two or four real (possibly degenerate) solutions for a given test mass. As a result, each

event separates the three-dimensional mass parameter space (m̃A, m̃B, m̃C) into allowed and

disallowed regions, depending on whether there exists a real solution for qi or not. The

event will be said to be solvable by the test mass if there exists a real solution for qi. Note

that for signal events the true mass point will always solve the event,7 and thus can never

be ruled out.

Figures 2–4 illustrate the above discussion for two representative signal events. In the

figures, we show ‘“solvability plots” constructed as follows. Given that it is difficult to

visualize the full three-dimensional mass parameter space, we choose to present slices at

fixed values of m̃C : in figure 2 m̃C is set to the true value of mC = 700 GeV, while in

figure 3 we take m̃C = 600 GeV and in figure 4 we have m̃C = 800 GeV. In each panel, we

color-code the (m̃B, m̃A) plane according to the number of real solutions to the kinematic

constraints (3.2) and (3.3): white (uncolored) areas correspond to no real solutions, green

areas have two real solutions and yellow areas allow four real solutions. The cross in figure 2

marks the true mass point mB = 800 GeV, mA = 1000 GeV (the cross is absent in figures 3

and 4 since the test mass m̃C in those figures is different from the true value mC).

7Barring the effects from the detector resolution and finite particle widths.
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Figure 3. The same as figure 2, except the trial mass m̃C is now chosen to be smaller than the

true mass: m̃C = 600 GeV < mC . Since m̃C is different from mC , the true mass point is not seen in

these plots.
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Figure 4. The same as figure 3, but for a choice of test mass m̃C larger than the true mass:

m̃C = 800 GeV > mC .

There are several important lessons which can be learned from these figures. First,

it is rather remarkable that the large majority of the plotted areas are actually ruled out

by this single event — notice how the white color is the dominant one on the plots. We

also observe that as the third (fixed) test mass m̃C is decreased (increased), the allowed

region in the (m̃B, m̃A) plane correspondingly shifts towards lower (higher) values of m̃B

and m̃A. In turn, the allowed region itself has two sub-regions, with 2 and 4 real solutions,

correspondingly. The (yellow-colored) region with 4 real solutions sometimes appears at

relatively large masses, and this just happens to be the case with the event used for the

left panels in figures 2–4. Finally, it is worth noting that for both of these randomly chosen

events, the true mass point marked with the cross in figure 2 is located rather close to the
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boundary of the allowed region. At this point, this may seem to be just a coincidence, but

a more extensive search throughout the signal event sample reveals that this property is

actually quite generic. This observation then brings up the question whether it is possible

for the true mass point to be located exactly on the boundary of the allowed region. This

is one of the central issues in this paper, which will be addressed below in section 5. But

first we shall present and discuss the mass measurement method based on solvability.

4 Solvability as a mass measurement method

4.1 Superposition of individual events

In the previous section, we saw that by requiring solvability, a single event can already rule

out a sizable chunk of the three-dimensional mass parameter space (m̃A, m̃B, m̃C). Repeating

the same analysis with a different event, we would expect a slightly different portion of the

mass space to be disfavored. Then, by taking the intersection of the two regions allowed by

the individual events, we will further constrain the mass parameter space [16, 17, 66, 71].

This procedure is pictorially illustrated in figure 5, where we use the same two events

as in figures 2–4 above. In the top row, we replot the result from figure 2 for m̃C = mC =

700 GeV, only now we remove the distinction between the green and yellow regions (with

2 and 4 real solutions, respectively) and uniformly shade the allowed region in light blue.

Then in the plot shown in the bottom row, we superimpose these two allowed regions, thus

obtaining a new partition of the (m̃B, m̃A) plane into three possible regions: where neither

event is solvable (white areas), where only one of the events is solvable but not the other

(light blue areas) and where both events are solvable (dark blue areas). By construction,

the dark blue region where both events are solvable is smaller than each of the individual

allowed regions seen in the plots in the top row. This demonstrates the benefit from adding

more events to the discussion, i.e., increasing the statistics. At the same time, a pessimist

might point out that a) the benefit does not seem to be that great, since the improvement

(the light blue areas in the bottom panel of figure 5) is relatively minor when compared

to the overall size of the remaining allowed region (the dark blue area); and b) that the

remaining dark blue allowed region still seems to extend out to infinity in the “northeast”

direction. A crucial question, therefore, becomes how much further the allowed region will

shrink once we add all of our remaining events in the data sample. We will answer this

question in the next two subsections 4.2 and 4.3, where for clarity of the presentation we

split the discussion into two parts: in section 4.2 we focus on the issue of measuring mA and

mB for a given value of m̃C (which throughout that subsection will be fixed to be the true

mass mC) and then in section 4.3 we shall tackle the question of measuring mC itself. The

reason for this separation is twofold: first, it is difficult to present and visualize our results

in the full three-dimensional mass parameter space (m̃A, m̃B, m̃C), and second, as we shall

see below, the three-dimensional mass parameter space exhibits a direction of relatively

low sensitivity, which can be parametrized by the value of m̃C (see appendix A for details).

As a result, the measurement of mC will turn out to be much more challenging than the

measurements of mA and mB.
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Figure 5. Top row: the same as figure 2 (m̃C = mC = 700 GeV), only now the allowed region is

uniformly shaded (in light blue), regardless of the number of real solutions. Bottom row: superpo-

sition of the allowed regions from the two events. White areas are incompatible with both events,

light-shaded areas solve one event but not the other, while the dark-shaded area solves both events.

However, before proceeding to show results with the full event sample, it is useful to

consider one more simple exercise, illustrated in figure 6, where we repeat the superposition

of allowed regions done in figure 5, still with just a handful of events, in this case three.

The important new twist here is that the three events in figure 6 were not chosen at

random, as was done in figure 5, but were more carefully selected. The idea was to pick

events which are maximally incompatible with each other, and would therefore rule out

the largest amount of mass space by themselves. The top left, top right and bottom left

panels in figure 6 show the allowed regions for the three selected events. There are three

notable features of these individual allowed regions.

• For all three events, the cross marking the true mass point (mB,mA) lies on the

boundary of the allowed region. This answers the question posed towards the end
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Figure 6. The same as figure 5, only now we superimpose the allowed regions for three suitably

chosen events (shown in the top left, top right and bottom left panels). The cross marks the true

mass point (mB,mA). The three events were selected to be complementary to each other in the

sense that when taken together they would rule out a large portion of the parameter space. In the

bottom right panel white areas are incompatible with all three events, blue light-shaded areas solve

one event but not the other two, blue dark-shaded areas solve two events, but not the third, while

the narrow red-shaded sliver extending away from the cross solves all three events.

of the previous section, demonstrating that a kinematic boundary may pass through

the true mass point. We shall have a lot more to say about that in the next section 5.

• The shapes of the three allowed regions are very different. For the events in the top

row, we see the appearance of two apparently disjoint branches — however, those are

actually connected to each other at large values of m̃B and m̃A beyond the plot range.

• More importantly, the locations of the individual allowed regions happen to be dif-

ferent, so that when they are superimposed in the bottom right panel, there is only

a very narrow sliver of allowed mass space left (the red-shaded area). Note the dif-
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ferent location of the cross (the true mass point) for the three events: in the top left

(top right) panel the cross is on the upper (lower) boundary of the allowed region, so

that when the two events are superimposed, they will leave only the “southwest-to-

northeast” direction as viable. On the other hand, the cross in the lower left panel is

right at the tip of the allowed region, thus eliminating the “southwest” portion, and

leaving only the red-shaded area extending to the northeast of the true mass point.

The lesson from figures 5 and 6 is that some events are better at ruling out mass

parameter space than others. Unfortunately, since a priori we do not know the values of

the true masses, i.e., the location of the cross in figures 5 and 6, we are unable to preselect

events which are “good at” eliminating parameter space, and the best we can do is go over

the whole sample, thus guaranteeing ourselves that at some point we will eventually hit

on some “good” events as well. This is precisely what we intend to do in the next two

subsections.

4.2 Measuring mB and mA for a given trial mass m̃C

In this subsection we focus on a slice of the three-dimensional mass parameter space

(m̃A, m̃B, m̃C) at a constant m̃C , i.e., we shall attempt to measure the values of mB and

mA given a value for m̃C , which we shall take to be the true mass, mC . However, this choice

is inconsequential, and the results will be similar for any other choice of m̃C (in the next

subsection we shall return to the question of measuring mC itself).

To this end, we follow the procedure illustrated in figures 5 and 6, only this time we

use the full event sample. With realistic detector resolutions and finite widths for the

resonances, even the true mass point is not expected to solve 100% of the events. Its

success rate will be further reduced in the presence of background events. So, instead of

successively restricting the allowed mass space with more and more events, which would

eventually result in an empty set, a better approach is to look at the fraction of events that

are solvable by a given test mass hypothesis, with the hope that the true test mass exhibits

the highest such fraction. The result8 is plotted in figure 7, where we use only signal events

and for now ignore the effects of detector resolution and finite particle widths. The color

represents the fraction of events which are solvable for the given mass hypothesis (m̃A, m̃B).

Figure 7 confirms that, as expected, the true mass point mB = 800 GeV and mA =

1000 GeV has a 100% solvability rate. However, in addition to the true mass point, there

also seems to be a whole line of masses with nearly 100% solvability. This “solvability

flat direction” is precisely the northeast-pointing red-shaded region previously encountered

in figure 6. What we are now finding in figure 7 is that this problematic region persists

even after considering the full statistics in the sample. This certainly presents a problem

— it suggests that in its current form the solvability method cannot uniquely determine

the masses, even in this simplified exercise where we only look at the two-dimensional

(m̃B, m̃A) plane.

One can think of several possible ways out. Perhaps the flat direction seen in figure 7 is

not exactly flat, but has a gentle slope, which would nevertheless pick out the true masses.

8From now on such plots will be referred to as “solvability heat maps”.
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Figure 7. Solvability heat maps for fixed m̃C = mC = 700 GeV. For each point in the (m̃A, m̃B)

plane we show the fraction of events which are solvable. The plot on the right considers only mass

points which solve over 90% of the events (note the change of scale in the colorbar).

To test this, in the right panel of figure 7 we change the color scale, zooming in on the events

with maximal solvability (above 90%). We observe that the problematic direction is still

pretty flat, and any existing gentle slope will be washed out once we add the realistic effects

of detector resolution and backgrounds.9 We conclude that for any practical purposes the

“solvability flat direction” is there, and we need additional information in order to lift this

degeneracy.

For example, we can augment the solvability method with constraints on the masses

from kinematic endpoint measurements. The available measurements for this topology

are [30]:

{Mmax
T2 (ab),Mmax

T2 (a),Mmax
T2 (b),mmax

ab } . (4.1)

The first three are the upper kinematic endpoints for the three possible subsystem MT2

variables in the event topology of figure 1, where we have used the notation of ref. [50].

The last one is the upper kinematic endpoint in the distribution of the invariant mass of ai
and bi. The measurement of any one of these endpoints acts as an additional constraint on

the masses. In particular, figure 8 shows the effect of each individual kinematic endpoint

measurement on the (m̃B, m̃A) parameter space from figure 7. Since m̃C is still fixed at

m̃C = mC = 700 GeV, each kinematic endpoint measurement leads to a relation among

m̃B and m̃A as given by the corresponding colored curve: blue for Mmax
T2 (ab), orange for

Mmax
T2 (a), green for Mmax

T2 (b), and red for mmax
ab . We see that all four curves intersect at

the true mass point (mB,mA), as they should. More importantly, neither of the four curves

is aligned with the solvability flat direction, and consequently, any one of them can be

used for lifting the degeneracy. We thus conclude that the solvability method is able to

9The careful reader will note that the flat direction appears to terminate at the true mass point, so that

the true mass point is given not by the condition of maximal solvability, but by the sudden drop in the

solvability rate along the flat direction. This conjecture is correct [66] and can be further motivated by

ideas from sections 5 and 6 below.
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Figure 8. Solvability heat map and constraints from measuring the kinematic endpoints (4.1):

Mmax
T2 (ab) (blue), Mmax

T2 (a) (orange), Mmax
T2 (b) (green) and mmax

ab (red).

pinpoint the correct mass values in the (m̃B, m̃A) plane (at fixed m̃C = mC), but only when

supplemented with a kinematic endpoint measurement.

4.3 Measuring mC

We now turn our attention to determining mC . We begin by recreating the solvability heat

maps from figure 7 in section 4.2, only this time we choose different values of the trial

mass parameter m̃C , away from the true value mC = 700 GeV. Results for m̃C = 600 GeV

and m̃C = 800 GeV are shown in figures 9 and 10, respectively. They confirm the trend

observed in figures 2–4, namely, that as we increase (decrease) the value of m̃C , the preferred

values of m̃B and m̃A increase (decrease) as well. Unfortunately, the solvability heat maps

in figures 9 and 10 look qualitatively very similar to the heat map in figure 7 for m̃C = mC .

Therefore, it appears very difficult to extract the correct value of mC solely on the basis of

these two-dimensional heat maps in the (m̃B, m̃A) plane; some additional input is needed.

The measurements of the kinematic endpoints (4.1) might just be this missing input.

Figure 8 demonstrated that with the correct value of m̃C , the measurements (4.1) are

consistent among themselves, as well as with the solvability heat map. It is worth checking

whether this consistency is retained when we use erroneous values of m̃C , i.e., values away

from the true mass. This test is performed in figure 11, which shows analogues of figure 8

for m̃C = 400 GeV (upper left panel), m̃C = 600 GeV (upper right panel), m̃C = 800 GeV

(lower left panel) and m̃C = 1000 GeV (lower right panel).

There are several interesting features present in figure 11. First, we note that the blue,

orange and green curves corresponding to the three MT2 kinematic endpoints always cross

at a single point, and therefore the three MT2 measurements are consistent with each other,

regardless of the chosen value of m̃C . This is due to the fact that these measurements are
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Figure 9. Solvability heat maps as in figure 7, except here m̃C = 600 GeV < mC .
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Figure 10. Solvability heat maps as in figure 7, except here m̃C = 800 GeV > mC .

not independent, but obey the relation [30]

[Mmax
T2 (b)]2 = Mmax

T2 (ab) [Mmax
T2 (ab)−Mmax

T2 (a)] , (4.2)

which is in fact why the fourth measurement of mmax
ab needed to be added to the set (4.1).

On the other hand, the red curve corresponding to the invariant mass endpoint mmax
ab is

not consistent with the others, as it always misses the common crossing point for the three

MT2 measurements, which is an indication that the chosen value for m̃C was incorrect. The

mismatch grows as m̃C moves further and further away from the true value mC .

Figure 11 also reveals a discrepancy between the high solvability region, on the one

hand, and the various kinematic endpoint measurements, on the other. In particular, at

the lower values of m̃C below the true mass mC , the red curve for mmax
ab tends to miss the

solvable region, while for values of m̃C which are too high, it is the blue Mmax
T2 (ab) curve

which fails to come into contact with the high solvability region. Therefore, by plotting the

maximum fraction of solvable events along these constraint curves in the (m̃B, m̃A) plane,
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Figure 11. The same as figure 8, but for different values of m̃C , not equal to the true mass

mC = 700 GeV. The top two plots have m̃C < mC : m̃C = 400 GeV (top left) and m̃C = 600 GeV

(top right). The bottom two plots correspond to m̃C > mC : m̃C = 800 GeV (bottom left) and

m̃C = 1000 GeV (bottom right). Note that for m̃C < mC (m̃C > mC) it is the mmax
ab constraint (the

Mmax
T2 (ab) constraint) which misses the region of high solvability.

as a function of m̃C , we can identify the true mC as the point where the maximum solvable

fraction is highest. This is the technique proposed by H.-C. Cheng and Z. Han in ref. [66]

(for an illuminating discussion on the relation between solvability and kinematic endpoints,

edges and kinks, see [31, 71]).

In conclusion of this section, we have seen that the solvability method, supplemented

with one or more kinematic endpoint measurements, is in principle capable of determining

all three unknown masses mA, mB and mC . However, as revealed by the preceding discussion

in sections 4.2 and 4.3, the method is not as sensitive in finding the true value of mC as it is

in finding the true values of mB and mA, given mC . This is indicative of a “flat direction” of

low sensitivity along m̃C . This is not unexpected — it is known that mass differences can be

measured much better than the overall mass scale, as has been demonstrated with specific

studies for the case of pair production [85–89] and a single decay chain [60, 61, 73, 90, 91].
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Figure 12. Illustration of degeneracy curves. We recycle the same event used to make the right

panels in figures 2–4. On the left we show the solvability plot for m̃C = mC = 700 GeV, while on

the right we show the corresponding degeneracy curves. As before, the cross marks the true mass

point (mB,mA).

5 Extreme events and kinematic boundaries in mass space

With the intuition developed in the previous two sections, we are now ready to present our

main idea. First we shall introduce some terminology.

5.1 Definitions

As illustrated in the solvability plots in figures 2–4, for any given event, the kinematic

constraints (3.2) and (3.3) partition the three-dimensional parameter space (m̃A, m̃B, m̃C)

into regions allowing 0, 2 or 4 real solutions for the invisible momenta. We shall call the two

kinematic10 boundary surfaces separating those mass space regions degeneracy boundaries,

since on those boundaries there exists a pair of degenerate real solutions. For completeness,

we shall also give a special name to the boundary separating the regions with zero and two

solutions and call it a solvability boundary, since the event is solvable on one side of the

boundary and not solvable on the other. In our event topology, the kinematic boundaries

of an event are two dimensional surfaces in the three dimensional mass space (m̃A, m̃B, m̃C).

Therefore, when we take a slice of the parameter space at fixed m̃C as in figures 2–4, we

correspondingly obtain degeneracy curves in the (m̃B, m̃A) plane, some of which (the ones

which delineate the region with zero solutions) are solvability curves.

Figure 12 illustrates the notion of degeneracy curves, using the event from the right

panels in figures 2–4. In the left panel of figure 12, we reproduce the solvability plot from

figure 2 which was made for m̃C = mC = 700 GeV. Again we can see the three different

regions — with 0, 2 and 4 real solutions (colored white, green and yellow, respectively).

Then in the right panel of figure 12 we ignore the interiors of those regions and only plot the

degeneracy curves for that event. As before, the cross marks the true mass point (mB,mA).

10In the sense that they are derived from kinematic constraints.
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We observe that the cross does not lie on any of the degeneracy curves — indeed, there is

no reason to think that the true masses will necessarily lead to degenerate real solutions

for the momenta. Since the event used in figure 12 was chosen at random, its properties

are generic and follow this expectation.

At the same time, figure 6 also revealed the presence of events in the sample for which

the cross will lie on a degeneracy curve. Now is a good time to give a name to such special

events, since they will be the main topic of discussion in this section. In general, whenever

a given trial mass point (m̃A, m̃B, m̃C) lies on a degeneracy boundary of an event, the event

will be said to be an extreme event for that mass point. Extreme events for the true mass

point (mA,mB,mC) will be referred to simply as extreme events. Note that a priori we

do not know which events in the event sample are extreme in the latter sense, since we

do not know the true masses. Therefore, in order to analyze extreme events, we either

have to cheat and use Monte Carlo information, or develop some alternative strategies for

recognizing such events in the data, see section 5.2 below.

As demonstrated in figure 6, the primary motivation for studying extreme events is that

they are very efficient in ruling out incorrect mass hypotheses. This is especially important

in the region in the immediate vicinity of the true mass point. Indeed, by definition, any

event which is not extreme, will leave the whole neighborhood around the true mass point

as viable. In that sense, extreme events are also extremely valuable, as they provide the

only chance to probe the mass space close to the true mass point. This point is illustrated

in figure 13, which repeats the exercise from figure 6 with three other, randomly selected,

extreme events. Note that while the events were required to be extreme in the sense that

the true mass point marked with the cross lies on a degeneracy boundary, they were not

required to be complementary to each other, as was previously done in figure 6. As a result,

their superposition now leaves a much larger red-shaded area in which all three events are

solvable (compare to figure 6). Even so, notice that the true mass point is on the very

tip of the allowed red-shaded region. In other words, three of the four possible directions

away from the true mass point are ruled out, leaving only a relatively narrow funnel in

the north-northeast direction. This is to be contrasted with the result from figure 5, for

example, where the immediate vicinity of the true mass point is viable in any direction.

The observant reader would have noticed that each of the three events in figure 13

happened to be extreme because the true mass point lies on a solvability boundary as

opposed to the other degeneracy boundary (the one between the regions with 2 and 4 real

solutions). This is somewhat accidental — in the data sample we do find extreme events

of both types. If we were to categorize them, we would find that the extreme events on a

solvability boundary outnumber the others by a factor of roughly 5 : 1. This is consistent

with the outcome in figure 13 — given three extreme events, the chances that they all

have the true mass point on a solvability boundary are approximately
(

5
6

)3 ≈ 58%. One

might question the usefulness of the remaining 1/6 of extreme events which do not involve

a solvability boundary. Indeed, they do not help to shave the allowed mass space near the

true mass point. Nevertheless, as we shall see in the next section, both types of extreme

events will contribute on an equal footing to the mass measurement method proposed in

section 6, therefore from now on we shall stop making the distinction between them.
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Figure 13. The same as figure 6, but for three other randomly chosen extreme events, i.e., the

events were required to be extreme, but not necessarily complementary to each other.

5.2 Characterizing extreme events

As mentioned earlier, the kinematic constraints (3.2) and (3.3) allow four (in general com-

plex) solutions for the invisible momenta qi of particles Ci. The four solutions are contin-

uous functions of (m̃A, m̃B, m̃C) and any non-real solutions among them appear in complex

conjugate pairs [3]. On the degeneracy boundaries, where the number of real solutions

changes, the equations have a pair of degenerate real solutions.

We can therefore characterize extreme events (for a given choice of masses m̃A, m̃B and

m̃C) by finding the condition for a particular solution (q1, q2) to be degenerate. It can be

shown that a solution (q1, q2) is degenerate iff

E(pai , pbi , qi) ≡ Ea1Eb1EC1Ea2Eb2EC2

[
(~V1 × ~V2) · ẑ

]
= 0, (5.1)

where ẑ is the unit vector along the z-axis, the E’s refer to the energy components of the
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corresponding 4-momenta, and the three-vectors ~Vi are defined as

~Vi = (~vai × ~vbi) + (~vbi × ~vCi) + (~vCi × ~vai). (5.2)

Here the 3-vectors ~v are the velocities11 of the particles, i.e., ~v = ~p/E:

~vai =
~pai
Eai

; ~vbi =
~pbi
Ebi

; ~vCi =
~qi
ECi

. (5.3)

Eq. (5.1) is useful in understanding the kinematic configurations of extreme events. As

discussed later in section 5.4, extreme events correspond to kinematic endpoints, therefore

eq. (5.1) (and its analogues for other topologies) can be useful in understanding and deriving

various endpoints. Eq. (5.1) also provides an efficient way of generating a pure sample of

extreme events for dedicated studies of such events.12 Of course, the quantity E , being

a scalar, conveniently quantifies the level of extremeness of the event: the smaller the

magnitude of E , the more extreme an event is.

One downside of the parametrization (5.1) is that it refers to the particular solution

(q1, q2), so that in order to use this criterion in practice, one has to solve the constraint

equations first. Since they may lead to up to 4 real solutions, one must test the condi-

tion (5.1) for each real solution and then use the smallest value of E thus obtained in order

to judge whether the event is extreme or not.

5.3 Extreme events are more common than you think

Having motivated extreme events through their useful and interesting properties, the crucial

question to address next is, how frequent are they in a realistic data sample? The pessimist

from section 4.1 could again raise an objection that the volume of a two-dimensional surface

in three-dimensional space is zero, and therefore, the chances that an event will land exactly

on a degeneracy boundary and thus become extreme are vanishing as well. However, this

argument contains a hidden assumption — that the distribution of events throughout the

three-dimensional space is a normal, well-behaved function, i.e., the event density has

no singularities. In this subsection we shall argue that the hidden assumption is false,

and that in fact, in the narrow width approximation, the density of events is expected

to be singular precisely on the degeneracy boundaries, thus greatly increasing the odds

of encountering extreme events in the sample. The gist of our argument goes back to

the algebraic singularity method of I.-W. Kim [68]. As a specific example, phase space

singularities on kinematic surfaces were recently explored in the case of a single SUSY-like

decay chain in [72, 73, 75]. However, our main argument here is very general, thus we shall

try to keep the discussion independent of the underlying topology.

Consider the space of the Np∪ q components of the 4-momenta of all final state particles,

visible and invisible. Out of these, let Np be the total number of visible momentum

components {p} and Nq be the total number of invisible momentum components {q},
11Not to be confused with the spatial components of the 4-velocities.
12Any simulated event (for which we know the invisible momenta) can be converted into an extreme event

by appropriately rotating the decay of B2 about its direction of motion to satisfy eq. (5.1).
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where trivially Np∪ q = Np+Nq. On-shell events generated from a given set of true masses

will obey a certain number, Cq, of kinematic constraints involving the invisible momenta,

plus possibly also a certain number of constraints Cp involving only the visible momenta

{p} and no unknown parameters. As a result of the kinematic constraints, the final state

momenta will lie on a hypersurface of dimension Np∪ q − Cq − Cp, which is embedded in

the original (Np∪ q)-dimensional space. This hypersurface represents the full phase space

for this process, and events will be more or less evenly distributed in the full phase space.

Now the crucial question is, how are events distributed in the allowed (Np − Cp)-

dimensional visible subspace? For this purpose, we need to project the full (Np∪ q−Cq−Cp)-
dimensional phase space onto the (Np−Cp)-dimensional allowed visible subspace [68]. The

dimensionality of the resulting projection is

min (Np∪ q − Cq − Cp, Np − Cp) . (5.4)

In this paper, we shall restrict our attention to the case where Np∪ q − Cq − Cp = Np − Cp,
i.e., the dimensionality of the full phase space equals the dimensionality of the allowed

visible subspace. Since Np∪ q = Np +Nq, an equivalent way to state the same condition is

simply Nq = Cq, i.e., there are just enough constraints in order to solve for the invisible

momenta {q}. This was precisely the case in section 3: we were able to solve for the

invisible momenta in the event topology of figure 1. Let us check: there were 4 visible final

state particles (Np = 4 × 4 = 16), 2 invisible final state particles (Nq = 2 × 4 = 8), two

constraints from (3.2) and six constraints from (3.3) for a total of Cq = 2+6 = 8. There are

also four mass shell constraints on the visible momenta (Cp = 4). Thus both the full phase

space and the visible phase space are 12-dimensional: Np∪ q−Cq−Cp = (16+8)−8−4 = 12

and Np − Cp = 16− 4 = 12.

As already mentioned above, the probability density of events on the full phase space

is well behaved, i.e., there are no singularities or discontinuities. However, this is not the

case with events in the visible phase space. First we note that the mapping of the full phase

space onto the visible phase space is not one-to-one (or invertible) — multiple points in

the full phase space can have the same visible phase space projection, as evidenced by the

existence of multiple solutions for the invisible momenta. To keep a simple visual analogy

in mind, think of the projection of a two-dimensional hollow sphere onto the equatorial

plane. Any image point in the equatorial plane has two possible preimages, one in the

Northern hemisphere and one in the Southern hemisphere.

Let Pfull be the density of events in the full phase space, and let Pvis be the density

of events in the visible phase space. Consider an infinitesimal volume dVvis in the visible

phase space and the corresponding infinitesimal volumes dVfull,i which can be mapped onto

it from the full phase space. Here the index i labels the “sheet” on which dVfull,i is located13

— for example, in the hollow sphere example above, the two values of i = 1, 2 would label

the Northern and Southern hemispheres. The two event densities are related as

Pvis dVvis =
∑
i

Pfull,i dVfull,i, (5.5)

13Since the visible phase space and the full phase space have equal dimensionalities, there can only be a

finite number of such “sheets”.
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or equivalently,

Pvis =
∑
i

Pfull,i
dVfull,i

dVvis
. (5.6)

As already mentioned, Pfull,i is well behaved. However, at points where dVvis/dVfull,i is

vanishing (for one of the i values), Pvis will be singular [68]. The vanishing of dVvis/dVfull,i

occurs at those locations where the tangent plane of the full phase space is perpendicular

to the tangent plane of the visible phase space. (In the hollow sphere example above, this

singularity occurs on the equator, where the surface of the sphere is perpendicular to the

equatorial plane.) It is also easy to see that those locations are precisely where two different

branches in the full phase space (i.e., corresponding to two different values of i) meet (in

the hollow sphere example, think of the Northern and Southern hemisphere merging at

the equator). In other words, the points where Pvis is singular correspond to extreme

events which have degenerate real solutions for the invisible momenta. Consequently, the

dimensionality of the subspace spanned by extreme events is Np − Cp − 1, due to the

additional “degeneracy condition”.

5.4 The connection between extreme events and kinematic endpoints

For events on the boundary of the visible phase space, the true mass point will lie on the

solvability boundary in mass space. In other words, events on the boundary of the visible

phase space lead to a particular class of extreme events, namely the ones involving the

solvability boundary. As already discussed at the end of section 5.1, those are the large

majority of extreme events.

The shape of the boundary of the visible phase space is dependent on the underlying

mass spectrum and can therefore reveal information about it. A standard approach to

extract this information is to measure kinematic endpoints in the distributions of variables

suitably constructed from the visible momenta [14, 63]. It is clear that the events for which

the kinematic variable under consideration acquires its endpoint value, are necessarily

events on the boundary of the visible phase space [31, 66, 71]. Since those are extreme

events, it follows that extreme events are responsible for the endpoints in the distributions

of kinematic variables. The reverse, however, is not necessarily true — not all of the

extreme events are necessarily mapped onto the kinematic endpoint value. Therefore,

compared to endpoints in kinematic distributions, extreme events present an interesting

and more general target for studies of event kinematics.

5.5 The distribution pattern of kinematic boundaries in mass space

In section 5.3 we argued that the density of extreme events is singular. Here we shall use

that result to show that if we consider the degeneracy boundaries in the mass space for a

sample of events, the density of these boundaries will be singular at the true mass point.

We shall first give a heuristic justification before building it into a more rigorous

argument. Note that any event is extreme for some set of points in mass space, namely,

the ones on the degeneracy boundaries of that event. We do not know a priori whether

any of those mass points happen to be the true masses or not. So let us then try to
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figure this out on a statistical basis. Let each event give a vote to all the mass points on

its degeneracy boundaries, i.e., all masses for which it is extreme. We saw in section 5.3

that events which are extreme for the true mass have an enhanced (singular) probability

density. On the other hand, events which are extreme for an incorrect test mass point do

not necessarily have the same enhancement. By this logic, we can expect the true mass

point to pick up more votes in this procedure than an incorrect test mass choice. “More

votes” here corresponds to a higher density of degeneracy boundaries.

Let us rephrase this heuristic argument in a slightly more rigorous form. We shall do

this by mapping the density of extreme events in the visible phase space to the density of

degeneracy boundaries in the mass space.

In our event topology of figure 1 the mass space is 3 dimensional and the degeneracy

boundaries are 2 dimensional surfaces. Their density, Pdbmass(m̃A, m̃B, m̃C), will be defined as

the fraction of degeneracy boundaries per unit 3
√

volume in the mass space.14 It is given by

Pdbmass(m̃A, m̃B, m̃C)
3
√
d3Vmass = dV1

∫
extreme
events

Pvis dV(Np−Cp−1), (5.7)

where the integral is over the (Np−Cp−1)-dimensional subspace of extreme events for the

given mass point (m̃A, m̃B, m̃C). dV1 represents a differential element in the visible phase

space perpendicular to the space of extreme events. It corresponds to the change in the

space of extreme events when the mass point varies within d3Vmass. It helps to think of

the space of extreme events of a test mass as an (Np − Cp − 1)-dimensional curve which

changes smoothly when the test mass changes. Eq. (5.7) can be rewritten as

Pdbmass(m̃A, m̃B, m̃C) = J

∫
extreme
events

Pvis dV(Np−Cp−1), (5.8)

where J is a Jacobian factor. We can see that Pdbmass will be singular iff the integral

is divergent.

Note that the Jacobian factor and the integration volume for a given test mass are

both independent of the true mass from which the event sample is generated. So, except

possibly for some special test masses (special overall, not in relation to the true mass),

we can expect their contribution to the variation of Pdbmass to be well-behaved. Any local

singularity in Pdbmass can therefore only come from Pvis. As mentioned in section 5.3, Pvis

is singular for extreme events of the true mass and for those events only. Thus the density

of degeneracy boundaries in the mass space is singular at the true mass.15

14This is because the number of randomly distributed d-dimensional objects in a D-dimensional volume

element scales as (volume)(1−d/D). In our case d = 2 dimensional surfaces are distributed in a D = 3

dimensional volume element and their number scales as (volume)1/3.
15The density is also singular at masses whose extreme events have an intersection of measure greater

than 0 with the true extreme events.
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6 The kinematic focus point method

6.1 The basic idea

Before proceeding further, let us condense the content of section 5.5 into the following

elevator pitch:

1. Draw the degeneracy boundaries (in the mass space) for all events in the data sample.

As a reminder, the degeneracy boundary of an event contains masses for which the

given event has degenerate real solutions for the invisible momenta.

2. The density of these boundaries should peak at the true mass point.

This lays out a straightforward mass determination method pictorially illustrated in

figures 14 and 15. We simply plot the degeneracy surfaces for all events in our sample, and

look for a focus point where a maximal number of them either intersect or pass close by.

Since it is difficult to visualize this in the full three dimensional mass space (m̃A, m̃B, m̃C),

in figures 14 and 15 we show results in the (m̃A, m̃B) plane for fixed m̃C = mC = 700 GeV.

In figure 14 we use the same plot range as in all of our previous figures, and gradually

increase the number of events used for the plot from 5 (top left panel) to 50 (bottom right

panel). We observe that as we add more and more events, a focus point indeed gradually

emerges near the true mass values of mB = 800 GeV and mA = 1000 GeV. Our method

derives it name from this feature, since the degeneracy curves tend to “focus” at the true

mass point. The focus point is very easy to identify by eye, and in the next subsection

we shall develop a procedure for quantifying the observed amount of “focusing”. Clearly,

if we add even more events, the focus point should become even more pronounced, but

unfortunately, the plot would become too cluttered. This is why when we further increase

the number of events to 100 in figure 15, we zoom in on the region in the vicinity of the

focus point. The left (right) panel of figure 15 uses a zoom factor of 5 (10) relative to

the plot range in figure 14. We see that the focus point is very clear, and is in perfect

agreement with the true values mB = 800 GeV and mA = 1000 GeV. For example, if one

were to estimate the values of mB and mA by simply eyeballing the plots in figure 15, the

error would not be more than a couple of GeV! One should also keep in mind that the plots

in figure 15, which were made only for illustration, use only 100 events, while the actual

LHC statistics is likely to be much higher.

6.2 Measuring mB and mA for a given trial mass m̃C

Hopefully by now the reader has been convinced by the money plots in figures 14 and 15

that the kinematic focus point method outlined in the previous section 6.1 is a promising

new technique for mass measurements. In the remainder of this section, we shall discuss

how to implement it in practice, as well as some practical challenges and how they might

impact the sensitivity of the method.

Since the kinematic focus point method relies on the high density of degeneracy curves

near the true mass point, we need to design a procedure for quantifying this effect. Follow-

ing the outline of section 4, let us first concentrate on the task of measuring mB and mA at
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Figure 14. Degeneracy curves in the (m̃B, m̃A) plane, for fixed m̃C = mC = 700 GeV. The

plots are made with an increasing number of events: 5 events (top left), 10 events (top right), 20

events (bottom-left) and 50 events (bottom right). Each subsequent panel already contains the

events plotted previously, plus some new events. Note the gradual emergence of the focus point of

boundary curves near the true mass mB = 800 GeV and mA = 1000 GeV.

a fixed value of m̃C , postponing the task of measuring mC until the next section 6.3. For

this purpose, we need to plot one-dimensional degeneracy curves in the two-dimensional

(m̃B, m̃A) plane, as was done in figures 14 and 15. The discussion from section 5.5 showed

that the relevant quantity in that case is the number of degeneracy curves per unit
√

area,

which is what we shall use in our analysis. The area elements in the (m̃B, m̃A) plane will

be chosen to be 10 GeV × 10 GeV squares, and so the resulting unit for the density of

degeneracy curves will be (10 GeV)−1. For the remainder of this subsection, the test mass

m̃C will be set to the true value of 700 GeV.

We are now ready to study the density of degeneracy curves in the (m̃B, m̃A) plane. The

result is shown as a heat map in figure 16 and as 3D histograms from different viewpoints
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Figure 15. The same as figure 14, but with 100 events and zoomed in by a factor of 5 (left panel)

and a factor of 10 (right panel).

Figure 16. A heat map of the density of degeneracy curves in the (m̃B, m̃A) plane for m̃C = mC =

700 GeV. The density is displayed in units of fraction of events per 10 GeV. Note the sharp peak at

the true values mB = 800 GeV, mA = 1000 GeV — over 60% of the signal events have a degeneracy

curve passing through a 10 GeV × 10 GeV square around the true mass point.

in figure 17. The density of degeneracy curves is displayed in units of fraction of events

per 10 GeV, i.e., instead of plotting the total number of curves passing through a given

10 GeV × 10 GeV square, we plot the fraction of events in the sample which have a

degeneracy curve passing through that square. By normalizing to a fraction, our results

become insensitive to the statistics used to make the plots (in this case, figures 16 and 17
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Figure 17. The same as figure 16, except densities are plotted as a 3D histogram instead of a

heatmap. The three figures show the 3D histogram from different angles. The peak is at the true

mass mB = 800 GeV,mA = 1000 GeV.

were made with 1000 events). The figures show that the density has a sharp peak at the

true mass (mB = 800 GeV,mA = 1000 GeV). The peak is actually very well pronounced:

note that over 60% of the events in the sample have one of their degeneracy curves passing

through a 10 GeV × 10 GeV square around the true mass point. This confirms that our

method is really effective in finding mB and mA, given m̃C . Note the advantages of our

method over the solvability method from section 4 — first, we do not encounter the flat

direction of 100% solvability seen in figures 7, 9 and 10, and as a result we do not need

any additional experimental information (from kinematic endpoints or otherwise); and

second, we are measuring a sharp peak structure which is centered on the true values of

the particle masses.

6.3 Measuring mC

As in section 4.3, we now turn to the more difficult task of measuring mC . For this purpose,

we repeat the exercise from the previous subsection, only this time with different values of

m̃C . Heat maps analogous to the one in figure 16 are shown in the left and right panel of

figure 18 for two representative values, m̃C = 400 GeV and m̃C = 1000 GeV, respectively.

We observe that each of the two plots in figure 18 exhibits its own density peak in the

(m̃B, m̃A) plane. As expected, the location of the peak tracks the value of m̃C — for lower

(higher) values of m̃C , the peak is located at lower (higher) values of m̃B and m̃A. From

that point of view, there is no qualitative difference in the heat maps at different values of

m̃C . However, there is a quantitative difference: the height of this peak, i.e, the maximum

density in the (m̃B, m̃A) plane for a given value of m̃C , is different for different values of

m̃C . The maximum height is expected to occur at the true value of m̃C = mC . While this

expectation is consistent with the results in figures 16 and 18, we quantify it further in

figure 19, which shows a plot of the maximum density of degeneracy curves in the (m̃B, m̃A)

plane (after fixing the value of m̃C), as a function of m̃C . As before, the density is plotted

in units of fraction/(10 GeV). Figure 19 nicely confirms that the density peaks at the

true value of mC = 700 GeV (marked with the vertical red line). As already discussed

in section 4.3, the mC measurement is rather challenging — in our case this is evidenced

by the fact that the peak in figure 19 is not as sharp as the peak in figures 16 and 18.

Nevertheless, figure 19 confirms that in principle our method can be used to find mC as well.
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Figure 18. The same as figure 16, but for m̃C = 400 GeV (left panel) and m̃C = 1000 GeV

(right panel).
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Figure 19. Plot of the maximum density of degeneracy curves (in units of fraction/(10 GeV)) for

different fixed values of m̃C . For each value of m̃C , the maximization is done in the (m̃B, m̃A) plane.

The peak value in the plot is observed at the true value of mC = 700 GeV marked with the vertical

red line.

6.4 The impact of the detector resolution

Until now, all of our studies were done at the parton level and in the narrow width approx-

imation, without smearing from either detector resolution or particle width effects. We

shall now investigate the size of those effects. In this subsection we shall first add the effect

of the detector resolution. We shall consider the typical scenario where the particles ai
and bi in the event topology of figure 1 are bottom quarks and leptons, respectively. Cor-

respondingly, we shall apply smearing to the energies of the two b-jets according to typical

LHC resolutions [92]: for jet pT up to {10, 20, 30, 50, 100, 400, 1000}GeV, the pT -dependent

energy resolution parameter is 40%, 28%, 19%, 13%, 10%, 6%, 5%.
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Figure 20. The same as figures 16 and 18, but including the effects of jet smearing. The left

(middle, right) panel shows results for fixed m̃C = 400 GeV (m̃C = 700 GeV, m̃C = 1000 GeV).
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Figure 21. The same as figure 19, but including the effects of jet smearing and counting events in

a larger (30× 30 GeV) collection bin.

Figures 20 and 21 show the results analogous to figures 16, 18 and 19, only now with

the detector resolution included. As expected, the detector effects tend to wash out the

peak structures a little bit. Nevertheless, the peaks in figure 20 (which shows measurements

of mA and mB for fixed m̃C) are still pronounced, and more importantly, the peak found

for m̃C = mC is still located at the proper values of the masses. Figure 21 shows the

measurement of mC (in the presence of detector effects), which was already a difficult task

even at the gen-level, see figure 19.

6.5 A standard model example: dilepton tt̄ events

Most of the mass measurement methods applicable to LHC events with missing transverse

energy were developed with some kind of new physics model in mind, e.g., supersymme-

try [63]. However, experimenters who wish to test the kinematic focus point method in

real data do not have to wait for the discovery of any new physics — the event topology

of figure 1 is already present in the LHC data in the form of Standard Model dilepton tt̄

events, for which the available statistics is enormous. Therefore, it is worth supplementing
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Figure 22. Density of degeneracy curves for Standard Model dilepton tt̄ events in the (m̃W , m̃t)

plane for m̃ν = mν = 0 GeV, without detector smearing (left) and with detector smearing (right).

Unlike figures 16, 18 and 20, the density units here are fraction of events per 5 GeV, i.e., the bins

are 5 GeV × 5 GeV.

our previous results with a study showcasing the method for the dilepton tt̄ channel, and

this is what we shall do in the current subsection.

We generate Standard Model tt̄ events with Madgraph [81], using the proper widths

for the top quark and the W boson. We select dilepton events in which both top quarks

have decayed leptonically, and repeat the kinematic focus point analysis from section 6.2,

setting the trial neutrino mass m̃ν to zero. We then consider the plane spanned by the

trial masses for the W boson (m̃W ) and for the top quark (m̃t) and compute the density of

the degeneracy curves. The heat map analogous to figure 16 is shown in figure 22, where

the left panel depicts the parton level result, while in the right panel we include the effects

from the detector smearing as in section 6.4.

As anticipated, figure 22 reveals a peak structure near the true masses mW = 80 GeV

and mt = 173 GeV. The peak is especially pronounced at the parton level (left panel) —

over 40% of the events have a degeneracy curve passing through a 5 GeV × 5 GeV square

nearby. The detector resolution does tend to wash out the peak structure in the right

panel, but a maximum is still visible. This suggests that the kinematic focus point method

could allow the simultaneous independent measurement of the top and W -boson masses in

the spirit of refs. [13, 30].

7 Conclusions and outlook

In this paper we propose a new approach to mass measurements in events with missing

energy, called the kinematic focus points method. The method derives from the study of

the solvability of the kinematic constraints which are present in a given event topology [15–

20, 31, 66]. Using the dilepton tt̄ topology as our example, we first critically examined the

solvability method for measuring masses, and its relation to the measurements of kinematic

endpoints. We then showed that any given event divides the relevant three-dimensional

mass parameter space into regions with a certain number of (pairs of) real solutions for the
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Figure 23. The same as figure 16, for Standard Model dilepton tt̄ background events (left panel)

and preselected signal events (right panel), both for m̃C = 700 GeV. The signal events entering the

plot on the right have been preselected to obey all four kinematic endpoints (4.1) predicted for the

Standard Model dilepton tt̄ background. The white × symbol marks the location (mB ,mA) of the

true masses in the signal topology.

unknown invisible momenta. The surface boundaries between those regions are where the

solutions become degenerate, and we called those surfaces “degeneracy boundaries”. We

illustrated and studied the shape of the degeneracy boundaries, as well as their distribution

throughout the mass parameter space. In particular, we singled out a special class of events,

extreme events, for which the true mass point lies on a degeneracy boundary.

Our main results were:

• Extreme events are very efficient in restricting the allowed mass parameter space.

• Extreme events are abundant in realistic data samples, due to singularities in the

phase space distribution.

• This abundance of extreme events can be harnessed by drawing the degeneracy

boundaries in the mass parameter space over the full event sample. The bound-

aries tend to focus at the true mass point and this property can be used to identify

the true masses.

• our study of the solvability mass measurement method revealed a flat direction of

nearly 100% solvability, which can be lifted only by adding additional information.

The kinematic focus points method has similarities to traditional mass-bump methods,

thus allowing for data driven estimation of the relevant backgrounds.

The method also represents an improvement over the traditional kinematic endpoint

techniques. The main advantage stems from the fact that we are able to extract useful

information from all events and not just those which populate the vicinity of a kinematic

endpoint. In order to illustrate this idea, we can look at the performance of the focus point

method on a subset of events which would not assist in the standard extraction of the
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kinematic endpoints of the signal through a fit. The mass spectrum for our study point

(mA = 1000 GeV, mB = 800 GeV and mC = 700 GeV) happens to be such that all four

kinematic endpoints (4.1) for the signal are higher than the respective endpoints for the

tt̄ background. Therefore, by restricting ourselves to signal events which satisfy all four

background endpoints, we can select signal events far away from the signal endpoints; such

events are also hard to distinguish kinematically from the background.

In figure 23 we contrast the heat maps (created as in figure 16) for Standard Model

dilepton tt̄ background events (left panel) and so preselected signal events (right panel),

both for m̃C = 700 GeV. The white × symbol marks the location (mB,mA) of the true

masses in the signal topology. The signal events entering the plot on the right have been

preselected to obey all four kinematic endpoints (4.1) predicted for the Standard Model

dilepton tt̄ background. Therefore, as far as kinematic endpoints are concerned, these signal

events are very hard to distinguish from the SM background, and in particular, cannot be

used for discovery [51]. Yet the heat map for these “low utility” signal events in the plot

on the right still shows a distinct feature through the correct masses, which is not present

for the SM case shown in the left panel.16

The focus point method is based purely on event kinematics, and is therefore quite

model-independent. Note that in addition to measuring the masses of particles, this tech-

nique can also be used as a new physics search technique by designing an analysis which

would look for a bump feature in the density of the kinematic boundaries.

Acknowledgments

DK was supported in part by the Korean Research Foundation (KRF) through the CERN-

Korea Fellowship program, and is presently supported by the Department of Energy under

Grant No. DE-FG02-13ER41976/DE-SC0009913. The work of KM and PS is supported

in part by the United States Department of Energy under Grant No. DE-SC0010296.

A The flat direction of low sensitivity in mass space

The numerical results in sections 4.3 and 6.3 suggested the presence of a region (“flat

direction”) in mass space which has relatively low sensitivity. In other words, the analysis

is least sensitive to the degree of freedom (in mass parameter space) parametrizing the flat

direction. In this appendix we identify and parametrize the flat direction.

One of the key ideas in deriving the flat direction is that the kinematic constraints (3.2)

and (3.3) are a) Lorentz invariant and b) invariant under separate longitudinal boosts of the

two branches in figure 1. Therefore, without loss of generality we can restrict our attention

to events in which both A1 and A2 are produced at rest in the longitudinal direction, and

have equal and opposite transverse momenta. The other key idea is that the flat direction

16The absolute maximum in the right plot of figure 23 is shifted away from the white × symbol due to

the bias introduced by the applied preselection. Once the whole signal sample is considered, the peak will

shift back to the correct position, as shown in figure 16, and will include a substantial contribution from

the low utility signal events from figure 23.
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m̃C (GeV) m̃B (GeV) m̃A (GeV)

400 505 694

700 800 1000

1000 1098 1304

Table 1. Mass spectrum along the flat direction (A.2) for the three m̃C values used in the paper.

arises because there is an additional hidden constraint which is approximately satisfied by

events in our sample, but is unaccounted for in our analysis. This constraint arises due to

the fact that at LHC energies, the transverse momenta of the parent particles are small

relative to their masses. This is a good approximation at hadron colliders like the LHC,

provided that the Ai particles are not too light. In this case, one can show that there exists

a flat direction near the true mass point which satisfies

dm̃2
A

dm̃2
C

=
m̃2

A + m̃2
B

m̃2
C + m̃2

B

, (A.1a)

dm̃2
B

dm̃2
C

=
2m̃2

B

m̃2
C + m̃2

B

. (A.1b)

These equations can be solved to give

m̃2
A − m̃2

B

m̃B

=
m2

A −m2
B

mB

= constant, (A.2a)

m̃2
B − m̃2

C

m̃B

=
m2

B −m2
C

mB

= constant. (A.2b)

Table 1 lists the mass spectrum predicted by (A.2) for the three representative values

for m̃C used on the plots.
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