
J
H
E
P
1
0
(
2
0
1
9
)
1
4
4

Published for SISSA by Springer

Received: July 16, 2019

Revised: September 15, 2019

Accepted: September 24, 2019

Published: October 10, 2019

Proper TMD factorization for quarkonia production:

pp → ηc,b as a study case

Miguel G. Echevarria

Istituto Nazionale di Fisica Nucleare, Sezione di Pavia,

via Bassi 6, 27100 Pavia, Italy

E-mail: mgechevarria@pv.infn.it

Abstract: Quarkonia production in different high-energy processes has recently been pro-

posed in order to probe gluon transverse-momentum-dependent parton distribution and

fragmentation functions (TMDs in general). However, no proper factorization theorems

have been derived for the discussed processes, but rather just ansatzs, whose main as-

sumption is the factorization of the two soft mechanisms present in the process: soft-gluon

radiation and the formation of the bound state. In this paper it is pointed out that, at low

transverse momentum, these mechanisms are entangled and thus encoded in a new kind of

non-perturbative hadronic quantities beyond the TMDs: the TMD shape functions. This is

illustrated by deriving the factorization theorem for the process pp → ηc,b at low transverse

momentum.

Keywords: Effective Field Theories, Perturbative QCD, Renormalization Group

ArXiv ePrint: 1907.06494

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP10(2019)144

mailto:mgechevarria@pv.infn.it
https://arxiv.org/abs/1907.06494
https://doi.org/10.1007/JHEP10(2019)144


J
H
E
P
1
0
(
2
0
1
9
)
1
4
4

Contents

1 Motivation 1

2 Factorization theorem for pp → ηc,b + X at low qT 2

3 Calculation of the hard part at NLO 7

4 Conclusions 8

1 Motivation

Gluons, together with quarks, are the fundamental constituents of nucleons. They gen-

erate almost all their mass and carry about half of their momentum. However, their

three-dimensional (3D) structure is still unknown, as well as their contribution to the

nucleon spin. The 3D structure of hadrons in momentum space is parametrized by the

so-called Transverse-Momentum-Dependent Parton Distribution/Fragmentation functions

(TMDPDFs/TMDFFs, TMDs in general) [1]. These are the 3D generalization of the

one-dimensional PDFs and FFs, where a dependence on the transverse momentum of the

partons is also allowed. They include as well the correlations between this transverse

momentum and the spins of the considered parton and its parent hadron.

Constraining gluon TMDs is a crucial step in our understanding of nucleon 3D struc-

ture, and with that also our understanding of confinement in QCD and the structure of

ordinary matter in general. In fact, the study of gluon TMDs in particular, and the gluon

content of the nucleons in general, is one of the main motivations that is pushing forward

the design of the Electron-Ion Collider in the US [2] and fixed-target experiments at the

LHC at CERN [3–6].

In the last years a huge step forward has been made in the quark TMDs sector, ob-

taining their proper definition and properties, and their connection with observable cross-

sections in terms of robust factorization theorems [7–11]. This, together with new higher-

order perturbative calculations (see e.g. [12–16]), has allowed the phenomenological analy-

ses to enter a new precision stage (see e.g. [17–23]). However, for gluons the situation is very

different. Even if their proper definition is currently known [24], the processes where they

can be probed are less clean compared to the ones which are used to access quark TMDs.

All and all, quarkonium production seems the most promising way to probe gluon

TMDs. Indeed, there has been a growing interest lately, with numerous proposals based

on tree-level ansatzs for TMD factorization for quarkonium production [25–42] and even

several next-to-leading-order (NLO) calculations [43–46].

The caveat shared by all these attempts, however, is that all of them assume the

decoupling of the two soft mechanisms present in the processes: the soft physics underlying
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the formation of the quarkonium bound state and the soft gluon resummation. Indeed,

these two soft phenomena cannot be factorized when their relevant scales are comparable,

i.e. when qT ∼ mQv, being qT the measured transverse momentum and mQv the typical

momentum of a heavy quark of mass mQ and velocity v inside the quarkonium state. For

bb̄ states one typically has v2 ∼ 0.1, while for cc̄ one has v2 ∼ 0.3, so then mbv ∼ 1.3 GeV

and mcv ∼ 0.7 GeV. Roughly speaking, when the transverse momentum is in the non-

perturbative region around and below ΛQCD, then the factorization ansatz made in all

previous analyses is not accurate. And it is precisely this region which is claimed to be

sensitive to gluon TMDs and where they can potentially be probed.

In this paper the process pp → ηc,b + X is considered as an example of quarkonium

production process, and the factorization theorem at low transverse momentum is derived.

It turns out that the cross-section is not given only in terms of gluon TMDs, but there is an

additional new non-perturbative hadronic quantity which encodes the two mentioned soft

processes together: the TMD shape function. Using the newly derived factorization theo-

rem, the hard part of the process is obtained at one-loop, which is an essential ingredient

for future phenomenological analyses since it allows the resummation of large logarithms at

higher logarithmic orders. Moreover, the obtention of a hard factor free from infrared diver-

gences represents a non-trivial consistency check of the newly derived factorization theorem.

2 Factorization theorem for pp → ηc,b + X at low qT

The differential cross section for ηQ (Q = c, b) hadro-production is given by

dσ =
1

2s

d3q

(2π)32Eq

∫

d4ξ e−iq·ξ
∑

X

〈

PSA, P̄ SB

∣

∣O†(ξ) |XηQ〉 〈ηQX| O(0)
∣

∣PSA, P̄ SB

〉

,

(2.1)

where s = (P + P̄ )2. The effective operator which mediates this process within an effec-

tive theory which combines both soft-collinear effective theory (SCET) [47–52] and non

relativistic QCD (NRQCD) [53] degrees of freedom can be written as1

O(ξ) = −2q2
∑

n

C
(n)
H (−q2;µ2)

[

ψ†(ξ) Γ(n)
µν K

[1,8]
aa′ χ(ξ)

] [

Bµ,b
n̄⊥(ξ)Y

†ba
n̄ (ξ)Ya′c

n (ξ)Bν,c
n⊥(ξ)

]

,

(2.2)

where the sum runs over the different states n which can contribute to the process. In

the usual spectroscopic notation, n stands for 2S+1L
[i]
J , with S the spin, L the angular

momentum and J the total angular momentum, and i = 1(8) for singlet (octet). C
(n)
H are

the spin-independent matching coefficients for each state n, which integrate out the hard

scale of the process, q2 = M2. a, a′b, c are the gauge group indexes, while Γ
(n)
µν is a matrix

which encodes the Lorentz structure of the partonic process for the creation of the state

n. Kaa′ is a color matrix, with K
[1]
aa′ = δaa′ for color-singlet states and K

[8]
aa′ = tAaa′ for

color-octet states. χ and ψ are the spinors describing the QQ̄ state. The B⊥µ
n(n̄) operators,

1A vector a
µ is decomposed as a

µ = n̄·anµ

2
+ n·a n̄µ

2
+ a

µ
⊥

= a
+ nµ

2
+ a

− n̄µ

2
+ a

µ
⊥
, with n = (1, 0, 0, 1),

n̄ = (1, 0, 0,−1), n2 = n̄
2 = 0 and n·n̄ = 2. We denote aT = |a⊥|, i.e. a

2
⊥ = −a

2
T < 0.
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which stand for gauge invariant gluon fields, are given by

Bµ
n⊥ = Bµ,a

n⊥ ta =
1

g
[W †

niD
⊥µ
n Wn] =

1

n̄·P in̄αg
µ
⊥βW

†
nF

αβ
n Wn

1

n̄·P in̄αg
µ
⊥βt

a(W†
n)

abFαβ,b
n .

(2.3)

The collinear and soft Wilson lines are the path-ordered exponentials

Wn(ξ) = P exp

[

ig

∫ 0

−∞

ds n̄·Aa
n(ξ + n̄s)ta

]

,

Yn(ξ) = P exp

[

ig

∫ 0

−∞

ds n·Aa
s(ξ + ns)ta

]

. (2.4)

Wilson lines with calligraphic typography are in the adjoint representation, i.e., the color

generators are given by (ta)bc = −ifabc. In order to guarantee gauge invariance among reg-

ular and singular gauges, transverse gauge links need to be added (as described in [54, 55]).

In the case of ηQ production, NRQCD formalism dictates that the operator for the

state 1S
[1]
0 is the leading one in the power counting in the velocity v [53]. Thus from

now on we will consider only that contribution. Moreover, the production of color-octet

states will potentially spoil TMD factorization due to the presence of uncanceled Glauber

gluons [56–58]. The Lorentz structure Γ
1S0
µν is fixed by requiring the effective operator to

give the same tree-level amplitude as in full QCD for the production of a pseudoscalar ηQ

in the configuration 1S
[1]
0 :

Γ
1S0
µν =

iπαs2
√
2

Nc

√
M5

ǫ⊥µν , (2.5)

where ǫµν⊥ = ǫαβµνnαn̄β/(n · n̄), with ǫ12⊥ = 1.

The effective Lagrangian for this process is given by the combination of both SCET and

NRQCD effective Lagrangians. This means that (anti)collinear modes are decoupled from

soft and ultrasoft modes, while the latter are coupled among them (through the NRQCD

Lagrangian). One can thus decompose the final state as the following product of states:

|XηQ〉 = |Xn〉 ⊗ |Xn̄〉 ⊗ |XsηQ〉 , (2.6)

where Xn,n̄,s are the collinear, anticollinear and soft modes of the unobserved final states.

Notice that the state ηQ cannot be decoupled from Xs. A similar decomposition applies to

the initial state, considering proton A to be collinear and proton B anticollinear:
∣

∣PSA, P̄ SB

〉

= |PSA〉 ⊗
∣

∣P̄SB

〉

. (2.7)

Using the decompositions in modes (2.6) and (2.7) the cross section is written as

dσ =
1

2s

d3q

(2π)32Eq
4M4H(M2, µ2) Γ∗

ρσΓµν

∫

d4ξ e−iqξ

×
∑

Xn

〈PSA|Bσ,c′

n⊥ (ξ) |Xn〉 〈Xn|Bν,c
n⊥(0) |PSA〉

×
∑

Xn̄

〈

P̄SB

∣

∣Bρ,b′

n̄⊥ (ξ) |Xn̄〉 〈Xn̄|Bµ,b
n̄⊥(0)

∣

∣P̄SB

〉

×
∑

Xs

〈0|
[

Y†c′a′

n Ya′b′

n̄ χ†ψ
]

(ξ) |XsηQ〉 〈ηQXs|
[

Y†ba
n̄ Yac

n ψ†χ
]

(0) |0〉 , (2.8)
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where H(M2, µ2) = |CH(−q2;µ2)|2. The Lorentz structure Γµν ≡ Γ
1S0
µν is kept for simplic-

ity. This result needs to be Taylor expanded in order to extract the leading contribution

with a homogenous power counting. The produced quarkonium is hard with momentum

q ∼ M(1, 1, λ), where λ is a small parameter parametrizing the relative strength of the

momentum components of different modes, λ ∼ qT /M . In the exponent e−iqξ in (2.1) one

then has ξ ∼ M(1, 1, 1/λ). In addition, the scalings of the derivatives of the collinear,

anticollinear and soft terms are the same as their respective momentum scalings. Given

this, the obtained leading term in the Taylor expansion of the cross section is

dσ =
1

2s

d3q

(2π)32Eq

4M4H(M2, µ2)

(N2
c − 1)2

Γ∗
ρσΓµν

∫

d4ξ e−iqξ

× 〈PSA|Bσ,c
n⊥(ξ

−, ξ⊥)B
ν,c
n⊥(0) |PSA〉

〈

P̄SB

∣

∣Bρ,b
n̄⊥(ξ

+, ξ⊥)B
µ,b
n̄⊥(0)

∣

∣P̄SB

〉

× 〈0|
[

Y†ca′

n Ya′b
n̄ χ†ψ

]

(ξ⊥) a
†
ηQ

aηQ

[

Y†ba
n̄ Yac

n ψ†χ
]

(0) |0〉+O(λ) , (2.9)

where we have also used the fact that (anti)collinear matrix elements are diagonal in color,

and the completeness relations
∑

Xn

|Xn〉 〈Xn| = 1 ,
∑

Xn̄

|Xn̄〉 〈Xn̄| = 1 ,

∑

Xs

|XsηQ〉 〈XsηQ| = a†ηQ

∑

Xs

|Xs〉 〈Xs| aηQ = a†ηQaηQ . (2.10)

Performing standard algebraic manipulations and dropping the suppressed terms, the

cross-section can be written as:

dσ

dyd2q⊥
=

4M4H(M2,µ2)

2sM2(N2
c −1)

Γ∗
ρσΓµν(2π)

∫

d2kn⊥d
2kn̄⊥d

2ks⊥ δ(2) (q⊥−kn⊥−kn̄⊥−ks⊥)

×J (0)σν
n (xA,kn⊥,SA;µ;δn)J

(0)ρµ
n̄ (xB,kn̄⊥,SB;µ;δn̄)S

(0)
ηQ

[

1S
[1]
0

]

(ks⊥;µ;δn, δn̄) , (2.11)

where xA,B =
√
τ e±y, τ = (M2+q2T )/s and y is the rapidity of the produced ηQ. The pure

collinear matrix elements J
(0)
n(n̄) and the bare TMD shape function S

(0)
Q (TMDShF from

now on) are defined as

J (0)µν
n =

xAP
+

2

∫

dξ−d2ξ⊥
(2π)3

e−i( 1

2
xAξ−P+−ξ⊥·kn⊥) 〈PSA|Bµ,a

n⊥(ξ−, ξ⊥)B
ν,a
n⊥(0) |PSA〉 ,

J
(0)µν
n̄ =

xBP̄
−

2

∫

dξ+d2ξ⊥
(2π)3

e−i( 1

2
xBξ+P̄−−ξ⊥·kn̄⊥)

〈

P̄SB

∣

∣Bµ,a
n̄⊥(ξ+, ξ⊥)B

ν,a
n̄⊥(0)

∣

∣P̄SB

〉

,

S(0)
ηQ

[

1S
[1]
0

]

=
1

N2
c − 1

∫

d2ξ⊥
(2π)2

eiξ⊥·ks⊥ 〈0|
[

Y†ab
n Ybc

n̄ χ†ψ
]

(ξ⊥) a
†
ηQ

aηQ

[

Y†cd
n̄ Yda

n ψ†χ
]

(0) |0〉 .

(2.12)

Notice that the spurious contribution of the soft momentum modes in the naively

calculated collinear matrix elements, denoted Jn(n̄) (the so-called “zero-bin” in the SCET

nomenclature), should be subtracted, in order to avoid their double counting.

Both the collinear matrix elements and the bare TMDShF in (2.11) have been written

with a dependence on δn(n̄), which stand for generic rapidity regulators. These divergences

– 4 –
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cancel in the full combination of the three matrix elements. However a different soft

function needs to be invoked in order to properly define the gluon TMDs:

S =
1

N2
c − 1

∫

d2ξ⊥
(2π)2

eiξ⊥·ks⊥ 〈0|
[

Y†ab
n Ybc

n̄

]

(ξ⊥)
[

Y†cd
n̄ Yda

n

]

(0) |0〉 . (2.13)

This soft function can be split in rapidity space to all orders in perturbation theory as [15]

S̃(ξT ;µ; δn, δn̄) = S̃− (ξT ;µ; δn) S̃+ (ξT ;µ; δn̄) . (2.14)

With these pieces, the gluon TMDPDFs are defined as [24]

G̃µν
g/A(xA, ξ⊥, SA; ζA, µ) = J̃ (0)µν

n (xA, ξ⊥, SA;µ; δn) S̃−(ξT ;µ; δn) ,

G̃µν
g/B(xB, ξ⊥, SB; ζB, µ) = J̃

(0)µν
n̄ (xB, ξ⊥, SB;µ; δn̄) S̃+(ξT ;µ; δn̄) , (2.15)

where ζA,B are auxiliary energy scales which arise when the rapidity divergences are can-

celled in each TMD, and the twiddle labels the functions in coordinate space. The chosen

rapidity regulator is arbitrary, however the auxiliary energy scales ζA and ζB in the TMDs

are bound together by ζAζB = q4 = M4. We emphasize that gluon TMDs so defined are

free from rapidity divergences, i.e., they have well-behaved evolution properties and can be

extracted from experimental data.

Given the definitions in (2.15), the factorized cross-section for proton-proton collisions

at low qT is finally written as

dσ

dy d2q⊥
=

4M4H(M2, µ2)

2sM2(N2
c − 1)

Γ∗
ρσΓµν(2π)

∫

d2kn⊥d
2kn̄⊥d

2ks⊥ δ(2) (q⊥ − kn⊥ − kn̄⊥ − ks⊥)

×Gσν
g/A(xA,kn⊥, SA; ζA, µ)G

ρµ
g/B(xB,kn̄⊥, SB; ζB, µ)SηQ

[

1S
[1]
0

]

(ks⊥;µ) , (2.16)

where we have defined, for convenience, the TMDShF free from rapidity divergences as

S̃ηQ

[

1S
[1]
0

]

(ξT ;µ) =
S̃
(0)
ηQ

[

1S
[1]
0

]

(ξT ;µ)

S̃(ξT ;µ)
. (2.17)

Given that there are no other vectors available, the TMDShF, as the soft function, depends

on the modulus ξT .

The factorization theorem in (2.16) is the main result of this letter. It contains 3

non-perturbative hadronic quantities at low transverse momentum: two gluon TMDPDFs,

and the newly defined TMDShF. Thus, the phenomenological extraction of gluon TMDs

from quarkonium production processes is still possible, i.e., a robust factorization theorem

can potentially be obtained like in this particular case of ηc,b hadro-production. However

one also needs to model and extract the involved TMDShFs for the relevant angular/color

configurations.

Notice that, while the factorized cross-section in (2.16) contains all the (un)polarized

gluon TMDs, the TMDShF S̃ηQ

[

1S
[1]
0

]

is spin independent. In particular, if unpolarized

– 5 –
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proton collisions are considered, which is relevant e.g. for the LHC, one can parametrize

the gluon TMD Gµν
g/A in momentum space as

Gµν
g/A(xA,k⊥, SA; ζA, µ) ≡

1

2

[

− gµν⊥ fg
1 (xA, k

2
T ; ζA, µ) +

kµνT
M2

p

h⊥g
1 (xA, k

2
T ; ζA, µ)

]

, (2.18)

where Mp is the mass of the proton and kµνT is a symmetric traceless tensor of rank 2 [59]:

kµρT = kµ⊥k
ρ
⊥ +

1

2
k2
⊥g

µρ
⊥ . (2.19)

The function fg
1 is the TMDPDF for unpolarized gluons in an unpolarized proton, while h⊥g

1

parametrizes linearly polarized gluons inside an unpolarized proton. The parametrization

in position space reads

G̃µν
g/A(xA, b⊥, SA; ζA, µ) ≡

1

2

[

−gµν⊥ f̃g
1 (xA, b

2
T ; ζA, µ)−

M2
p

2
bµνT h̃

⊥g(2)
1 (xA, b

2
T ; ζA, µ)

]

, (2.20)

where the Fourier transform of the functions and their moments follow the conventions

in [59].

Inserting the decomposition (2.18) in (2.16), one obtains the factorized cross section

for collisions of unpolarized protons:

dσ

dyd2q⊥
= σ0(µ)H(M2, µ2)

[

C[fg
1 f

g
1SQ]− C[wUUh

⊥g
1 h⊥g

1 SQQ̄]
]

, (2.21)

where SQ stands for SηQ

[

1S
[1]
0

]

and the Born-level cross-section is

σ0 =
(4παs)

2π

N2
c (N

2
c − 1)sM3

. (2.22)

The convolutions C are defined in general as:

C[w f f SQ] ≡
∫

d2p⊥a d
2p⊥b d

2k⊥ δ2(p⊥a + p⊥b + k⊥ − q⊥) (2.23)

× w(p⊥a, p⊥b) f(xA,p
2
Ta; ζA, µ) f(xB,p

2
Tb; ζB, µ)SQ(k

2
T ;µ) ,

and the transverse momentum weight wUU for the contribution of linearly polarized gluon

TMDs is

wUU =
pµν⊥a p⊥b µν

2M4
p

. (2.24)

Given this, the two Fourier transforms are

C[fg
1 f

g
1SQ] =

∫

d2bT
(2π)2

eibT ·qT f̃g
1 (xA, b

2
T ; ζA, µ) f̃

g
1 (xB, b

2
T ; ζB, µ)SQ(b

2
T ;µ)

=
1

2π

∫ +∞

0
dbT bTJ0(bT qT ) f̃

g
1 (xA, b

2
T ; ζA, µ) f̃

g
1 (xB, b

2
T ; ζB, µ)SQ(b

2
T ;µ) , (2.25)

and

C[wUUh
⊥g
1 h⊥g

1 SQ]=
M4

p

16

∫

d2bT
(2π)2

eibT ·qT b4T h̃
⊥g(2)
1 (xA,b

2
T ;ζA,µ)h̃

⊥g(2)
1 (xB,b

2
T ;ζB,µ)SQ(b

2
T ;µ)

=
M4

p

32π

∫ +∞

0
dbT b

5
T J0(bT qT )h̃

⊥g(2)
1 (xA,b

2
T ;ζA,µ)h̃

⊥g(2)
1 (xB,b

2
T ;ζB,µ)SQ(b

2
T ;µ). (2.26)

– 6 –
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3 Calculation of the hard part at NLO

The calculation of the hard part of the process not only provides a necessary ingredient to

perform the resummation of large logarithms to get more reliable results, but it is also a

test of the newly derived factorization theorem.

A necessary condition for the factorized cross-section to be correct, is that it has to

exactly reproduce all the infrared physics of the cross-section in full QCD, order by order in

perturbation theory. In other words, the hard factor should turn out to be a finite quantity,

just an expansion in αs.

It is worth emphasizing that the hard part will only come from the miss-match of

virtual diagrams in the full theory and the factorized expression, since by construction it

only depends on the hard scale M , and diagrams with real gluons will have a dependence

on the transverse momentum, which is a lower scale. Thus one just needs to compute the

virtual part of the cross-section in QCD and then subtract the virtual parts of the two

gluon TMDs and the TMDShF.

Let us start with the virtual part of the cross-section up to O(αs) which, after renor-

malization (i.e. after removing ultraviolet divergences), in coordinate space is [60]

dσ

σ0

∣

∣

∣

∣

∣

v

= δ(1− xA)δ(1− xB) +
αs

2π

[

CF
π2

v
− 2

(

CA

ε2IR
+

1

εIR

(

β0
2

+ CAln
µ2

M2

)

(3.1)

− CAln
2 µ2

M2
− CA

π2

6
+ 2B

[1]
1S0

)]

δ(1− xA)δ(1− xB) ,

with

B
[1]
1S0

= CF

(

− 5 +
π2

4

)

+ CA

(

1 +
5π2

12

)

. (3.2)

The virtual contribution of the renormalized TMDPDF in coordinate space can be

obtained e.g. from [24]:

f̃g
1

∣

∣

∣

v
= δ(1− x) +

αs

2π

[

− CA

ε2IR
− 1

εIR

(

β0
2

+ CAln
µ2

M2

)]

δ(1− x) . (3.3)

The one-loop virtual part of the renormalized TMDShF, defined in (2.17), is given by

the virtual diagrams of the bare TMDShF in figure 1 and the ones of the soft function. On

one hand, diagram 1a (and its crossed one) gives exactly the same as the corresponding

one for the soft function S, and thus it is cancelled in S̃Q. On the other, diagram 1b (and

its crossed one) is analogous to the one found in the long-distance matrix element (LDME)

〈0|χ†ψ a†ηQaηQ ψ†χ |0〉, and can thus be obtained e.g. from [60, 61]. Putting everything

together, the result is:

S̃Q

∣

∣

∣

v
= 1 +

αs

2π
CF

π2

v
. (3.4)

Notice that the heavy-quark self-energy vanishes on the energy shell (see e.g. [53]).

In addition, there are no interactions at this order between the heavy quarks (soft) and

the soft gluons from the soft Wilson lines [62]. In fact, the gluon connecting the two soft

– 7 –
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(a) (b)

Figure 1. Relevant Feynman diagrams for the virtual part of the TMDShF. Double solid lines

stand for soft Wilson lines, while single lines for heavy quarks. The gluon in diagram 1a is soft,

while the one in diagram 1b, denoted with a wavy line, is ultrasoft. Corresponding crossed diagrams

should be added.

Wilson lines in diagram 1a is soft, while the one connecting the heavy quarks in diagram 1b

is ultrasoft. This is the reason why the authors in [44, 46] get to the misleading conclusion

that the factorization ansatz they propose for this process is justified, i.e., that the cross-

section is given in terms of two (subtracted) gluon TMDs and the local LDME, which they

claim is completely factorized from the soft function at low transverse momentum. Indeed,

it turns out that, at one-loop, the virtual part of the TMDShF SQ is given by the virtual

part of the local LDME. However this fact does not hold for higher-orders. The TMDShF

at low transverse momentum is a genuine non-perturbative quantity.

Finally, subtracting to the virtual part of the cross-section in full QCD the virtual part

of two gluon TMDs and the virtual part of the TMDShF, we obtain the hard part up to

O(αs):

H = 1 +
αs

2π

[

− CAln
2 µ2

M2
− CA

π2

6
+ 2B

[1]
1S0

]

, (3.5)

As expected, this coefficient turns out to be free from infrared divergences, which means

that the derived factorization theorem properly reproduces the infrared part of the cross-

section in full QCD at one loop. This constitutes a non-trivial consistency check. In

addition, this coefficient is a necessary ingredient for the resummation of large logarithms

at higher orders, allowing for precise phenomenological studies in the near future.

4 Conclusions

By applying the effective field theory approach, a proper factorization theorem for ηc,b
hadro-production at low transverse momentum is derived, finding a new kind of non-

perturbative hadronic quantity: the TMD shape function (TMDShF). This matrix element

encodes the two soft mechanisms present in the process, the formation of the heavy-quark

bound state and the soft-gluon radiation, which were assumed to factorize in all previous

works in the literature.

In general, there are as many TMDShFs for a given process as relevant angular/color

Fock states within NRCQD power counting. Simply stated, they could be considered the

TMD extensions of the well-known LDMEs.
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Quarkonium production processes can thus be used to access gluon TMDs, but the

phenomenology is more involved as compared to quark TMDs in, e.g., Drell-Yan or semi-

inclusive deep-inelastic scattering processes, since it requires in addition the parametriza-

tion of several TMDShFs.

These findings can straightforwardly be applied to other quarkonia production pro-

cesses, for instance in lepton-hadron collisions (like ep → J/ψ) or electron-positron anni-

hilation (like e+e− → J/ψπ). This is left for a future effort.
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