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1 Introduction

The challenge of quantifying the entanglement content of extended systems is at the com-

mon intersection of several communities, ranging from high energy to quantum information

and condensed matter [1–3], with a recent emphasis on out-of-equilibrium features (see

ref. [4] and references therein). It has been understood that different phases of many-body

systems can be characterized in terms of their entanglement properties [5, 6], which also

cover an important role in the efficiency of tensor networks algorithms [8–13]. Further-

more, recent times have witnessed a direct engineering of entanglement measurements in

cold atom experiments [14–20].

Given a quantum system initialized in a pure state |ψ〉 and bipartited in two halves

A∪B, arguably the most widespread measurement of the entanglement between A and B

is given by the Von Neumann entropy

SB = −TrB ρ̂B log ρ̂B , (1.1)

where ρ̂B is the reduced density matrix of the subsystem B, obtained through a partial

trace of the degrees of freedom of the subsystem A, i.e. ρ̂B ≡ TrA|ψ〉〈ψ|. Together with

the Von Neumann entanglement entropies, one can consider the more general N th Rényi

entropy, defined as

SNB =
1

1−N
log TrB ρ̂

N
B . (1.2)

The knowledge of all the moments of the reduced density matrix gives information about its

whole spectrum [21–23]: the Rényi entropies are the central objects of this work. The Von
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Neumann entanglement entropy can be understood as the limit N → 1 of the Rényi en-

tropies. Such a point of view is often used as a useful computational tool, commonly known

as replica trick [5]: the Rényi entropies for integer indices N are computed, subsequently

the result is analytically continued to real indices and the limit N → 1 is taken. For generic

systems, the computation of Rényi entropies is a tremendous task on its own, not to speak

of their analytical continuation. A great insight has been achieved at criticality: the system

acquires scale invariance and the powerful methods of conformal field theory (CFT) [24, 25]

can be used to investigate the scaling part of the entanglement entropies. In the one di-

mensional world, CFT displays its full power and allows one to derive an array of simple

analytical results. For example, for an infinite system in the ground state with a bipartition

chosen to be an interval of length L and the rest, the following result holds true [5–7]

SNL = c
1 + 1/N

6
log

(
L

aN

)
. (1.3)

Above, c is the central charge of the CFT and corrections to the conformal prediction go to

zero as L→∞. The constant aN (but in principle N−dependent) is an ultraviolet cutoff

determined by the microscopic features of the model (i.e. not fixed by the CFT). If the

microscopic system lives on a lattice, then aN si proportional to the lattice spacing. Several

many-body quantum systems can show critical features, in particular the compactified free

boson (Luttinger Liquid) [26–32] is a ubiquitous low-energy description of models with a

U(1) conserved charge, such as the total number of particles in cold atoms systems or the

total magnetization in spin chains. The compactified boson is arguably one of the simplest

CFT, having the central charge equal to one c = 1 [29, 30].

While it remains true that the scaling part of the entanglement entropies is determined

by the CFT, on the other hand the global conformal invariance alone does not uniquely

fix the entanglement of arbitrary bipartitions, which in turn depends on the details of

the underlying CFT. For example, in a system with periodic boundary conditions (PBC)

and a bipartition made out of two disjoint intervals with the rest, the global conformal

symmetry is not enough to determine the entanglement entropy. A lot of efforts have been

directed towards this problem [5, 33–56], obtaining closed analytical expressions for the

compactified boson [57–59].

Another situation where one cannot rely just on the global conformal symmetry is

finite subsystems on an interval [0, L], with some boundary conditions. Apart from the

per se interest, the study of these boundary CFTs [60] has many applications going from

Kondo physics [61–63] to string theory. Indeed, the entanglement in Kondo problems has

been already intensively studied (see e.g. ref. [3] and references therein). In this paper,

we start analyzing this problem from the simplest possible case, which are open boundary

conditions (OBC).

Let us consider a bipartition A ∪B where we choose B = [x1, x2] with x1 < x2: if one

of the two extrema coincides with the boundaries of the system, i.e. x1 = 0 or x2 = L,

conformal invariance unambiguously predicts the entanglement entropy [5, 6] (albeit the

O(L0) contribution can acquire an extra term due to the non trivial boundaries [5, 64],

which is the boundary entropy of Affleck and Ludwig [65]). On the other hand, if 0 < x1 <
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x2 < L, global conformal symmetry is not sufficient anymore and a detailed analysis of the

operator content of the CFT is required. In this case, closed analytical results are known

only for free fermionic systems [66–69].

OBC are of primary importance to be explored, both for the experimental relevance

and for their importance in numerical studies. Indeed, the advent of DMRG techniques [70]

provided us a powerful numerical tool to study the one-dimensional world and these are

best suited to work with OBC. However, we stress that while the entanglement entropies

of bipartitions starting at the boundaries (i.e. choosing A ∪ B with A = [0, x̄]) are easily

computable with DMRG methods, studying the case of an interval in the middle of the

system in the scaling regime is much harder. In this perspective, alternative analytical and

semi-analytical tools are surely helpful.

Going beyond the global conformal invariance of the theory is extremely hard, but

dealing with the compactified boson we can take advantage of an important simplification:

the model is free. Efficient techniques exist to deal with free (i.e. gaussian) systems [71], and

even though extracting the scaling part of the entanglement in terms of simple analytical

expressions can be hard, the result is straightforwardly numerically computed diagonaliz-

ing matrices which scale proportionally with the system size. Such a task can be easily

performed on a laptop for quite large sizes, much faster compared with extracting the same

result with DMRG methods. However, the techniques of ref. [71] cannot be straightfor-

wardly applied to the compact boson because of the non-trivial compactification radius,

which does affect the entanglement entropy (see for instance refs. [57–59]). In this work, we

address the problem of computing the Rényi entropies for integer indices on the compact

free boson: our final goal are simple semi-analytic expressions which can be regarded as a

generalization of the free-model computations of ref. [71], but properly taking in account

the compactification radius.

Recent times witnessed an increasing interest towards inhomogeneous generalizations

of the compact boson, due to their capability of describing the low energy sector of inho-

mogeneous systems [72–78]. In this perspective, we consider the following more general

inhomogeneous Hamiltonian [74]

ĤLL =
1

2π

∫ L

0
dx v(x)

[
K(x)(∂xθ̂)

2 +
1

K(x)
(∂xφ̂)2

]
, (1.4)

where the phase and density fields (respectively θ̂ and φ̂) are canonically conjugated

[θ̂(x), ∂yφ̂(y)] = πiδ(x − y). The model is free, but the target space of the phase field

is compactified

θ̂(x) ≡ θ̂(x) + 2π . (1.5)

The density field is also compactified, but modulus π. Choosing in eq. (1.4) the sound veloc-

ity v(x) > 0 and the Luttinger parameter K(x) > 0 to be constant, the usual homogeneous

case is recovered. It must be stressed that while the presence of an inhomogeneous velocity

does not spoil conformal invariance [72, 73], an inhomogeneous K(x) does: therefore it is of

utmost importance to have other efficient methods to access entanglement entropies which

do not rely on CFT. The parameters v and K are model-dependent and must be properly
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fixed by an independent analysis of the microscopic system at hand: for example, v and K

can be extracted in integrable models by means of Bethe Ansatz techniques [29, 30, 74], or

numerically in generic systems.

As anticipated, for the sake of simplicity we focus on finite systems with OBC, but we

expect that the same techniques can be applied to different boundary conditions as well.

OBC on the microscopic system impose Dirichlet boundary conditions on the density field

of the Luttinger liquid [29]

φ̂(x = 0) = φleft , φ̂(x = L) = φright , (1.6)

while the phase fluctuation at the boundaries is left free. The conservation of the underlying

U(1) symmetry of the microscopic model imposes φleft − φright ∈ πZ [29].

We will see that, once the difference in the boundary conditions is fixed to a multiple of

π, the Rényi entropies are otherwise independent on the actual choice of the boundary fields.

We are primarily interested in a bipartition A∪B with B = [x1, x2] and 0 < x1 < x2 <

L, but we also present results for arbitrary bipartitions. Within the fully inhomogeneous

case, we provide general expressions in terms of Fredholm determinants. Then, we further

advance within the homogeneous case, reducing the problem to a solution of linear integral

equations and to the computation of Riemann Theta functions, analogously to the findings

of refs. [57–59]. These operations can be quickly carried out on a laptop.

For the sake of clarity, we anticipate and discuss our results in the forthcoming sec-

tion 2: we present the general expression valid also within the inhomogeneous case and

then consider its simplified version for the homogeneous system. The technical deriva-

tion is contained in section 3 and then our conclusions are gathered in section 4. A short

description of the numerical methods is given in appendix A.

2 Summary of the results

In this section we present and discuss our main result, leaving the most cumbersome

derivations to section 3. As already stated in the introduction, we are mostly interested in

the case of a bipartition A ∪B with B = [x1, x2] and 0 < x1 < x2 < L. Generalizations to

arbitrary bipartitions are possible as well and are presented in section 3.4. In the case of

a single interval in the middle of the system, the N th Rényi entanglement entropy is given

by the following expression

SN[x1,x2] =
1

1−N
log

N−1∏
`=1

√√√√ 1

π3I`/N
1

det
(

1+Φ−1Φ`/N
2

) ∑
{mj}N−1

j=1

exp

{
−4

N−1∑
a,b=1

Mabmamb

}
+logg . (2.1)

Above, we introduced the following notation:

1. Φ is a linear operator constructed from the two-point connected correlator of the

density field Φ(x, y) = 〈φ̂(x)φ̂(y)〉 − 〈φ̂(x)〉〈φ̂(y)〉. We then define ΦΩ starting from
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Φ and adding a twist with a phase 2πΩ at the boundaries of B

ΦΩ(x, y) = Φ(x, y)ei2πΩ(χB(y)−χB(x)) , (2.2)

with χB(x) the characteristic function of the subsystem B, being 1 if x ∈ B and zero

otherwise.

2. det
(

1+Φ−1Φ`/N
2

)
is understood as a Fredholm determinant, being the domain of the

operator the whole system [0, L]. From a practical point of view, the two-point cor-

relator is discretized on a proper lattice and the determinants are computed, then

the limit of infinitesimal lattice spacing is considered (see appendix A). While taking

this limit, the logarithm of the product of determinants is well defined up to a con-

stant, which logarithmically diverges in the limit of zero lattice size and it is due to

the twist in eq. (2.2). Such a divergence is ubiquitous in entanglement’s studies (see

e.g. [5, 6]). Indeed, the lattice discretization introduces a UV cutoff which affects the

entanglement according to eq. (1.3) (see appendix A).

3. The summation in eq. (2.1) is over all the possible integers ma ∈ Z and is an example

of a Riemann Theta function. Its appearance is due to the non-trivial compactifica-

tion radius and similar functions are known to be present in the Rényi entropy with

PBC [57–59] as well.

4. g is the ground state degeneracy, giving rise to the Affleck-Boundary boundary entan-

glement [64, 65]. Within our approach, g emerges as an ill-defined constant (i.e. inde-

pendent on x1 and x2) whose computation requires a proper regularization scheme yet

to be devised. For the homogeneous compact boson with open boundary conditions,

i.e. Dirichlet boundary conditions on the density field, the ground state degeneracy

has been computed in ref. [79] with other methods, as we further comment in the

next section.

5. The matrix M is defined as

Mab =

N−1∑
`=1

e−i2π`(a−b)/N

NI`/N
(2.3)

and lastly the real coefficients I`/N are obtained from the solution of a linear integral

equation

I`/N =

∫ x2

x1

dx s`/N (x) ,

∫ L

0
dy (Φ(x, y) + Φ`/N (x, y))s`/N (y) = χB(x) . (2.4)

The solution s`/N (x) displays a power-law singularity near the endpoint x1

s`/N (x) ∼
∣∣∣∣ 1

x− x1

∣∣∣∣µ(`/N)

, (2.5)

and similarly at x2. We were not able to analytically characterize such a divergence,

but the numerical tests provided in appendix A confirm the power-law singularity
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and set 0.5 ≤ µ(`/N) ≤ 1, with µ being 1 only at ` = N (indeed, in the homogeneous

case and ` = N , eq. (2.4) can be explicitly solved and the power-law divergence is

analytically confirmed). Note that away from the single point ` = N , the power-

law singularity (2.5) is integrable, thus I`/N is finite. Therefore, the Rényi entropy

is well defined except for the overall UV divergent offset caused by the Fredholm

determinants, which we have already discussed.

6. We stress that the connected correlator Φ(x, y) is independent from the precise choice

of the boundary fields in eq. (1.6), which therefore do not affect the Rényi entropies.

Eq. (2.1) requires as an input the two-point connected correlation function of the den-

sity field. For the general case where both the sound velocity and the Luttinger parameter

are space dependent, the correlator can be determined solving a two dimensional elec-

trostatic problem [74]. The two-point function is efficiently numerically computed, but

a general analytical solution is unknown. If K(x) = const., a putative space-dependent

velocity can be absorbed in a change of coordinates

x→ x′ =

∫ x

0
dy

1

v(y)
, (2.6)

along the lines of ref. [72]. In the new coordinates, the sound velocity is simply v = 1

and the homogeneous problem is easily solved [29]. As we already commented, eq. (2.1)

can be generalized to bipartitions in an arbitrary number of intervals: the structure of the

expression remains the same, but I`/N becomes a matrix of dimension (NI − 2)× (NI − 2)

with NI the number of intervals of the bipartition (note that for NI = 3 we retrieve the

previous result of a single interval in the middle: indeed the dimension of the matrix

becomes one). The matrix Mab is promoted to a tensor Mab →Mij
ab where lower indices

live in a (N − 1)−dimensional space and upper indices in a space of dimension (NI − 2).

Therefore, the Riemann Theta function requires a summation over (N − 1) × (NI − 2)

independent integers. We provide the explicit expression, together with its derivation, in

section 3.4. We now specialize our findings to the homogeneous case, providing a benchmark

with known results and further simplifying the expression.

2.1 The homogeneous case

We now revert to the homogeneous case, i.e. we consider K and v to be constant along the

system. The homogeneous case stands out as one of the most interesting applications of

our approach, where it can be compared with CFT results. As we have already commented,

CFT gives important insight into the analytic form of the entanglement entropies, albeit

it is not able to completely determine it. Exact, close results are known only at the free

fermion point [66–69]. Here, we greatly exploit the available information: first of all, the

free fermion result provides a non trivial check of the correctness of our computation.

Furthermore, by a direct comparison of the general form of the CFT expression with our

result eq. (2.1), we can greatly simplify the latter.

For the case of a single interval, global conformal invariance fixes the entanglement

entropy up to a function of the four-point ratio X, constructed from the boundaries and

– 6 –
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the extrema of the interval [6, 57, 58]

SN[x1,x2] =
N + 1

12N
log

[
2L

π

sin
(
π

2L |x1 − x2|
)

sin
(
π
Lx1

)
sin
(
π
Lx2

)
sin
(
π

2L(x1 + x2)
) ]

+
1

1−N
logFN (X)

+ log g + const. , X =
x1(L− x2)

L(x2 − x1)
. (2.7)

Above, the constant part is due to the microscopic UV cutoff. The result can be generalized

to arbitrary bipartitions. The function FN is universal, in the sense that is fully determined

by the underlying CFT and not by the microscopic features of the model, which contribute

as a constant UV-divergent offset.

The function FN for OBC is so far known only at the free fermion point K = 1, where

FN = 1 [66–69] (see also ref. [72]): we can use the free fermion result as a non trivial check

of our general expression eq. (2.1). Furthermore, such a comparison allows us to derive a

compact expression for FN for arbitrary values of the Luttinger parameter K. The ground

state degeneracy for the compactified boson with Dirichlet boundary conditions has been

computed in ref. [79] (see also ref. [80]), leading to the simple expression

g = K1/4 . (2.8)

Let us now revert to eq. (2.1), more specifically we consider the two-point correlator of

the density field. In the homogeneous case we have the following simple expression [29]

Φ(x, y) = K × [f(x− y)− f(x+ y)] , f(x) = −1

4
log
[
sin2

( π
2L
x
)]

. (2.9)

The Luttinger parameter can be simply factorized out in the two-point correlator (this

can actually be seen directly from the Hamiltonian (1.4), where a homogeneous Luttinger

parameter can be absorbed in a rescaling of the fields). Establishing analytically the

equivalence between eq. (2.1) and the CFT result is extremely hard (see e.g. [67–69] for

a closely related problem), but numerical tests can be easily performed. In figure 1 we

plot eq. (2.1) for different bipartitions and different Luttinger parameters, finding perfect

agreement with the known result at the free fermion point. We can now take advantage of

the free fermion limit to further simplify the general result (within the homogeneous case).

It is convenient to make K explicit in eq. (2.1) and define the rescaled correlator

Φ̄(x, y) = f(x− y)− f(x+ y) . (2.10)

Using Φ̄ rather than Φ in eq. (2.1), we note that K cancels out from the ratio of Fred-

holm determinants, having a non-trivial contribution only in the Riemann Theta function.

Comparing with eq. (2.7) and imposing that for K = 1 the free fermion result is recovered,

– 7 –
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Figure 1. We numerically evaluate eq. (2.1), according to the lattice discretization discussed in

appendix A, for different values of the Luttinger parameter K and compare it against the free

fermion result (2.7), which must be reproduced for K = 1. For the ground state degeneracy g, we

employ the expression eq. (2.8). Subfigures (a), (b), and (c): we consider the Rényi entropies of

indices N = {2, 3, 4} respectively, the system size is chosen to have unitary length L = 1 and in the

bipartition A ∪ B we choose B = [0.5, x], plotting the entropies as a function of x. Subfigures (d),

(e), and (f): same plots, but with B = [0.25, x]. In evaluating eq. (2.1) on a discrete lattice, we

confirmed the expected UV divergent constant offset (independent from K): in each plot we shift

the numerical curves with a constant offset which guarantees the agreement with the free fermion

analytical result at K = 1. Note, in contrast with the PBC results [57, 58], the break down of the

K → 1/(4K) duality due to the open boundary conditions.

we conclude

SN[x1,x2] =
N + 1

12N
log

[
2L

π

sin
(
π

2L |x1 − x2|
)

sin
(
π
Lx1

)
sin
(
π
Lx2

)
sin
(
π

2L(x1 + x2)
) ]

+ log g

× 1

1−N
log

K(N−1)/2

∑
{mj}N−1

j=1
exp

{
− 4K

∑N−1
a,b=1 M̄abmamb

}
∑
{mj}N−1

j=1
exp

{
− 4

∑N−1
a,b=1 M̄abmamb

}
+ const. (2.11)

where M̄ is defined as per M, but replacing Φ→ Φ̄ in all the expressions.

Once again, we stress that the constant term does not depend either on the position

of the interval, or on the value of K. Comparing the above with eq. (2.7), we can express

– 8 –
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Figure 2. We plot the universal function FN (X) (2.12) for the first non trivial Rényi index N = 2.

We consider its logarithm and subtract a term proportional to log
√
K in order to emphasize the

role played by the Riemann Theta functions. Subfigure (a): FN (X) is plotted as a function of X

for several choices of K. For K = 1, we obviously get logF2(X) = 0. Subfigure (b): FN (X) is

plotted at fixed values of X as a function of K.

the universal function FN as a ratio of Riemann Theta functions

FN (X) = K(N−1)/2

∑
{mj}N−1

j=1
exp

{
− 4K

∑N−1
a,b=1 M̄abmamb

}
∑
{mj}N−1

j=1
exp

{
− 4

∑N−1
a,b=1 M̄abmamb

} . (2.12)

We have numerically checked that FN is a function of the four-point ratio comparing

the r.h.s. of the above expression for several choices of the interval, but having the same

four-point ratio. In figure 2 we focus on the universal function FN for Rényi index N = 2.

While the lack of a fully analytical expression for M makes difficult to grasp the

behavior in X directly from eq. (2.12), the trend in K at fixed X is easily understood. In

FN>1, for large K the Riemann Theta function at the numerator exponentially approaches

1, leaving out the algebraic dependence given by the prefactor K(N−1)/2. For small K we

rather reach a plateau, indeed we can readily estimate∑
{mj}N−1

j=1

exp

{
− 4K

N−1∑
a,b=1

M̄abmamb

}
'
∫

dN−1x exp

{
− 4K

N−1∑
a,b=1

M̄ab xaxb

}

=
( π

4K

)(N−1)/2 1√
detM̄

. (2.13)

The K−divergence above is exactly compensated by the prefactor in eq. (2.12), leading to

a finite result in the decompactification limit.

It is worth mentioning an important difference with refs. [57, 58], where the universal

function FN for two intervals in a system with PBC is presented. Similarly to the OBC

case at hand, also the PBC result can be written in terms of Riemann Theta functions,

but the expression is symmetric for K → 1/(4K). Indeed, the compact boson with PBC

presents such a duality [29], which is then reflected into the entanglement entropy.
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The weak-strong coupling duality can be understood to be equivalent to swapping the

phase and density fields: periodic boundary conditions are of course invariant under such

an operation and the model is dual. On the contrary, in the OBC case this is no longer true,

since the density and phase fields have Dirichlet and free boundary conditions respectively,

thus the duality is spoiled. Indeed, eq. (2.12) is not symmetric for K → 1/(4K). The

breakdown of the duality is clearly displayed both in figure 1 and figure 2.

3 Derivation of the results

This section gathers all the technical steps which allowed us to compute eq. (2.1). Before

going deeper into the technical analysis, it is convenient to sketch the main steps. We

compute the Rényi entropies through a brute-force evaluation of Trρ̂NB in a path integral

formalism. In this perspective, we introduce the coherent states for the phase-density field

as the eigenvectors of the operator θ̂(x)

θ̂(x) |θ〉 = θ(x) |θ〉 . (3.1)

Above, θ(x) is just a number. The coherent states are complete and we explicitly perform

partial traces and products in this basis. Let |GS〉 be the ground state of the compact

boson, we define the wavefunction W [θ] as its projection on the coherent state |θ〉

W [θ] = 〈θ|GS〉 . (3.2)

A common representation of this wavefunction is that of a path integral in Euclidean

time [5, 6], leading to a representation of the Rényi entropies in terms of a partition

function on an N−sheeted Riemann surface. This was used, for example, in refs. [57–59]

to tackle the multi-interval case with PBC. However, we will not go through this route: in

section 3.1 we rather compute the wavefunction in terms of the correlator of the density

field, which should be determined by means of independent methods. Since the theory

free, the wavefunction turns out to have a gaussian form: simple enough to be handled in

the forthcoming steps. We now revert to the problem of computing the reduced density

matrices and then the products. The matrix elements of the ground state density matrix

in the coherent state basis are simply the product of the wavefunction

〈θ|ρ̂|θ′〉 = W [θ]W ∗[θ′] , (3.3)

where W ∗ is the complex conjugated. Considering the system bipartited into two subsys-

tems A ∪B, we split the field into two parts θ(x) = θA(x) + θB(x) with

θA(x) =

{
θ(x) x ∈ A
0 x /∈ A

(3.4)

and θB is defined in a similar manner. The reduced density matrix of the subsystem B is

obtained tracing away the degrees of freedom in A. However, the non-trivial compactifica-

tion radius plays an essential role: the fields must be identified modulus 2π. Formally we
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can write

〈θB|ρ̂B|(θB)′〉 =

∫
DθAD(θA)′W [θA + θB]W ∗[(θA)′ + (θB)′]

∏
x∈A

δ
(
ei(θ

A(x)−(θA)′(x))
)
.

(3.5)

Furthermore, while computing the products ρ̂B = ρ̂B × ρ̂B × . . .× ρ̂B and finally the trace,

the bra-ket fields on the subsystem B must be still identified modulus 2π. The (formal)

infinite product of Dirac−δs is actually less nasty than it could seem at first glimpse:

the wavefunction vanishes if the field θ is not continuous, therefore we are forced to keep

θA(x)−(θA)′(x) to be constant in any connected region of the subsystem A. More precisely,

imagine A = ∪mi=1Ai with Ai connected, then the constraint is

θA(x)− (θA)′(x) = 2πni x ∈ Ai . (3.6)

Of course, we must sum over all the possible integers ni ∈ Z. Having roughly sketched

the battleplan, we now present an helpful short summary of the notation we use, then we

proceed with the first step, namely the determination of the ground state wavefunction.

List of notations. First of all, we omit the variable in the derivatives when no ambigu-

ities arise ∂θ(x) ≡ ∂xθ(x): in the next section, where we need to use space and euclidean

time, we explicitly write the argument of the derivative. Besides this exception, we stick

to this notation. As we have already done, we consider a bipartition A∪B and use super-

scripts A and B for fields living in A and B respectively, being zero otherwise. Computing

the N th Rényi entropy, we need to introduce a replica space with N copies of the original

system. We use subscripts to distinguish among the copies: given an arbitrary quantity

v (it will be either a field, a real number or an integer), with vj we indicate the quantity

living in the jth copy. Computing the Rényi entropies, different copies will be connected in

a cyclic manner, therefore one can identify j +N ≡ j. Furthermore, we call ṽ` the Fourier

transform in the replica space, defined according to the following convention

vj =
N∑
`=1

ei2πj`/N√
N

ṽ` . (3.7)

For the sake of a more compact notation, we introduce a vector-matrix representation

for the integrals. For example, given two test functions γ(x) and β(x) and an operator

A(x, y), we write

γ†β ≡
∫ L

0
dx γ∗(x)β(x) , (Aβ)(x) ≡

∫ L

0
dyA(x, y)β(y) (3.8)

We also make repeated use of the characteristic function χS(x) for an arbitrary set S,

defined as it follows

χS(x) =

{
1 x ∈ S
0 x /∈ S

. (3.9)
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3.1 The ground state wavefunction

As we have already mentioned, the ground state wavefunction can be represented through

a path integral in euclidean time [5, 6]. Even though we ultimately do not explicitly use

such a representation, it is nevertheless an useful starting point in studying W [θ]. Let us

consider the euclidean time τ : now the fields live on the euclidean plane (x, τ). The ground

state wavefunction is then the partition function with suitable boundary conditions

W [θ] ∝
∫
Dθ′Dφ exp

{∫ L

0
dx

∫ 0

−∞
dτ

i

π
∂τθ
′∂xφ−

K(x)v(x)

2π
(∂xθ

′)2 − v(x)

2πK(x)
(∂xφ)2

}
.

(3.10)

Above, the boundary conditions are such that

θ′(x, τ = 0) = θ(x) , θ′(x, τ = −∞) = 0 (3.11)

φ(x = 0, τ) = φleft , φ(x = L, τ) = φright (3.12)

All the remaining boundary conditions are set free. The path integral representation is con-

venient to deal with the non-trivial boundaries and easily spot a few symmetries. Indeed,

in the path integral we can shift the field φ as per

φ(x, τ) = φ′(x, τ) + φleft + (φright − φleft)

∫ x
0 dy K(y)

v(y)∫ L
0 dy K(y)

v(y)

, (3.13)

This implies φ′(x = 0, τ) = φ′(x = L, τ) = 0. With this substitution, we get

W [θ] ∝ ei∆
∫ L
0 dxθ(x)

K(x)
v(x)

∫
Dθ′Dφ′

× exp

{∫ L

0
dx

∫ 0

−∞
dτ

i

π
∂τθ
′∂xφ

′ − K(x)v(x)

2π
(∂xθ

′)2 − v(x)

2πK(x)
(∂xφ

′)2

}
, (3.14)

where we set

∆ =
1

π

φright − φleft∫ L
0 dyK(y)

v(y)

. (3.15)

Above, the path integral describes the ground state wavefunction with trivial Dirichlet

boundary conditions in the field φ′, which is fixed to value 0 at x = 0 and x = L. Rather

than aiming for a brute force solution, we can reason as it follows: the path integral is

gaussian, therefore the result must be gaussian as well∫
Dθ′Dφ′ exp

{∫ L

0
dx

∫ 0

−∞
dτ

i

π
∂τθ
′∂xφ

′ − K(x)v(x)

2π
(∂xθ

′)2 − v(x)

2πK(x)
(∂xφ

′)2

}

∝ exp

{
−
∫

dxdyK(x, y)θ(x)θ(y) +

∫
dxC(x)θ(x)

}
(3.16)

For suitable kernels K(x, y) and C(x) yet to be determined. Parity symmetry holds true,

i.e. the result does not change if we replace θ′(x, τ) = −θ′(x, τ) and φ′(x, τ) = −φ′(x, τ),
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together with a reflection in the boundary conditions θ(x) → −θ(x). Therefore, we can

conclude C(x) = 0. Furthermore, the path integral must be real: indeed, taking the

complex conjugate is equivalent to setting φ′(x, τ) → −φ′(x, τ). This implies that the

kernel K(x, y), which is a symmetric function, must also be real. Based solely on these

symmetry-based arguments, we reach the conclusion

W [θ] ∝ exp

{
i∆

∫ L

0
dx θ(x)

K(x)

v(x)
−
∫

dxdyK(x, y)θ(x)θ(y)

}
. (3.17)

In principle, the kernel K(x, y) could be fixed solving the path integral, but we rather

prefer to express it in terms of a suitable two-point correlation function, which can be then

computed by other means. From a direct analysis of the gaussian path-integral, we can

connect the two-point correlator of θ with the (inverse of the) kernel K:

K−1(x, y) = 4
(
〈θ̂(x)θ̂(y)〉 − 〈θ̂(x)〉〈θ̂(y)〉

)
. (3.18)

However, it is more convenient to look at the conjugate field φ̂. From the commutation

rules, we see that ∂xφ̂ acts as a functional derivative on the wavefunction

〈θ| i
π
∂xφ̂ |GS〉 =

δ

δθ(x)
W [θ] . (3.19)

Which quickly leads to the following simple identity

K(x, y) =
1

π2
∂x∂yΦ(x, y) . (3.20)

Above, we defined the connected correlator Φ(x, y) = 〈φ̂(x)φ̂(y)〉 − 〈φ̂(x)〉〈φ̂(y)〉. We

stress once again that the connected correlator is independent from the actual boundary

conditions φleft and φright. Note that, obviously, Φ(x = 0, y) = Φ(x = L, y) = 0. For later

use, it is convenient to express the wavefuntion W [θ] in terms of the derivative of the field

∂xθ and of the field at the origin θ(0). In this case, we get

W [θ] ∝ exp

{
i

π
θ(0)(φright − φleft) + i

∫ L

0
dx ξ(x)∂xθ −

1

π2

∫
dxdyΦ(x, y)∂xθ(x)∂yθ(y)

}
.

(3.21)

where we defined

ξ(x) = ∆

∫ L

x
dy

K(y)

v(y)
. (3.22)

3.2 Warm up: Rényi entropy for an interval attached to the boundary

In order to build some insight in the required technical steps, it is useful to start with

a simple case, namely we choose a bipartition A ∪ B where B is an interval attached to

the boundary B = [x̄, L]. In this case and in the homogeneous setup, the Rényi entropies

are fixed by the underlying CFT and the Luttinger parameter K does not play any role,

except for the Affleck-Ludwig boundary term. Nevertheless, tackling at first this simpler

setup is an useful exercise for the forthcoming, more complicated, computations. As we
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Figure 3. Graphical representation of the computation of the trace of powers of the reduced density

matrix for a single interval attached to the boundary, according to the notation of eq. (3.26). For

simplicity, we consider Trρ̂2
B . We represent the real space as a line, the bipartition A∪B is A = [0, x̄]

and B = [x̄, L]: the part of the system A is represented with a continuous line, while B is associated

with a dashed one. The fields ∂θA and ∂θB have as domain A and B respectively. In position x = 0,

there is the additional degree of freedom θ(0). While computing ρ̂B the fields in the interval A must

be identified modulus a constant offset multiple of 2π, therefore the derivatives of the field are the

same (we represent this operation with an arrow). Later, while computing ρ̂2
B and finally taking

the trace, we perform a similar operation identifying the fields θB pairwise.

anticipated, rather than considering path integrals in the fields θ, it is more convenient to

change basis as

θ(x) = θ(0) +

∫ x

0
dy ∂θ(y) . (3.23)

and replace the path integral over the field θ with an integration over its derivative and the

field at the origin θ(0). As it is clear from eq. (3.21), the wavefunction can be factorized

into a term which depends only on θ(0) and another one which accounts for the derivatives

of the field. For the sake of simplicity, we introduce the following notation

W (θ) = e
i
π
θ(0)(φright−φleft)W

(
∂θA

∂θB

)
. (3.24)

While gluing the fields together modulus 2π, the derivatives coincide. The identification of

the fields can be understood with the help of figure 3: the difference of two fields connected

by two arrows is an integer multiple of 2π. This can be implemented identifying the field

derivatives and adding the proper constraints at the edges of the intervals, namely (see

also figure 3)

θj(0)− (θj)′(0) = 2πnj , θj(0)− θj+1(0) + χ†A[∂θAj − ∂θAj+1] = 2πpj , (3.25)

with nj , pj ∈ Z. Above, we used the vector notation eq. (3.8) and the characteristic function

defined in eq. (3.9).
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We can conveniently subtract the first constraint from the second and redefine new

integers mj = pj−nj , then write the N th power of the reduced density matrix as it follows

Trρ̂NB =
1

ZN
∑

{nj}Nj=1, {mj}
N−1
j=1

∫
dNθ(0)DN∂θADN∂θBe−i2

∑N
j=1 nj(φright−φleft)

×
N∏
j=1

W

(
∂θAj
∂θBj

)
W∗

(
∂θAj
∂θBj+1

)

×
N−1∏
j=1

δ
(
θj(0)− θj+1(0) + χ†A[∂θAj − ∂θAj+1]− 2πmj

)
. (3.26)

PBC on the replica space are imposed, in such a way that ∂θBN+1 = ∂θB1 . The partition

function Z must be fixed imposing Trρ̂B = 1, as we will do later on. The summation is

over all the possible integers {nj}Nj=1, {mj}N−1
j=1 . We stress that the index of the integers

{mj}N−1
j=1 runs from j = 1 to j = N − 1: indeed, the N th constraint can be obtained as a

linear combination of the others. First of all, note that the sum over the integers nj imposes

φright − φleft ∈ πZ , (3.27)

otherwise the result vanishes. As we anticipated, this quantization of the boundary condi-

tions is required by the presence of the U(1) conserved charge in the microscopic model [29].

Furthermore, the absence of any θj(0) dependence in the wavefunction W allows us to use

the integration over θj(0) to get rid of the δ constraints. Having N − 1 constraints and

N integration variables θj(0), we are still left with a variable to be integrated, which we

choose to be θ1(0). Furthermore, we have N − 1 summations over the integers mj and N

summations over n. We are left with the following formal expression

Trρ̂NB =
1

ZN

(∫
dθ1(0) 1

)(∑
m

1

)N−1(∑
n

1

)N

×
∫
DN∂θADN∂θB

N∏
j=1

W

(
∂θAj
∂θBj

)
W∗

(
∂θAj
∂θBj+1

)
, (3.28)

The integrals and summations above are on the constant function 1 and are formally di-

vergent quantities. We are not entitled to discard the divergent prefactor, which we will

analyze later on. The path integral is now a simple gaussian integration. Note that, be-

cause of the PBC on the replica space, the linear part in the exponential ofW gets averaged

to zero and we are left with the following expression∫
DN∂θADN∂θB exp

{
− 1

π2

N∑
j=1

(∂θAj +∂θBj )†Φ(∂θAj +∂θBj )+(∂θAj +∂θBj+1)†Φ(∂θAj +∂θBj+1)

}
.

(3.29)

Above, we use the vector-matrix notation (3.8) for the integrals. The quadratic term in

the exponential acquires a simple block-diagonal form if we consider the Fourier transform
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in the replica space. We use the convention of eq. (3.7) and obtain the following expression∫
DN∂θADN∂θB exp

{
− 1

π2

N∑
`=1

∂θ̃†`(Φ + Φ`/N )∂θ̃`

}
=

√
1

det
(
Φ/π3 + Φ`/N/π3

) (3.30)

Above, we defined ∂θ̃` = ∂θ̃A` + ∂θ̃B` and ΦΩ is defined as per eq. (2.2). Putting together

all the terms we get

Trρ̂NB =
1

ZN

(∫
dθ1(0) 1

)(∑
m

1

)N−1(∑
n

1

)N N∏
`=1

√
1

det
(
Φ/π3 + Φ`/N/π3

) (3.31)

where det
(
Φ/π3 + Φ`/N/π

3
)

must be understood as the determinant of the operator

Φ(x, y)/π3 + Φ`/N (x, y)/π3. Imposing Trρ̂B = 1 we are forced to require

Z =

(∫
dθ1(0) 1

)(∑
n

1

)√
1

det (2Φ/π3)
(3.32)

Employing this result in eq. (3.31), we arrive at the following expression for the Rényi

entropy

SN[x̄,L] =
1

1−N
log

N−1∏
`=1

√√√√ 1

det
(

1+Φ−1Φ`/N
2

)
+ log

[∫
dθ1(0) 1∑

m 1

]
. (3.33)

This concludes the derivation for the interval attached to the boundary. Above, we

can recognize two terms: the first one actually depends on the chosen interval and, in the

homogeneous case, it contains the CFT scaling. It is easy to check that, in the homogeneous

case, this term is completely independent of the choice of the Luttinger parameter K. Even

though an analytical extraction of the CFT result from the above expression is a hard task, a

simple numerical test with the discretization presented in appendix A ensures the matching

with the CFT scaling. The second term does not depend on the actual interval neither on

the index of the Rényi entropy and it is undetermined within our approach: we interpret it

as the ground state degeneracy resulting in the Affleck-Ludwig boundary entropy [64, 65]

g =

∫
dθ1(0) 1∑

m 1
. (3.34)

Indeed, the very same term appears also in computing other bipartitions, strengthening

once again the above identification: we will see in the next section in the case of an interval

in the middle of the system and then later for general bipartitions in section 3.4. A first

principle derivation of the ground state degeneracy g within the present method would

require a proper regularization of the integral (and sum) over the target space appearing

into eq. (3.34). Such a regularization lays beyond our current understanding.

3.3 An interval in the middle

We now turn to the main case of interest, namely B = [x1, x2] with 0 < x1 < x2 < L. We

still conveniently integrate over the derivative of the field and its value at the boundary,
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Figure 4. Graphical representation of the trace of powers of the reduced density matrix with a

bipartition A ∪ B where B is chosen as an interval in the middle of the system. The case Trρ̂2
B is

depicted, the same notation of figure 3 is used.

keeping the same notation as eq. (3.24). The trace of the reduced density matrix has a

similar expression to eq. (3.26), however with a further delta function (see figure 4). Indeed,

the following constraints must be enforced

θj(0)− θ′j(0) = 2πnj , (3.35)

θ′j(0)− θj+1(0) + χ†[0,x1][∂θ
A
j − ∂θAj+1] = 2πpj , (3.36)

θj(0)− θ′j(0) + χ†[x1,x2][∂θ
B
j − ∂θBj+1] = 2πqj . (3.37)

It is convenient to subtract from the second and third constraint the first one, in this way

we reach the following expression for the trace of the reduced density matrix

Trρ̂NB =
1

Z
∑

{nj}Nj=1, {mj}
N−1
j=1 ,{zj}

N−1
j=1

∫
dNθ(0)DN∂θADN∂θBe−i2

∑N
j=1 nj(φright−φleft)

×
N∏
j=1

W

(
∂θAj
∂θBj

)
W∗

(
∂θAj
∂θBj+1

)

×
N−1∏
j=1

δ
(
θj(0)− θj+1(0) + χ†[0,x1][∂θ

A
j − ∂θAj+1]− 2πmj

)

×
N−1∏
j=1

δ
(
χ†[x1,x2][∂θ

B
j − ∂θBj+1]− 2πzj

)
. (3.38)

As we did in the previous section, we use the integration over θj(0) to get rid of the first

set of constraints. As before, the summation over nj becomes trivial once eq. (3.27) is
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imposed. However, after these operations, a set of non trivial constraints is still left out

Trρ̂NB =

(∫
dθ1(0)1

)
(
∑

m 1)N−1 (
∑

n 1)N

ZN
(3.39)

×
∑
{zj}N−1

j=1

∫
DN∂θADN∂θB

N∏
j=1

W

(
∂θAj
∂θBj

)
W∗

(
∂θAj
∂θBj+1

)
N−1∏
j=1

δ
(
χ†[x1,x2][∂θ

B
j −∂θBj+1]−2πzj

)
.

Above, note the appearance of the same prefactor that, in the previous section, resulted

in the ground state degeneracy (3.34). The normalization Z is of course independent on

the chosen bipartition and we already computed it in eq. (3.32). Employing this result

together with eq. (3.34) we can write(∫
dθ1(0) 1

)
(
∑

m 1)N−1 (
∑

n 1)N

ZN
= g1−N [det

(
2Φ/π3

)]N/2
. (3.40)

In order to take care of the δ−functions, we use a proper integral representation

δ(x) =

∫
dλ

2π
eiλx (3.41)

for each constraint. Therefore

Trρ̂NB = g1−N [det
(
2Φ/π3

)]N/2 ∑
{zj}N−1

j=1

∫
dNλ

(2π)N
2πδ(λN )

∫
DN∂θADN∂θB

×
N∏
j=1

W

(
∂θAj
∂θBj

)
W∗

(
∂θAj
∂θBj+1

)

× exp

{
i
N∑
j=1

λj
(
χ[x1,x2][∂θ

B
j − ∂θBj+1]− 2πzj

)}
. (3.42)

Above, we conveniently added a dummy integration over an additional field λN that is then

fixed at value 0 by the Dirac−δ. This makes the integrand more symmetric and easier to

be handle. Furthermore, we insert another integral representation for δ(λN )

2πδ(λN ) =

∫
dω e−iωλN . (3.43)

Rather than using λj , we introduce new variables ζj in such a way

λj =

j∑
i=1

ζi . (3.44)

Which implies λj+1−λj = ζj . Obviously, we have λN =
∑N

i=1 ζi. The real numbers ζj and

integers zj are Fourier-transformed in the replica space according to the usual convention
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eq. (3.7) and we reach the following expression

Trρ̂NB = g1−N [det
(
2Φ/π3

)]N/2 ∑
{zj}N−1

j=1

∫
dω

∫
dNζ

(2π)N
e−i

∑N
j=1(ω+2π

∑N
i=j zi)ζj

×
∫
DN∂θADN∂θB exp

{
N∑
`=1

[
− 1

π2
∂θ̃†`(Φ + Φ`/N )∂θ̃`

+
i

2
[ζ̃`]
∗χ†[x1,x2]∂θ̃` +

i

2
ζ̃`∂θ̃

†
`χ[x1,x2]

]}
. (3.45)

We now change variable in the summation and define new integers mj =
∑N

i=j zi. This

is a one-to-one map provided we set mN = 0. We use these new integers to perform the

summation, since the constraint associated to the ζ variables gets simplified. We now com-

pute the gaussian path integral, leaving out the integration over λj and ω for a later time.

We get rid of the imaginary part performing an analytic continuation to complex fields

∂θAj → ∂θAj + iδ∂θAj , ∂θBj → ∂θBj + iδ∂θBj (3.46)

In terms of the fields in the Fourier space, this amounts to a transformation

∂θ̃` → ∂θ̃` + iδ∂θ̃` , ∂θ̃†` → ∂θ̃†` + iδ∂θ̃†` (3.47)

The shift must be chosen in such a way as to absorb the linear term, i.e. we require

δ∂θ̃` =
π2

2
ζ̃`(Φ + Φ`/N )−1χ[x1,x2] . (3.48)

After such a shift, we get∫
DN∂θADN∂θB exp

{
N∑
`=1

[
− 1

π2
∂θ̃†`(Φ+Φ`/N )∂θ̃`+

i

2
[ζ̃`]
∗χ†[x1,x2]∂θ̃`+

i

2
ζ̃`∂θ̃

†
`χ[x1,x2]

]}

= exp

{
− π

2

2

N∑
`=1

|ζ̃`|2χ†[x1,x2](Φ+Φ`/N )−1χ[x1,x2]

}

×
∫
DN∂θADN∂θB exp

{
N∑
`=1

[
− 1

π2
∂θ̃†`(Φ+Φ`/N )∂θ̃`

]}
. (3.49)

The last path integral is now performed as we did in the previous section. We then reach

the following expression

Trρ̂NB = g1−N
N−1∏
`=1

√√√√ 1

det
(

1+Φ−1Φ`/N
2

)
×

∑
{mj}N−1

j=1

∫
dω

∫
dNζ

(2π)N
exp

{
N∑
`=1

[
− π2

4
|ζ̃`|2I`/N −

i

2
(ωδ`,N + 2π[m̃`]

∗)ζ̃`

− i

2
(ωδ`,N + 2πm̃`)[ζ̃`]

∗

]}
. (3.50)
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Where we defined the real numbers I`/N as

I`/N = χ†[x1,x2](Φ + Φ`/N )−1χ[x1,x2] . (3.51)

We stress that this definition is equivalent to eq. (2.4). The last step requires computing the

gaussian integral in the variables ζ and than that on ω, which leads to the following result

Trρ̂NB = g1−N 1

(2π)N−1

N−1∏
`=1

√√√√ 1

det
(

1+Φ−1Φ`/N
2

) N−1∏
`=1

√
4

πI`/N

∑
{mj}N−1

j=1

exp

{
−
N−1∑
`=1

4

I`/N
|m̃`|2

}
.

(3.52)

Note that Trρ̂B = 1, as it should be. Since the sum must be performed on real integers

mj , it is more convenient to write the exponent in the real space rather than in the Fourier

one. Therefore, let us define the matrix Mab as per eq. (2.3) and write

Trρ̂NB = g1−N
N−1∏
`=1

√√√√ 1

π3I`/N
1

det
(

1+Φ−1Φ`/N
2

) ∑
{mj}N−1

j=1

exp

{
− 4

N−1∑
a,b=1

Mabmamb

}
. (3.53)

Taking the logarithm, we are immediately lead to eq. (2.1).

3.4 Generalization to arbitrary bipartitions

The same analysis of the previous section can be further generalized to arbitrary bipar-

titions: the main difficulty consists in choosing the right notation. We now imagine a

collection of points on the real axis {xi}NI−1
i=1 such that 0 < xi < xi+1 < L and consider

the bipartition

A = ∪b
NI−1

2
c

i=0 [x2i, x2i+1] , B = ∪d
NI−1

2
e

i=1 [x2i−1, x2i] . (3.54)

Above, we set x0 = 0 and xNI = L. We now focus on the N th Rényi. We keep the same

notation for the fields as in the previous section and retain the vector-matrix notation as

well. We define ∂θj = ∂θAj + ∂θBj . Then, it is not hard to understand that the non trivial

compactification radius induces the following set of non trivial constraints

χ†[xi,xi+1](∂θj − ∂θj+1) = 2πzij , 1 ≤ i ≤ NI − 2 , 1 ≤ j ≤ N − 1 , zij ∈ Z (3.55)

If we choose NI = 3 we are back to the case of a single interval in the middle studied in

the previous section. We then need to compute the following path integral

Trρ̂NB = g1−N [det
(
2Φ/π3

)]N/2
×
∑
{zij}

∫
DN∂θADN∂θB

N∏
j=1

W

(
∂θAj
∂θBj

)
W∗

(
∂θAj
∂θBj+1

)

×
N−1∏
j=1

NI−2∏
i=1

δ
(
χ†[xi,xi+1](∂θj − ∂θj+1)− 2πzij

)
. (3.56)
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Above, the summation is over all the possible integers zij . As before, we introduce an

integral representation of the δ function for each constraint

Trρ̂NB = g1−N [det
(
2Φ/π3

)]N/2∑
{zij}

∫
dN(NI−2)λ

(2π)N(NI−2)

NI−2∏
i=1

[
2πδ(λiN )

]
e−2πi

∑
i,j λ

i
jz
i
j

×
∫
DN∂θADN∂θB

N∏
j=1

W

(
∂θAj
∂θBj

)
W∗

(
∂θAj
∂θBj+1

)

× exp

i∑
i,j

λijχ
†
[xi,xi+1](∂θj − ∂θj+1)

 . (3.57)

Now, generalizing what we have previously done, we change variables for λij and on the

integers zij as

λij =

j∑
j′=1

ζij′ mi
j =

N∑
j′=j

zij′ . (3.58)

Rather than summing over zij we can sum over the integers mi
j . We furthermore introduce

additional variables ωi to write an integral representation of δ(λiN ). Once we consider the

Fourier transform in the replica space, we reach a generalization of eq. (3.45)

Trρ̂NB = g1−N [det
(
2Φ/π3

)]N/2 ∑
{mji}

∫
dNI−2ω

∫
dN(NI−2)ζ

(2π)N(NI−2)
e−i

∑NI−2
i=1

∑N
j=1(ωi+2πmij)ζ

i
j

×
∫
DN∂θADN∂θB exp

{
N∑
`=1

[
− 1

π2
∂θ̃†`(Φ + Φ`/N )∂θ̃` +

i

2

NI−2∑
i=1

[ζ̃i`]
∗χ†[xi,xi+1]∂θ̃`

+
i

2

NI−2∑
i=1

ζ̃i`∂θ̃
†
`χ[xi,xi+1]

]}
. (3.59)

Above, ΦΩ is still defined as eq. (2.2), with the difference that now B is made of several

disconnected intervals.

The gaussian path integral is carried out through an analytical continuation in the

complex plane, as we did in the single interval case and we then reach the analogue of

eq. (3.50), but with extra indices. After that, the gaussian integral on the ζ and ω variables

can be computed and the following final expression is reached

SN =
1

1−N
log

N−1∏
`=1

√√√√ 1

det(π3I`/N )det
(

1+Φ−1Φ`/N
2

) ∑
{mij}

exp

{
−4

N−1∑
a,b

NI−2∑
i,i′

Mii′
abm

i
am

i′
b

}
+logg . (3.60)

Above, we defined the tensor

Mjj′

ab =

N−1∑
`=1

e−i2π`(a−b)/N

N
[I−1
`/N ]jj

′
, Iii′`/N = χ†[xi,xi+1](Φ + Φ`/N )−1χ[xi′ ,xi′+1] . (3.61)
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It is worth mentioning that, within the homogeneous case, we could generalize the con-

tent of section 2.1: conformal symmetry fixes the Rényi entropies apart from an additional

contribution (1 − N)−1 logFN . FN is a function of all the four-point conformal invari-

ant ratios which can be constructed with the extrema of the intervals (and the boundary

points). The Rényi entropies at the free fermion point are known explicitly for arbitrary

bipartitions (see e.g. ref. [66]), thus by comparison with eq. (3.60) it is possible to fix FN
in terms of Riemann Theta functions, generalizing eq. (2.12).

4 Conclusions and outlook

This work has been dedicated to the computation of the Rényi entanglement entropies

of integer index for the 1d compactified massless boson. While this problem has already

been posed (and solved [57–59]) for periodic boundary conditions, here we rather address

open boundary conditions, which are of utmost importance for tensor networks simula-

tions and the low energy physics of confined systems [72]. We address this problem for

the ground state of an inhomogeneous generalization of the compactified boson, described

by locally-varying sound velocity and Luttinger parameter: in this case, we provide Fred-

holm determinant-like expressions which generalize previously known methods for free sys-

tems [71]. Within the homogeneous case, which is described by conformal symmetry, we

pushed further our analytical investigation reducing the problem to solving linear-integral

equations and computing Riemann Theta functions, which account for the role of the

non-trivial compactification radius. Several open questions and interesting applications

are left for future investigations. We presented a non-trivial benchmark of our result on

free fermions systems where the analytical expression was known, but the final goal is the

description of ground states of interacting models with K 6= 1: it would be extremely inter-

esting to compare our findings with DMRG simulations. We provided general expressions

for the Rényi entropies having as an input the density-density correlation function: its ap-

plication to spatially inhomogeneous or out-of-equilibrium setups is a natural question to be

investigated. For what it concerns possible open issues, there are at least three main points.

The first question concerns the determination of the Affleck-Ludwig boundary term

within our approach, which leaves it undetermined in absence of a proper not-yet-devised

regularization scheme. Within the homogeneous case, we can match this constant with the

existing literature, but the application of our findings to inhomogeneous systems ultimately

needs a direct computation of the ground state degeneracy.

Secondarily, even considering the homogeneous case, the computation of the Rényi

entropies requires solving some linear integral equations, task that we performed numeri-

cally: having a fully analytical expression would be extremely important, especially for a

systematic small and large distance expansion.

The third natural question concerns the possibility of analytically continuing our result

to real Rényi indices, finally reaching the Von Neumann entanglement entropy. Solving

this surely appealing problem seems quite hard, due to the intricate index-dependence of

our result: a similar question has already been asked in the closely related PBC problem

of disjoint intervals [57–59] but, as far as we know, it does not have a direct solution yet,
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albeit numerical approaches can be used [81, 82]. In refs. [33, 34] the PBC problem has

been attacked with conformal blocks techniques, resulting in an expansion of the Rényi

entropies in the distance among the intervals. Remarkably, each term of the series can be

analytically continued and an expansion for the Von Neumann entropy is achieved. How-

ever, establishing the connection with the exact result of refs. [57–59] is a difficult question.

It is natural to wonder if conformal blocks techniques can be used to study the OBC case as

well. Lastly, we would like to mention the intriguing possibility of extending the methods

here presented to other measures of entanglement, for example the entanglement negativ-

ity [83–89], using the replica approach in the path integral formalism [90, 91].
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A Rényi entropies and lattice discretization

In this short appendix we briefly discuss the numerical computation of eq. (2.1). We

consider the homogeneous case where the correlation functions of the density field are

analytically known: addressing inhomogeneous setups requires as a further ingredient the

numerical computation of the correlations. Without loss of generality, we consider the

system having unitary length, thus L = 1 and the continuous system lives on a finite

interval [0, 1]. This interval is then discretized into Nd points, being then the lattice

spacing a = 1/Nd. In the homogeneous case (2.9), correlation functions are Φ(x, y) = K ×
[f(x−y)−f(x+y)] with f(x) = −1

4 log
[
sin2

(
π
2x
)]

. The function f(x) admits the following

representation in the Fourier space (summation over integer values of the momentum k)

f(x) =
∑
k>0

cos(πkx)

πk
. (A.1)

Out of this repesentation, we construct a discrete approximation truncating the series

fdj =

2Nd−1∑
k>0

cos

(
πkj

Nd

)
1

πk
. (A.2)

Where the index j runs from 0 to 2Nd− 1 and are a discretization of the real space. Then,

we construct the discrete correlation function [Φd]jj′ as per

[Φd]jj′ = K × [fdj−j′ − fdj+j′ ] . (A.3)
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Figure 5. We numerically study the singularity of the operatorial determinant discretized as per

eq. (A.5) as a function of the lattice spacing a. We choose L = 1, K = 1 and a bipartition A∪B with

B = [0.25, 0.75] and check the equivalence of other choices. We progressively reduced the lattice

spacing a = 1/Nd used in the discretization, observing a power law divergence of the determinant

' a−ν , the exponent being a non trivial function of the phase Ω. In order to emphasize the power

law behavior, in figure (a) we consider the logarithm of the determinant as a function of − log(a) for

various choices of Ω. Each curve is shifted with a global offset in such a way they have a common

origin: the perfect linear growth guarantees the power law behavior. In figure (b) we numerically

extract the exponent ν and plot it as a function of Ω: we focus on the case 0 ≤ Ω ≤ 0.5, since the

problem is symmetric Ω→ 1− Ω.

We now want to consider an interval [x1, x2] = [i/Nd, i
′/Nd], we then construct the

discrete version of the ΦΩ operator as per

[Φd
Ω]jj′ =


Φd
jj′ j ∈ [i, i′] j′ ∈ [i, i′]

Φd
jj′ j /∈ [i, i′] j′ /∈ [i, i′]

e−i2πΩΦd
jj′ j /∈ [i, i′] j′ ∈ [i, i′]

ei2πΩΦd
jj′ j ∈ [i, i′] j′ /∈ [i, i′]

(A.4)

The ratio of Fredholm determinants is discretized as per

det

(
1 + Φ−1ΦΩ

2

)
→ det

(
1 + [Φd]−1Φd

Ω

2

)
. (A.5)

The matrix [Φd]−1 has the following explicit expression

[Φd]−1
jj′ =

1

KN2
d

(gdj−j′ − gdj+j′) , gdj =

2Nd−1∑
k>0

cos

(
πkj

Nd

)
πk . (A.6)

As expected, we see that the determinant has a well defined continuous limit up to a

constant (i.e. it does not depend on the actual position of the interval) which diverges with

the lattice spacing. As depicted in figure 5, the determinant of eq. (A.5) has a power law

singularity ∝ a−ν(Ω) where the exponent ν is a non trivial function of the phase twist Ω. In

the computation of the Rényi entropy one must consider the logarithm of such a determi-

nant, resulting then in an additive constant which diverges as per 1
2

1
1−N

∑N−1
`=1 ν(N/`) log a.
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Figure 6. We numerically study the singularity of the solution to eq. (2.4), discretized according

to eq. (A.9). As a proof of concept, we choose L = 1, K = 1 and a bipartition A ∪ B with

B = [0.25, 0.75]. Other choices of the bipartition lead to the same conlcusions. We progressively

increase the number of points in the discretization Nd and define i = 0.25Nd as the index at

which the phase twist of the left boundary is introduced, according to eq. (A.4). Subfigure (a):

for different values of the phase twist Ω, we plot the value of log |[sdΩ]i| against the lattice spacing

− log a = logNd. For the sake of clarity, rather than plotting log |[sdΩ]i|, we shift each curve in

such a way it starts from the origin and focus on the growth ∆ log |[sdΩ]i| with the decreasing of the

lattice spacing. The perfect linear growth testifies the power-law singularity of the solution to the

continuum integral equation (2.4) ∼ |x − x1|−µ (in the current example, x1 = 0.25). The slope of

the linear growth allows to numerically determine the exponent µ (subfigure (b)), which we verify

satisfies 0.5 ≤ µ ≤ 1. We considered 0 ≤ Ω ≤ 0.5, since the case 0.5 ≤ Ω ≤ 1 is trivially connected

to the previous one through complex conjugation.

Numerically, one can check

1

2

1

1−N

N−1∑
`=1

ν(N/`) = −1 + 1/N

6
, (A.7)

which is in agreement with the prefactor of the log a divergent term in the CFT result

eq. (1.3), as it should be.

We now discuss the computation of the I`/N coefficients. We define the discrete char-

acteristic function χd[i,i′] as it follows

[χd[i,i′]]j =

{
1 j ∈ [i, i′]

0 j /∈ [i, i′]
. (A.8)

Then define a vector [sdΩ]j as the solution of the linear equation below

a(Φd + Φd
Ω) · sdΩ = χd[i,i′] . (A.9)

The presence of the lattice spacing ensures that sdΩ reproduces the solution of the continuum

problem in the limit a→ 0, i.e. [sdΩ]j → sΩ(j/Nd). Finally, the cofficients IΩ are computed

as

IΩ = a
∑
j

[sdΩ]j [χ
d
[i,i′]]j . (A.10)
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The presence of the sudden phase twist in the definition of ΦΩ causes a power-law singu-

larity in the solution of sΩ(x) around x ∼ x1 and x ∼ x2. In figure 6 (subfigure (a)) we

numerically study the singular behavior, testifying a power-law singularity |x−x1|−µ. The

exponent of the singularity is numerically extracted in figure 6 (subfigure (b)), showing the

singularity is always integrable for Ω 6= 0 mod 1 and ensuring the finitness of IΩ, as wee

commented in the main text.
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