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1 Introduction

A precise understanding of the structure of the proton, encoded in the Parton Distribution

Functions (PDFs), is required to make predictions and analyses in collider physics. The

PDFs sets currently used in phenomenology studies are extracted from global QCD analysis

over experimental data [1–5]. The increasing number and precision of the experiments

included in these fits, together with the development of robust fitting methodologies, are

pushing the determination of PDFs to a new level of accuracy.

PDFs are formally defined as matrix elements of renormalized operators in QCD. The

computations of PDFs from first principle using lattice QCD has been considered a great

challenge for a long time. However, recent theoretical developments [6, 7] have shown

how lattice QCD simulations of certain spatial correlation functions between two boosted

nucleon states can give access to the so-called quasi-PDFs. These functions are then directly

related to PDFs by means of a factorization theorem, just like high-energy processes cross

sections are.
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Following these novel ideas, a number of publications have appeared (see refs. [8, 9]

for recent reviews), from both lattice and high-energy communities, addressing the main

theoretical problems of the new lattice approach: the definition and renormalization of

the non-local operators involved in the lattice simulation [10–20], the proof of the fac-

torization theorem between PDFs and quasi-PDFs [7, 21–25], the computation of the

matching coefficients relating lattice-computable quantities to PDFs in different renor-

malization schemes [21, 22, 24–33]. Also, data coming from first lattice QCD simulations

have started appearing and have gotten into already a relatively advanced stage over the

last few years [13, 30–46]. This gives an idea of what PDFs from the lattice might look like,

not only for nonsinglet quark PDFs of the nucleon, but also for the pion PDF and distri-

bution amplitude, as well as for the gluon PDF of the nucleon. Given the general interest

shown by the community, a quick improvement in the technologies involved in such lattice

simulations is to be expected in the next few years. A great quantity of increasingly precise

lattice data is then likely to be available in the near future, requiring detailed studies about

the possible impact they might have on the overall precision of PDFs determination.

Despite the increasing number of numerical results becoming available, an optimal

strategy for reconstructing the PDFs from these data has not been entirely addressed

yet. For example, in ref. [47] a series of possible approaches to tackle the problem of

incomplete and discretized Fourier transform has been presented, showing some interesting

and promising results. In this work, we exploit the factorization of quasi-PDFs in PDFs

and perturbatively computable coefficients to extract nonsinglet distributions from the data

of refs. [30, 45], setting a general strategy within the NNPDF framework, which allows to

systematically extract parton distributions from the available lattice data. The discussion

is focused on the quasi-PDFs case, but it can be extended to include data coming from

different lattice approaches, like for example pseudo-PDFs [48–50], fictitious heavy/light

quark [51, 52] or current-current correlators [22, 24, 53], paving the way to a first global

lattice QCD analysis [24].

The structure of the paper is the following. In section 2 we revise the theoretical

basis of the problem and we set up the notation. In section 3 we describe the lattice

data considered in this work, together with the corresponding systematic uncertainties.

We consider different possible scenarios for the latter, studying their impact on the final

result. We then work out a factorization formula relating such data to the two nonsiglet

distributions T3 and V3, defined in section 2. In section 4 we describe the fitting settings,

revising the main feature of the NNPDF framework and finally in section 5 we present our

results. We conclude in section 6.

2 From parton distributions to quasi-parton distributions

In this section, we revise the formal definition of PDFs and quasi-PDFs as matrix elements

of non-local operators in QCD. We recall the main theoretical framework concerning the

definition, renormalization and matching between spatial and light-cone quantities. For a

broad overview of several aspects of quasi-PDFs, we refer to the recent extensive review [8],

and references therein.
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The bare unpolarized quark PDF is defined as [54, 55]

f (0)
q (x) =

∫
dξ−

4π
e−ixP

+ξ−〈P|ψ̄(0)
q

(
ξ−
)
γ+ U

(
ξ−, 0

)
ψ(0)

q (0) |P〉 , (2.1)

where |P〉 denotes a hadronic state with momentum Pµ =
(
P 0, 0, 0, P z

)
, and P± =

(P 0±P z)√
2

are light-cone coordinates. The index q identifies the parton under investigation. For

instance, in a theory where we only consider the four lightest quarks, we have q = u, d, s, c.

The momentum carried by the parton is kµ = xPµ, ψ
(0)
q is the bare quark field operator

and the Wilson line U is given by

U
(
ξ−, 0

)
= P exp

(
−ig

∫ ξ−

0
dη−A(0) +

(
η−
))

. (2.2)

An analogous definition can be given for the gluon bare PDFs, denoted as f
(0)
g (x). The

superscripts (0) in the above expressions identify bare fields: the matrix elements that enter

in the definition of f
(0)
q are ultraviolet divergent, and therefore need to be renormalized.

Renormalized parton distributions are usually defined by minimal subtraction, and the

relation between the bare and the renormalized quantities is given by

f (0)
a (x) =

∑
b

∫ 1

x

dy

y
Zab

(
x

y
, µ

)
fb
(
y, µ2

)
, (2.3)

where the indices a and b run over all the parton types (gluon and flavors of quarks) and

µ denotes the renormalization scale introduced by the minimal subtraction scheme [54].

Focusing on the quark PDFs for now, the renormalized distributions introduced above

have a compact support given by the interval [−1, 1]. For phenomenological applications, it

is customary to define the PDFs on the interval [0, 1], and to introduce independent func-

tions for the quarks and the antiquarks, which we denote q(x, µ2) and q̄(x, µ2) respectively.

The relation between fq, q and q̄ is

fq

(
x, µ2

)
=

{
q(x, µ2) , if x > 0 ,

−q̄(−x, µ2) , if x < 0 .
(2.4)

It is useful to consider the symmetrised and antisymmetrised combinations of fq in the

interval x ∈ [0, 1]:

f sym
q (x, µ2) = fq(x, µ2) + fq(−x, µ2) , (2.5)

fasy
q (x, µ2) = fq(x, µ2)− fq(−x, µ2) . (2.6)

It can be readily shown that

f sym
q (x, µ2) = q(x, µ2)− q̄(x, µ2) = q−(x, µ2) , (2.7)

fasy
q (x, µ2) = q(x, µ2) + q̄(x, µ2) = q+(x, µ2) , (2.8)

where q+ and q− are defined by the equations above. The flavor decomposition can be

rewritten by collecting the quark fields in a vector, e.g. ψ = (ψu, ψd, ψs, ψc), and defining

the following nonsinglet bare PDFs:

f
(0)
A (x) =

∫
dξ−

4π
e−ixP

+ξ−〈P|ψ̄(0)
(
ξ−
)
λAγ

+ U
(
ξ−, 0

)
ψ(0) (0) |P〉 , (2.9)
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where A = 3, 8, 15, and we have used the Gell-Mann matrices

λ3 =


1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

 , λ8 =


1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0

 , λ15 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3

 . (2.10)

In this notation f3 corresponds to fu−d = fu − fd, f8 = fu+d−2s, and so on. The sym-

metrised and antisymmetrised combinations map directly into the so-called evolution basis

for the PDFs that is normally used in phenomenological studies, see e.g. ref. [56] for a

detailed definition of the flavor decomposition. More specifically, we have:

fasy
3 = u+ − d+ = T3 , (2.11)

f sym
3 = u− − d− = V3 , (2.12)

fasy
8 = u+ + d+ − 2s+ = T8 , (2.13)

f sym
8 = u− + d− − 2s− = V8 , (2.14)

fasy
15 = u+ + d+ + s+ − 3c+ = T15 , (2.15)

f sym
15 = u− + d− + s− − 3c− = V15 . (2.16)

We will return to these relations below when we discuss the factorization of the quasi-PDFs.

The renormalized PDFs fa

(
x, µ2

)
— or equivalently q(x, µ2) and q̄(x, µ2) — are currently

extracted from global fits of experimental data, see e.g. refs. [57, 58] for recent reviews.

Eq. (2.1) defines the PDFs in terms of matrix elements of QCD operators computed

between hadron states, which makes their universal and non-perturbative nature explicit.

Their direct computation through lattice QCD simulations looks therefore a very appealing

target. Unfortunately, the real time dependence of PDFs makes it impossible to compute

these matrix elements on the lattice, where the theory is defined on a Euclidean space with

imaginary time. To overcome this problem, a new approach was proposed in ref. [6]: the

matrix element appearing in eq. (2.1), defined along a light-cone direction, is replaced by a

correlator defined along a purely spatial direction. The resulting quantity is called a (bare)

quasi-PDF. Denoting by Γ a generic Dirac structure and by the suffix A the specific nonsin-

glet distribution we want to consider, we can introduce the Ioffe time distributions [48, 59],

defined as the matrix element between nucleon states with momentum P

M
(0)
Γ,A (ξ, P ) = 〈P |M(0)

Γ,A (ξ) |P 〉 , (2.17)

with

M(0)
Γ,A (ξ) = ψ̄(0) (ξ)λAΓU (ξ, 0)ψ(0) (0) . (2.18)

The vector bilocal operator obtained for Γ = γµ can be decomposed in terms of two form

factors depending on Lorentz invariants:

M
(0)
γµ,A (ξ, P ) = 2Pµ h

(0)
γµ,A

(
ξ · P, ξ2

)
+ ξµ h̃

(0)
γµ,A

(
ξ · P, ξ2

)
.

– 4 –
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The light-cone PDF in eq. (2.9) is obtained by taking the Fourier transform with respect to

ξ− of a Ioffe time distribution with Γ = γ+, ξ = (0, ξ−, 0⊥) and P = (P+, 0, 0⊥), given by

M
(0)
γ+,A

(ξ, P ) = 〈P|ψ̄(0)
(
ξ−
)
λAγ

+ U
(
ξ−, 0

)
ψ(0) (0) |P〉 = 2P+ h

(0)
γ+,A

(
ξ−P+, 0

)
. (2.19)

Choosing instead a pure spatial direction ξ = (0, 0, 0, z), and taking the Fourier transform

with respect to z, we obtain the definition of the quasi-PDF

f̃
(0)
A (x, Pz) =

∫ ∞
−∞

dz

4π
eixPzzM

(0)
Γ,A (z, P ) . (2.20)

Choosing for example Γ = γ0 we get

f̃
(0)
A (x, Pz) = 2P0

∫ ∞
−∞

dz

4π
eixPzz h

(0)
Γ,A

(
zPz, z

2
)
, (2.21)

which will be the case considered in this work. As in the case of standard PDFs (which

from now on we will call light-cone PDFs), the matrix elements defining the quasi-PDFs

contain UV divergences, and need to be renormalized. The perturbative renormalization

of a bilocal operator, as the one appearing in eq. (2.21), is one of the theoretical problems

of this novel approach. It was shown in ref. [16], that the UV behaviour of the quasi-PDFs

is very different from that of PDFs, and that the position space operator appearing in

eq. (2.21) can be multiplicatively renormalized, according to

hΓ,A

(
zPz, z

2, µ
)

= ZA(z) eδm|z|h
(0)
Γ,A

(
zPz, z

2
)
, (2.22)

where the exponential factor eδm|z| reabsorbs the power divergence from the Wilson line,

and the position-dependent factor ZA(z) takes care of the remaining UV logarithmic di-

vergences. Importantly, the quasi-PDFs retain a dynamical dependence on the hadron

momentum P , unlike PDFs, which are defined to be invariant under Lorentz boosts. Also,

their support is defined to be the full real axis.

The interest in quasi-PDFs comes from the potential to relate them to light-cone

PDFs; factorization allows us to rewrite the quasi-PDFs as a convolution of the light-

cone PDFs with a coefficient function that can be computed in perturbation theory, up

to corrections that are suppressed by inverse powers of Pz. As verified at 1-loop order in

ref. [21], and proved in refs. [24, 25] using the OPE, renormalized quasi-PDFs share the same

IR behaviour as the renormalized light-cone PDFs. It follows that they can be written as

f̃A
(
x, µ2

)
=

∫ 1

−1

dy

|y|
CA

(
x

y
,

µ

|y|Pz
,
µ

µ′

)
fA

(
y, µ′

2
)

+O

(
M2

P 2
z

,
Λ2

QCD

P 2
z

)
, (2.23)

where the terms O
(
M2

P 2
z
,

Λ2
QCD

P 2
z

)
include the power corrections suppressed by the hadron

momentum. The functions CA, usually called matching coefficients, depend on the choice

of the renormalization scheme, and on the kind of quasi-PDF under consideration. The

first matching expressions, for all Dirac structures, were derived in ref. [21], using a simple

transverse momentum cutoff scheme. In later works, matching coefficients were derived

– 5 –
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that relate the quasi-PDFs in different renormalization schemes to light-cone PDFs in the

MS scheme. The matching from MS quasi-PDFs was first considered in ref. [28], both for

non-singlet and singlet quark PDFs, as well as for gluons. Even though one can choose

operators for the latter that do not mix with singlet quark quasi-PDFs under renormal-

ization [19, 20], mixing under matching is inevitable. No mixing of the flavour nonsinglet

sector with flavour singlet or gluon sectors occurs, as stated in eq. (2.23). Ref. [28] did not,

however, address the known issue of self-energy corrections, exhibiting a logarithmic UV

divergence. This was resolved in ref. [25] by adding terms outside of the plus prescription

in the matching coefficient. As noticed in ref. [30], such prescription for renormalizing

this divergence violates vector current conservation, i.e. the integral of the matched PDF

is different from the integral of the input quasi-PDF, and not necessarily equal to 1 over

the whole integration range. As a remedy, a modified matching expression, which is given

explicitly in eq. (A.1) of appendix A, was proposed in ref. [30]. It consists in resorting to

pure plus functions when subtracting the logarithmic divergence in self-energy corrections.

However, this is an additional subtraction with respect to the minimal subtraction of the

MS scheme and thus, defines a modified MS scheme, the so-called MMS scheme. As such,

it requires the quasi-PDF to be expressed in this modified scheme. The expression for the

conversion of MS-renormalized matrix elements to the MMS scheme was worked out in

ref. [45] and we refer to it for the details of the procedure. Nevertheless, this modification

is numerically very small, as also shown in ref. [45]. An alternative modification of the MS

scheme that guarantees vector current conservation was derived in an updated version of

ref. [25]. This defines the so-called “ratio” scheme. In this scheme, only pure plus functions

are used, like in the MMS scheme, but the modification is done also for the “physical” re-

gion of 0 < ξ < 1 (in the notation of eq. (A.1)). Thus, the expected numerical effect of

this modification is larger, as shown explicitly in ref. [45]. For this reason, we choose to use

the MMS procedure, with details of the lattice computation of the bare matrix elements

and the renormalization in the MMS scheme outlined in the next section. Yet another

possibility of performing the matching consists in directly relating the quasi-PDFs in the

intermediate RI-type scheme to MS light-cone PDFs. This was proposed in ref. [29] for the

unpolarized case. Obviously, such procedure is equivalent to the one adopted here, with

possibly different systematic effects. All of the discussed papers considered the matching

to only first order in perturbation theory. It remains an important direction to derive the

two-loop formulae, which would allow to estimate the size of perturbative truncation effects

in the conversion from the intermediate lattice scheme to MS and in the matching itself.

3 Nonsinglet distributions from quasi-PDFs matrix elements

In this section, we describe the lattice data used in this work, presenting briefly the quasi-

PDFs matrix elements (MEs) computed in refs. [30, 45]. Using the results recalled in

section 2, we show that we can factorize such matrix elements into two nonsinglet distri-

butions and a perturbatively computable coefficient, just as if they were experimental data

for high-energy cross sections.

– 6 –
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3.1 Lattice data

The field of nucleon isovector (u−d) quasi-PDFs has matured in recent years. Exploratory

studies for all types of collinear PDFs — unpolarized, helicity and transversity — were per-

formed in 2014–2016 [34–37]. They used lattice ensembles with non-physical pion masses

and the results had unsubtracted divergences, due to the lack of a well-defined renormal-

ization procedure. The latter was proposed and applied for the first time in refs. [12, 13],

utilizing a variant of the regularization-independent momentum subtraction scheme (RI’-

MOM) [60]. Moreover, another major progress for unpolarized PDFs was the identification

of a lattice-induced mixing between the bilinear operator used in the first exploratory stud-

ies, which was defined using γz to determine the Dirac structure, and the scalar bilinear

operator (in spin space) [12]. Even though in principle it is possible to compute the matrix

elements of the latter and a mixing renormalization matrix to properly subtract the diver-

gences [13], this is bound to lead to much deteriorated precision, due to the rather poor

signal for the scalar operator. Instead, it is preferable to define the quark bilinear using the

γ0 Dirac matrix, since this procedure does not give rise to mixing. Moreover the quasi-PDF

computed with it converges faster in powers of 1/P 2
z to the light-cone PDF, as argued in

ref. [61]. Summarising in just one sentence, we could say that the major progresses with

respect to the early works for unpolarized quasi-PDFs came from: (1) change of the Dirac

structure in order to avoid the mixing, (2) non-perturbative renormalization procedure, (3)

simulations at the physical pion mass. Matrix elements corresponding to such setup were

computed in refs. [30, 41, 45] and they are briefly described below. For a recent review of

other available results for quasi-PDF matrix elements, see e.g. ref. [8].

The data used in this work to illustrate the impact of lattice calculations on phe-

nomenological fits were computed by the Extended Twisted Mass Collaboration (ETMC).1

They used one ensemble of gauge field configurations with two degenerate light quarks [62]

with masses chosen to reproduce the physical value of the pion mass (mπ ≈ 130 MeV, i.e.

slightly below the actual physical value). The lattice spacing is a = 0.0938(3)(2) fm [63]

and the lattice has 483×96 sites, corresponding to the spatial extent L of around 4.5 fm and

mπL = 2.98. ETMC calculated bare quasi-PDF matrix elements for the unpolarized, helic-

ity and transversity cases, but we concentrate only on the unpolarized one. The lattice data

are available for three nucleon boosts, Pz = 6π/L, 8π/L and 10π/L (0.83 GeV, 1.11 GeV

and 1.38 GeV in physical units) and for four values of the temporal separation between the

nucleon creation and annihilation operators, ts/a=8, 9, 10, 12 (0.75, 0.84, 0.94, 1.13 fm). As

shown in refs. [30, 45], there are signs of convergence in the nucleon momentum (the largest

two momenta give compatible results), indicating that the boost is already enough to sup-

press higher-twist effects below statistical precision. Moreover, as pointed out in ref. [45],

excited-states contamination at the largest source-sink separation is small, i.e. the single-

state fits at this ts are compatible with two-state fits including all four values of ts. Hence,

for the purpose of this study, we consider only the data at the largest nucleon boost and

at the largest source-sink separation. They are shown in figure 1.

1Until 2018 known as the European Twisted Mass Collaboration.
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0.25
0.50
0.75

Imaginary part

Figure 1. Real (left) and imaginary (right) part of the quasi-PDF ME for the data used in this

work, computed in refs. [30, 45]. The error band displayed accounts only for statistical uncertainty.

The separation z is expressed in units of the lattice spacing a.

The bare lattice data contain two types of divergences. First of all, there are standard

logarithmic divergences with respect to the regulator, i.e. terms that behave like log(aµ).

Additionally, for non-zero Wilson line lengths, further power-like divergences appear. They

resum into a multiplicative exponential factor, eδm|z|/a, where δm is operator-independent.

The desired renormalization scheme for the final results is the MS scheme of dimensional

regularization. However, obviously, the latter is impossible on a lattice, restricted to integer

dimensions. Thus, the usage of an intermediate lattice renormalization scheme is required.

In ref. [13], it was proposed to use an RI’-type prescription. The renormalization conditions

are enforced on the amputated vertex functions of operators with different Wilson line

lengths z, setting them to their tree-level values. A similar renormalization condition is

applied for the quark propagator. This results in a set of matrix elements renormalized

in the RI’ scheme. Thus, a perturbative conversion from the RI’ to the MS scheme is

needed. Such a conversion was derived in ref. [12] to one-loop order and was applied

to the RI’-renormalized matrix elements. As we discussed in the previous section, to

guarantee vector current conservation, we use a modified MS scheme, termed the MMS

scheme. Thus, another perturbative conversion of the MS-renormalized matrix elements is

required, according to the formula given in ref. [45]. After this conversion, renormalized

matrix elements in the MMS scheme are the starting point of the current analysis.

It is important to emphasize that despite having numerical evidence for the smallness

of the effects of the nucleon momentum and of excited states, matrix elements from lattice

studies come with a variety of other systematic effects. We discuss them in the next

subsection. For more details about the lattice computation of the matrix elements, we

refer the reader to ref. [45].

3.2 Systematics in matrix elements of quasi-PDFs

A proper investigation of systematic effects in matrix elements evaluated in lattice QCD

simulations is a difficult task, necessitating dedicated efforts. Such efforts consist in sim-

ulating with varied parameter values, such as the lattice spacing, the lattice volume, or

– 8 –
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the temporal separation between the source and the sink in nucleon three-point functions.

Moreover, unrelated to the lattice regularization, there are theoretical uncertainties in-

trinsic to the quasi-distribution approach whose impact should also be assessed.2 For an

extensive review of these different uncertainties, we refer to refs. [8, 9], while a discussion of

the systematic effects in the ETMC quasi-PDFs computation can be found in ref. [45]. The

latter contains the analysis of the effects investigated so far and a discussion of directions

that need to be pursued to fully quantify all the relevant systematics.

Here, we briefly summarize the conclusions reached up to the present stage. It is

important to emphasize that while the impact of some systematics is already known to a

reasonable degree, reliable estimates of certain types of effects are still largely unknown.

Nevertheless, rough assessments can be made even in the case of missing lattice data,

by looking at the behaviour of related observables such as the average quark momentum

fraction or nucleon charges that have a long history of evaluations on the lattice [66–70].

This allows us to build scenarios describing the potential impact of the systematics on the

matrix elements of quasi-PDFs. We consider three scenarios where the systematic effect is

a given percentage of the central value of the matrix element and three further ones where

it is a given additive shift. We always exclude from the analysis the imaginary part of the

matrix element at z = 0, equal to 0 by antisymmetry with respect to the sign change of z.

Cut-off effects. One of the most obvious systematic effects in lattice computations comes

from the finite value of the lattice spacing, a, i.e. the ultraviolet cut-off imposed for the

regularization of the theory. While a proper investigation of this uncertainty requires

explicit simulations at a few values of the lattice spacing, which are still missing for quasi-

PDFs, we may assume that discretization effects are not excessive. This expectation is

based on two indirect, but related premises. First, one of the manifestations of large cut-off

effects is the violation of the continuum relativistic dispersion relation, which is, however,

not observed in the lattice data in ref. [45]. Second, the first moment of the unpolarized

u − d PDF gives the quark momentum fraction 〈x〉u−d. This quantity was intensively

investigated on the lattice and we may take the typical size of discretization effects found

in such studies. Looking at a summary plot including data from different lattice groups,

such as figure 12 from ref. [67], we see that cut-off effects at lattice spacings comparable to

the one of the present work are typically at the 5–15% level in a fixed lattice setup (same

discretization, pion mass, volume etc.). Thus, we investigate 6 plausible choices for the

magnitude of cut-off effects: 10%, 20%, 30% of the matrix element and additive effects of

0.1, 0.2 and 0.3.

Finite volume effects (FVE). Another natural source of uncertainty in all lattice

simulations is the finite size of the box, L, which acts as an infrared regularization. Similarly

to discretization effects, a robust investigation of these effects necessitates running the

computations for a few values of the lattice size. However, the difference with respect to

the lattice spacing effects, typically linear in a or a2 in the asymptotic scaling regime, is

that FVE are usually suppressed as exp(−mπL), where mπ is the pion mass. This leads

2Note that theoretical uncertainties can be included in global fits of PDFs as detailed in refs. [64, 65].
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to typically O(1− 5%) effects in hadron structure observables if mπL ≥ 3. For the matrix

elements used in this work, mπL ≈ 3 — thus, the reasonable assumption about the size

of FVE is approx. 5%. In addition to these “standard” FVE of lattice computations, it

has been recently pointed out that the usage of a spatially extended operator, including a

Wilson line, may lead to additional FVE [71]. The intuition behind this is that further FVE

may appear when the Wilson line has non-negligible size with respect to the lattice length

in the boost direction. The analysis of ref. [71] pertains to a toy scalar theory and predicts

a FVE of the form exp(−M(L−z)) (possibly with a polynomial amplifying prefactor), with

M being the analogue of the mass of the investigated hadron in the quasi-PDF approach.

Given that the nucleon mass is at the physical point around 7 times larger than the pion

mass, that would lead to totally irrelevant effects, since the maximum considered z is more

than 3 times smaller than L. However, it can not be excluded that in QCD, the form of this

FVE can be more severe, e.g. exp(−mπ(L − z)). With the physical mπ and zmax ≈ L/3,

this could lead to the amplification of FVE from O(5%) to even above 10% at large z. We

remark that ETMC has investigated FVE in the renormalization functions for the matrix

elements and found no sign of excessive FVE coming at large z (total FVE not larger than

around 3%) [45]. We investigate 3 scenarios for fixed percentage effects: constant FVE of

2.5% and 5%, as well as z-dependent ones of the form exp(−3 + 0.062z/a)%, where 0.062

is the pion mass value for the present ensemble, expressed in lattice units. In addition, we

consider 3 shifts: 0.025, 0.05 and exp(−3 + 0.062z/a).

Excited states contamination. One of the key uncertainties in nucleon structure cal-

culations is whether the ground state hadron state is isolated. If the temporal separation

between the interpolating operators creating the nucleon and annihilating it is too small,

uncontrolled excited states contamination may appear, leading to a bias in the results.

In the context of quasi-PDFs, an important aspect is that this contamination strongly

depends on the boost, causing a delicate interplay between the need of large momentum,

required for robust matching to light-cone distributions, and excited states contamination,

larger for high boost. Thus, a careful analysis is needed to ensure ground state dominance.

Such an analysis was performed for the matrix elements used in this work [45]. The conclu-

sion that we use for the present case is that these matrix elements are safe against excited

states effects at the level of their statistical precision. In this way, we choose three values

of uncertainty from excited states: 5%, 10% and 15%. When the renormalized matrix

elements are close to zero, the relative uncertainty can be larger and thus, we consider also

three additive scenarios with magnitude 0.05, 0.1 and 0.15.

Truncation effects. The perturbative ingredients of the quasi-PDF approach are of

two kinds. One of them is related to the fact that the lattice approach works in integer

dimensions and thus, dimensional regularization of the MS scheme is impossible. Instead,

as discussed above, a non-perturbative renormalization programme has been proposed by

ETMC [13], utilizing a variant of the regularization-independent momentum subtraction

scheme (RI’-MOM). The renormalization correlators obtianed in this way can then be

translated perturbatively to the MS scheme and finally to the MMS scheme, using formulae

derived in refs. [12, 45]. These formulae are currently available to the one-loop level and thus
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subject to a truncation effect from unknown higher orders. A manifestation of this effect is

the fact that the Z-factors have a non-vanishing imaginary part even after conversion to MS,

where they should be purely real. To evaluate the impact of this uncertainty, we compare

the renormalized matrix elements with the ones obtained from applying only the real parts

of the Z-factors. We find that the matrix elements obtained by this alternative procedure

are compatible with the actual ones within statistical uncertainties, with relatively larger

effects observed for small z/a in the imaginary part (up to O(5%)) and intermediate z/a in

the real part (the real part is small there — thus, the observed absolute effects of around

0.2 can be a large percentage of the value). Apart from the scheme conversion truncation

effects, the necessary perturbative ingredient of the approach is the matching between

quasi-PDFs and light-cone distributions, also known to one loop [21, 25, 45]. Without

knowing the two-loop formulae, it is difficult to estimate their size. We emphasize that,

thus, the extension of the one-loop conversion, evolution and matching formulae to (at least)

two loops is mandatory to properly estimate truncation effects. With two-loop equations

at hand, one can e.g. apply standard methods of estimating truncation effects through scale

variations. For now, we observe that comparing the quasi-distribution and the resulting

light-cone PDF, the numerical magnitude of the matching factor can be significant and thus,

the higher order effects may be sizable. The “natural” size of such truncation effects is of

O(α2
s), which amounts to around 10% at the renormalization scale we consider. However,

they are rather uncertainties of the procedure, so they can not be translated to uncertainties

of the matrix elements. These uncertainties are the analogue of the theoretical uncertainties

that come from a truncated perturbative expansion in the description of observables in

phenomenological fits of the PDFs, and can be treated as mentioned in the footnote above.

Finally, we consider 6 scenarios for truncation effects pertinent to matrix elements (i.e.

originating from the perturbative uncertainty in Z-factors): 10%, 20%, 30% of the central

value of the matrix element, as well as shifts of 0.1, 0.2 and 0.3.

Higher twist effects. For the current analysis we decide to ignore the effect of higher

twists, i.e. the presence of power-like corrections to the factorization formula. At this pre-

liminary stage, we are not concerned by their effects, but a more precise phenomenological

analysis should definitely take those into account. In particular, it should be kept in mind

that, as argued in refs. [25, 72], power corrections can be enhanced for both x → 0 and

x→ 1, limiting the quasi-PDFs approach in the small-x and large-x regime. We will come

back to this point in the conclusions.

Other effects. Apart from the systematics mentioned above, there are some other effects

that potentially affect the results. One of them is the usage of a setup including two degen-

erate light quarks. However, this effect, working in the isospin limit instead of taking into

account the different masses and electric charges of the light quarks, is expected to be much

below the level of the current precision — of the order of the proton-neutron mass splitting,

i.e. at the per mille level. A similar magnitude can be expected for the contribution of the

neglected sea quark loops from heavier quarks. Such effects can at present be safely ignored

and will become important only when aiming at an O(1%) precision or better.
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Scenario Cut-off FVE Excited states Truncation

S1 10% 2.5% 5% 10%

S2 20% 5% 10% 20%

S3 30% e−3+0.062z/a% 15% 30%

S4 0.1 0.025 0.05 0.1

S5 0.2 0.05 0.1 0.2

S6 0.3 e−3+0.062z/a 0.15 0.3

Table 1. Scenarios of the impact of different systematic effects in the renormalized matrix elements

of quasi-PDFs. Percentage values for scenarios S1-S3 should be understood as a given fraction of

the central value of the matrix element, while absolute values for S4-S6 are shifts independent from

the matrix element.

Final scenarios. In the end, we define 6 scenarios of possible impact of systematic effects,

summarized in table 1. Scenarios S1-S3 include uncertainties that are a fixed percentage of

the central value of the matrix element, while for S4-S6, the uncertainties are additive shifts

independent from the value of the matrix element. Scenarios S1, S4 can be considered as

the most “optimistic” ones. More realistic estimates of uncertainties are included in S2

and S5. Finally, S3 and S6 are “pessimistic”, i.e. assume largest plausible estimates of the

various systematic effects.

3.3 From parton distributions to lattice observables

In this work, we aim at describing the data presented in the previous subsection; further

studies with more data and a more detailed treatment of systematic errors are deferred

to future publications. Hence, we specialize our discussion to the case of the unpolar-

ized isovector parton distribution. Following the notations introduced above, the parton

distribution f3 is defined as

f3

(
x, µ2

)
=

{
u
(
x, µ2

)
− d

(
x, µ2

)
, if x > 0

−ū
(
−x, µ2

)
+ d̄

(
−x, µ2

)
, if x < 0

(3.1)

where the support is given by x ∈ [−1, 1]. The factorization theorem in eq. (2.23) becomes

f̃3 (x, µ, Pz) =

∫ +1

−1

dy

|y|
C3

(
x

y
,

µ

|y|Pz

)
f3

(
y, µ2

)
, (3.2)

where the quasi-PDF is the one given by Γ = γ0 and the explicit expression of the matching

coefficients is given in appendix A. Starting from the definition of quasi-PDFs given in

eq. (2.21), it is clear that the lattice ME is given by the inverse Fourier transform of

eq. (3.2), which yields an equation relating the light-cone PDFs on the right hand side to

the lattice observable:

hγ0,3
(
zPz, z

2, µ
)

=

∫ ∞
−∞

dx e−i(xPz)z

∫ +1

−1

dy

|y|
C3

(
x

y
,

µ

|y|Pz

)
f3

(
y, µ2

)
. (3.3)
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Since C3 is purely real, we can split the above complex identity into two real equations,

relating the real and imaginary part of the ME hγ0,3 (z) to the light-cone distribution f3.

For the purpose of this work, we introduce two lattice observables, denoted by ORe
γ0 (z, µ)

and OIm
γ0 (z, µ), defined as

ORe
γ0 (z,µ)≡Re

[
hγ0,3

(
zPz,z

2,µ2
)]

=

∫ ∞
−∞

dx cos(xPzz)

∫ +1

−1

dy

|y|
C3

(
x

y
,
µ

|y|Pz

)
f3

(
y,µ2

)
, (3.4)

OIm
γ0 (z,µ)≡ Im

[
hγ0,3

(
zPz,z

2,µ2
)]

=−
∫ ∞
−∞

dx sin(xPzz)

∫ +1

−1

dy

|y|
C3

(
x

y
,
µ

|y|Pz

)
f3

(
y,µ2

)
, (3.5)

where we have only included z and µ in the arguments of ORe
γ0 and OIm

γ0 in order to simplify

the notation — since we are working here with only one value of Pz there is little advantage

in keeping all the arguments. The explicit expression of C3 contains plus distributions.

Making them explicit we can write the equations above as

ORe
γ0 (z, µ) =

∫ 1

0
dx CRe

3

(
x, z,

µ

Pz

)
V3 (x, µ) = CRe

3

(
z,
µ

Pz

)
~ V3

(
µ2
)
, (3.6)

OIm
γ0 (z, µ) =

∫ 1

0
dx CIm

3

(
x, z,

µ

Pz

)
T3 (x, µ) = CIm

3

(
z,
µ

Pz

)
~ T3

(
µ2
)

(3.7)

where V3 and T3 are the nonsinglet distributions defined by

V3 (x) = u (x)− ū (x)−
[
d (x)− d̄ (x)

]
, (3.8)

T3 (x) = u (x) + ū (x)−
[
d (x) + d̄ (x)

]
, (3.9)

where, for simplicity, the µ dependence has been omitted. The equations above relate

the position space matrix elements computable on the lattice with the collinear PDFs.

Similar expressions were worked out in ref. [73] in the context of the pion distribution

amplitude. The proof of eqs. (3.6), (3.7) does require some care, and it is fully worked

out in appendix A. The coefficients CRe,Im
3 are related to the real and imaginary part of

the Fourier transform of the matching coefficient C3 appearing in eq. (3.2). Since the

latter is defined in terms of plus distributions, the computation is quite involved, and

the explicit expression of CRe,Im
3 is obtained in appendix A, making the action of the

plus distributions explicit before taking the Fourier transform. A discussion about the

convergence of the integrals involved is also reported there. The above results show how

fixed z matrix elements defining the quasi-PDF in position space give direct access to two

independent nonsinglet distributions, through the integration of the parton distribution

over its full support with a perturbatively computable coefficient. We will denote this

operation as ~.
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It is useful at this point to recall the form of the QCD factorization formula for the DIS

nonsinglet structure function. Considering FNS
2

(
x,Q2

)
≡ F p2

(
x,Q2

)
− F d2

(
x,Q2

)
, where

F p2 and F d2 are the structure functions of the proton and of the deuteron respectively,

we have

FNS
2

(
x,Q2

)
=

∫ 1

x

dy

y
CDIS

3

(
x

y
,
Q2

µ2
, αs

)
T3

(
y, µ2

)
= CDIS

3

(
Q2

µ2
, αs

)
⊗ T3

(
µ2
)

(3.10)

Comparing eqs. (3.6), (3.7) with eq. (3.10), we see that the lattice observables introduced

above can be treated on the same footing as experimental data for DIS structure functions,

as they are related to the nonsinglet distributions through a convolution with a coefficient

that can be computed in perturbation theory. However, the form of such convolution,

denoted by ~, is quite different from the one appearing in the DIS case, denoted by ⊗: the

former involves a DIS-like convolution first, to go from the PDFs to quasi-PDFs, followed

by an integration over the full x-range to go to position space. This suggests that this kind

of convolution, if implemented in a PDFs fit, may constrain the output much more than

what the standard DIS convolution can do.

4 Neural network fits

In this section, we set up a neural net fit based on the results presented in section 3. The

implementation is done within the NNPDF framework. We begin by briefly recalling the

main features of such fits, focusing on the parametrization of the parton distributions,

the minimization and cross-validation algorithms and the Monte Carlo replicas approach,

referring to the specific NNPDF publications for more details. We then describe in detail the

implementation of eqs. (3.6), (3.7), and in particular the construction of FastKernel tables

for the lattice observables. Once the observables can be computed using a FastKernel table,

their inclusion in a PDF fit within the NNPDF environment becomes straightforward.

4.1 Fitting strategy and general settings

Given an ensemble of data whose values can be computed as a convolution of a perturba-

tive Wilson coefficient and the PDF using some factorization theorem, the PDFs can be

extracted from a minimum-χ2 fit to these data. It is worthwhile to stress once again that in

this respect there is no difference between the lattice data and experimental data. In order

to define the χ2 a parametrization of the functional form is required; the minimization is

then performed as a function of the parameters that define such functional form. In our

case, and more generally in the NNPDF approach, the functional form of the PDFs is given

by a single-layer neural network, and the parameters are the weights and the biases of the

neural network [74]. The parton distributions independentely parametrized are the gluon

and the singlet distribution, (g, Σ), which mix under evolution, and the nonsinglet distri-

butions given by (V, T3, V3, T8, V8, T15), whose definition is given for example in ref. [75].

As discussed in the previous sections, the lattice data we consider here give access only

to T3 and V3. Since the mixing with other flavors does not occur neither in the matching
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nor in the DGLAP evolution, our fits yield results for these two distributions only. The

parametrization of their x-dependence at the fitting scale µ0 = 1.65 GeV is

V3

(
x, µ2

0

)
∝ xαV (1− x)βV NNV (x) , (4.1)

T3

(
x, µ2

0

)
∝ xαT (1− x)βT NNT (x) , (4.2)

where NN denotes a neural net, and the parameters α and β are additional free parameters,

which will be fitted during the training. As extensively discussed in several NNPDF publica-

tions, see for example refs. [75, 76], the function multiplying the neural net improves the sta-

bility and the speed of the minimization procedure, without introducing a bias in the result.

Having chosen a parametrization for the PDFs, the optimal fit is determined by varying

its free parameters in order to minimize some figure of merit, representing the fit quality.

This is given by the χ2 function, defined as

χ2 (θ) =
1

Ndat

∑
i,j

(
O (zi)−Oth (zi, θ)

) [
Cov−1

]
ij

(
O (zj)−Oth (zj , θ)

)
, (4.3)

where O (zi) denotes the measured lattice observable and Oth (zi, θ) is the corresponding

theoretical prediction, in terms of the matching coefficient and the parametrized parton

distribution, given in eqs. (3.6), (3.7). We denote by θ the set of free parameters entering

the neural net and the preprocessing term. The covariance matrix entering the χ2 definition

is defined to take into account the distribution of the experimental data entering the fit and

their correlations. It is used for both the χ2 definition and the generation of Monte Carlo

replicas, as described below. In the specific case of lattice data, it has to be constructed us-

ing the information about the statistical and systematic uncertainties that arise in a lattice

QCD simulation, following the standard NNPDF proceedure for the treatment of correlated

uncertainties, see for example refs. [75, 76]. The explicit expression used here reads

Cov ij = σ2
i,s δij +

∑
k

σi,kσj,k

where i and j run over the lattice points and σi,s, σi,k are respectively the total statistical

and the set of systematical uncertainties of the i-th lattice point. The different sources of

systematics are described in section 3.2, and the scenarios we consider here are summarized

in table 1. The total uncertainty for a single lattice point can be obtained combining in

quadrature all the different uncertainties.

The minimization of the χ2 is performed through the CMA algorithm [77, 78], employ-

ing a cross-validation technique to avoid overfitting. In this method, the available data are

split in two sets. The first, the training set, is used for the minimization of the error func-

tion, while the second, the validation set, does not enter the fitting proceedure. At each

iteration of the minimization algorithm, the error function between the theory predictions

from the neural net and the data is computed for both the training and validation set. At

an early stage of the training, both these quantities are expected to decrease. However,

towards the end of the training, while the error function over the training set will keep

decreasing, the same value computed over the validation data will reach a minimal value,
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and eventually it may even start increasing. This is a signal of overfitting, and the point

in parameter space yielding the minimal value of the validation error is the one taken as

the fit result. It is important to notice that such procedure is even more important when

a small amount of data is available, like in the present case, since the less data there are

the easier it is to fit their statistical noise.

In the NNPDF framework a Monte Carlo approach is implemented in order to get a

reliable estimate of the PDF error. In this method an ensemble of Nrep artificial data is

generated for each experimental point, assuming a multigaussian distribution given by the

experimental covariance matrix. Nrep independent fits are performed, generating a Monte

Carlo ensemble of PDFs that faithfully reproduces the statistical features of the original

experimental (or lattice) data. The Monte Carlo method therefore propagates the error

from the data to the PDFs set in a natural way, without the need of any assumption on

the way error propagation happens.

4.2 FastKernel implementation

One of the primary issues in PDFs fits is the computational time required to obtain the

theoretical prediction for the experimental data entering the definition of the χ2 in eq. (4.3):

the parton distributions have to be evolved from the fitting scale up to the observable

scale, and then they have to be convoluted with the correct coefficient function. As seen in

section 3.3, in the case of lattice observables the integration of the parton distributions over

their full support is needed. This makes the form of the convolution ~ more complicated

than the one we usually have for other observables. Therefore, despite the fact that in

this work we will be using a small number of lattice data, we find it useful to implement

eqs. (3.6), (3.7) by means of FastKernel tables, introduced and validated in refs. [76, 79]

in the context of global QCD fits, and currently used within the NNPDF code to obtain all

the required theoretical predictions in a global fit. From a practical point of view, this also

allows us to treat the lattice data on exactly the same footing as the experimental ones,

allowing a smooth and natural way to introduce them in a parton distributions fit. In the

following we briefly revise this approach, referring to the original publication quoted above

for more details.

The lattice observables ORe,Im
γ0

(
z, µ2

)
are determined at a given renormalization scale

µ2. They can be written in terms of the nonsinglet distributions at a given reference scale

µ2
0, by first evolving the parton distribution up to the scale µ2, and then convoluting it

with the coefficents CRe,Im
3 defined in eqs. (3.6), (3.7) and worked out in appendix A. For

the nonsinglet distributions considered in this work, the evolution is given by

T3

(
x, µ2

)
=

∫ 1

x

dy

y
K

(+)
3

(
x

y
, αs, α

0
s

)
T3

(
y, µ2

0

)
, (4.4)

V3

(
x, µ2

)
=

∫ 1

x

dy

y
K

(−)
3

(
x

y
, αs, α

0
s

)
V3

(
y, µ2

0

)
, (4.5)

where the kernels K(±) are obtained by solving the DGLAP evolution equations in the

nonsinglet sector. For V3 and T3 we have two different nonsinglet evolution kernels, denoted

by K
(−)
3 and K

(+)
3 respectively. They are currently available from a number of public
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codes, however one way they can be worked out and implemented is summarised in the

appendix B. Eqs. (4.4) and (4.5) can be rewritten expressing the parton distribution in

terms of an interpolation basis [76], for instance for the case of T3

T3

(
x, µ2

0

)
=
∑
β

T3

(
xβ , µ

2
0

)
I(β) (x) +O [(xβ+1 − xβ)p] , (4.6)

where p is the lowest order neglected in the interpolation. In other words, the interpolating

functions act by picking up the value of the PDF at some point xβ of a predefined x-grid.

Substituting in the evolution equation eq. (4.4) we get

T3

(
xα, µ

2
)

=
∑
β

K(+)
αβ T3

(
xβ , µ

2
0

)
, (4.7)

with

K(+)
αβ =

∫ 1

xα

dy

y
K(+)

(
xα
y
, αs, α

0
s

)
I(β) (y) . (4.8)

The interpolation basis used at the initial scale can also be used to interpolate the parton

distributions at the scale µ2 appearing in eqs. (3.6), (3.7). For the imaginary part of the

lattice observable we get

OIm
γ0 (z, µ) =

∑
α

CIm
zα T3

(
xα, µ

2
)
, (4.9)

with

CIm
zα =

∫ 1

0
dx CIm

3

(
x, z,

µ

Pz

)
I(α) (x) . (4.10)

Putting together eqs. (4.7) and (4.9) we get

OIm
γ0 (z, µ) =

∑
β

HIm
zβ T3

(
xβ , µ

2
0

)
, (4.11)

where

HIm
zβ =

∑
α

CIm
zα K

(+)
αβ . (4.12)

Eq. (4.12) defines the FastKernel table which enters the computation of the χ2 during the

fit. It connects the parton distribution at the fitting scale to the lattice observable, taking

into account the QCD evolution, the matching and the Fourier trasnform, expressing them

through a single matrix vector multiplication. Clearly a similar set of equations defines a

FastKernel table that yields the real part of the lattice observable, ORe
γ0 , as a function of

the valence parton distribution V3.
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5 Results

Let us now proceed to presenting and discussing our numerical results. First, we study the

way the available lattice data might constrain the parton distributions in a fit, by mean of

closure tests: fake data for the real and imaginary part of the ME are generated according

to eqs. (3.6), (3.7) using as input a chosen PDFs set. The fitting code is then run over

these pseudo-data, using exactly the same setting used in a common fit. By comparing the

output of such fits with the known input PDFs sets, we can assess the accuracy we may

expect to get from the current knowledge of the lattice data and their systematics.

Then we present results for fits run over the data presented in section 3.1, studying the

6 different scenarios for the treatment of the systematic errors described in section 3.2 and

summarized in table 1. The results presented here have been produced using the NNPDF

fitting code [1] and the ReportEngine software [80].

5.1 Closure tests

As shown in section 3.3, we can relate PDFs to lattice observables through the matching

convolution of eq. (3.2) followed by a Fourier transform. As already pointed out at the end

of section 3.3, the resulting convolution ~ is quite different from the one entering standard

QCD fits. In this section, we assess how much this operation together with the available

lattice data from refs. [30, 45] are able to constrain parton distributions in a fit, running

some preliminary closure tests. For a detailed description of the closure test procedure, we

refer to section 4 of ref. [81]. We generate pseudo-data corresponding to the data of ref. [30]

using NNPDF31 nlo as 0118 as our input PDFs set, and we run the fitting code over them.

The outcome of the closure test fit is then used to assess how well the input PDFs can be

reconstructed starting from the 16 position space ME points and their uncertainties.

In order to get an idea of the impact on the fit of the statistical and systematic

ME errors, we consider three different scenarios: first we generate fake data assuming no

systematic uncertainties and a small uncorrelated statistical uncertainty for each point,

constant for all of them and of the order of the smallest real one. From the results of this

closure test we can estimate the real constraining power of the convolution ~, assuming

an ideal scenario where all the systematics are under control and the statistical error is

kept small. Second, we repeat the exercise but using the real statistical uncertainties, to

assess how much the real statistics of the current simulations affect the conclusions of the

previous case. Finally we look at the effect of the systematics, considering as a specific

example the scenario S2 of table 1. The three cases are summarized in table 2 and the

results are shown in figures 2, 3, 4.

Looking at the results for CT1, figure 2, it is worth stressing that the lattice data

entering the fit are just 16 for the real part and 15 for the imaginary part of the matrix

element. Just half of them are actually used in the training procedure, while the other ones

are used to build the validation set. In a standard NLO QCD global fit, like the one used

as input PDF here, the number of points entering the analysis is O (4000). Figure 2 shows

how good the convolution ~ is in constraining the PDFs, assuming an ideal scenario where

all the systematics are under control, and the statistics are kept small. Looking at the

– 18 –



J
H
E
P
1
0
(
2
0
1
9
)
1
3
7

Closure test Statistics Systematics

CT1 fake –

CT2 real –

CT3 real S2

Table 2. Closure tests with different choices of the statistical and systematic error. The results

for each option above is summarised in the plots below.

Figure 2. Closure test fit with fixed small statistical error and no systematics (CT1) compared to

the input PDFs set. V3 (top line) and T3 (lower line) combinations in linear and logarithmic scale

are shown. The input PDFs set is fully reconstructed within 1-sigma level, getting PDFs with an

error band comparable to the input one.

results for CT2 and CT3 in figures 3 and 4, it is clear how big the impact of the statistical

and systematic uncertainties of the ME is on the PDFs error: in both cases the input PDFs

set is reconstructed within 1-sigma level, with some tension for V3 at medium x in the first

case. The PDFs error is increasingly big, becoming huge when the full systematics are

considered. Figure 4 shows what we may expect in a real life scenario.

To sum up, the results from CT1 show how promising this kind of lattice data might

be in constraining PDFs. On the other hand, the results from CT2 and CT3 highlight the

importance of having a good control over both the statistical and systematical uncertainties

in the lattice simulations of the ME. It is worth noticing, however, that the overall error

band of the reconstructed PDFs, even in presence of the full systematic errors, would surely

be reduced when new data are available.
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Figure 3. Closure test fit with real statistical error and no systematics (CT2) compared to the input

PDFs set. Top line: V3 combination in linear and logarithmic scale. V3 (top line) and T3 (lower

line) combinations in linear and logarithmic scale are shown. The error band of the reconstructed

set is way bigger than the one of the input PDFs, showing a non negligible impact of the current

statistics over the final PDFs error.

5.2 Fit results

In this section, we present our results for fits ran over the data from refs. [30, 45], described

in section 3.1. As mentioned before, we consider 6 different scenarios for the treatment of

the systematic errors, summarized in table 1. We show results for “optimistic” (S1,S4),

“realistic” (S2,S5) and “pessimistic” (S3,S6) scenarios, the difference between the elements

of each couple being the nature of the systematic errors: an additive shift given by a

percentage of the ME for the first, a constant shift for all the ME points for the second one.

The results of the fit for the two optimistic scenarios are shown in figure 5. S1 is

sligthly more conservative than S4, but overall there is not much difference between them.

The situation changes for the more realistic scenarios (figure 6), where S2 is much more

conservative than S5. In the former case the tension with NNPDF31 nlo 0118 is smaller

than what we observe in the previous scenarios, due to the increase in the error band and

to a slight shift of the central replica of the fit. Similar comments can be made for the

most pessimistic scenarios, shown in figure 7, having S3 with a huge error band and a more

remarkable shift of the central replica towards the one of NNPDF31. Overall, we notice

how, when the systematics are given by a percentage of the ME, we get qualitatively

different results moving from one scenario to the other, while in the case we consider

constant shifts there is no much difference between different cases.
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Figure 4. Closure test fit with real statistical and systematic error (CT3) compared to the input

PDFs set. V3 (top line) and T3 (lower line) combinations in linear and logarithmic scale are shown.

The errors of the reconstructed PDFs are huge.

Figure 5. S1 vs. S4: S1 results are sligthly more conservative than the S4 ones, but overall there

is no significant difference between the two optimistic scenarios.
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Figure 6. S2 vs. S5: S2 results are more conservative than the S5 ones, showing also a small shift of

the replica 0 towards the light-cone PDFs. Overall, S2 results are comptible with NNPDF31 nlo 0118

within 1-sigma level.

Figure 7. S3 vs. S6: S3 results are extremely conservative, while those for S6 do not show a

qualitative difference with respect to S4 and S5.
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6 Conclusions and future work

In this work, we have used the factorization of quasi-PDFs in order to relate the unpolarized

isovector parton distribution to well-defined matrix elements computable on the lattice. Us-

ing some of the currently available lattice data, we have used such result to extract the non-

singlet distributions V3 and T3 within the NNPDF framework, studying also different possible

scenarios for the treatment of the systematic uncertainties from lattice QCD simulations.

Our first results from closure tests show how effective these lattice data might be in

constraining PDFs, allowing a consistent determination of the target distribution starting

from O (15) ME points. On the other hand, we show that a consistent treatment of the

lattice systematics is extremely important, and how the final result of the fit strongly

depends on the specific systematics scenario we consider. Considering the most realistic

ones, agreement with the phenomenological PDFs is observed within 1 sigma level, for both

the nonsiglet distributions considered here. The error bands are, however, very large with

respect to the corresponding phenomenological PDFs, showing again how important the

control over the lattice systematics is.

Despite having focused on the quasi-PDFs case, the framework we implemented is gen-

eral enough to allow the inclusion in the same analysis of data coming from different lattice

simulations. One direction for future work might be a similar analysis repeated considering,

for example, pseudo-PDFs data rather than quasi-PDFs ones, to see weather the conclu-

sions we got here apply also to data coming from different lattice approaches. A fully global

lattice QCD fit, which would be easily implemented within this framework, would then be

the next logical step: it would then be interesting to see how much the inclusion of more

lattice data in the same analysis affects the error band of the resulting PDFs, and whether

or not a better agreement with the PDFs determined from experimental data is reached.

Our approach allows also to combine in the same analysis both experimental and

lattice data. In principle we could then study the impact of the available lattice data on

an existing PDF set, like NNPDF31. This, however, would require a deeper control and

assessment of the lattice systematics involved in the simulations, together with a suitable

way of treating the theoretical errors involved in the computation of the theory predictions

entering the fits (missing higher orders in the matching coefficents and power correction

terms), to avoid biasing the global QCD fit. This will be done in a future work.

Finally, we note how the current analysis can be extended without any additional

complications to the other nonsinglet distributions defined in eq. (2.9), as soon as lattice

data for the corresponding matrix elements become available.
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A Matching coefficient and lattice convolution

As detailed at the end of section 2, the matching coefficients to be used to relate the data

of refs. [30, 45] to the light-cone PDFs are those expressed in the MMS scheme. Their

explicit expression is given by [30, 45]

C3 (ξ, η (ξ)) = δ (1− ξ) + CNLO
3 (ξ, η (ξ))+ ,

CNLO
3 (ξ, η (ξ))+ =

αs
2π
CF



[
1+ξ2

1−ξ log ξ
ξ−1 + 1 + 3

2ξ

][1,+∞]

+(1)
ξ > 1[

1+ξ2

1−ξ log
[

1
η2(ξ)

(4ξ (1− ξ))
]
− ξ(1+ξ)

1−ξ

][0,1]

+(1)
0 < ξ < 1[

−1+ξ2

1−ξ log ξ
ξ−1 − 1 + 3

2(1−ξ)

][−∞,0]

+(1)
ξ < 0

.

(A.1)

where the superscripts indicate the domain over which the plus prescription acts. The

matching coefficients relate the light-cone PDF to the quasi-PDF up to power suppressed

terms according to

f̃3

(
xPz, µ

2
)

=

∫ 1

−1

dy

|y|
C3

(
x

y
,
µ

yPz

)
f3

(
y, µ2

)
. (A.2)

In the following, we work out the full expression of the coefficients appearing in eqs. (3.6),

(3.7). Starting from eq. (A.2) we have

f̃3

(
x,µ2,Pz

)
=

∫ 1

−1

dy

|y|
δ

(
1−x

y

)
f3

(
y,µ2

)
+

∫ 1

−1

dy

|y|
CNLO

3

(
x

y
,
µ

yPz

)
+

f3

(
y,µ2

)
. (A.3)

Let us focus on the next-to-leading order term, making the plus distribution explicit. In

order to do so, we find it useful to split the integral in the two contributions for y < 0 and

y > 0. A change of variables, x
y = ξ, yields

f̃NLO
3

(
x, µ2, Pz

)
≡
∫ 1

−1

dy

|y|
CNLO

3

(
x

y
,
µ

yPz

)
+

f3

(
y, µ2

)
=

∫ ∞
|x|

dξ CNLO
3

(
ξ,

µξ

xPz

)
+

1

|ξ|
f3

(
x

ξ
, µ2

)
+

+

∫ −|x|
−∞

dξ CNLO
3

(
ξ,

µξ

xPz

)
+

1

|ξ|
f3

(
x

ξ
, µ

)
. (A.4)
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The plus distribution appearing in the matching coefficients is defined in ref. [25] and

implemented as follows∫
D
dξ C (ξ, g (ξ))+ f (ξ) =

∫
D
dξ [C (ξ, g (ξ)) f (ξ)− C (ξ, g (1)) f (1)] , (A.5)

with g (ξ) = µξ
xPz

and D representing a generic integration domain, which in our case will

be, according to eq. (A.4), either (−∞,−|x|) or (|x|,+∞). It follows

f̃NLO
3

(
x,µ2,Pz

)
=

∫ ∞
|x|

dξ

CNLO
3

(
ξ,
µξ

xPz

) f3

(
x
ξ ,µ

2
)

|ξ|
−CNLO

3

(
ξ,

µ

xPz

)
f3

(
x,µ2

)
+

∫ −|x|
−∞

dξ

CNLO
3

(
ξ,
µξ

xPz

) f3

(
x
ξ ,µ

2
)

|ξ|
−CNLO

3

(
ξ,

µ

xPz

)
f3

(
x,µ2

) .
(A.6)

It can be easily verified that the two contributions appearing in the above equation are

indeed well defined for every fixed x: the singularity in ξ = +1 is cured by the plus

prescription, while for ξ → ±∞ the matching coefficient behaves like C (ξ) ∼ 1
ξ2

, which

is enough to guarantee the convergence of all the integrals above. For numerical stability

we find it useful to avoid the singularity in ξ = +1 introducing a suitable small parameter

δ ∼ 10−6, and rewriting the above equation as

f̃NLO
3

(
x,µ2,Pz

)
=

∫ 1−δ

|x|
dξCNLO

3

(
ξ,
µξ

xPz

) f3

(
x
ξ ,µ
)

ξ
−f3 (x,µ)

∫ 1−δ

|x|
dξCNLO

3

(
ξ,

µ

xPz

)

+

∫ ∞
1+δ

dξCNLO
3

(
ξ,
µξ

xPz

) f3

(
x
ξ ,µ
)

ξ
−f3 (x,µ)

∫ ∞
1+δ

dξCNLO
3

(
ξ,

µ

xPz

)

−
∫ −|x|
−∞

dξCNLO
3

(
ξ,
µξ

xPz

) f3

(
x
ξ ,µ
)

ξ
−f3 (x,µ)

∫ −|x|
−∞

dξCNLO
3

(
ξ,

µ

xPz

)
.

(A.7)

In order to obtain the lattice ME, we need to compute the real and imaginary part of

the Fourier transform of eq. (A.3) as shown in eq. (3.3). Starting from the leading-order

contribution, we get∫ ∞
−∞

dx cos (xPzz)

∫ 1

−1

dy

|y|
δ

(
1− x

y

)
f3

(
y, µ2

)
=

∫ 1

0
dy cos (yPzz)

(
f3

(
y, µ2

)
+ f3

(
−y, µ2

))
=

∫ 1

0
dx cos (xPzz)V3

(
x, µ2

)
=

∫ 1

0
dxARe,LO (xPzz)V3

(
x, µ2

)
(A.8)

where we have integrated in x first, re-expressed the integral
∫ 1
−1 dy as

∫ 1
0 dy, used

f3 (x) + f3 (−x) = f sym
3 (x) = u− (x)− d− (x) = V3 (x) (A.9)
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and finally changed variables back to x. Moving now to the next-to-leading order part, we

analyse each of the six contributions listed in eq. (A.7), defining for each lattice observable

six integrals to be computed, denoted as IRe
i , IIm

i i = 1, . . . , 6. Starting from the first

contribution to the real part we get

IRe
1 =

∫ ∞
−∞

dx cos (xPzz)

∫ 1−δ

|x|
dξ CNLO

3

(
ξ,
µ ξ

xPz

) f3

(
x
ξ , µ
)

ξ

=

∫ ∞
0

dx cos (xPzz)

∫ 1−δ

x

dξ

ξ
CNLO

3

(
ξ,
µ ξ

xPz

)(
f3

(
x

ξ
, µ

)
+ f3

(
−x
ξ
, µ

))
=

∫ 1

0
dx cos (xPzz)

∫ 1

x/(1−δ)

dy

y
CNLO

3

(
x

y
,
µ

yPz

)
V3 (y, µ) , (A.10)

where in the last line we have changed variables back to x
ξ = y. Also, the integration range

for x becomes (0, 1), since x < y < 1. Renaming variables, we have

IRe
1 =

∫ 1

0
dx

[
1

x

∫ 1

0
dyΘ

(
x− y

1− δ

)
cos (yPzz)CNLO

3

(
y

x
,
µ

xPz

)]
V3

(
x, µ2

)
=

∫ 1

0
dxARe,NLO

1

(
x, z,

µ

Pz

)
V3

(
x, µ2

)
. (A.11)

Analogously, we find out that the other five contributions can be written as

IRe
i =

∫ 1

0
dxARe,NLO

i

(
x, z,

µ

Pz

)
V3

(
x, µ2

)
, (A.12)

with

ARe,NLO
2 = cos(xPzz)

∫ 1−δ

x
dξ CNLO

3

(
ξ,

µ

xPz

)
, (A.13)

ARe,NLO
3 =

1

x

∫ ∞
0

dyΘ

(
y

1 + δ
− x
)

cos (yPzz)CNLO
3

(
y

x
,
µ

xPz

)
, (A.14)

ARe,NLO
4 = cos(xPzz)

∫ ∞
1+δ

dξ CNLO
3

(
ξ,

µ

xPz

)
, (A.15)

ARe,NLO
5 = −1

x

∫ ∞
0

dy cos (yPzz)CNLO
3

(
−y
x
,
µ

xPz

)
, (A.16)

ARe,NLO
6 = cos(xPzz)

∫ −x
−∞

dξ CNLO
3

(
ξ,

µ

xPz

)
(A.17)

Collecting all the terms yields eq. (3.6)

ORe
γ0 (z, µ) =

∫ 1

0
dx CRe

3

(
x, z,

µ

Pz

)
V3

(
x, µ2

)
, (A.18)

where

CRe
3

(
x, z,

µ

Pz

)
= ARe,LO + ARe,NLO (A.19)
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with

ARe,NLO = ARe,NLO
1 −ARe,NLO

2 + ARe,NLO
3 −ARe,NLO

4 −ARe,NLO
5 −ARe,NLO

6 . (A.20)

We now turn to the imaginary part of the Fourier transform. The computation is exactly

the same as in the previous case, with the only difference that now we have a sin instead

of a cos. Because of this, when re-expressing the integral
∫∞
−∞ dx as

∫∞
0 dx, we get an

additional minus sign, which gives the combination

f (x)− f (−x) = fasy
3 (x) = u+ (x)− d+ (x) = T3 (x) . (A.21)

Therefore, the results for the imaginary part can be obtained from those for the real part

simply by replacing cos with sin and V3 with T3.

B QCD evolution equations

Let us briefly summarise how the QCD evolution equation is solved for the nonsinglet

sector, yielding the evolution kernel that is used in the construction of FastKernel tables.

For more details and for the validation of this approach, we refer to ref. [74] and the

subsequent NNPDF publications.

Denoting the nonsiglet distributions V3 and T3 with f (−) and f (+) respectively, the

QCD evolution equations can be written as

µ2 ∂

∂µ2
f (±)

(
x, µ2

)
=
αs(µ

2)

2π

∫ 1

x

dξ

ξ
P (±)
qq

(
x

ξ
, αs(Q

2)

)
f (±)

(
ξ, µ2

)
, (B.1)

which in Mellin space becomes

µ2 ∂

∂µ2
f (±)

(
N,µ2

)
= γ(±) (N,αs) f

(±)
(
N,µ2

)
. (B.2)

The distribution at the scale µ2 is obtained from the distribution at the scale µ2
0 by intro-

ducing the evolution operator Γ

f (±)
(
N,µ2

)
= Γ(±)

(
N,αs, α

0
s

)
f (±)

(
N,µ2

0

)
, (B.3)

where αs ≡ αs
(
µ2
)

and α0
s ≡ αs

(
µ2

0

)
. Substituting eq. (B.3) in eq. (B.2) and remembering

that the dependence of Γ on the scale µ is only through the coupling, we have

β (αs)
∂

∂αs
Γ(±)

(
N,αs, α

0
s

)
= γ(±) (N,αs) Γ(±)

(
N,αs, α

0
s

)
. (B.4)

Since the matching coefficients in eq. (A.1) are known up to NLO (O (αs)), here we will only

consider NLO evolution equations. Then, using

β (αs) =
dαs

d log µ2
= −α2

sβ0 − α3
sβ1 +O

(
α4
s

)
(B.5)

γ(±) (N,αs) =
αs
4π
γ

(±)
0 (N) +

(αs
4π

)2
γ

(±)
1 (N) +O

(
α3
s

)
, (B.6)
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we can solve eq. (B.4); the Mellin space expression for the evolution kernel at NLO is

Γ(±)
(
N,αs, α

0
s

)
= 1 +

αs − α0
s

4π

(
γ

(±)
1 (N)

2β0
− β1γ

(±)
0 (N)

2β2
0

)
. (B.7)

The solution in the x-space is obtained by computing the inverse Mellin transform of

Γ(±)
(
N,αs, α

0
s

)
. Having analytically continued the function Γ (N) to the complex plane,

the inverse Mellin transform is obtained by computing the contour integral

Γ(±)
(
x, αs, α

0
s

)
=

∫
C

dN

2πi
x−N Γ(±)

(
N,αs, α

0
s

)
. (B.8)
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