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propose a resolution of the firewall problem by presenting a state-independent reconstruc-

tion of interior operators. Our construction avoids the non-locality problem which plagued

the “A = RB” or “ER = EPR” proposals. We show that the gravitational backreaction by

the infalling observer, who simply falls into a black hole, disentangles the outgoing mode

from the early radiation. The infalling observer crosses the horizon smoothly and sees

quantum entanglement between the outgoing mode and the interior mode which is distinct

from the originally entangled qubit in the early radiation. Namely, quantum operation on

the early radiation cannot influence the experience of the infalling observer since descrip-

tion of the interior mode does not involve the early radiation at all. We also argue that

verification of quantum entanglement by the outside observer does not create a firewall.

Instead it will perform the Hayden-Preskill recovery which saves an infalling observer from

crossing the horizon.
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1 Introduction

The question of how a quantum black hole forms and evaporates unitarily remains among

the most puzzling mysteries in theoretical physics [1]. Following earlier works, Almheiri,

Marolf, Polchinski and Sully (AMPS) argued that by careful quantum processing of the

early Hawking radiation, one can distill a qubit that is perfectly entangled with an outgoing

particle from the black hole [2]. According to Hawking’s semiclassical calculation [3],

however, that same particle is entangled with some field mode inside the black hole, leading

to a violation of quantum mechanics, namely the monogamy of quantum entanglement.

This contradiction, called the AMPS puzzle, sharply illustrates the fundamental difficulty

in describing the interior of a quantum black hole.

The AMPS problem becomes most precise for the outside observer where the difficulty

is constructing operators for interior modes. This viewpoint led to approaches bundled

under “A = RB” or “ER = EPR” where the interior operators are reconstructed in the

early radiation instead of the remaining black hole [4–8]. Unfortunately this proposal runs

into various paradoxes [9–11]. (See [4, 12] for summaries). The reconstruction may lead to

apparent non-local interaction between the interior and distant radiation.1 Relatedly, the

interior operators seem to be sensitive to perturbations added to the early radiation. Also,

previous proposals construct interior operators in a state-dependent manner that suffers

from a number of potential inconsistencies with quantum mechanics [13, 14]. To overcome

these difficulties, further proposals have been put forward. A concrete state-dependent

proposal was made in the context of the AdS/CFT correspondence [5, 15, 16] and the

Sachdev-Ye-Kitaev (SYK) model [17, 18], but these proposals have some caveats [19].

Preliminary studies suggest that the idea of quantum error-correction [20, 21] plays key

roles in avoiding some of the identified problems [18, 22–25]. The ultimate resolution of the

1The fact that some description of interior operator requires the early radiation does not necessarily

mean that information can be sent non-locally. However, if every possible reconstruction of the interior

operators requires the early radiation, then it is problematic as it implies that the infalling observer may

interact non-locally with the early radiation by seeing interior modes.
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AMPS puzzle, however, would be obtained only by finding an explicit way of reconstructing

interior operators which does not suffer from the aforementioned problems.

Recently we pointed out that the procedure of reconstructing the interior operators

can be viewed as the Hayden-Preskill recovery [26], a phenomenon of reconstructing an

infalling quantum state from an old black hole by collecting the Hawking radiation [27].

Input quantum states can be recovered when the time-evolution of the system scrambles

quantum information in a sense of decay of out-of-time ordered correlations [28]. A quan-

tum black hole exhibits such dynamics in the most dramatic manner [29]. In parallel with

the conclusion by Hayden and Preskill, this observation suggests that the interior operators

can be constructed “almost” inside the remaining black hole with a few extra qubits from

the early radiation. Also, the reason why interior operators are insensitive to perturbations

on the early radiation can be explained by scrambling dynamics without relying on specu-

lative quantum circuit complexity arguments [6, 30]. However, our observation in [26] still

suffers from the non-locality problem and state-dependence.

In this paper, we expand on the aforementioned observation and present a protocol to

reconstruct interior operators in a state-independent way while at the same time avoiding

the non-locality problem. In particular, we show that quantum entanglement between the

outgoing mode and the reconstructed interior mode is insensitive to any perturbation on

the early radiation. In fact, we argue that our construction of state-independent interior

operators is applicable to generic black holes, young or old, in quasi thermal equilibrium.

We will explain how our construction avoids previous arguments which appear to suggest

that interior operators must be state-dependent.2 Namely, we will find that construction

of interior operators does not depend on the initial state of the black hole (i.e. how it is

entangled with the early radiation), but depend on the infalling observer.

Based on the state-independent reconstruction, we suggest the following resolution of

the AMPS puzzle. Let us distill a qubit D̃ from the early radiation R that is entangled with

the outgoing mode D. We show that an infalling observer leaves non-trivial gravitational

backreaction which disentangles the outgoing mode D from the distilled qubit D̃ no matter

how she falls into a black hole. The outgoing mode D will be entangled with the interior

mode D which is distinct from the originally entangled qubit D̃. The infalling observer

crosses the horizon smoothly and can observe entangled modes D and D. Namely, any

quantum operation on the early radiation R cannot influence the experience of the infalling

observer since the construction of the interior mode D does not involve any degrees of

freedom on R. The disentangling phenomenon is a universal feature of a quantum black

hole which can be studied quantitatively by using out-of-time order correlation functions.

The aforementioned proposal provides an account for a physical mechanism where

the infalling observer sees quantum entanglement while the outside observer does not. It

is intriguing to consider an opposite limit of the monogamy relation where the outside

observer can see quantum entanglement while the infalling observer does not. Previous

works, especially the one by Maldacena and Susskind [6], suggested that verification of

quantum entanglement, namely the distillation of the entangled qubit D̃ on the early

2I thank Ahmed Almheiri and Suvrat Raju for useful discussions on this.
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radiation R, generates a high-energy gravitational shockwave which would become a firewall

and prevent the infalling observer from crossing the horizon smoothly. This proposal,

however, can be refuted by observing that the interior mode D is distinct from the distilled

qubit D̃ and its construction does not involve the early radiation R at all. Here, we argue

that the verification of quantum entanglement will generate “safety barrier” which stops

the infalling observer from falling into a black hole. The key observation is that the outside

observer can retrieve quantum entanglement back from the infalling observer by performing

the Hayden-Preskill recovery on the infalling observer. Since the infalling observer does

not cross the horizon, she will not be able to see quantum entanglement.3 This proposal

resonates with the recovery protocols for the Hayden-Preskill thought experiment proposed

by the author and Kitaev [31]. In fact, these recovery protocols proceed by protecting

quantum entanglement between the outgoing mode D and the early radiation R from the

backreaction by the infalling observer.

While we rely on intuitions from the AdS/CFT correspondence, our arguments are

applicable to generic quantum black holes. There are two main assumptions behind our

proposals. First, the outside observer has a quantum description of a black hole with a pure

quantum state on his Hilbert space. Second, out-of-time ordered correlation functions decay

around/after the scrambling time. The proposed state-independent construction of interior

operators work for generic quantum black holes that satisfy these two assumptions. Much

of our argument, however, is based on simple quantum information theoretic description

of a quantum black hole. While detailed calculations on realistic black holes are beyond

the scope of the paper, we will try to be clear about our assumptions behind the use of

simplified toy models.4

The rest of the paper is organized as follows. In section 2, we briefly review the firewall

argument. In section 3, we briefly review the Hayden-Preskill recovery and the quantum

cloning puzzle. In section 4, we discuss the notion of quantum information scrambling

and its relation to out-of-time ordered correlation functions. In section 5, we show that

the interior operators can be reconstructed by using the Hayden-Preskill recovery protocol.

In section 6, we present a state-independent reconstruction of the interior operators. In

section 7, we discuss the effect of backreaction by the infalling observer. In section 9, we

propose the resolution of the AMPS puzzle. In section 10, we conclude with discussions.

In appendix A, we show that measurement of energy density suffices to entangle the in-

falling observer with the outgoing radiation. In appendix B, we make comments on the

proposal by Verlinde and Verlinde [22]. In appendix 8, we discuss how our construction

avoids previous arguments for the necessity of state-dependence. In appendix C, we discuss

the state-independent reconstruction from the perspective of dynamics in quantum many-

body systems. In appendix D, we discuss geometric interpretations of the Hayden-Preskill

recovery protocols.

3Here the infalling observer should be thought of as some light probe particle. If it were a macroscopic

object with large energy, the outside observer wouldn’t be able to save it by low quantum complexity

operations. Also the amount of entanglement the outside observer needs to verify depends on the entropy

associated with the infalling observer. See [31] for details.
4Our attitude is to treat a black hole as a quantum system and try to explain the AMPS puzzle without

giving up with unitarity, smoothness (equivalence principle) or locality.
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EPR
(a)

EPR EPR
(b)

Figure 1. The notation used in the paper. Here U represents the unitary time-evolution of the

black hole. (a) The AMPS thought experiment. C : the remaining black hole. D : the outgoing

mode. R : the early radiation. (b) The Hayden-Preskill thought experiment. A′ : the reference.

A: the input quantum state. B : the initial black hole. R : the early radiation. C : the remaining

black hole. D : the outgoing mode. Horizontal lines represent that two subsystems are in the EPR

pairs: 1√
d

∑d
j=1 |j〉 ⊗ |j〉.

2 Review of firewall argument

We begin with a brief overview of the original argument of AMPS [2]. The argument has

a number of technical assumptions and fine details, and we will not cover all of them. Our

goal is to remind readers of the form of quantum entanglement and the associated Hilbert

space structure postulated by AMPS, as well as to introduce some notation. We also

summarize some of the proposed resolutions of the puzzle, and potential difficulties and

concerns that may arise from them. Our goal is to motivate some of the desired properties

in reconstructing the interior operators.

The notation in the present paper is slightly non-standard. For convenience, our

notation is summarized in figure 1. Throughout the paper, we will denote the infalling and

outside observers by Alice and Bob respectively.

2.1 From the outside

We first discuss the description of a quantum black hole from the perspective of Bob, the

outside observer.

The AMPS thought experiment relies on the following assumption on the Hilbert

space structure. In Bob’s description, the formation and evaporation of the black hole is

described by a unitary operator. Namely, there is a pure quantum state |Ψ〉 in the outside

Hilbert space Houtside at any given time. The Hilbert space Houtside can be factorized into

(figure 2a)

Houtside = HC ⊗HD ⊗HR. (2.1)

Here HR consists of the radiation field outside of the black hole with roughly r > 3GM

while HD are the modes confined in 2GM + ε < r < 3GM . Here r = 2GM + ε corresponds

to the location of the stretched horizon, and ε is of order the Planck length. This region is

often called the zone. It is common to restrict HD to include only modes with Schwarzschild

energy less than the black hole temperature since higher energy modes are not confined.

– 4 –
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(a) (b)

Figure 2. The Hilbert space structures. The dotted line represents r = 3GM and the double

lines represent r = 2GM ± ε. Roughly, D corresponds to the zone. (a) The outside Hilbert space

Houtside. (b) The infalling Hilbert space Hinside.

Finally, HC are the remaining degrees of freedom which can be interpreted as some entities

sitting at the stretched horizon at r = 2GM + ε. It is common to restrict HR to be a finite

dimensional Hilbert space for convenience of discussions. Precise distinctions among these

subsystems are not essential for the AMPS puzzle.

Following AMPS, we consider an old black hole that has already emitted more than

half of its initial entropy: |R| � |C||D|. If |Ψ〉 is a Haar random quantum state in

Houtside [32, 33], the density operator in CD is approximately proportional to the identity

operator:

ρCD ≈
1

|C||D|IC ⊗ ID. (2.2)

This implies D is maximally entangled with R. Of course, approximating |Ψ〉 with a

Haar random state is an oversimplification. A more careful analysis suggests that thermal

correlations are present in ρCD [22] although these are purely classical ones resulting from

the conservation of the energy [26]. For the time being, we proceed with eq. (2.2). We

emphasize that this detail does not matter for discussions except appendix A.

2.2 From the inside

Next we discuss the description from the perspective of Alice, the infalling observer.

Following AMPS, we assume that Alice has quantum mechanical description of her

experiences in terms of a quantum state on her time slice. Namely, the Hilbert space

Houtside can be factorized into (figure 2b)

Hinside = HD ⊗HD ⊗HR ⊗HS . (2.3)

Here HD and HR correspond to the confined modes (the zone) and the radiation fields

respectively as defined above. These are subsystems which both Alice and Bob can access.

HD are the modes just inside the horizon roughly with GM < r < 2GM − ε. Finally,

HS is all the remaining degrees of freedom that is not accessible to Alice. The modes at

the stretched horizon HC are often included in HS , but this detail does not matter in the

– 5 –
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AMPS argument. Finally, we postulate that the quantum description of ρDR for Alice and

Bob are identical.5

The AMPS puzzle concerns an apparent inconsistency between Alice and Bob’s de-

scriptions. In Alice’s description, HD and HD contain Rindler modes which are close to

maximally entangled:

∝
∑
n

e−
βEn
2 |n〉D ⊗ |n〉D. (2.4)

Alice’s Hilbert space may contain some degrees of freedom other than Rindler modes. The

important point for us is that two modes in HD and HD must be entangled. On the

other hand, in Bob’s description, D is maximally entangled with the radiation R, which

would imply that D and D are not entangled with each other due to the monogamy of

entanglement. In particular, by using the strong subadditivity, AMPS, as well as earlier

works [34, 35], arrived at I(D,D) ≡ SD + SD − SDD ≈ 0. This suggests ρDD = ρD ⊗ ρD,

the existence of a firewall.6,7

2.3 Interior operators

The AMPS puzzle can be also stated in the outside observer’s description. This viewpoint

becomes most precise in the AdS/CFT correspondence where R is interpreted as degrees

of freedom on the other side of a large two-sided AdS black hole. In Bob’s description,

or in the boundary CFT, the puzzle can be identified with the fact that I(C,D) = 0.

This suggests that the interior mode in D cannot be described as an operator inside HC .

Namely, its description must involve the radiation R. This viewpoint is often advocated

under the slogan “D = R” (or “A = RB” in accordance with the standard notation in the

literature) and also “ER = EPR”. This proposal, however, runs into various paradoxes.

First, it may lead to non-local signalling from the interior of the black hole to the

radiation R (and vice versa). To be concrete, one may consider a large AdS black hole with

very long wormhole throat. The description of the interior mode, which an infalling observer

would be able to measure, always requires degrees of freedom from a far distant boundary

of the black hole, which sounds highly unphysical. The non-local signalling problem is

referred to as the commutator problem since operators for the interior mode D do not

commute with operators in the radiation R. To avoid the non-local signalling problem, the

reconstruction of the interior operator in the outside should be insensitive to perturbations

5By “identical”, we mean that ρ
(Alice)
DR = ρ

(Bob)
DR . It may be possible that ρ

(Alice)
DR and ρ

(Bob)
DR differ up to

local unitary transformations with factorized form UD ⊗ UR. The key assumption for us is that non-local

properties such as quantum entanglement between D and R are identical for two observers.
6More precisely, this suggests a strong breakdown of the equivalence principle (or effective quantum field

theory description) in a regime of low curvature.
7The term “firewalls” generically denote various forms of high energy densities that may appear near

the horizon. In addressing the AMPS puzzle, we will focus on firewalls that may arise from the loss of

quantum entanglement between pairs of modes inside and outside the black hole. In other words, our

primary focus is on an apparent violation of monogamy of quantum entanglement and how to restore it by

properly understanding the breakdown of semiclassical arguments through the lens of quantum information

theory. Note that there may be other physical mechanisms for firewalls, see [34] for instance, but these are

beyond the scope of this paper.
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on R. The problem may be resolved by employing the idea of quantum error-correction

where the interior operator may be encoded in R via some sort of quantum error-correcting

code [20, 21]. This viewpoint has been considered seriously by several authors [18, 22–25].

Relatedly, arguments based on quantum circuit complexity have been attempted [6, 30].

The key question, however, is the physical origin of fault-tolerant encoding of the interior

operators.8

Second, it leads to state-dependent construction of interior operators [5, 15, 16]. To

see the origin of state-dependence, suppose that a quantum state of a black hole |Ψ〉 is

given by some maximally entangled state with SCD = log2 |C||D|. Such a state can be

written as

|Ψ〉 = (I ⊗K)|ΦEPR〉, |ΦEPR〉CDR ≡
1√
|C||D|

∑
i,j

|i, j〉CD ⊗ |i, j〉R (2.5)

where K is some unitary operator and |ΦEPR〉CDR are EPR pairs between CD and R.9

Then construction of operators for the interior modes D on the early radiation R depends

on the unitary operator K. But these state-dependent interior operators are problem-

atic in describing quantum physics of the infalling observer due to a number of potential

inconsistencies with quantum mechanics [8–10, 13, 14, 19].10

To summarize, our goal is to reconstruct interior operators in a state-independent man-

ner with fault-tolerance against perturbations on R and without the non-locality problem.

3 Review of Hayden-Preskill recovery

In this section, we provide a brief review of the Hayden-Preskill thought experiment [27].

We try to be clear about what the recoverability of quantum states means in information-

theoretic terms. We will mostly focus on a situation which mimics the AdS eternal black

hole while the scope of the original argument by Hayden and Preskill is broader. Part of

our goal is to remind readers of how the quantum cloning puzzle can be resolved by using

the idea of backreaction within the context of the AdS/CFT correspondence.

8Some previous works argue that the involvement of the early radiation R is fine as long as information

cannot be sent non-locally. We think that this is a serious problem if all the possible representations of the

interior mode require degrees of freedom from R since the measurement of the interior mode by the infalling

observer would require non-local coupling between the remaining black hole C and the early radiation R.

In this paper, we will show that the construction of the interior mode and its measurement by the infalling

observer can be achieved without ever involving degrees of freedom on the early radiation R.
9Harlow and Hayden suggested that there is a certain obstruction for the infalling observer to verify

the quantum entanglement between the outgoing mode D and the radiation R, hence the AMPS thought

experiment cannot be carried out [30]. Namely, they conjectured that quantum circuit complexity of veri-

fying the quantum entanglement is exponential in the entropy SBH by relying on computational complexity

theoretical assumptions. This viewpoint has been further strengthened by Aaronson and Susskind [36, 37].

However, the complexity theoretic obstruction itself can be avoided by performing the so-called precom-

putation [38]. Also, the argument does not apply to the eternal AdS black hole where the verification of

entanglement can be performed via simple quantum operations.
10Again, we think that this is a serious problem if all the possible representations of the interior mode

are state-dependent.
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EPR

Figure 3. The Hayden-Preskill thought experiment. U represents the time-evolution of the black

hole and V represents a recovery unitary.

3.1 Setup

As in the firewall argument, Hayden and Preskill considered an old black hole which has

emitted more than half of its initial entropy. In the Hayden-Preskill thought experiment,

Alice throws a quantum state |ψ〉 into a black hole and Bob, the outside observer, attempts

to reconstruct it by collecting the Hawking radiation. To simplify the argument further,

we treat the initial state as nB = log |B| copies of EPR pairs between the black hole B and

the radiation R :

|ΦEPR〉BR =
1√
|B|

∑
j

|j〉B ⊗ |j〉R. (3.1)

Let us append a subsystem A to the black hole to account for the Hilbert space of the

infalling quantum state |ψ〉. Following Hayden and Preskill, let us assume that the black

hole evolves by a Haar random unitary U that acts on AB. Let C and D be the remaining

black hole and the outgoing mode respectively (figure 3). Bob’s goal is to reconstruct

|ψ〉 by catching D and having access to the early radiation R. The surprising result is

that |D| ' |A| is sufficient to achieve this goal. Namely, if |ψ〉 is an nA-qubit quantum

state, catching nD = nA + ε qubits of the outgoing mode with ε = O(1) suffices. By

“reconstruction”, we mean the existence of some recovery unitary VDR that, for any given

input state |ψ〉, reconstructs the original state |ψ〉 (figure 3):

(IC ⊗ VDR)(UAB ⊗ IR)
(
|ψ〉A ⊗ |ΦEPR〉BR

)
≈ |ψ〉Aout ⊗ |something〉 for all |ψ〉 ∈ HA.

(3.2)

Here Aout is some subsystem in DR with |Aout| = |A|, and “≈” is measured in terms of

the fidelity of the output state on Aout with |ψ〉 (i.e., the expectation value of the output

state with respect to the projector |ψ〉〈ψ|Aout).

3.2 State representation of U

Instead of throwing an unknown quantum state |ψ〉 into a black hole, it is more convenient

to introduce an ancillary subsystem A′ which has the same dimensionality as A. We will

see that this trick enables us to discuss the recoverability in a quantitative manner with

– 8 –
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information-theoretic measures. Prepare an EPR pair on A′ and A and throw qubits from

A into the black hole B. After the time-evolution by a unitary operator U that acts on

AB, the system is given by

|Ψ〉 =
(
IA′ ⊗ UAB ⊗ IR

)(
|EPR〉A′A ⊗ |ΦEPR〉BR

)
=

EPREPR

(3.3)

which is supported on A′CDR. The wavefunction in eq. (3.3) is often called the “state

representation” (or the “Choi representation”) of U [28]. To remind readers of the notation,

B is the initial black hole, R is the early radiation, C is the remaining black hole and D is

the late radiation.

Information theoretically, the recoverability of unknown quantum states can be quan-

titatively addressed by the amount of entanglement between A′ and RD, e.g., the mutual

information I(A′, DR). If I(A′, DR) is close to its maximal value, nearly perfect EPR pair

can be distilled by applying some recovery unitary operator VDR:

(IA′C ⊗ VDR)|Ψ〉 ≈ |EPR〉A′Aout ⊗ |something〉. (3.4)

Here “≈” is measured in terms of the fidelity with the perfect EPR pair (i.e., the expectation

value with respect to the EPR projector on A′Aout).
11

Distillation of EPR pair can be related to recovery of infalling quantum states as

follows. By projecting the reference system A′ onto |ψ∗〉, we will have |ψ〉 on the original

input Hilbert space A since

(〈ψ∗|A′ ⊗ IA)|EPR〉A′A ∝ |ψ〉A. (3.5)

If |EPR〉A′Aout is distilled on A′Aout, the above projection on A′ will generate |ψ〉Aout on

the output Hilbert space Aout, implying successful reconstruction of the input state. One

merit of introducing the reference system A′ is that we do not need to keep track of how

the recovery operation works for each choice of input states.

3.3 Reconstruction of operators

We will use the Hayden-Preskill recovery protocols to construct interior operators in the

AMPS problem. For this purpose, it is convenient to state the Hayden-Preskill recovery in

terms of operators. Given an arbitrary unitary operator OA′ acting on A′, it is possible to

identify a partner operator on DR if I(A′, DR) is nearly maximal (i.e., OTOCs are small).

Recall the following relation:

(OA′ ⊗ I)|EPR〉A′Aout = (I ⊗OTAout
)|EPR〉A′Aout (3.6)

11The fidelity of the distilled EPR pair can be quantitatively related to out-of-time ordered correlation

function [31].
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or graphically

EPR

=

EPR

(3.7)

which holds for any unitary operator OA′ and its transpose OTAout
. Define ÕTDR as follows:

ÕTDR ≡ V †DROTAout
VDR. (3.8)

Then, the partner operator ÕTDR on DR satisfies

(OA′ ⊗ ICDR)|Ψ〉 ≈ (IA′C ⊗ ÕTDR)|Ψ〉 (3.9)

or graphically

EPREPR

≈

EPREPR

. (3.10)

3.4 Quantum cloning puzzle

The Hayden-Preskill recovery leads to an apparent cloning of quantum states since Alice

possesses |ψ〉 inside the black hole whereas Bob possesses the reconstructed copy of |ψ〉
outside the black hole.12 A traditional approach to resolve this puzzle is to resort to the

idea of complementarity; we decide not to be bothered by violation of quantum mechanics as

long as there is no observer who can verify it [39–42]. In order to verify the quantum cloning,

Bob needs to wait for a black hole to implement a highly-complicated unitary U , catch the

outgoing mode, reconstruct |ψ〉, and jump into a black hole to meet Alice who possesses the

other copy. For the time being, assume that reconstructing |ψ〉 is instantaneous once the

outgoing mode is collected. Then if it takes more than t ∼ rs log rs in the Schwarzschild

time (or t ∼ log rs at the stretched horizon) for the black hole to implement U , Alice

will reach the black hole singularity before meeting Bob. Quantum information theoretic

studies suggest that time scale to “delocalize” quantum information must be indeed longer

than t ∼ log rs in a clock at the stretched horizon [43]. Hence, the quantum cloning puzzle

is avoided.

While the above viewpoint provides a tentative resolution of the quantum cloning

puzzle, a refined resolution has been recently proposed within the context of the AdS/CFT

12By introducing the reference system A′, the quantum cloning puzzle can be stated as potential violation

of monogamy of entanglement. This observation hints that the Hayden-Preskill thought experiment is

indeed related to the firewall problem.
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correspondence. The original argument via complementarity assumes that the black hole

horizon is an absolute entity and its location never moves regardless of quantum operations

applied from the outside. A modern viewpoint on this puzzle is to postulate that Bob’s

recovery operation may have a non-trivial backreaction to the black hole geometry. This

viewpoint is largely motivated from recent developments in studies of backreactions in the

AdS/CFT correspondence and related toy models such as the SYK model [44–48]. The key

insight is that Bob’s operation from the outside may shift the location of the event horizon

and pull the quantum state |ψ〉 from the interior to the exterior. A concrete physical

realization of this scenario is the so-called traversable wormhole phenomena discovered by

Gao, Jafferis and Wall [49]. In particular, for the eternal AdS black hole, they identified

certain forms of interactions between CFTs on opposite boundaries which send negative

energy to the bulk and shift the event horizon so that signals can traverse the wormhole.13

The relation between traversable wormholes and the Hayden-Preskill thought experiment

is also discussed in [31, 50].

4 Scrambling and recovery

We have reviewed the Hayden-Preskill thought experiment and the quantum cloning puzzle

from the perspective of backreaction within the context of the AdS/CFT correspondence,

namely for the eternal AdS black hole. In this section, we extend the argument to more

generic quantum systems by reviewing the relation between the Hayden-Preskill recov-

ery and quantum information scrambling as diagnosed by out-of-time ordered correlation

(OTOC) functions. We also discuss concrete recovery protocols for the Hayden-Preskill

thought experiment.

4.1 Scrambling

Let us continue our discussion on the Hayden-Preskill recovery. Again, we will focus on a

quantum black hole whose initial state is represented by |ΦEPR〉BR = 1√
|B|

∑
j |j〉B ⊗ |j〉R.

We are primarily interested in quantum entanglement between A′ (the reference system)

and DR (the late radiation and the early radiation) in the state representation of U as

defined in eq. (3.3).

While Hayden and Preskill considered Haar random unitary U , a recovery operation

can be performed in strongly-interacting quantum systems which delocalize quantum infor-

mation over the whole system. This phenomena, often called quantum information scram-

bling, can be probed by the out-of-time ordered correlation (OTOC) function [44, 51–53]:

〈OA(0)OD(t)O†A(0)O†D(t)〉 ≡ 1

d
Tr
(
OAU

†ODUO
†
AU
†O†DU

)
(4.1)

where d = |A||B| = |C||D| denotes the total Hilbert space dimension. Two different

bipartitions of the total Hilbert space H, into HA ⊗ HB and HC ⊗ HD, are considered.

Here U is an arbitrary unitary operator that accounts the time-evolution of the system.

13Since their interaction couples two boundaries, null geodesics through the wormhole is no longer

achronal. Hence the average null energy condition (ANEC) is obeyed for achronal geodesics.
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Figure 4. Out-of-time ordered correlation (OTOC) functions.

Note that OA and OD are operators that act on subsystems A and D respectively. For

concreteness, we take OA, OD to be basis operators (such as Pauli operators) supported

on A,D. For A,D with no overlap, the OTOC starts at 1 and then decays under chaotic

time-evolution.

The decay of OTOCs implies that the Hayden-Preskill recovery can be

performed [28, 54]. Specifically, the following equality was proven:

2−I
(2)(A′,RD) =

∫
dOAdOD 〈OA(0)OD(t)O†A(0)O†D(t)〉 (4.2)

where integrals with dOA, dOD take averages over all the basis operators supported on

A,D respectively. Here I(2)(A′, RD) ≡ S(2)
A′ +S

(2)
RD −S

(2)
A′RD represents the Rényi-2 mutual

information.14 It is worth reminding that the left hand side of eq. (4.2) is defined for the

state representation of U (eq. (3.3)) which is supported on HA′ ⊗HC ⊗HD ⊗HR whereas

OTOCs on the right hand side are calculated on H = HA ⊗HB = HC ⊗HD. See figure 4

for graphical representation of OTOCs. We emphasize that the aforementioned relation

holds for any unitary operator U .

14Whilt we have I(A′, RD) ≥ I(2)(A′, RD) in the above setting, the Rényi-2 mutual information does

not lower bound the ordinary mutual information in general. In fact, from the perspective of quantum

information theory, the Rényi-2 mutual information is not a proper entanglement monotone. Instead one

must use the Sandwiched Rényi-α divergence. A similar duality relation is known for two of them with α

and β satisfying 1
α

+ 1
β

= 2 [55]. In [56], a certain average of OTOCs is expressed as the α = 2 Sandwiched

Rényi divergence and is proven to lower bound the mutual information I(A′, RD).
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The Hayden-Preskill recovery and quantum information scrambling can be explicitly

related by the above formula in eq. (4.2).15 Namely, smallness of OTOCs implies large

I(2)(A′, RD) which implies the existence of reconstruction procedures.16

4.2 OTOCs in a black hole

Having seen that scrambling implies the recoverability in the Hayden-Preskill thought

experiment, let us discuss OTOCs for black holes. OTOCs for gravitational systems can

be explicitly computed by taking OA to be a weak perturbation. Under the gravitational

blueshift, such a perturbation is greatly amplified and becomes a gravitational shockwave

as it falls into a black hole. For the Schwarzschild black hole, the effect of gravitational

shockwaves on correlation functions were discussed by ’t Hooft and Dray [59, 60], and

also by Kiem, Verlinde and Verlinde [61]. Kitaev pointed out that these pioneering works

actually computed OTOCs in disguise [44]. For the AdS black hole, OTOCs have been

computed by Shenker and Stanford [52]. Shockwave geometries in the Reissner-Nordström

black hole were studied by Sfetsos [62]. Recently shockwave geometries in the Kerr black

hole were studied by BenTov and Swearngin [63].

These calculations suggest that OTOCs start to decay from its initial value signifi-

cantly around the scrambling time, which is of order ≈ rs log rs in the Schwartzshild black

hole. As such, after the scrambling time, a quantum state that has fallen into a black hole

can be retrieved as long as the black hole is maximally entangled. We emphasize that this

argument is not restricted to black holes that are described in the AdS/CFT correspon-

dence. Namely, we only assumed that the outside observer has a quantum description of

a black hole with a pure quantum state on his Hilbert space, and OTOCs decay after the

scrambling time.

15An alternative definition of quantum information scrambling was previously considered [43, 57]. This

definition considers initial quantum states with low entanglement (e.g., product states) and asks if the states

become thermalized. We think that the definition based on OTOCs is a more appropriate characteriza-

tion of quantum information scrambling as its relation to black hole physics and Hayden-Preskill thought

experiment is clear. For interested readers, a definition of scrambling at finite temperature was proposed

in [31] by using OTOCs. Recently Shor presented an argument showing that scrambling in the alternative

definition cannot be achieved within the scrambling time ≈ rs log rs [58].
16Note that the above formula is restricted to quantum systems at infinite temperature (i.e., the system

is finite-dimensional and the quantum state in OTOCs is given by the maximally mixed state ρ = 1
d
I). As

such, the conclusion on the recoverability is applicable only to quantum black holes whose initial states are

approximated by maximally entangled states ≈ (I ⊗K)|ΦEPR〉BR. Essentially, these states are simplified

descriptions of maximally entangled black holes as an SBH-qubit system where SBH is the Bekenstein-

Hawking (or the coarse-grained) entropy. Some readers might be worried about the validity of the relation

between OTOCs and the recoverability for more realistic black holes at finite temperature. Further gen-

eralization of this relation for black holes with more generic quantum states has been discussed in [31].

Namely it was shown that the decay of OTOCs implies the recoverability as long as quantum correlations

between A and B as well as C and D are small. For this reason, we do not view the simplification with

≈ (I ⊗K)|ΦEPR〉BR as fundamental limitation of our argument. For simplicity of discussion, we proceed

with this simplified description of a quantum black hole as a SBH-qubit system. We will discuss its validity

from other perspective in section 6.3.
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EPR

EPR

EPR

projection

Figure 5. A recovery protocol for the Hayden-Preskill thought experiment from [31]. The input

quantum state |ψ〉 on A is teleported to A′ upon postselecting DD to be EPR pairs. In the diagram,

|A| = |A| = |A′|, |B| = |B|, |C| = |C|, and |D| = |D|. Here DD are interpreted as outgoing modes.

For scrambling unitary U , the recovery protocol works when |D| ' |A|. In particular, D can be

chosen as any subsystem as long as OTOCs 〈OA(0)OD(t)OA(0)OD(t)〉 are small.

4.3 Reovery protocols

The above relation in eq. (4.2) provides a formal proof of the existence of recovery pro-

tocols in a scrambling system. The author and Kitaev proposed two particular “simple”

recovery protocols which work for any scrambling systems [31]. Here we briefly review

these protocols.17

The first protocol works probabilistically. It applies the complex conjugate U∗ to the

entangled partner R (which is denoted as B in figure 5), and then projects the outgoing

modes D and D from both sides into EPR pairs. Upon postselecting the measurement

outcome to be EPR pairs, Alice’s quantum state |ψ〉 will be teleported to Bob’s register

qubits on A′. See figure 5 for summary of the whole process. Noting that DD were initially

EPR pairs at t = 0 (if A and D do not overlap), this recovery operation can be interpreted

as the outside observer’s attempt to restore DD to be original EPR pairs. The protocol

achieves high recovery fidelity when OTOCs decay.

The second protocol is more involved and works deterministically. It incorporates the

quantum Grover search algorithm where U∗ and UT are applied on the entangled partner

multiple times with Grover rotation operators inserted. Interested readers should see the

original paper for details. Unlike the first protocol, the second protocol applies a careful

sequence of unitary operators which restores DD to be EPR pair in a deterministic manner.

If |A| ∼ O(1), the quantum circuit complexity of both recovery protocols is roughly equal

to that of U . Hence, if it takes time t to implement U , it takes ≈ t to reconstruct |ψ〉. Both

protocols enable us to reconstruct partner operators, although the first protocol requires

17These recovery protocols work well after the scrambling time whereas the traversable wormhole picture

is valid before the scrambling time. The nature of scrambling after the scrambling time is quite different

from that before the scrambling time, see [64, 65] for instance. While this paper focuses on the physics

after the scrambling time, we believe that a qualitatively similar implication on the AMPS puzzle can be

made by relying on the physics of scrambling before the scrambling time.
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us to normalize reconstructed operators properly.18 Geometric interpretations of these

protocols are discussed in appendix D.

So far we have mostly focused on a quantum black hole whose quantum state can

be approximately modeled by ≈ |ΦEPR〉BR. A generic quantum state for a maximally

entangled black hole, however, should be modeled by ≈ (I ⊗K)|ΦEPR〉BR as in eq. (2.5)

with some unitary operator K. Here we would like to clarify the applicability of our

argument.

As a matter of principle, the quantitative argument on the recoverability remains valid

regardless of K since K does not affect the mutual information I(A′, DR). In particular,

as long as the unitary time-evolution operator U forces OTOCs to decay, one can prove the

existence of recovery protocols. Also, the aforementioned recovery protocols can be applied

to generic initial states by replacing U with UK∗. This essentially cancels the unitary

operator K and reduces the system back to |ΦEPR〉BR. Performing recovery protocols

with UK∗, however, may be problematic if K is a highly complex unitary operator. One

might argue that recovery protocols cannot be performed before the black hole evaporates

completely. The difficulties associated with highly complex K may be avoided by the idea

of the “precomputation” [38]. Yet, it is not clear if such a procedure is physically plausible

in realistic systems.

We will return to this issue of the K-dependence in section 6 when the Hayden-Preskill

recovery is used to reconstruct interior operators. We will see that, in the context of the

AMPS puzzle, we can actually avoid the K-dependence and achieve state-independent

reconstruction of interior operators.

5 Reconstruction of interior operators

In this section, we point out that the black hole interior operators can be reconstructed

by using a protocol similar to the Hayden-Preskill recovery procedure. This subsection is

a slightly reorganized reprint from section 5 of our previous work [26]. We will focus on

cases where the initial state of the old black hole is given by EPR pairs while deferring

discussions on generic entangled states, as well as the issue of the state-dependence, to the

next section.

18Some readers may be worried about the fact that Bob needs to understand the dynamics of quantum

black hole for reconstruction. Given our little understanding of quantum gravity, this might sound like a

valid concern. However we emphasize that this is not the issue intrinsically related to quantum gravity. In

fact, a similar problem can be identified in classical systems. Suppose that Alice prepares a classical bit

0 or 1 and Bob tries to find out what is written in Alice’s bit. If Alice’s bit remains unchanged, Bob will

immediately know the answer. If Alice has applied a Pauli-X operator, her bit is flipped; 0→ 1 and 1→ 0.

Then, Bob needs to flip her bit back to find the original information. Now suppose Bob does not know if

Alice has applied X or not. Then it is not possible for Bob to know Alice’s original bit. As this simple

classical observation suggests, Bob knowing the dynamics U is a prerequisite to treat the information loss

problem in a rigorous information theoretic setting, and our little knowledge of U is a separate problem.
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5.1 Hayden-Preskill for interior operators

The quantum state of interest is as follows:

|Ψ〉 =

EPR

(5.1)

where the black hole started in EPR pairs and time-evolved by U . Here R is the early

radiation, C is the remaining black hole and D is the outgoing mode. The goal is to find

the partner ÕTCR of an arbitrary operator OD on the outgoing mode:19

(OD ⊗ ICR)|Ψ〉 = (ID ⊗ ÕTCR)|Ψ〉 (5.2)

or graphically

EPR

=

EPR

. (5.3)

Existence of such partner operators is guaranteed since the mutual information I(D,CR)

is maximal. However, since I(D,C) = 0, partners cannot be supported on C. That is,

partner operators ÕTCR must have non-trivial support on R. We have seen that, from

the perspective of the outside quantum mechanical description, this fact (the use of the

early radiation R in writing ÕTCR) is the origin of the firewall problem (or relatedly the

state-dependence problem and the non-locality problem).

Here our aim is to construct the partner ÕTCR by using as few qubits from R as possible.

To be explicit, let A be a small subsystem of R, and B be the complementary subsystem

inside R (so R = AB). Here we would like to construct a partner ÕTCA by using only qubits

on A from R, as graphically shown below:

≈ (5.4)

where R is split into two subsystems AB.

19Construction of ÕTCR is not unique.
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A key observation in [26] is that the task of reconstructing ÕTCR for a given OD can be

performed by using the Hayden-Preskill recovery protocol. Namely, by rotating the above

figures in eq. (5.4) by 180 degrees and bent some arrows, we obtain the following relation:

EPR EPR

≈

EPR EPR

. (5.5)

Here UT represents the transpose of U as the diagram of U is rotated upside down. In

the rotated diagram, D is interpreted as an “input” while its partner is constructed on

the remaining black hole C and just a little bit of qubits on A from the early radiation

R. It is immediate to see that the structure of the diagram is identical to the one for the

Hayden-Preskill thought experiment.

As such, the partner operator ÕTCA can be constructed by using the Hayden-Preskill

recovery protocol from [31], as long as A is bigger than D and OTOCs between A and D

decay.20 It is worth summarizing the discussion so far as follows:

HP recovery: input A reconstruction on BD (5.6)

Interior operator: input D reconstruction on CA. (5.7)

We will study actual expressions of reconstructed interior operators more concretely in a

future work.

5.2 Young black hole

The Hayden-Preskill recovery, as in the original Hayden-Preskill thought experiment, and

the construction of interior operators outlined above can be achieved by using the same

quantum information theoretic technique, namely the reconstruction protocol from [31]. It

is, however, worth emphasizing that these two phenomena, the Hayden-Preskill recovery

and the construction of interior operators, are physically distinct. In the original Hayden-

Preskill thought experiment, the presence of the early radiation R, which is maximally

entangled with the black hole, was essential for the recoverability of input quantum states.

As such, the recovery was possible only for old black holes after the Page time. On the

other hand, the aforementioned construction of the interior operators is possible for young

black holes too as we will see below. In fact, the age of the black hole is not so essential.

20The partners of interior operators are often called mirror operators in the literature. It is an interesting

coincidence that Hayden and Preskill referred to their findings as “black hole as mirror”.
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To see this explicitly, let us consider a young black hole which is not yet maximally

entangled. One may model such a black hole simply as follows:

EPR

=
1√
dR

dR∑
j=1

|j〉DC ⊗ |j〉R (5.8)

where the black hole Hilbert space CD is 2n-dimensional (in a sense that the Bekenstein-

Hawking entropy is SBH = n) while the early radiation R is supported on a dR-dimensional

Hilbert space with dR < 2n. The triangle in the figure denotes an isometric embedding,

emphasizing that DC is bigger than R. Taking dR = 1 would correspond to a one-sided

black hole. The quantum state of interest is obtained by time-evolving the above state:

|Ψ〉 =

EPR

. (5.9)

For such a time-evolved young black hole, let us rotate the diagram to obtain

EPR EPR

. (5.10)

Then it is immediate to see that the partner can be reconstructed on C and some small

subsystem A of R, as long as A is bigger than D. Hence, even when a black hole is young,

the interior operator can be reconstructed by using the Hayden-Preskill recovery protocol

(as long as R itself is bigger than D).
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Another (perhaps more illuminating) way to see that the reconstruction method works

for a young black hole is to start with an old black hole, as in eq. (5.1), and project a

subsystem of R onto some fixed quantum state. Starting from a maximally entangled

old black hole, let us split R into AB as before. Recall that we were able to reconstruct

a partner operator ÕTCA on CA without using B. Let us apply a projection onto some

quantum state |ψ∗〉B supported on B:21

. (5.11)

After the projection, the system reduces to a young black hole which is entangled only

with a small subsystem A. The reconstructed operator on CA works as good as before the

projection since its expression does not involve B at all.22

From these observations, we notice that the aforementioned reconstruction of interior

operators is fault-tolerant against perturbations on R. Fault-tolerance is a quantum in-

formation theoretic term to say that encoding of quantum information is resilient against

some types of errors. Here, the black hole interior operators are immune to rather drastic

noises which would damage all the qubits on B ⊂ R.23 In qubits count, the reconstruction

is robust even if any subsystem of SBH − ε qubits from the early radiation are damaged as

long as ε ' |D|. It is worth emphasizing that one can choose A to be any subsystem of R

as long as OTOCs are small. Moreover, choosing different subsystems A leads to different

expressions of the interior operators ÕTCA. The existence of multiple equivalent expressions

of operators is a key characteristic of quantum error-correcting code. The necessity of such

fault-tolerance was previously pointed out by Maldacena and Susskind [6]. The above ob-

servation provides a physical account on how fault-tolerance is achieved due to scrambling

dynamics of black holes.

So far we have shown that the partner operators can be constructed on CA where

A is a small subsystem in R. In a sense, our construction is only “slightly” non-local as

it uses only a small portion from the early radiation R. However, our construction does

not resolve some of important problems identified in the context of the firewall problem.

First, the reconstruction still requires an access to distant radiation R albeit very little.

Second, the reconstruction is state-dependent. For a generic initial state (I⊗K)|ΦEPR〉, the

recovery protocols should be run with U → UK∗, so the reconstructed operators depend

on K. Relatedly, the quantum circuit complexity of reconstruction can be huge depending

on the complexity of K. We will remove these undesirable features in the next section by

considering the effect of including the infalling observer.

21Note (I ⊗ |ψ∗〉〈ψ|)|EPR〉 = |ψ〉 ⊗ |ψ∗〉.
22More precisely, it is because D is (nearly) maximally entangled with CA when OTOC between A and

D decay. In quantum information theoretic term, the subsystem B is said to be decoupled from D.
23More precisely, it is an erasure error.
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Alice Bob

Figure 6. The AMPS puzzle from the perspective of the monogamy of entanglement. Alice can

distill an EPR pair by accessing AC while Bob can distill an EPR pair by accessing AB. Note that

A can be any subsystem of the early radiation R as long as |A| ' |D| due to scrambling property

of U .

5.3 Monogamy and scrambling

Our finding in this section sheds a new light on the AMPS puzzle through the lens of

quantum information scrambling. The important lesson from the aforementioned recon-

struction is that whoever possesses a tiny portion A of the early radiation R will be able

to see some degrees of freedom which are entangled with the outgoing mode D. Namely,

if A is included to C as degrees of freedom which Alice can access, then she is able to see

an EPR pair between D and AC. On the other hand, if A is left untouched, the outgoing

mode D is entangled with R = AB and Bob is able to see an EPR pair from the outside.

See figure 6 for schematic illustration of the situation.

These statements can be made quantitative by using the monogamy relation of the

mutual information. Decay of OTOCs implies that I(2)(D,AC) is nearly maximal. Since

I(2)(D,AC) + I(2)(D,B) = 2S
(2)
D , this suggests that I(2)(D,B) is close to zero. Namely,

Alice reconstructs D on AC while Bob cannot reconstruct it on B.

It is worth emphasizing that A can be any subsystem of R as long as |A| ' |D|.24
Hence, from the perspective of the infalling observer, it is rather “easy” to steal the EPR

pair from the outside observer as she needs to take a few qubits in R from Bob. We

will make this intuition more precise in section 6 and section 7. In fact, we will show

that generic perturbations to the black hole by the infalling observer will disentangle the

outgoing mode D from the early radiation R without ever accessing R.

6 State-independent interior operators

In the previous section, we have pointed out that the interior operators can be constructed

on the remaining black hole C, together with a little bit of qubits A from the early radiation

R. This construction, however, still suffers from the state-dependence and non-locality

problems.

In this section and the next, we discuss the effect of explicitly including the infalling

observer to the firewall problem. We will show that inclusion of the infalling observer

to the system, no matter how it is done, leads to significant gravitational backreaction

24A common misunderstanding is to think A as qubits which are entangled with D (i.e., the distilled

qubits in the AMPS thought experiment). They are not.
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EPR

Figure 7. Discretized time evolution of a large AdS black hole with long throat. K represents

some complex unitary and At are the confined modes. R is far distant on the right-hand side.

which disentangles the outgoing mode D from the early radiation R. This decoupling

phenomena enables us to construct interior operators in a way independent of the initial

state of the black hole without using any degrees of freedom from the early radiation R.

Hence, the inclusion of the infalling observer enables state-independent interior operators

and resolves the non-locality problem. Yet, the construction depends on how the infalling

observer is introduced to the system. In this sense, our construction is state-independent,

but observer-dependent.

In this section, we will demonstrate that a certain small perturbation to the black hole

is sufficient to disentangle the outgoing mode from the early radiation. The main goal of

this section is to simply point out that it is possible to disentangle the outgoing mode D

from the early radiation R and construct the interior partner without using R. Discussions

on physical interpretations of such a perturbation are given in the next section. Readers

may find the particular scenario we consider in this section rather fine-tuned and artificial.

In the next section, we will see that a similar phenomena occurs without any fine-tuning,

in a rather universal manner, regardless of how perturbations are added to the black hole.

6.1 Long-throat AdS black hole

Let us consider a large two-sided AdS black hole with long throat (i.e., K is highly complex).

The AdS assumption is used to ensure that the black hole does not evaporate. Let us

imagine that the black hole initially starts with (I ⊗K)|ΦEPR〉BR and time-evolves by U

acting on B. Imagine that U is discretized into small time steps:

U = UT · · ·U1. (6.1)

We emphasize that details of the discretization are not important in the following discus-

sion. The quantum state at t = T is depicted in figure 7. Here intermediate Hilbert spaces

are labelled by At, Bt where At corresponds to the modes on the AdS boundary while Bt
corresponds to other degrees of freedom including modes between the boundary and the

stretched horizon as well as other entities living at the stretched horizon.
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We now show that the partner of interior operators D can be reconstructed by quantum

operations which are strictly localized on the left-hand side without ever accessing R.

Consider the quantum state of the black hole at time t:

(Ut−1 · · ·U1 ⊗K)|EPR〉BR. (6.2)

To begin, we append two subsystems E,E, which have the same dimensionality as At at

time t, and prepare EPR pair on EE as shown in figure 8a. The resulting state can be

written explicitly as follows:

|Ψ(t)〉 = (Ut−1 · · ·U1 ⊗K)|EPR〉BR ⊗ |EPR〉EE . (6.3)

Note that the EPR pair on E,E is added to the black hole Hilbert space by hand, and is

not a part of the original Hilbert space. Let us apply SWAP operator between At and E

as shown in figure 8a:

|Ψ′(t)〉 = SWAPAtE
(
(Ut−1 · · ·U1 ⊗K)|EPR〉BR ⊗ |EPR〉EE

)
. (6.4)

Here SWAP is a unitary operator which acts as SWAP(|i〉 ⊗ |j〉) = |j〉 ⊗ |i〉.
The outcome of these operations is depicted in figure 8b. We find that E is entangled

with At. Namely, we notice that E can play the role of A in section 5. Hence, the interior

operators (the partner of operators on D) can be reconstructed on EC by applying the

recovery unitary from the Hayden-Preskill recovery protocol with U ′ = UT · · ·Ut as long as

T − t ' tscr. More explicitly, at time t = T , the quantum state of the black hole is given by

|Ψ′(T )〉 =
(
UT · · ·Ut ⊗ IEER

)
SWAPAtE

(
(Ut−1 · · ·U1 ⊗K)|EPR〉BR ⊗ |EPR〉EE

)
. (6.5)

Given an arbitrary operator OD on D, one can construct a partner operator ÕT
CE

on CE

such that

(OD ⊗ I)|Ψ′(T )〉 ≈ (I ⊗ ÕT
CE

)|Ψ′(T )〉. (6.6)

Due to the additional of the EE system and the SWAP operation, the outgoing mode

D is no longer entangled with the early radiation R. Namely, the partner ÕT
CE

can be

reconstructed without involving the early radiation R ever.

6.2 State-independence

Having constructed a partner operator without using the early radiation R, let us discuss

the problem of the state-dependence. As is evident from figure 8b, the reconstruction of

interior operators depends only on U ′ = UT · · ·Ut. Importantly, it has no dependence on

the unitary K, and hence is state-independent. As such, the reconstruction is not only

efficient with O(|T − t|) quantum circuit complexity, but also independent from the choice

of the initial state (I ⊗K)|ΦEPR〉BR.

The aforementioned protocol works for the case of one-sided AdS black holes. Let us

represent the initial state of the black hole by K|0〉⊗n and time-evolve it by U = UT · · ·U1.

This is equivalent to projecting the right-hand side R in figure 7 onto |0〉⊗n. Since the
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EPR

SWAP

(a)

EPR
(b)

Figure 8. A protocol for an infalling observer to access At. EPR pair is prepared on EE. (a)

SWAP operation between At and E. (b) The outcome. E and At are entangled.

recovery protocol does not depend on any quantum operation on R, be it unitary or non-

unitary, the reconstructed interior operators are independent from the initial state.25 The

important point for us is that OTOCs between A and D decay for one-sided black holes too.

Finally let us return to the discussion of evaporating black holes as originally con-

sidered by AMPS. We model the evaporation dynamics as a sequential application of the

procedures depicted in figure 9. Here At are the confined mode inside the zone whereas

Rt are the modes which escape from the zone and never return. As time passes, Rt joins

the radiation R, and the entropy of the black hole decreases.26 The aforementioned pro-

tocol works successfully by swapping E and At. Here it is crucial for an infalling observer

E to interact with the confined modes At rather than the escaping modes Rt as Rt is

completely decoupled from AtBt. Again, the interior operators can be reconstructed in a

state-independent and low-complexity manner without ever accessing R.

Readers might find that the above construction of the interior operator is rather ar-

tificial and fine-tuned. Obviously, this setup was devised in order to mimic the situation

considered in section 5. One may interpret EE as certain measurement apparatus or physi-

cal probe which is introduced to the black hole Hilbert space.27 In the next section, we will

consider corresponding physical situations and how our reconstruction resolves the AMPS

25When the initial state of the black hole is given by n copies of EPR pairs, projecting R onto |ψ∗〉
will project the black hole on B onto |ψ〉. Naively, this appears to suggest that it might be possible to

influence the black hole on B and its interior by non-unitary operation on R, contradicting with our claim.

The important point is that the 2n-dimensional subspace where the black hole is initially entangled with R

should be interpreted as a coarse-grained Hilbert space with roughly equal energy. As long as projection on

R picks some quantum states of the black hole in thermal equilibrium within the typical energy window,

reconstructed interior operators will behave well. Yet, if projection on R brings the black hole on B to a

quantum state with much higher/lower temperatures, then reconstruction won’t work well. See section 6.3

for further discussion on this point.
26The AdS black hole can be viewed as a limit where Rt disappears.
27Situations analogous to the EĒ-system plus SWAP can be realized by performing informationally

complete measurements (POVMs).
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Figure 9. The dynamics of an evaporating black hole. Rt represents the modes which escape and

join R while At are the confined modes.

puzzle. We will also argue that the underlying physical phenomenon is quite universal in

gravitational systems and does not require fine-tuning.

6.3 Code subspace

We have presented state-independent reconstruction of interior operators that are com-

pletely insensitive to perturbations on the early radiation R. Strictly speaking, this con-

clusion on state-independence is a bit of exaggeration. For instance, large perturbations

added to At will influence the Hamiltonian under which Ut evolves. As such, it is important

to note that the state-independence is an approximate statement.

To understand the validity of the approximation, let us return to the underlying as-

sumption behind using simplified descriptions of quantum black holes as SBH-qubit systems.

In static geometries, the Bekenstein-Hawking entropy SBH can be interpreted as the coarse-

grained entropy. Namely it suggests that there are ≈ 2SBH-dimensional Hilbert space, de-

noted by Hcode, which have an identical classical black hole geometry. This subspace is

spanned by quantum states which correspond to black holes in thermal equilibrium with

the same thermodynamic parameters, such as mass M , angular momentum J and charge

Q. Those black hole microstates, however, differ in a subtle manner. They may differ in

terms of matter content on a fixed geometry and other high energy objects living at the

stretched horizon. Black holes in thermal equilibrium with the same background classical

geometry span the subspace Hcode.

The very motivation in reconstructing interior operators in a state-independent manner

is to understand quantum field theory on a curved space-time experienced by the infalling

observer. This suggests that reconstructed operators must be state-independent on a fixed

black hole geometry, but can be dependent on choices of geometries. Our claim on the

state-independence is restricted to the validity of SBH-qubit toy models, and hence is an

approximate statement inside the subspace Hcode which is determined by the classical black

hole geometry.

These interpretations become sharp in the context of the AdS/CFT correspondence.

In [20], Almheiri, Dong and Harlow proposed that the subspace Hcode can be interpreted as

a codeword subspace of a quantum error-correcting code. Their insight, as well as concrete
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toy model of such a scenario [21], suggests that bulk operators can be interpreted as logical

operators which label different codeword states in Hcode.
28

From the perspective of the boundary Hilbert space, one may also interpret the origin

of the codeword subspace Hcode by relying on the Eigenstate Thermalization Hypothesis

(ETH) [66]. In particular, for strongly interacting quantum many-body systems, eigen-

states from a tiny energy window are expected to look thermal in small subsystems. One

may think that the subspace Hcode is spanned by these wavefunctions contained in the

small energy window.

Keeping this caveat in mind, our claim in a more precise term is that the reconstruction

of interior operators is fault-tolerant against perturbations added to the entangled partner

R as well as any quantum operations added before time t, provided that the black hole

is initially in thermal equilibrium.29 We also believe that the above claim includes cases

of evaporating black holes where the system reaches thermal equilibrium quickly. The

typical time scale for our reconstruction procedure is the scrambling time which is of

order ≈ rS log rS in the Schwartzshild black hole whereas the thermalization time for small

perturbation is of order ≈ rS ≈ 1
T .

7 Backreaction by infalling observer

In this section, we show that gravitational backreaction by the infalling observer, who

simply fall into a black hole, disentangles the outgoing mode D from the early radiation

R. As a result, the infalling observer crosses the horizon smoothly and observes quantum

entanglement between the outgoing mode D and the interior mode D. We also show

that the interior mode D is insensitive to any perturbations to the early radiation R from

geometric perspective. Our conclusions will be supported quantitatively by using decay of

OTOCs.

7.1 Including Alice

Our reconstruction protocol required an access to the earlier mode. Readers might think

that we have just traded the spatial non-locality with the temporal non-locality. The

infalling observer can access earlier modes by simply falling into the black hole earlier. To

be concrete, let us focus on the two-sided eternal AdS black hole. Let D be the outgoing

mode that reaches the boundary at t = 0 as shown in figure 10a. As an infalling observer,

one may consider some apparatus M which departs the boundary at t = −∆t. To minimize

the effect of adding M , one may consider a limit where M assumes the smallest possible

energy, say ≈ 1/β. Here the apparatus M travels along the infalling mode A at t = −∆t.

To understand the effect of M , it is convenient to draw the partner mode D̃ in the

Penrose diagram. The reason why we used D̃ instead of D will become clear later. Here

the trajectory of D̃ can be constructed by rotating the trajectory of D by 180 degrees as

in figure 10a. Near the horizon, D and D̃ can be viewed as Rindler modes in the opposite

28When perturbations being the system completely outside Hcode, the Hayden-Preskill recovery phe-

nomenon may not be possible as discussed in [56].
29By thermal equilibrium, we mean that time-ordered correlation functions reach their stationary values.
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(a) (b)

Figure 10. (a) The effect of an apparatus M . (b) The protocol from section 6.

regions. Near the boundary, D and D̃ can be viewed as entangled degrees of freedom

in the boundary conformal field theory which is in the thermofield double state. In the

absence of the apparatus M , Bob can verify the entanglement between D and D̃ by simply

measuring the correlation functions between them. Also, one may explicitly compute the

mutual information I(D, D̃) by using the Ryu-Takayanagi formula [67]. Here the interior

operator D̃ is constructed exclusively on the early radiation R (or degrees of freedom in

the right hand side).

However, in the presence of the measurement apparatus M , Bob’s quantum entangle-

ment between D and D̃ is disturbed. Precise form of interactions between the apparatus M

and other degrees of freedom is not so important. In fact, the interaction is universal in a

sense that it is a gravitational effect. Namely, since M becomes a gravitational shockwave

which shifts the geometry near the horizon, the correlation function between D and D̃ de-

cays. The two-point correlation functions between D and D̃ in the presence of a shockwave

is identical to OTOCs defined for a thermal state [52]. As such, when ∆t ' tscr, Bob can

no longer verify the entanglement between the outgoing mode D and the early radiation

R by measuring D and D̃. This hints that Bob’s quantum entanglement is destroyed by

the infalling observer who has crossed the horizon.

One might think that this observation does not fully deny a possibility that the out-

going mode D is entangled with some other degrees of freedom in the early radiation R.

In order to make a more quantitative argument, let us explicitly study the effect of adding

the apparatus M . Suppose that the quantum state of a black hole is given by EPR pairs

|ΦEPR〉ABR at t = −∆t. We then append the subsystem for the apparatus M to the

black hole. We assume that M starts with some particular pure state, say |0〉. Under the

time-evolution by a unitary operator U , we obtain the following state:

(UBAM ⊗ IR)(|0〉M ⊗ |ΦEPR〉BAR) =

EPR

. (7.1)
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Here we increased the Hilbert space dimension of the black hole in order to account for

the increase of the coarse-grained entropy due to the inclusion of M .30 We assume that

this extension of the Hilbert space via equilibration occurs in thermalization time which is

much shorter than the time scale of applying U (or scrambling time). If U is Haar random

unitary operator, one can show that I(C,D) becomes nearly maximal when |M | ' |D|2.
This suggests that quantum entanglement between D and R, which Bob would have seen,

disappears as a result of including M . We emphasize that this argument on I(C,D) is not

limited to the AdS/CFT correspondence as it only requires the quantum state of a black

hole to be maximally entangled.

A similar setting was previously considered by Verlinde and Verlinde in a slightly

different context [22], and we will make further comments on their work in appendix B.

While the aforementioned estimate assumes that U is a Haar random unitary, one can

relate certain average of OTOCs to the mutual information I(C,D) for the state defined

in eq. (7.1). Again, generic decay of OTOCs is sufficient to show that I(C,D) is nearly

maximal.31 Also, further analysis with energy conservation into consideration suggests

that |M | ' |D| is sufficient to restore nearly maximal correlation in I(C,D) as discussed

in appendix A.

7.2 Sending probes

In the previous subsection, we discussed the effect of including the infalling observer (or a

measurement apparatus). The situation, however, differs from the reconstruction method

in section 6 in a subtle detail. Also we had to change the size of the black hole Hilbert

space by includingM . Here we consider a situation which exactly mimics our reconstruction

method.

Instead of adding the apparatus M , we think of replacing the infalling mode A at

t = −∆t with some “probe” mode. Let us prepare the EPR pair on EE. Let the outgoing

mode A at t = −∆t escape from the boundary and replace the infalling mode A with E

while keeping E as a reference qubit. See figure 10b for the illustration. Here the earlier

outgoing mode A and the reference E remain outside the boundary whereas E probes

the bulk. This is essentially identical to the protocol with SWAP operation discussed

in section 6. Decay of OTOCs implies that I(2)(D,EC) becomes nearly maximal which

suggests that the outgoing mode D and EC are indeed entangled. This also implies that

D is no longer entangled with R due to the monogamy of quantum entanglement. Instead,

it is entangled with the interior mode D which we constructed on section 6. Again, this

argument is not particularly limited to the AdS/CFT correspondence.

We have seen that including EE also disentangled the outgoing mode D from the

early radiation R. One merit of introducing the probe mode EE as in section 6 is that

the size of the Hilbert space for the black hole itself does not change. Note that this

protocol differs from the scenario in the previous subsection where an apparatus M was

introduced. Nevertheless, we believe that these differences, which result from how we

30The increase of the entropy is approximately given by E/T where E is the energy of M including its

rest mass and T is the temperature.
31This statement can be shown by a slight generalization of results from [28, 31].
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include the apparatus M in the black hole Hilbert space, do not affect our main conclusion

significantly. Some readers may find inclusion of extra objects, such as the apparatus M

and the ancilla qubits EE, uncomfortable. The reason why we need to introduce extra

degrees of freedom is that a black hole is treated as a system of discrete finite-dimensional

qubits, and hence, there is no room for adding probes. In a more realistic field theoretic

formulation, one may simply turn on the source term which creates the “apparatus” or the

“probe mode” as an excitation.

Regardless of how the probes or the apparatus are introduced, what is important

for us is that OTOCs between M (or A) and D decay after the scrambling time. From

gravitational perspective, this is a universal phenomenon resulting from the surface gravity

and shockwave geometries. From quantum information theory perspective, this is sufficient

to prove that the outgoing mode D is disentangled from the early radiation R and D can

be reconstructed on A and C without involving R. Hence, the disentangling phenomenon

occurs universally no matter how she falls.32

Finally we speculate on non-uniqueness of reconstruction of interior operators. From

the perspective of the outside observer, the interior operator is realized as D̃ supported

on R. On the other hand, from the perspective of the infalling observer who travels along

the infalling mode A, the interior operator is realized as D which is supported on the

remaining black hole C and the infalling mode A. Hence, we propose that reconstruction

of D from section 6 corresponds to quantum mechanical operators for the infalling observer

who departed at t = −∆t.33 In principle, the infalling observer may choose to fall into a

black hole at any time by following any trajectory as long as it does not violate the causality.

We speculate that different infalling trajectories correspond to different reconstructions of

interior operators. An explicit relation between trajectories and reconstructions, however,

is beyond the scope of this paper.34

32One might wonder whether an observer can be introduced in a way which introduces no backreaction.

From the outside quantum mechanical viewpoint, this appears to be not possible if the perturbations are

added on one side of the black hole. Our argument relies on decay of OTOCs which is a rather generic

feature of interacting quantum many-body systems. It is in principle possible that the value of OTOCs

returns to O(1) value after a very long time (of the order the quantum recurrence time). But in time scales

which are relevant to the AMPS puzzle, we believe that OTOCs decay monotonically to a small stationary

value and then oscillates around it. We believe that such a conclusion can be mathematically proven

by utilizing ETH. One possible way to undo the effect of backreaction is to perform the Hayden-Preskill

recovery protocol by accessing both sides of the black hole as we discuss later.
33Although we have included an observer or an apparatus, one can discuss the monogamy of entangle-

ment purely from the operator algebraic perspective. The important point is that representations of basis

operators for D on AC and AB do not necessarily commute.
34In the aforementioned scenarios, infalling observers were introduced to the system by appending ancilla

Hilbert spaces. Readers might wonder if addition of ancilla systems are necessary to achieve the disentan-

gling phenomena or not. One can actually avoid the use of ancilla systems simply by considering a more

physical realistic description of black holes, at least within the context of the AdS/CFT correspondence.

Let HCFT be the full Hilbert space of the CFT and consider a black hole at temperature β which lives on

a subspace Hβ ⊂ HCFT consisting of microstates at the same temperature. Inclusion an infalling observer

or measurement apparatus increases the entropy of the black hole by ∆S = E
T

. The point is that physics

of adding infalling observers can be discussed in the full CFT Hilbert space HCFT.
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Figure 11. The infalling observer as a gravitational shockwave. The interior mode D is outside a

shaded region that may be influenced by quantum operations on the right hand side. The original

mode D̃ emerges from the right hand side, and is not longer entangled with D.

7.3 Geometric interpretation

We have argued that the outgoing mode D is disentangled from the early radiation R

(or the right hand side) due to the decay of OTOCs caused by the infalling observer.

Our primary focus was on assessing the effect of backreaction from the outside quantum

mechanical description. Here we present geometric interpretation of our discussion.35

For simplicity of discussion, let us consider the AdS eternal black hole. Given the out-

going mode D, one possible representation of interior partner operators can be constructed

by time-evolving a corresponding mode on the right hand side. This operator, constructed

exclusively on the degrees of freedom on the right hand side, was denoted by D̃. We now

include the effect of the infalling observer M as a gravitational shockwave and draw the

backreacted geometry where the horizon is shifted as depicted in figure 11. If the time

separation between the outgoing mode D and the infalling observer M is longer than or

equal to the scrambling time, the interior mode D can be found across the horizon and is

outside the causal influence of any operations on the right hand side. This is the geometric

explanation of the fault-tolerance and state-independence of the interior operator D. It is

worth noting that a similar observation applies to generic black holes in thermal equilib-

rium.36 Here it is important to note that the interior mode D in a backreacted geometry

is different from the original partner operator D̃.

This geometric interpretation enables us to deduce the experience of the infalling ob-

server. From the backreacted geometry, we see that the infalling observer can cross the

horizon smoothly and observe the entangled pair D and D. According to the causal struc-

ture, after observing the interior mode D, Alice eventually enters a region which may be

affected by quantum operations on the right hand side. Inside this region, shaded in fig-

ure 11, Alice may be hit by a gravitational shockwave created by the outside observer,

according to the backreacted geometry. It is, however, unclear to us whether perturbations

on the right hand side can actually influence the experience of the infalling observer at all

35I thank Xiaoliang Qi and Ying Zhao for useful discussions on this.
36Here we treated the effect of the perturbation by Alice first on the left hand side, and then discussed

the effect of the perturbations added on the right hand side. One might wonder why we did not treat the

effect of the perturbation on the right hand side first. According to the structure of quantum entanglement

implied by decay of OTOCs, we should treat the effect of the perturbation on the left hand side first when

addressing the experience of the infalling observer from the left hand side.

– 29 –



J
H
E
P
1
0
(
2
0
1
9
)
1
3
2

in the absence of non-local interactions between the left and right hand sides (or between

the remaining black hole and distant early radiation). In fact, we do not think that per-

turbation on R influences Alice’s infalling experience at all if it is strictly localized on R.

In any cases, quantum operations on the right hand side do not affect Alice’s experience

of crossing a smooth horizon and seeing D and D.

8 On definition of state-independence

Some previous studies suggest that black hole interior operators must be state-dependent.

In this section, we revisit these no-go arguments for state-independence and discuss how

our construction avoids them. The main message is that our construction does not depend

on the initial state of the black hole, but does depend on how the infalling observer is

introduced, being state-independent, but observer-dependent.

8.1 No-go arguments

Let us briefly recall some versions of the no-go arguments for state-independence for an

old black hole. Consider a maximally entangled black hole:

|Ψ〉 = (I ⊗K)|EPR〉CDR (8.1)

where C is the remaining black hole, D is the outgoing mode and R is the early radiation.

Here R can be decomposed into C and D such that C and D are entangled with C and

D respectively. Given a unitary operator OD acting on D, a partner operator ÕCR must

satisfy

(OD ⊗ ICR)|Ψ〉 ≈ (ID ⊗ ÕCR)|Ψ〉. (8.2)

One possible representation can be constructed as follows:

ÕCR = KOT
D
K† (8.3)

by using the fact (OD ⊗ ICCD)|EPR〉 = (OT
D
⊗ ICDC)|EPR〉. However, this construction

clearly depends on the initial state of the black hole.

Next, let us recall the argument for a young black hole where the early radiation R is

absent. Consider a “typical” pure quantum state |Ψyoung〉CD. For the sake of discussion,

one may assume that |Ψyoung〉CD is drawn randomly from the Haar measure. If |D| � |C|,
the mutual information I(C,D) is nearly maximal (for typical states). Hence, given a

unitary operator OD, a partner operator ÕC does exist:

(ÕC ⊗OD)|Ψyoung〉CD ≈ |Ψyoung〉CD. (8.4)

For a given |Ψyoung〉CD and OD, let us fix ÕC and ask if ÕC is also a partner operator for

some other typical pure quantum state |Ψyoung′〉CD. The answer is clearly no since C and

D are entangled in a way which depends on each quantum state.
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A similar conclusion can be also obtained by considering an average over typical quan-

tum states. Observe the following relation∫
d|Ψ〉 〈Ψ|CD(ÕC ⊗OD)|Ψ〉CD =

1

2n
Tr(ÕC ⊗OD) (8.5)

where the integral is taken over the Haar measure. If ÕC were partner operators of OD
for |Ψ〉CD, we would have 〈Ψ|CD(ÕC ⊗ OD)|Ψ〉CD ≈ 1. But the r.h.s. becomes zero for

traceless unitary operators, such as Pauli operators. Hence one cannot choose the partner

operators in a state-independent manner.37

8.2 Observer-dependence

Our construction of the black hole interior operators avoids the above no-go arguments

simply due to the fact that it does not give partner operators for the initial state of the

black hole, but for a slightly perturbed state after the inclusion of the infalling observer.

To see this point explicitly, let us recall how the interior operators were reconstructed after

including the infalling observer, specifically the scenario discussed in section 7.1. Let |Φ(0)〉
be the initial state of the black hole, which can be two-sided or one-sided (old or young).

In section 7.1, we explicitly appended an infalling observer to the system:

|Φ′(0)〉 = |Φ(0)〉 ⊗ |0〉M . (8.6)

After the inclusion of the infalling observer, the whole system time-evolves by some chaotic

unitary U :

|Φ′(t)〉 = U(t)|Φ′(0)〉. (8.7)

What we have constructed, by the use of the Hayden-Preskill recovery protocol, are the

interior partner operators for the quantum state |Φ′(t)〉, not for the unperturbed original

quantum state |Φ(t)〉. As such, previous no-go arguments do not apply to our construction.

It is, however, worth emphasizing that we are not entirely free from dependence on

specifics of the system. Namely, our construction manifestly depends on how the infalling

observer is introduced to the system. For instance, if a different initial state of the infalling

observer is chosen (say |1〉) in eq. (8.6), the expression of interior operators would be

different. Hence, while our construction of interior operators does not depend on the

initial state of the black hole |Φ(0)〉, it does depend on observers.

Similar justifications hold for other scenarios of introducing infalling observers to the

black hole. For instance, we have illustrated the use of an ancilla mode E as a physical

probe to the black hole. In this case, the reconstructed interior operators are of course

the ones for perturbed states with such ancilla modes. It is unclear to us how to treat the

inclusion of the infalling observers on a unified footing. But formally, this procedure can

be expressed as an isometric quantum operation:

|Φ′(0)〉 = Ω(|Φ(0)〉). (8.8)

37Arguments along this line are also used as an evidence for firewalls in typical black hole microstates [9].
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Here the isometry Ω accounts for all the quantum operations associated with the inclusion

of the infalling observer. Generally speaking, Ω consists of some simple (low complexity)

unitary operations as well as addition of ancilla systems. Obviously, |Φ′(0)〉 depends on the

choice of the initial state |Φ(0)〉 as well as how the infalling observer is introduced, namely

the map Ω. After the inclusion of the infalling observer, the black hole time-evolves by

some chaotic dynamics: |Φ′(t)〉 = U(t)|Φ′(0)〉. Our claim is that construction of interior

operators for such a slightly perturbed black hole |Φ′(t)〉 does not depend on the initial

state |Φ(0)〉, but depends on the map Ω. Discussions on actual expressions of interior

operators for each possible scenario of introducing infalling observers will be given in a

future work.

9 Resolution of AMPS puzzle

In this section, we present a resolution of the AMPS puzzle.

9.1 AMPS thought experiment

Let us consider a version of the AMPS thought experiment. Given an old black hole that

is maximally entangled with the early radiation R, consider an outgoing mode D which

has been just emitted from the black hole. The outgoing mode D is entangled with some

degrees of freedom in the early radiation R. The outside observer Bob distills a qubit (or

qubits) D̃ that is entangled with the outgoing mode D by performing some careful quantum

operation on R. Bob may isolate the qubit D̃ from the black hole or hand it to Alice who

is about to fall into a black hole. After crossing the horizon smoothly, Alice will see an

interior mode D which is entangled with the outgoing mode D. This, however, leads to a

contradiction because D is also entangled with D̃.

The fallacy of the above argument is clear. When Alice falls into a black hole, the

outgoing mode D is disentangled from the distilled qubit D̃ due to the backreaction which

makes OTOCs decay. Furthermore, Alice will observe the interior mode D which is distinct

from the original partner mode D̃ and is independent of initial states of the black hole.

Hence, the monogamy of quantum entanglement is not violated. Recall that the approaches

bundled under “A = RB” try to interpret D̃ and D as the same physical degrees of freedom.

Here we argued that they must be different. In fact, D and D̃ have no relevance at all as

D is state-independent. Furthermore, D can be constructed in the same manner for young

black holes.38

38The AMPS argument relies on three key assumptions; a) unitarity b) no drama (i.e., smooth horizon)

and c) effective quantum field theory outside the horizon. Note that a) results from quantum mechanics

while b) and c) result from general relativity, namely the equivalence principle. We have assumed unitary

quantum evolution and argued that the horizon must be smooth. Hence, the assumption c) must be violated.

The essential point in our argument is that the outgoing mode D is disentangled from the distilled qubit

D̃. This conclusion was obtained from decay of OTOCs. Calculations of OTOCs generically go beyond

näive effective quantum field theory. In its simplest form at the massless limit, the perturbation becomes a

gravitational shockwave and leaves significant backreaction to the geometry. Such a calculation goes beyond

effective quantum field theory on a fixed background geometry.

– 32 –



J
H
E
P
1
0
(
2
0
1
9
)
1
3
2

It is worth comparing our proposal with the previous proposal by Maldacena and

Susskind, an approach often called “ER = EPR”. They argue that the distillation of the

qubit D̃, as well as quantum operations afterwards by Bob, creates perturbations which

will become a high-energy density near the horizon. Furthermore, they argue that this

perturbation spoils the quantum entanglement between D and D̃ and creates a firewall.

As such, Alice is not able to observe entanglement between D and D̃.

While we also concluded that D and D̃ are not entangled due to perturbations, the

underlying physical mechanism differs in a crucial manner. In our scenario, D and D̃ are

disentangled due to the backreaction by the infalling observer herself, not due to Bob. Also,

despite the loss of entanglement between D and D̃, Alice still crosses the horizon smoothly

and observe the entangled pair D and D since D is realized as a mode different from the

original mode D̃. After observing the interior mode D, Alice may be (or may not be) hit

by a gravitational shockwave which Bob creates, but this has nothing to do with quantum

entanglement between D and D.

In summary, we propose the following resolution of the AMPS puzzle:

1) An infalling observer leaves non-trivial gravitational backreaction no matter how she

falls. This disentangles the outgoing mode from the early radiation.

2) The infalling observer crosses the horizon smoothly and observes quantum entanglement

between the outgoing mode and the interior mode.

3) The interior mode which the infalling observer sees is distinct from degrees of free-

dom that were originally entangled with the outgoing mode. Hence the monogamy of

entanglement is not violated.

4) Reconstructions of interior operators are not unique. Different reconstructions of the

interior operators correspond to different infalling trajectories that the infalling observer

follows.

In figure 12, we summarized the original AMPS argument, previous proposals along

the lines of ER = EPR, and our proposal.

9.2 Revisiting firewalls

We have argued that the infalling observer sees quantum entanglement while the outside

observer does not due to the backreaction by the infalling observer. It is also intriguing to

consider a possible scenario where the outside observer can see quantum entanglement while

the infalling observer does not. We have already refuted previous proposals which suggested

that verification of quantum entanglement, namely the distillation of the entangled qubit D̃

on the early radiation R, generates a high-energy gravitational shockwave which prevents

the infalling observer from crossing the horizon smoothly.

Here we propose a physical mechanism for Bob to protect quantum entanglement from

the backreaction by Alice. Recall that Alice can see quantum entanglement by interacting

with earlier mode At. Bob’s strategy, then, would be to retrieve At from Alice and bring
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Figure 12. Schematic pictures of (a) the AMPS argument, (b) some previous proposals and (c)

our proposal.

it back to his possession. One concrete (and peaceful) method is to run the Hayden-

Preskill recovery protocol from the outside and pull Alice herself to the outside! That

is, by preventing Alice from falling into a black hole, Bob is able to protect quantum

entanglement between the outgoing mode and the early radiation. Since Alice does not

cross the horizon, she will not see quantum entanglement.

At this point, it is pretty satisfying to recall how the recovery protocols of [31] work,

reviewed in section 3. The first protocol proceeds by verifying the entanglement between

the outgoing mode D and its partner D. This is essentially Bob’s attempt to observe the

EPR pair between D and R by applying the EPR projection operator. The second protocol

achieves this goal in a deterministic manner by unitarily restoring DD to be EPR pairs.

Both protocols verify the EPR pair between D and R, and steal the EPR pair from Alice

by preventing her from crossing the horizon.39

39The first protocol projects DD onto EPR pair. Since I(D,D) = max, we have I(D,AC) = 0 suggesting

that D cannot be reconstructed on the left hand side. Since I(A,A) ≈ max, Alice traverses the wormhole.

So, we conclude that Alice does not see the EPR pair and simply returns to the outside. If we project

DD onto other entangled states, such as 1√
2
(|01〉 + |10〉), we still have I(D,D) = max and I(D,AC) = 0.

However, I(A,A) is not necessarily large. Hence, we conclude that Alice does not see the EPR pair. And

unfortunately, she does not return to the outside.
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Based on this observation, we make the following proposal as physical interpretation of

firewalls that may arise from the outside observer’s verification of quantum entanglement:

1) An outside observer creates a non-trivial backreaction for an infalling observer by ver-

ifying (or protecting) quantum entanglement between the outgoing mode D and the

early radiation R.

2) However, it does not kill an infalling observer. Instead, it saves her from falling into a

black hole recklessly.

3) Since an infalling observer does not cross the horizon, she will not be able to see quantum

entanglement.

The backreaction from Bob’s verification of quantum entanglement is different from

either high-energy barrier or some hard wall which would terminate the geometry at the

horizon. It is worth noting that the Hayden-Preskill recovery, as well as the traversable

wormhole, can be interpreted as a shockwave with negative energy.

9.3 Puzzle on non-local interactions (and its resolution)

One mysterious feature of the AdS/CFT correspondence is an apparent non-locality behind

the horizon in the two-sided black hole. The CFT Hamiltonian on the boundary is given by

H = HL+HR and the Hilbert space factorizes into the left and right. (See [68] for problems

related to the factorization of the Hilbert space). Imagine two observers who start from left

and right boundaries respectively and meet inside the black hole. This can be achieved in

principle by starting at sufficiently early time. Two observers may interact with each other

when they meet. From the perspective of the boundary quantum mechanical descriptions,

however, this seems to imply some non-local coupling between left and right.

We have encountered an analogous problem in the context of the AMPS puzzle where

the infalling observer jumps into a black hole and sees the interior mode. Suppose that

every possible representation of interior modes requires degrees of freedom on the right

hand side. Suppose that she crosses the horizon smoothly and can observe the interior

mode. This suggests that there must be some interaction between degrees of freedom on

the left and right hand sides of the AdS black hole, leading to a contradiction.

The resolution of this non-locality puzzle can be obtained straightforwardly. By falling

into a black hole, Alice leaves a backreaction and creates a replicated mode D which consists

exclusively of the left hand side degrees of freedom. Since she does not interact with D̃

on the right hand side, there is no contradiction.40 Our viewpoint is that the black hole

40A common misguided approach to the non-locality problem in the two-sided AdS black hole goes as

follows. “From the boundary perspective, whether Alice has interacted with the partner mode D̃ on the

other side or not cannot be verified from either boundary because the interaction would happen behind the

horizon. Yet, the interaction between Alice and D̃ can be seen by coupling two boundaries in a suitable

manner, e.g. via the traversable wormhole effect. The interaction between Alice and D̃ does not lead to

contradiction because two boundaries need to be coupled for verification of the interaction”. We do not

think this is a correct resolution of the non-locality problem. As we have rigorously demonstrated in this

paper, the infalling observer will disentangle D from D̃ and create a new interior mode D exclusively on
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interior for an infalling observer emerges due to scrambling dynamics, not due to quantum

entanglement between the left and right hand sides. We hope to address this issue further

elsewhere.

10 Discussions

In this paper, we argued that the AMPS puzzle does not lead to inconsistencies by pre-

senting state-independent reconstructions of interior operators. It is an interesting future

problem to verify the proposed scenario in concrete models of quantum black holes. We

are currently working on writing the interior operators in an explicit manner, namely in

the SYK model.

While we have focused on the AMPS puzzle in black hole horizons, it will be interesting

to ask about cosmological horizons. In the dS space, a shockwave shifts the horizon in the

opposite direction, making the Penrose diagram “taller”, in a way similar to sending a

negative energy shockwave in the AdS space. As such, our proposed resolution for the

firewall problem in black hole horizons does not apply to the problem in cosmological

horizons. One possible scenario may be that the backreaction by an existing observer

recedes the horizon away so that she cannot actually cross the cosmological horizon.

In the reminder of the paper, we present discussions and speculations on relevant

topics.

10.1 Early time

Since OTOCs start to decay significantly around the scrambling time, Bob can verify

quantum entanglement between the outgoing mode D and the early radiation R when

∆t � tscr even if Alice has fallen into a black hole. This, however, suggests that Alice

should not be able to observe quantum entanglement when crossing the horizon! For this

reason, our proposal resolves the AMPS puzzle only when ∆t ' tscr. There are three

possible physical explanations for the DD pair with ∆t� tscr.

The first explanation concerns the applicability of effective quantum field theory near

the singularity. In the Penrose diagram of the AdS black hole, one notices that Alice meets

D very close to the singularity for ∆t� tscr. Hence the validity of quantum field theory is

questionable. This observation seems to suggest that Alice may not be able to see quantum

entanglement for small ∆t.

The second explanation concerns the quality of quantum entanglement that Alice may

be able to see. Recall that the proper temperature near the Rindler horizon is given by

T = 1
2πρ where ρ is the proper distance from the horizon. As one goes away from the

horizon, the density of thermal entropy becomes smaller. Namely, one needs to coarse-

grain a larger volume in order to distill a single EPR pair. In order for Alice to meet the

outgoing mode D near the horizon, she needs ∆t ' rS log rS in the Schwartzshild black

her side of the boundaries. Namely, D̃ has nothing to do with her infalling experience. Furthermore, we

think that it is possible to see the interior mode D via a careful quantum operation acting only on one side

of the black hole, namely by performing the Hayden-Preskill recovery protocol on one side. See section 10.2

for further discussions.
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hole which is of order the scrambling time. As such, we speculate that ∆t ' rS log rS is

necessary for Alice to see a good quality EPR pair.41

The third explanation is to assert that the loss of quantum entanglement for modes

away from the horizon does not lead to significant violation of effective quantum field

theory descriptions. The loss of entanglement in the Rindler modes near the horizon

will create high energy density as entanglement is at short distance scale. For small ∆t,

however, the Rindler modes in question are separated by a long distance, and hence the

loss of entanglement cannot be detected by simple local physical observables. Such tiny

deviations may be superseded by e.g., curvature corrections.

See appendix C for further discussions on the reconstruction of interior operators for

small ∆t. The important point is that construction of D is almost state-independent even

when ∆t is small. We think that this phenomena may be of independent interest in the

context of quantum many-body physics.

10.2 Peeking in through the horizon

While we have used the Hayden-Preskill recovery protocols as a mathematical tool to

reconstruct interior operators, it is intriguing to think of physically implementing them

on a black hole as an actual physical process. Let us focus on the probabilistic recon-

struction protocol outlined in section 4. The initial state of the black hole is given by

|EPR〉A′A|EPR〉BR where A′ is the reference system of A. After the black hole evolves by

a unitary operator U , the outgoing mode D is kept outside the black hole. We prepare

an additional EPR pair. The half of the EPR pair is thrown into a black hole while the

other half, denoted by D, is kept outside the black hole. We then implement the inverse

U † to the system. Finally, we project A′A onto the EPR pair. This leaves DD to be a

nearly ideal EPR pair. Figure 13 summarizes the reconstruction of the interior operator

as a physical process.

Let us ponder over possible geometric interpretation of these protocols. Since A′A

is projected to the EPR pair, an input quantum state on A would remain invariant and

reappear as the same quantum state on A. This suggests that the infalling observer, who

fell into a black hole, returns to the outside again safely.42 This is not surprising as we

applied the inverse U †. What is surprising is that the outgoing mode D is entangled with

another mode D which is left outside the black hole. One possible interpretation is that,

due to the backreaction of the Hayden-Preskill recovery protocol, the interior operator D

is somehow pulled to the outside of the black hole. Hence, the infalling observer appears

to cross the horizon smoothly and returns safely with the interior mode in hand!

41This observation enables us to obtain “upper bound” on the scrambling time. If the scrambling time tscr,

in a sense of decay of OTOCs, is longer than ≈ rS log rS , Bob can verify the EPR pair when ∆t ≈ rS log rS .

However, Alice can also see the EPR pair, leading to the violation of monogamy of entanglement. As such,

we arrive at tscr / rS log rS . Recalling that the Hayden-Preskill thought experiment says tscr ' rS log rS ,

one may conclude tscr ≈ rS log rS .
42More precisely, we applied a projection operator to pick an event where the infalling observer returns

safely. This works only probabilistically. One may apply the deterministic version of the Hayden-Preskill

recovery protocol to make this happen deterministically.
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Figure 13. Reconstruction of the interior operator D. If DD were to be measured in EPR pair,

A and A must be identical quantum states.

As this speculation suggests, reconstruction of the interior operators by the Hayden-

Preskill recovery protocols enables us to probe the physics behind the horizon from the

outside even when the black hole is one-sided. To turn the speculation into a concrete

observation, it may be interesting to consider a similar process by using the Gao-Jafferis-

Wall traversable wormhole.

10.3 Entanglement wedge reconstruction

We have presented a protocol to reconstruct interior operators by using the Hayden-Preskill

recovery. Hence it is reasonable to expect that the Hayden-Preskill recovery is useful in

reconstructing operators in the entanglement wedge. Progresses along this line have been

recently made by Almheiri [18]. Since operators in the entanglement wedge must be in-

terpreted as quantum field theory operators on a fixed geometry, state-independent recon-

structions must be possible. We expect that our results are useful in achieving this goal.
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A Energy measurement

We have presented a protocol to reconstruct the interior operator D without involving

the early radiation R. Our protocol requires EPR pairs in the ancilla system EE which

– 38 –



J
H
E
P
1
0
(
2
0
1
9
)
1
3
2

interact with the earlier mode A in a particular manner. Here we argue that much simpler

and generic interaction can achieve this goal.

To set the stage, we elaborate on the issue briefly mentioned in section 2.1. Let

us denote the orthonormal basis of the outgoing mode D by |n〉 ∈ HD. According to

the standard rules of statistical physics, the reduced density operator on D should look

thermal:

ρD =
∑
n

wn|n〉〈n|, wn =
e−βEn

Z
(A.1)

with Z =
∑

n e
−βEn . The discrepancy with ρD in eq. (2.2) originates from the total

energy conservation. In particular, energy densities on C an D are correlated. An analysis

with energy conservation taken into consideration indicates that ρCD sustains diagonal

correlations in the |n〉-basis while off-diagonal correlations decohere due to scrambling

dynamics (i.e., correlations are classical) [26].

The above observation prompts us to consider two different classes of operators on D.

The off-diagonal operators are the ones which may change the energy eigenstates (or the

particle number) in D. The interior partners of those can be identified in C as operators

which decrease and/or increase the energy density. This is due to diagonal correlations in

ρCD. The diagonal operators are the ones which leave energy eigenstates unchanged up to

phases. Such operators can be explicitly written as follows:

Oθ =
∑
n

eiθn |n〉〈n|. (A.2)

Here θ represents all the data about θn. Unlike off-diagonal operators, the interior partners

of diagonal operators Oθ cannot be found in C.43

Off-diagonal correlations can be restored by simply measuring the energy of the earlier

mode A. The procedure of quantum measurement can be formulated as a unitary process

in the following manner. We adjoin the system to a pointer system E whose dimensionality

is equal to A. Denote the orthonormal basis by |n〉E . If we start the system in an arbitrary

pure state |ψ〉 =
∑

n cn|n〉A, the measurement leads to the evolution:

|ψ〉A|0〉E →
∑
n

cn|n〉A|n〉E (A.3)

under the unitary operator

W =
∑
n

|n〉〈n|A ⊗XE
n (A.4)

where X =
∑

j |j + 1〉〈j| is the Weyl operator (a generalization of Pauli-X to multi-level

systems).

43Off-diagonal partners exist due to the existence of diagonal correlations. Diagonal partners do not exist

due to the absence of off-diagonal correlations.
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The important point here is that applying M allows Alice to “copy” Oθ from A to E.

This can be most explicitly shown by noting the following identity:

= (A.5)

which holds for any density operator σA. Hence, from the outside description, all Alice

needs to do is measure the energy (or the particle number) of the earlier mode A. The

interior operator D can be reconstructed in the pointer E and the remaining black hole C.

B Verlinde-Verlinde proposal

Verlinde and Verlinde proposed an intriguing resolution of the AMPS puzzle by employing

the idea of quantum error-correction [22]. To illustrate the idea in a simplified setting,

suppose that a black hole B is entangled with the early radiation R only in the codeword

subspace HB0 ⊂ HB with HB0 = {|j̃〉}|B0|
j=1 . Specifically, consider a quantum state given by

|Ψ〉BR =
1√
|B0|

|B0|∑
j=1

|j̃〉B ⊗ |j̃〉R (B.1)

where |B0| � |B|. Here, by the “codeword subspace”, we simply mean that |B0| < |B|.
If the black hole evolves by a Haar random unitary, the mutual information I(C,D) is

nearly maximal, implying that D can be reconstructed on C. Indeed, they performed a

careful statistical physics analysis and presented explicit constructions of interior operators

by using the error recovery procedure known in quantum error-correction theory. A related

idea was considered [69] in a slightly different context.

In our interpretation, however, this observation itself does not resolve the AMPS puz-

zle. First, this proposal does not apply to black holes which have maximal entanglement

such as the eternal AdS black hole. Let SBH be the coarse-grained entropy of the black

hole and Sent be the entanglement entropy between the black hole and the radiation R.

Then the black holes under consideration satisfy SBH > Sent whereas the eternal AdS black

hole corresponds to the case with SBH = Sent. The situation of eq. (B.1) resembles black

holes before the Page time. If such a codeword subspace emerges, its origin should be

explained. Second, the proposed reconstruction of interior operators depends on choices

of the codeword subspace, and as such, is state-dependent. Third, as pointed out in [26],

this proposal runs into another problem where the Hayden-Preskill recovery cannot be

performed. Indeed, if the outgoing mode D can be used for the Hayden-Preskill recovery,

then it should not be entangled with C.

Nevertheless, we will make an interesting link between our proposal and their view-

point. Let us view the energy measurement discussed in the appendix A as a process of
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Figure 14. A black hole entangled through a codeword subspace. An infalling observer measures

|n〉 on A, and quantum entanglement between C and D is restored.

“collapsing” A into some pure state without introducing the pointer system. If a particular

energy eigenstate |n〉 is measured, the postselected black hole dynamics can be interpreted

as an isometry from B to CD:

U |0〉A : HB → HC ⊗HD |B| < |C||D|. (B.2)

An alternative interpretation of this dynamics is to think that the black hole is represented

by SBH = log2 |A||B| qubits, but its entanglement entropy is Sent = log2 |B|. In other

words, measurement on A reduced the entanglement entropy of the black hole. Here B is

viewed as the subspace where the black hole is entangled with the partner. This situation

resembles the scenario considered by Verlinde and Verlinde [22]. By having Sent < SBH,

quantum entanglement can be restored between C and D. We have treated a similar

situation in section 7 by including a measurement apparatus M .

In fact, collapsing the input Hilbert space by generic projective measurements on A

restores quantum entanglement between C and D. For simplicity of discussion, let us

assume that U is Haar random. An explicit calculation based on Haar random unitary

suggests that projective measurements on A with |A| ' |D|2 leads to nearly maximal mu-

tual information I(C,D) [26]. When thermal correlations are taken into account, only the

off-diagonal correlations need to be restored, so taking |A| ' |D| suffices. The important

implication of this observation is that (essentially) any measurement by an infalling ob-

server effectively creates a situation where the black hole is entangled through a codeword

subspace. This restores quantum entanglement in C and D, and does not require any

fine-tuning.

The work by Verlinde and Verlinde did not provide concrete account for the physical

origin of the codeword subspace. We think that inclusion of the infalling observer effectively

creates situations similar to theirs.

C Fault-tolerant entanglement

The state-independent reconstruction of interior operators may be of independent interest

from the perspective of quantum many-body physics as it reveals a certain universal aspect

of quantum entanglement in chaotic quantum dynamics.
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Let us consider an initial quantum state of the following form:

ρin = |ψ〉〈ψ|A ⊗ σB (C.1)

where |ψ〉 is a fixed pure state on A and σB is an arbitrary quantum state, pure or mixed,

on B. The system evolves under a chaotic unitary dynamics U :

ρout = UρinU
†. (C.2)

Here we make two assumptions. First, we assume that OTOCs for OD(t) and OA = |ψ〉〈ψ|
decay to small values. Second, we assume that the system thermalizes, in a sense that

time-ordered correlation functions, such as 〈OD(t)OA(0)〉, decay to small values. From

these assumptions, we can find that D is nearly maximally entangled with its complement

C as long as |A| ' |D|2. Here our primary interest is in how C and D are entangled.

In this paper, we argued that the partner operators can be constructed on C in a

way independent of σB. This implies that D is entangled with some fixed degrees of

freedom, denoted by D inside C, regardless of the choice of the initial state σB. Here

D may be interpreted as a code subspace where entanglement with D is fault-tolerantly

stored in such a way that is protected from any perturbations on σB. In other words,

this subspace is determined by the dynamics U and |ψ〉A, but is independent of σB. As

such, the entanglement structure between C and D is a universal feature of the chaotic

dynamics U .

The above observation assumed that OTOCs have decayed to small values. Next, let

us consider situations where OTOCs have not decayed to smaller values yet, e.g., before

the scrambling time. Given an operator OD on D, let us reconstruct a partner operator OD
supported on C by using the Hayden-Preskill recovery protocol. Consider the maximally

mixed state σB = 1
dB
IB as the initial state. Since C and D are entangled only weakly, we

will have

α ≡ 〈OD ⊗OD〉σB= 1
dB

IB
� 1 (C.3)

where the expectation value is taken with respect to ρout. Note that the expectation value

would be close to 1 if C and D were nearly maximally entangled.

Despite the fact that OD and OD are only weakly correlated, the construction of OD
is (almost) state-independent in the following sense. To be specific, let us consider pure

states σB = |φ〉〈φ| on B as initial states. We then typically have∫
d|φ〉 〈OD ⊗OD〉σB=|φ〉〈φ| = α (C.4)

where the integral is taken uniformly over all |φ〉 on B. Hence, if |φ〉 is a typical pure state

sampled from the Haar measure (or an ensemble forming 2-design), then we have

〈OD ⊗OD〉σB=|φ〉〈φ| ≈ α (C.5)

where the deviation from α is exponentially suppressed. As such, the structure of en-

tanglement between D and D is universal even when OTOCs have not decayed to small

values yet.
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(c)

Figure 15. (a) The Hayden-Preskill recovery protocol. (b) Backreaction from the Hayden-Preskill

recovery. (c) Alice’s quantum field theory near the horizon. Two surfaces in the opposite regions

are identified.

D Alice’s quantum field theory

We discuss effective quantum field theory that the infalling observer may experience. Ac-

cording to the equivalence principle, we expect that Alice will have normal quantum me-

chanical descriptions until she reaches the singularity. The fundamental difficulty in ad-

dressing this question lies in the very fact that Alice never returns to the outside. To

circumvent this, we may think of performing the Hayden-Preskill recovery protocol from

the outside so that Alice can have effective quantum field theory without reaching the

singularity. To understand quantum field theory under the effect of the Hayden-Preskill

recovery, we must understand its effect on the black hole geometry. At this moment, we

are unsure about what is the corresponding geometric picture. It is even unclear to us if it

admits any classical geometric description or not. Below we present some speculation on

the backreacted geometry.

Let us focus on the first recovery protocol from [31] which projects DD into the EPR

pair. To gain some insights, it is useful to draw the process in the Penrose diagram of

the eternal two-sided AdS black hole. Let us take the time directions to be upward and

downward on left and right hand sides respectively. One may flip the diagram of the

recovery procedure in accordance with the convention of the Penrose diagram. The flipped

diagram is shown in figure 15a. This cartoon picture enables us to depict the recovery

protocol schematically in the Penrose diagram as in figure 15b. Here two modes DD

on two sides are collapsed into EPR pairs. This lets A traverse across the black hole

and reach the other boundary at A. The backreaction by the Hayden-Preskill recovery
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becomes significant when the separation of the time between the infalling observer A and

the outgoing mode D becomes of order the scrambling time. In the Penrose diagram, let

us take D and D at t = 0 on the left and right hand sides respectively. The geometry

will be significantly modified only inside the shaded diamond shown in figure 15b which

is constructed by considering modes at t = −t0 with t0 ≈ tscr. If a signal is sent between

t = −t0 and t = 0, it will cross the horizon and reach the singularity. If a signal is

sent before t = −t0, it will traverse to the other side. These observations suggest that the

portion inside the diamond effectively disappears, and antipodal points should be identified

as shown in figure 15b so that signals entering the diamond can traverse. Precise value of

t0 will depend on the size of D as well as the amount of quantum information in A we wish

to transmit.44

Suppose that Alice jumps into a black hole at t < −t0. She will enter the shaded

region near the horizon which is approximated by the Rindler space. Letting ρ be the

distance from the horizon, Alice sees the backreaction from the Hayden-Preskill recovery

at the surface ρ = ρ0. The recovery protocol prevents Alice from seeing EPR pairs at

ρ ≤ ρ0 and lets her traverse to the opposite region. This situation can be realized by

cutting the Rindler space at ρ = ρ0 and glue two regions together. If the time separation

between A and D is of order the scrambling time, ρ0 is small compared to the black hole

radius, but is still large compared to the Planck length. We speculate that Alice’s effective

quantum field theory is defined on this truncated and traversable Rindler space. If the

separation becomes larger than the scrambling time, ρ0 eventually becomes of order the

Planck length. In this regime, we expect that the effect of the Hayden-Preskill recovery

can be simply treated as identification of opposite sides by neglecting physics below the

Planck scale.
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