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Abstract: Hiscock and Weems showed that under Hawking evaporation, an isolated

asymptotically flat Reissner-Nordström (RN) black hole evolves in a surprising manner:

if it starts with a relatively small value of charge-to-mass ratio Q/M , then said value will

temporarily increase along its evolutionary path, before finally decreases towards zero.

This contrasts with highly charged ones that simply radiate away its charge steadily. The

combination of these two effects is the cosmic censor at work: there exists an attractor that

flows towards the Schwazschild limit, which ensures that extremality — and hence naked

singularity — can never be reached under Hawking evaporation. We apply the scheme of

Hiscock and Weems to model the evaporation of an asymptotically flat dilatonic charge

black hole known as the Garfinkle-Horowitz-Strominger (GHS) black hole. We found that

upholding the cosmic censorship requires us to modify the charged particle production

rate, which remarkably agrees with the expression obtained independently via direct com-

putation of charged particle production rate on curved spacetime background. This not

only strengthens the case for cosmic censorship, but also provides an example in which

cosmic censorship can be a useful principle to deduce other physics. We also found that

the attractor behavior is not necessarily related to the specific heat, contrary to the claim

by Hiscock and Weems.
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1 Introduction: cosmic censorship and Hawking evaporation

Singularities are common occurrence in classical general relativity: the singularity theo-

rem [1–6] proves that they necessarily form under gravitational collapse during black hole

formation. Since astrophysical observations have shown that the Universe is full of black

holes, singularities are indeed widespread. If singularities can become naked under generic

physical processes, then we lose classical predictability: given an initial data on a hypersur-

face, we cannot evolve the system to determine the future uniquely, without knowing what

boundary conditions to prescribe to the naked singularities. Therefore Penrose proposed

the cosmic censorship conjecture, which essentially states that all black hole singularities

would have to be concealed behind a horizon [2]. More precisely, this is the weak cos-

mic censorship conjecture, or in the famous words of Hawking, “Nature abhors a naked

singularity”.

The strong cosmic censorship, on the other hand, requires that “physically reason-

able” solutions to the Einstein field equations should be globally hyperbolic, i.e. the future

is uniquely predictable via the evolution equations once the initial and boundary conditions

are given. Reissner-Nordström and Kerr black hole spacetimes do not satisfy global hy-

perbolicity due to the presence of a Cauchy horizon, beyond which the timelike singularity

is “naked” to the interior observer. The strong cosmic censorship is generally believed to

restore predictability by turning the Cauchy horizon into a singularity (generically space-

like) via the so-called “mass inflation” mechanism (divergence of energy density due to the

blueshift of infalling light on the Cauchy horizon), though see however, [7]. So, are naked

singularities necessarily verboten?

The answer appears to be no: after some 50 years of research, it is now appreciated that

there exist counter-examples to the cosmic censorship conjecture (see also [8]). Perhaps the

most well-known example is the finite time pinch-off of higher dimensional black objects [9–

11] due to the Gregory-Laflamme instability [12–14] (for a review, see [15]). Black hole

– 1 –



J
H
E
P
1
0
(
2
0
1
9
)
1
2
9

collisions in higher dimensions also result in naked singularities [16]. More recently, BTZ

(Bañados-Teitelboim-Zanelli) black holes in 3-dimensions are also shown to violate the

strong cosmic censorship [17]. These are, however, not directly relevant to our actual,

4-dimensional Universe.

The status of the cosmic censorship as far as physically relevant spacetimes are con-

cerned, is currently being hotly debated. Recently various authors have shown that strong

cosmic censorship may be violated for charged, near-extremal Reissner-Nordström black

holes in an asymptotically de Sitter spacetime (essentially by using cosmological redshift

to weaken the blueshift at the Cauchy horizon), though the status is still somewhat un-

clear [18–21]. Even in vacuum asymptotically flat Kerr spacetimes (not necessarily near

extremal), the work of Dafermos and Luk [22] — assuming that the exterior Kerr spacetime

is indeed dynamically stable — rigorously showed that the Cauchy horizon is not as singu-

lar as previously expected from mass inflation mechanism. Instead it forms a “weak null

singularity”1 such that the metric can be extended beyond it, so strong cosmic censorship

is violated in the strict sense. Nevertheless it is still not clear how one could follow the

evolution beyond the weak null singularity as it cannot be made sense of even as a weak

solution to the Einstein field equations.

Remarkably, there is evidence to suggest that the cosmic censorship conjecture is re-

lated to the weak gravity conjecture [24], which states that there should be at least one

charged particle whose charge is bigger than its mass in Planck units (colloquially, grav-

ity is the weakest force). Thus, in the presence of sufficiently charged particles, cosmic

censorship can be saved (at least in anti-de Sitter spacetimes [25, 26]). The situation in

asymptotically de Sitter spacetimes remains unclear, as the presence of charged scalars

and charged fermions do not seem to completely protect the cosmic censorship [27–29] —

though it helps to some extent — despite some earlier evidences for such a claim [30, 31].

The situation in the presence of a massless Dirac field were discussed in [32, 33]. It is clear

from these huge literature and recent works that cosmic censorship is nowadays a very

active area of research, with a lot of physics remain to be uncovered.

One might take a step back and ask whether we need to worry about violation of the

cosmic censorship, since singularities are likely to be “cured” in a fully working theory of

quantum gravity [34, 35], or otherwise prevented from ever arising since the black holes

themselves could be de-stabilized by stringy effects [36]. Although it is almost always

taken as granted that singularity will be resolved by quantum gravity, but since we do not

yet have such a theory, we do not know for sure. On page 5 of [37], Hawking’s point of

view is that if the singularity is indeed smeared out by quantum correction, it would be

“boring” since gravity would then be “just like any other field”. Hawking’s point was that,

notwithstanding a graviton description, gravity should be distinctively different since it is

not just a player on a spacetime background; it is both a player and the evolving stage.

Indeed, there are genuine concerns about whether quantum gravity can solve this is-

sue. Sometimes, resolving a singularity might itself create other problems. For example,

1Intuitively, the singularity is weak enough such that an observer could conceivably pass through it.

Technically, the singularity is weak enough such that the metric in an appropriate coordinate system is

continuous up to the boundary. For details, see [23].
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a Schwarzschild-AdS metric with negative mass corresponds to a naked timelike singu-

larity. If this singularity is resolved, there would be states of arbitrarily negative energy,

which would then contradict holography, which requires that the corresponding field theory

Hamiltonian be bounded from below [38, 39]. Note that holography is really a correspon-

dence between quantum gravity in the AdS bulk to field theory on its boundary. Although

in practice one usually uses classical black hole solution, as an effective field theory the

“true” action in the bulk has higher curvature terms, which would become important when

discussing singularities. The negative energy solutions that remain after “curing” the sin-

gularity therefore do not contradict the AdS version of the positive energy theorem because

the higher curvature terms effectively violate the local energy condition required by this

theorem [38].

This simply means that we do not yet understand issues involving singularities in

string theory, thus one must consider the possibility that some form of singularities might

persist even in quantum gravity. Therefore, given a specific process, e.g. in an attempt to

either over-spin or over-charge a black hole, it is thus better if one could show that cosmic

censorship cannot be violated, already at the classical level and/or semi-classical level.

It is therefore a relief when Hiscock and Weems [40], in 1990, investigated the evolution

of an evaporating asymptotically flat Reissner-Nordström (RN) black hole and found that

cosmic censorship is not violated (although they did not emphasize on cosmic censorship

in that work). The details are, however, rather subtle. If the charge to mass ratio Q/M

is relatively small, then RN black holes first evolve towards extremality. This is not so

surprising because the emission of massive particles is strongly suppressed in the Hawking

radiation until the black hole gets sufficiently hot, and since there is no massless charged

particle2 (at least in the standard model of particle physics). This means that black hole

tends to lose mass more than charge, and so Q/M should increase. One might suspect that

this would continue until the black hole becomes extremal (see, e.g., [42, 43]).

However, explicit detailed modeling by Hiscock and Weems demonstrated that this

does not continue indefinitely (see also [44, 45]). Instead, discharge eventually becomes

more efficient and Q/M decreases. If Q/M is relatively large from the start, then the

black hole simply discharges and evolves steadily to decrease Q/M . These two different

scenarios are referred to as the “mass dissipation zone” and “charge dissipation zone”,

respectively [40]. Regardless, the final fate of an evaporating RN black hole is to lose its

charge and follows an “attractor” (see section 2 for details) to approach a Schwarzschild

configuration. It is worth noting that under such an evolution, starting from the mass

dissipation zone, Q/M can approach the extremal value, but it eventually turns over and

so extremality cannot be reached, and the cosmic censorship is safe.

In this work, we will also point out that the existence of attractor solution is not

necessarily related to the specific heat of black holes; though Hiscock and Weems argue

that the change of sign in the specific heat gives rise to the Reissner-Nordström attractor.

A natural question to ask is whether such an attractor behavior is universal in some

sense under Hawking evaporation. By attractor behavior we do not necessarily mean that

2Cosmic censorship conjecture in the presence of hypothetical massless charged particles was discussed

in [41].
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it attracts all evolutions toward Schwarzschild end state, but rather just pulls all evolutions

away from ever reaching extremality. For example, an asymptotically flat Kerr black hole

that only emits massless scalar particle would either spin up or spin down depending on its

initial a/M ratio towards a/M ≈ 0.555, where a = J/(Mc) is the usual angular momentum

parameter, though adding higher spin fields tend to bring its final state to a Schwarzschild

one unless there are sufficiently many species of massless scalars [46, 47]. See also [48]. It is

therefore interesting to check more black hole spacetimes, including those beyond general

relativity.

In this work we investigate this issue by employing the Hiscock-Weems technique to

study the Hawking evaporation of a dilatonic charge black hole, known as the (Gibbons-

Maeda-)Garfinkle-Horowitz-Strominger (GHS) black hole [49–51], which is a well-motivated

solution obtained from a low energy limit of string theory (see section 2), which remains

physically viable. For some observational aspects of Einstein-Maxwell-dilaton black holes,

see e.g., [52–54].

It should be emphasized that for GHS black holes, the extremal case is not a zero

temperature state with nonzero entropy, such as an extremal RN black hole.3 It is also

not an extremal vanishing horizon (EVH) spacetime, such as a 5-dimensional extremal

Kerr black hole with one angular parameter set to zero, which has both zero temperature

and zero entropy (the horizon essentially coincides with the singularity) [36]. Instead, an

extremal GHS black hole is a bizarre configuration that has zero size (with horizon coincides

with a null singularity) but nonzero temperature.4 In fact, its Hawking temperature, with

all physical constants explicitly written out, takes the same form as a Schwarzschild black

hole with the same mass: T = ~c3/(8πGkBM), where M is the final mass of the black

hole, related to its final charge by the extremal condition Q2/(4πε0c
4) = 2M2, where

ε0 is the vacuum permittivity. As usual, G denotes Newton’s gravitational constant, kB

the Boltzmann constant, ~ the Planck constant, and c the speed of light. Note that the

extremal charge is
√

2 times greater than the RN case. Intuitively, this larger extremality

value can be understood as due to an “extra gravity” contributed by the scalar field [26].

For EVH spacetimes, arguably the third law of black hole thermodynamics might

apply, and one never really achieves the extremal configuration, which would otherwise

be problematic because it is effectively a naked singularity: though the horizon coincides

with the singularity, it is unstable [57]. However, it is far from obvious that the usual

third law of black hole mechanics applies to the extremal GHS “black hole” due to its

nonzero temperature (in fact our numerical calculation in section 4 shows that these black

holes can indeed become extremal in finite time, within numerical accuracy). Thus, there

is a genuine concern that Hawking evaporation would bring a generic GHS black hole to

3It has been suggested that for an extremal RN black hole, its horizon is effectively singular, i.e. a null

singularity spacetime boundary [55]. Therefore, perhaps extremal RN black holes do behave like extremal

GHS one, and thus by studying GHS black holes, one may gain more insights into extremal RN black holes

as well.
4One might think that if a black hole has zero size, it is as good as having no horizon, and should therefore

have zero temperature. However, this is not the case. Prescribing extremal “hole” zero temperature — or

indeed any other temperature other than the non-extremal form T = ~c3/(8πGkBM) — would result in a

divergent stress-energy [56]. In this case, zero is not the same as nothing.
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extremal state, thus once perturbation is taken into account,5 becomes a naked timelike

singularity and thus potentially violates the cosmic censorship within the scope of low

energy, effective string theory.6 Earlier study has indeed suggested that dilatonic charged

black holes harbor the danger of becoming extremal [63]. In this work we provide additional

evidence to support this claim.

In fact, even if we do not consider any perturbation to the extremal configuration, one

can show that the Kretschmann scalar diverges in the extremal limit, and so the spirit

of the cosmic censorship is already violated. In addition, in our work, since the black

hole mass remains large in this limit, the violation would be much worse than the “mild”

violation of the Gregory-Laflamme type, in which the singularity occurs at the “necks”

with a very small mass density [16].

In a previous study by the authors, a “complementary third law” for black hole ther-

modynamics was found [64]. It states that for a large class of black holes whose end state

has finite nonzero temperature but zero size, the evolution time is necessarily infinite (as

opposed to the usual third law, which states that the evolution towards zero temperature

takes an infinite time). Although the result therein was only proved for neutral black holes,

GHS black holes were shown to satisfy the complementary third law if the charge is held

fixed while allowing mass to evaporate. It was then conjectured that since the temperature

does not depend on the charge, as opposed to the RN case, allowing the charge to evap-

orate should not affect the result by much. Our current work shows that this conjecture

is not correct, just like the naive expectation that RN black holes could evolve towards

extremality. We will come back to this point in the Discussion, section 5.

The main result we obtained in this work is that GHS black hole cannot attain ex-

tremality under Hawking evaporation, and so the cosmic censorship is safe under this

context. This, however, is only so because remarkably the dilaton coupling to the Maxwell

field is such that charged particle production rate is modified in exactly the right way needed

to ensure extremality is avoided. Colloquially, one might even say that there is a conspiracy

to uphold censorship.

The organization of this work is as follows: in section 2, we will first review the original

work of Hiscock and Weems [40], which investigated the evolution of RN black holes under

Hawking evaporation. In section 3 we will apply the same technique to the study of GHS

black holes, and further discuss how cosmic censorship remains valid in section 4 once

dilaton induced corretion is taken into account. We conclude with some discussions in

section 5, and raise some questions for future studies.

Henceforth, we will follow the convention of Hiscock and Weems, employing the “rel-

ativistic units” [65] in which Newton’s gravitational constant G, the speed of light c, and

5It was shown that an extremal charged dilaton black hole could be destroyed by injecting a test par-

ticle with a specific energy. Nevertheless the censorship is well protected if backreaction or self-force is

included [58]. This does not exclude the possibility that other types of perturbations could render the

singularity naked. In fact, ref. [58] assumed the black hole to be static, whereas an earlier study with dy-

namical solution found that the black hole can be overcharged by bombarding it with a stream of electrically

charged null fluid, resulting in a naked singularity [59]. See, however, [60] and [61].
6For previous study of singularities in such regimes, see, e.g., [59, 60, 62].
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the Boltzmann constant kB are set to unity. The vacuum permittivity is set to satisfy

4πε0 = 1. However, the reduced Planck constant ~ is not set to 1. This differs from the

Planck units. Thus, in this work we have ~ = ~G/c3 ≈ 2.61× 10−66 cm2, while e.g., a solar

mass is M� = M�G/c
2 ≈ 1.5 km. Mass and charge both have the dimension of length. In

all plots, the units for mass and charge are centimeters. Temperature has the dimension of

length in this unit, instead of dimension of inverse length in the more oftenly used natural

units.

2 Hiscock and Weems model for evaporating Reissner-Nordström black

holes

In this section we will review the models and results of Hiscock and Weems [40], so that

our work is self-contained, especially when we need to compare our GHS black holes results

with the RN counterparts later.

Hiscock and Weems [40] considered an isolated7 asymptotically flat Reissner-Nordström

black hole, with metric tensor given by

g[RN] = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 + r2 dΩ2
S2 , (2.1)

where dΩ2
S2 is the round metric of a 2-sphere. Without loss of generality, the charge Q

is assumed to be positive. The event horizon is located at r+ = M +
√
M2 −Q2. In

modeling the Hawking emission, all scattering is neglected. This is a good approximation

since the created particles have the same sign charge as the black hole, so the black hole

will experience an enormous radial repulsive force.

Then Hiscock and Weems considered the black hole to be sufficiently large. This is for

the following reason: their idea is to model charge loss using Schwinger formula, while only

allows massless particle to be governed by the Stefan-Boltzmann equation. This means

that the black hole should be cold enough so that production of massive charged particles

are negligible. Since the temperature is inversely proportional to the mass,8 this means we

want a sufficiently massive black hole. Indeed, as shown by Gibbons [45], black holes with

radius larger than the reduced Compton wavelength of the electron pair-produce electron-

positron pairs electromagnetically instead of gravitationally. Note that as emphasized by

Hiscock and Weems [40], although the production of charged particles is treated separately

7This is because a black hole surrounded by realistic astrophysical medium will discharge quickly. A

quick estimate given in [40] is that for the black hole to avoid rapid discharge by accretion, the Newtonian

gravitational attraction must be larger than the electromagnetic Coulomb attraction and repulsion for the

lightest charged particle pair, namely electron and positron. Thus Mm/r2 � Qe/r2, so that in the presence

of accretion medium, discharge will quickly bring the charge-to-mass ratio down to Q/M � m/e ≈ 10−21.
8This is obvious for a Schwarzschild black hole, but it is also true for RN black hole, whose temperature

is T = ~(M2−Q2)

2π
(
M+
√
M2−Q2

)2 , since it is easily seen that, due to Q 6M ,

∂T

∂M
= − 1

8π

[
M3 − 3MQ2 + (M2 −Q2)

√
M2 −Q2

M2(M +
√
M2 −Q2)3

]
< 0.
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from the thermal Hawking flux of neutral particles, this is just part of the modeling valid

within the appropriate regime; in actual fact they are all part of the Hawking radiation.

Indeed, although we usually say that extremal black holes with zero temperature do not

radiate, this is not true — they can radiate via the charge channel. Hawking calculated

that the number of particles of the j-th species with charge q emitted in a wave mode

labeled by frequency ω, spheroidal harmonic l, and helicity p is given by (if we ignore

angular momentum of emitted particles and rotation of the hole) [66],

〈Njωlp〉 =
Γjωlp

exp [(ω − eΦ)/T ]± 1
, (2.2)

where T is the temperature of the black hole. The plus sign in the denominator corresponds

to fermion, while minus sign corresponds to boson. Here Γjωlp denotes the absorption

probability for an incoming wave of the specific mode. For sufficiently strong electric

field, even if T = 0, particle number need not be zero. Whether this non-thermal part

of particle emission should be called “Hawking radiation” is somewhat a semantic issue,

in fact in some sense the Schwinger mechanism and the Hawking radiation are generically

indistinguishable for near extremal black holes [67]. Readers who prefer to interpret only

the thermal part as Hawking radiation, as is commonly done in the literature, are free to

do so. Then Hiscock-Weems model should be thought of as black hole evaporation under

both Hawking emission and Schwinger pair production. In this work however, we follow

Hiscock and Weems’ convention and refer to everything as Hawking radiation.

In Hiscock-Weems method, for a black hole to be “sufficiently massive” means M �
~/me ≈ 10−10 cm ≈ 108 g where me is the electron mass.9 In this mass range the flat

spacetime quantum electrodynamics is a good approximation [40, 45].

Next, in order to be able to ignore the higher order terms in the Schwinger formula,

Γ =
e2

4π3~2

Q2

r4
exp

(
−πm2r2

~eQ

)
×
[
1 +O

(
e3Q

m2r2

)
+ · · ·

]
, (2.3)

where Γ is the rate of electron-positron pair creation per unit 4-volume, Hiscock and Weems

considered the weak-field regime, which requires e3Q/m2r2 � 1 for all r > r+. This

requires the mass range to be M � e3/m2 ≈ 6× 108 cm ≈ 4× 103M�.

Finally, in order to use certain asymptotic series expansion, which we will see the details

below, Hiscock and Weems also needed to impose M � Qo := ~e/πm2 ≈ 6.47× 1010 cm.

By combining all the above assumptions and their valid regimes, we are essentially

dealing with mass range M � Q0, which is of the order 1010 cm or 105 solar masses.

Now let us look at the explicit equations. The charge loss can be obtained from the

Schwinger formula:

dQ

dt
≈ − e2

π2~2

∫ ∞
r+

Q2

r2
exp

(
− r2

Q0Q

)
dr × e. (2.4)

9Though, since we consider Q > 0, in the following analysis we will actually be dealing with the positron.
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The integral can be expressed in terms of the complementary error function, which can be

expanded as

erfc(x) =
e−x

2

x
√
π

[
1 +

∞∑
n=1

(−1)n
1 · 3 · 5 · · · (2n− 1)

(2x2)n

]
, (2.5)

with x� 1 being replaced by r/
√
Q0Q. This is where we require M � Q0. The end result

is the charge loss ODE

dQ

dt
≈ − e4

2π3~m2

Q3

r3
+

exp

(
−

r2
+

Q0Q

)
. (2.6)

We remark thatQ0 is essentially the inverse of the Schwinger critical field: Ec := m2c3/e~ =

1.312 × 1016 V/cm. If the electric field is stronger than Ec, then charged particles are

created from the vacuum at an exponential rate. In the model of Hiscock and Weems,

this never happens: so although there are charged particles being produced, the rate is

suppressed [45, 68]. To see this, simply note that the series approximation requires r2
+ �

QQ0, i.e. Q/r2
+ � Ec. Eq. (2.6) can also be obtained via the Wentzel-Kramers-Brillouin

(WKB) approximation [69], a point we will return to in section 4.

Since we are dealing with cold black holes, we may assume that thermal part of the

radiation only contains massless particles. So the mass loss rate is

dM

dt
= −aασT 4 +

Q

r+

dQ

dt
, (2.7)

where the second term is from the first law of black hole thermodynamics, due to (sup-

presed) massive particle emission, which dominates at either low T or, equivalently, at

high Q. Here a = π2/(15~3) is the radiation constant, i.e. 4/c times the Stefan-Boltzmann

constant,10 while σ is the geometric optics cross section,

σ[RN] =
π

8

(3M +
√

9M2 − 8Q2)4

(3M2 − 2Q2 +M
√

9M2 − 8Q2)
, (2.8)

whose radius corresponds to the impact parameter of massless particle from infinity that

ends up on the photon orbit (of course here we want the particle to escape to infinity;

the condition is the same). The reason is that only particles that have enough energy can

escape the effective potential barrier. Due to this potential barrier, the Hawking radiation

received at asymptotic region is not a black body radiation. The deviation from black

body is governed by the constant α, the greybody factor, which is different for different

species of particles (see [40] for more discussions). For simplicity we may set α to be unity.

Compared to the long lifetime of the black hole, its effect is negligible for our purpose.

Eq. (2.6) and eq. (2.7) therefore form a coupled set of ordinary differential equations

that govern the evolution of RN black holes under Hawking evaporation. In general this

system can only be solved numerically. In their paper, Hiscock and Weems discussed in

details the evaporation history of RN black holes given different initial conditions. The

most important results are summarized by their figure 2. We repeated their calculations

10Hiscock and Weems simply refer to a as the Stefan-Boltzmann constant.
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Figure 1. The evolution of asymptotically flat Reissner-Nordström black holes under Hawking

evaporation with Hiscock-Weems model. Each diagram in this point corresponds to a specific mass

and charge. Given an initial condition, it will evolve by following the arrows. A black hole with

sufficiently large charge-to-mass ratio simply discharges towards the Schwarzschild limit: this is the

“charge dissipation regime”. On the other hand, a black hole starting with relatively small charge-

to-mass ratio will lose its mass faster than losing charge, and thus Q/M increases: this is the “mass

dissipation regime”. These curves eventually hit the attractor and flow towards Schwarzschild limit.

The model breaks down for sufficiently small black holes (M . Q0). Black holes that are too small

will discharge any geometrically interesting charge in a time shorter than the characteristic time

associated with the geometry of the black hole [40].

and reproduced it in figure 1 above. It shows the evolutionary paths of evaporating RN

black holes.

Let us emphasize again the main features in the plot. There are two distinct regions:

the charge dissipation regime and the mass dissipation regime. The charge dissipation

regime corresponds to highly charged initial conditions, the black holes simply radiate off

its charge steadily and evolve towards Schwarzschild final state. What happens afterward

depends on whether the Stefan-Boltzmann law continues to hold indefinitely, in which the

black hole completely evaporates in finite time, or if new physics comes into play at suffi-

ciently high energy, which could halt the evaporation and ends with a “remnant” [70, 71].

On the other hand, if a GHS black hole starts with a low charge-to-mass ratio, then it

is in the mass dissipation regime: its Hawking radiation is dominated by massless neutral

particles, so the black hole loses mass but retains much of its charge. Therefore initially

the charge-to-mass ratio increases steadily, until the evolutionary path hits the attractor,

and then the evolution turns around and approaches the Schwarzschild state. Although

Q/M can approach the extremal value of unity, the evolution always turns around before

extremality is reached, therefore upholding the cosmic censorship.

Hiscock and Weems argued that the existence of the attractor is due to the fact that

the specific heat of RN black hole changes sign. While they did show that the attractor

– 9 –



J
H
E
P
1
0
(
2
0
1
9
)
1
2
9

might be related to the specific heat, as we will argue below with the GHS case, this is not

the underlying reason that causes the attractor to exist, since in the GHS case the specific

heat simply does not change sign.

3 The evolution of Hawking evaporating GHS black holes

We shall now move on to discuss the evaporation of GHS black holes under the Hiscock-

Weems model, starting from a short review on the GHS black hole spacetime.

The 4-dimensional low-energy Lagrangian obtained from heterotic string theory is11

S[EDM] =
1

16π

∫
d4x
√
−g
[
R− 2(∇ϕ)2 − e−2ϕF 2

]
, (3.2)

where F 2 := FµνF
µν , with Fµν being the (components of) Maxwell field, F = (Q/r2) dt∧dr,

associated with a U(1) subgroup of E8 ×E8 or Spin(32)/Z2, and ϕ is the dilaton, a scalar

field coupled to the Maxwell field. The remaining gauge fields and antisymmetric 3-form

field Hµνρ (related to the axion) are set to zero [49].

This is an example of Einstein-Maxwell-Dilaton theory. In general the (massless)

dilaton field could have a finite value ϕ0 at spatial infinity, which we have set to be zero in

this work.

The GHS black hole solution takes the deceptively simple form12

g[GHS] = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r

(
r − Q2

M

)
dΩ2

S2 . (3.3)

The r–t “plane” takes the Schwarzschild form and is independent of the charge Q. Thus

the (only) horizon is always located at r+ = 2M . In the extremal case, r+ = 2M and

Q2 = 2M2, so the radius of the S2 part of the metric is equal to zero. That is to say, the

extremal “black hole” has zero size; it is a null singularity. This has no contradiction with

r+ always remaining finite at 2M , since r is only a coordinate and not the areal radius.

One could always switch to the areal radius R := [r(r − Q2/M)]1/2, and then it is clear

that the horizon shrinks to zero size for the extremal case. In either coordinate system,

one could compute the Hawking temperature with the usual method of Wick-rotation by

11Note that the action is similar to that of the 4-dimensional effective action reduced from 5-dimensional

Kaluza-Klein theory [72]:

S[KK] =
1

16π

∫
d4x
√
−g

[
R− 2(∇ϕ)2 − e−2

√
3ϕF 2

]
, (3.1)

where an additional
√

3 appears in the exponential term. The Kaluza-Klein dimensional reduction is

however different from the string theory approach, see further discussions in [73].
12This is of course a static solution, whereas here we are considering a dynamical evolution. A more

rigorous approach would be to use a dynamical solution, a Vaidya-type generalization of the GHS metric [60].

Nevertheless, Hawking evaporation takes a very long time, so quasi-static approximation is good enough

for our purpose, especially in the large M regime we are investigating.
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ensuring regularity at the Euclidean “horizon”. This would indeed give the Schwarzschild

form T = ~/(8πM) for the temperature,13 independent of the charge Q.

Note that due to the coupling with the Maxwell field, the dilaton is not an independent

“hair” of the black hole. In fact, the dilaton is related to the Maxwell charge Q by [49, 73]

e2ϕ = 1− Q2

Mr
, (3.4)

so ϕ = 0 implies Q = 0 and vice versa. That is, the dilaton does not exist independently

of the electrical charge; due to the coupling between the dilaton and the Maxwell fields,

the GHS solution does not recover the RN solution when ϕ→ 0.

As explained before, the second term in the mass loss equation eq. (2.7) is simply

from the first law of black hole thermodynamics. Since the dilaton is a secondary hair, the

dilaton charge [74] is a “redundant parameter” [75], which does not appear in the first law

(see, however, related discussions [76, 77]). It therefore suffices to consider the evolution

of the primary hairs M and Q (see also [63]). Thus, the mass loss equation is the same as

eq. (2.7), except that the Hawking temperature is now T = ~/(8πM) and the geometric

optic cross section needs to be replaced with [78]

σ[GHS] =
r2

ph

(
rph − Q2

M

)
rph − 2M

, (3.5)

where rph is the GHS photon orbit [78, 79]

rph =
1

4

[
Q2

M
+ 6M +

(
36M2 − 20Q2 +

Q4

M2

) 1
2

]
. (3.6)

For consistency check, we note that these expressions reduce to the Schwarzschild case

σ[Sch] = 27M2 and rph[Sch] = 3M when Q = 0.

To compare the results with the RN case investigated by Hiscock and Weems, we

shall follow their scheme and work within the geometric optics cross section. Indeed, due

to scattering at long wavelengths, the effective emission surface is smaller than the one

given by the geomertic optics cross section. This is governed by the α greybody factor in

eq. (2.7), which we neglect in this work. Its inclusion tends to lengthen the lifetime of a

black hole by a few order of magnitudes at most, and in our case we are not really concern

about the exact lifetime, but rather how the charge-to-mass ratio evolves.

If we naively use eq. (2.6) for the charge loss rate and solve the coupled ODEs numeri-

cally, we find that although the features of figure 1 are largely retained over the same mass

range, as shown in figure 2, for sufficiently large mass, (Q/M)2 appears to increase as the

black hole evaporates, with no sign of turning around toward the Schwarzschild limit. Two

13In the GHS coordinates, as in eq. (3.3), this is clear, since the Wick-rotation only concerns the r–τ

“plane”, where τ = it is the imaginary time. If we use the areal radius instead, the (Euclidean) metric

would take the form ds2 = f(R) dτ2 + g(R) dr2 + R2 dΩ2
S2 , such that fg−1 6= 1. With prime denoting

differentiation with respect to R, one could show that the Hawking temperature is T = ~
√
f ′g′/4π, which

in this case gives the same result.
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Figure 2. The evolution of asymptotically flat GHS black holes under Hawking evaporation with

Hiscock-Weems model, assuming dQ/ dt follows eq. (2.6), shows that sufficiently massive black holes

(in red) appear to evolve towards extremality. The extremality condition is Q2/M2 = 2.

Figure 3. Examples of GHS black holes that evolve towards extremality (Q2/M2 = 2) with

Hiscock-Weems model. Parts of these curves are the same ones that appear in figure 2.

such curves in figure 2 are singled out in figure 3 for a clearer view: indeed we see that

starting at some low value of Q/M a GHS black hole could evolve toward extremality in

finite time. As discussed in the Introduction, section 1, this is in danger of violating cosmic

censorship.

4 Two roads to charged particle production rate: or the conspiracy to

uphold censorship

In the previous section we have shown that cosmic censorship can potentially be violated in

GHS spacetimes, since extremality can be reached under Hawking evaporation. However,
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since the dilaton is exponentially coupled to Maxwell field in this theory, it is likely that

charged pair production rate needs to be modified. In fact, as pointed out by Horowitz and

Santos [26] in a recent work, in which they investigated how cosmic censorship in dilaton

theory is related to a revised weak gravity conjecture, the Maxwell field is smaller (for the

same source) when the dilaton is present. So, how might one derive the correct charge loss

formula in the presence of dilaton?

In this work, we claim that imposing cosmic censorship allows us to derive the dilaton

induced correction to the charge loss rate, with only a mild, reasonable, assumption on the

ansatz. We then show that this modification can be obtained independently via another

consideration that has nothing to do with cosmic censorship, via direct consideration of

wave scattering on the curved background.

In other words, the cosmic censorship continues to be valid because the dilaton “con-

spires” with the Maxwell field in exactly the right way required to prevent extremality

being reached by Hawking evaporating black holes.

We first note that the reason Q/M can increase is that charge loss is inefficient relative

to mass loss. Therefore one could increase the efficiency by adding a correction term to the

exponent of eq. (2.6). Since Q0 sets the physical scale, the simplest correction term would

be of the form CQ/Q0 for some constant C > 0. That is, eq. (2.6) becomes

dQ

dt
≈ − e4

2π3~m2

Q3

r3
+

exp

(
−

r2
+

Q0Q
+ C

Q

Q0

)
. (4.1)

In order to fix C , consider near an extremal GHS black hole, so that Q =
√

2M − ε, for

some small ε > 0. The exponential term can be expanded into series in ε:

exp

(
−

r2
+

Q0Q
+ C

Q

Q0

)
= exp

(√
2M(C − 2)

Q0

)
×
[
1− 2 + C

Q0
ε+O(ε2)

]
. (4.2)

As long as C < 2, the exponent is being suppressed by the leading order term. The

suppression is greater for large M , this is why Q/M for sufficiently large M increases

steadily to extremality. To phrase it in another way: for any fixed C < 2, one could always

choose M sufficiently large so that there exist initial datum that lead to extremality under

Hawking evaporation.

For example, if we set C = 1, then both curves in figure 3 do turn around toward

the Schwarzschild limit, but this alone does not guarantee other curves, which start with

higher initial mass, to do the same. To be more concrete, we give an example: starting

with mass M(0) = 7.35× 1013 cm and Q(0) = 1.35M(0), the black hole whose charge loss

rate is given by eq. (4.1), with C = 1, will reach extremality in finite time (albeit a long

time, about 1093 years). This is depicted in figure 5 below.

To guarantee that all curves turn around towards the Schwarzschild limit, we only need

to set C = 2. Then the leading order term is independent of the black hole mass. In fact

the exponent becomes unity in the extremal case. The physical interpretation is that, as

black holes evolve and come closer toward extremality, charged particle production rate

is enhanced just enough to turn the evolution around and send it towards the attractor,

– 13 –
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Figure 4. GHS black hole evolution with initial conditions M(0) = 1.5 × 1013 cm, Q(0) =√
0.55M(0). The curves, from top to bottom (red, black, blue), correspond to the choice C = 0, 1, 2,

respectively, in the charge loss formula eq. (4.1). Arrows denote the direction of evolution.

which then flows towards the Schwarzschild limit. The argument of the exponent never

exceeds unity, so charged particles are never produced by a copious amount.

To illustrate our discussions thus far, in figure 4, we show the evolution path of GHS

black hole given different values of C . Let us choose the initial conditions M(0) = 1.5 ×
1013 cm, and Q(0) =

√
0.55M(0). We note that for C = 0 (i.e. the original Schwinger

formula), the black hole evolves towards extremality. With C = 1, it turns around and

evolves towards Schwarzschild limit. The turn-around occurs earlier for C = 2.

In figure 5, we show that with a larger initial mass, M(0) = 7.35 × 1013 and Q(0) =

1.35M(0), the black hole evolves towards extremality for C = 0. Setting C = 1 does not

help in this case, the evolution is almost the same (the curves almost overlap). Setting

C = 2, however, ensures that the curve turns around towards Schwarzschild limit.

In figure 6, we again show the evolution of GHS black holes, but with charge loss gov-

erned by eq. (4.1), with C = 2. We now see that evolution always lead to the Schwarzschild

limit as discussed.

Note that in the Reissner-Nordström case we have no need to enhance the charge loss

rate, since the rate is already fast enough to avoid extremality being reached.

At this point the readers might object that our modification to the charge loss rate,

eq. (4.1), is rather arbitrary or ad hoc. However, this is not the case. Remarkably one

could obtain the same modification from another consideration, which has nothing to do

with cosmic censorship whatsoever (at least not directly), as was shown by Shiraishi in [69].

For completeness, we will summarize the main result here, but readers should consult [69]

for the details.

In an attempt to understand superradience of charged dilaton black holes, Shiraishi

considered a scalar field ψ with mass m and charge e. Taking the dilaton coupling into

consideration, the action of the scalar field is

Ss =

∫
d4x
√
−g
[
e−

4bφ
3 |(∇µ + ieAµ)ψ|2 + e−

4cφ
3 m2|ψ|2

]
, (4.3)
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Figure 5. GHS black hole evolution with initial conditions M(0) = 7.35 × 1013 and Q(0) =

1.35M(0). The curves, from top to bottom (red, black, blue), correspond to the choice C = 0, 1, 2,

respectively, in the charge loss formula eq. (4.1). The top two curves essentially overlap in this plot.

Arrows denote the direction of evolution.

Figure 6. GHS black holes avoid becoming extremal under Hiscock-Weems model, after the charged

loss rate is modified by eq. (4.1), with C = 2; cf. figure 2. Arrows denote the direction of evolution.
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with the constraint that b− c = 1. Shiraishi actually considered a more general result, but

we shall only focus on the GHS case. The scalar field ansatz, which allows seperation of

variables, is

ψ =
u(r)

r
S(l)(θ)e

−iωt, (4.4)

where S(l) is the spherical harmonic function on a 2-sphere S2. To be more specific, it is

the eigenfunction of the Laplacian on S2 with unit radius, such that ∇2S(l) = −l(l+1)S(l).

Next, consider the scattering of wave on the GHS background. Shiraishi showed that

in the large black hole limit, WKB approximation allows one to write the radial wave

equation in the form
d2u

dy2
+Wu = 0, (4.5)

where W = W (ω,m, e,M,Q, b, c) takes a complicated form, whose details we will not

repeat here. Here y = y(r) is a rather delicate coordinate transformation defined via

the ODE
dy

dr
=

(
1− Q2

Mr

)b−1(
1− 2M

r

)−1

. (4.6)

The point is that the rate of particle emission can be calculated from W . First, we define

A(ω) := exp

[
−2

∫ y2

y1

|W |
1
2 dy

]
, (4.7)

where W (y1) = W (y2) = 0. Finally, one obtains the charge loss rate by

dQ

dt
= −e

∫ eΦ+

m
S(l)A(ω) dω, (4.8)

with Φ+ = Q/r+ being the electric potential at the black hole horizon.

Shirashi showed that this formula, eq. (4.8), when applied to the Reissner-Nordström

case, recovers the Schwinger charge loss rate eq. (2.6), despite in this method the emission of

charged scalar particle was considered, in place of the actual leptonic electrons or positrons.

Similarly for the GHS case, Shirashi shown that eq. (4.8) yields a correction term to the

charge loss rate. It turns out that this is precisely eq. (4.1) with C = 2 that we have

previously derived by imposing cosmic censorship.14

Lastly, let us comment a little bit more on the attractor. In the work of Hiscock

and Weems [40], they claimed that the existence of attractor in the evolution of Reissner-

Nordsrtröm black hole is due to the specific heat of these black holes changing signs depend

on the values of M and Q. While the specific heat of the RN black holes might correlate

with the attractor for some subtle reason, this is not the main underlying reason. GHS

black holes always have negative specific heat, just like Schwarzschild black holes. Despite

this, there exists attractor behavior. In fact, the attractor essentially exists because of

14Shirashi’s charge loss rates dQ/ dt, namely eq. (24) and eq. (25) in [69], are actually proportional to

the r.h.s. expressions — the numerator should be r3+ instead of r+. After that, upon restoring ~ they are

the same as our expression eq. (2.6) and eq. (4.1), which are manifestly dimensionless (recall that ~ has

dimension of area).
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cosmic censorship, although admittedly it is still somewhat obscure how various physics,

such as the nontrivial coupling between Maxwell field and dilaton field, conspire to uphold

the censorship.

5 Discussions: cosmic censorship always holds under Hawking evolution

While singularities are abundant in general relativity and other theories of gravitation, the

hope is that singularities are generically not naked. By now it is clear from various works

in the literature that naked singularities do form under various circumstances in Einstein’s

gravity and beyond. The current challenge is to classify and eventually understand un-

der which conditions do we have cosmic censorship; can one be more precise about what

“generic” means? As emphasized in [16], in order to answer these questions, it is important

to investigate various scenarios of gravitational dynamics. Exploring these issues may pave

the path towards a better understanding of quantum gravity.

Since black holes evaporate via Hawking radiation, their parameter values can change

throughout this process. It is conceivable that for charged black holes, Q/M can evolve

towards its extremal value. If black holes can become extremal via Hawking evaporation,

then it is conceivable that some perturbations could render the singularities naked. Al-

though not discussed in the context of cosmic censorship, Hiscock and Weems [40] showed

that this cannot happen for asymptotically flat Reissner-Nordström black holes — though

Q/M can come arbitrarily close to its extremal value for some initial conditions, it always

turns away towards an attractor that in turn, flows towards the Schwarzschild limit. This

is the cosmic censor in action, and can occur without any change of sign in the specific

heat, contradict to the proposal by Hiscock and Weems.

The GHS black hole, which is a solution of low energy effective theory obtained from

string theory, is an interesting arena to investigate cosmic censorship beyond general rela-

tivity. (GHS black hole with a cosmological constant has also been investigated [80].) After

all, if string theory is correct, then strictly speaking, Reissner-Nordström black holes are

not the correct charged black hole solution. Whether or not cosmic censorship still holds

for the stringy solution then becomes a well-motivated question.

Various works have investigated whether naked singularities can form in this theory

under gravitational collapse [81], or by over-charging a black hole by one way or another [58–

60]. Our work considers employing the scheme of Hiscock and Weems to GHS black

holes to investigate whether cosmic censorship can potentially be violated under Hawking

evaporation.

We showed that in order for GHS black holes to behave in the manner similar to

RN black holes, one must modify the charge loss rate accordingly, so that charge particle

production is slightly enhanced towards extremality. A simple argument yields eq. (4.1)

with C = 2. Remarkably, this is precisely the form obtained by Shiraishi in [69] (eq. (25)

therein) via WKB approximation method on GHS black hole background.

The latter was done without any consideration for whether extremality can be

reached15 — and therefore whether cosmic censorship can be violated — under Hawk-

15As pointed out in [69], the WKB approximation cannot be trusted very close to the extremal value.

The Hiscock-Weems method also has similar limitation. However, the point is that, precisely because of
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ing evaporation. The fact that a simple argument invoking cosmic censorship obtains this

result independently lends credence to the validity of cosmic censorship in general, and in

low energy effective theory of string theory specifically.

In addition, our work also serves as an example for the utility of the cosmic censorship.

That is, by assuming that the censorship holds, we could deduce what kind of modification

is required for the charge loss rate. The implication goes further than black hole physics. As

explained in section 2, Hiscock and Weems derived their charge loss rate from Schwinger’s

formula. Although used to model Hawking radiation in some specific regime, Schwinger

mechanism by itself is of course about quantum electrodynamics, which is applicable even

without the presence of gravity. Therefore this would also suggest that Schwinger mecha-

nism gets modified in the presence of dilaton. This is of course not too surprising since the

dilaton is exponentially coupled to the Maxwell field (we have assumed in this work that

the Maxwell field in Einstein-Maxwell-dilaton theory, which originated from dimensional

reduction of higher dimensional string theory, is the same one that coupled to the Standard

Model, but this in principle need not be the case).

In a previous study by the authors, a “complementary third law” was found [64], which

states that if the end state of black hole evaporation has finite nonzero temperature but zero

size, then the evaporation time (assuming thermal evaporation always holds) is necessarily

infinite. It was shown therein that GHS black hole with electrical charge held fix, behaves

in this way. It was then conjectured that allowing the charge to vary should not change

this picture by much. Our current work shows that this is not true: even if we naively

use eq. (2.6) without the dilaton correction for the charge loss, some black holes can reach

extremality in finite time (within numerical accuracy of course), although the time scale

involved is a very long one by any standard. With the correction term the behavior changes

drastically and the end state is now towards complete evaporation à la Schwarzschild black

hole, assuming there is no new physics that might stop the evaporation near the Planck

scale [71]. Therefore allowing electrical charge to evaporate yields very different picture

than have it fixed.

Lastly we remark that the Hawking evaporation of charged dilaton black holes could

stop just prior to the formation of naked singularity due to the so-called “mirror effect”, a

timelike surface that negative energy flux does not propagate across, as shown by Maeda

and Okamura in [82]. However, in that work, the evaporation process considered is that

for five-dimensional NS1 black string with Kaluza-Klein charge (W-charge), thus it is not

clear if the argument also holds for the GHS solution. If it does, this would be an extra

insurance against cosmic censorship violation.

There are two obvious questions we can ask for future investigations: firstly, if one

insists on cosmic censorship being valid, in theories in which charge loss is nontrivial (in the

presence of couplings to other fields, for example), can we similarly deduce the modification

one must make to the charged particle production rate?

this, it is satisfying to see that evolution under Hawking evaporation will ensure that evaporating black

hole naturally stays away from the extremal limit.
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In order to investigate these issues, one might consider, for example, the more general

EMD theory, whose action is given by

S[EDM(a)] =
1

16π

∫
d4x
√
−g
[
R− 2(∇ϕ)2 − e−2aϕF 2

]
, (5.1)

where a ∈ R+ is the parameter that governs the coupling strength between the dilaton and

the Maxwell field. The GHS solution corresponds to the choice a = 1. Some aspects of

the physics involved in the evaporation of such black holes have been investigated [63, 83],

but it would be interesting to see if the Hiscock-Weems model would give some interesting

deeper understanding, especially in the context of cosmic censorship.

The second question is more general: does cosmic censorship always hold under Hawk-

ing evaporation?
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[48] K. Düztaş and İ. Semiz, Hawking radiation as the cosmic censor, Gen. Rel. Grav. 48 (2016)

69 [arXiv:1508.06685] [INSPIRE].

[49] D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys.

Rev. D 43 (1991) 3140 [Erratum ibid. D 45 (1992) 3888] [INSPIRE].

[50] G.W. Gibbons, Antigravitating Black Hole Solitons with Scalar Hair in N = 4 Supergravity,

Nucl. Phys. B 207 (1982) 337 [INSPIRE].

[51] G.W. Gibbons and K.-i. Maeda, Black Holes and Membranes in Higher Dimensional

Theories with Dilaton Fields, Nucl. Phys. B 298 (1988) 741 [INSPIRE].

[52] P. Jai-akson, A. Chatrabhuti, O. Evnin and L. Lehner, Black hole merger estimates in

Einstein-Maxwell and Einstein-Maxwell-dilaton gravity, Phys. Rev. D 96 (2017) 044031

[arXiv:1706.06519] [INSPIRE].

[53] E.W. Hirschmann, L. Lehner, S.L. Liebling and C. Palenzuela, Black Hole Dynamics in

Einstein-Maxwell-Dilaton Theory, Phys. Rev. D 97 (2018) 064032 [arXiv:1706.09875]

[INSPIRE].

[54] Y. Mizuno et al., The Current Ability to Test Theories of Gravity with Black Hole Shadows,

Nat. Astron. 2 (2018) 585 [arXiv:1804.05812] [INSPIRE].

[55] D. Marolf, The dangers of extremes, Gen. Rel. Grav. 42 (2010) 2337 [arXiv:1005.2999]

[INSPIRE].

[56] D.J. Loranz and W.A. Hiscock, Quantized fields and temperature in charged dilatonic black

hole space-times, Phys. Rev. D 55 (1997) 3893 [gr-qc/9607048] [INSPIRE].

[57] R. Emparan and R.C. Myers, Instability of ultra-spinning black holes, JHEP 09 (2003) 025

[hep-th/0308056] [INSPIRE].

[58] T.-Y. Yu and W.-Y. Wen, Cosmic censorship and Weak Gravity Conjecture in the

Einstein-Maxwell-dilaton theory, Phys. Lett. B 781 (2018) 713 [arXiv:1803.07916]

[INSPIRE].

[59] P. Aniceto, P. Pani and J.V. Rocha, Radiating black holes in Einstein-Maxwell-dilaton theory

and cosmic censorship violation, JHEP 05 (2016) 115 [arXiv:1512.08550] [INSPIRE].

– 22 –

https://doi.org/10.1016/j.shpsb.2018.10.006
https://doi.org/10.1016/j.shpsb.2018.10.006
https://arxiv.org/abs/1710.02725
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.02725
https://arxiv.org/abs/1710.03783
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.03783
https://doi.org/10.1103/PhysRevD.16.2402
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D16,2402%22
https://doi.org/10.1007/BF01609829
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,44,245%22
https://arxiv.org/abs/gr-qc/9710013
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9710013
https://doi.org/10.1103/PhysRevD.58.044012
https://arxiv.org/abs/gr-qc/9801044
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9801044
https://doi.org/10.1007/s10714-016-2070-1
https://doi.org/10.1007/s10714-016-2070-1
https://arxiv.org/abs/1508.06685
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.06685
https://doi.org/10.1103/PhysRevD.43.3140
https://doi.org/10.1103/PhysRevD.43.3140
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D43,3140%22
https://doi.org/10.1016/0550-3213(82)90170-5
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B207,337%22
https://doi.org/10.1016/0550-3213(88)90006-5
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B298,741%22
https://doi.org/10.1103/PhysRevD.96.044031
https://arxiv.org/abs/1706.06519
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.06519
https://doi.org/10.1103/PhysRevD.97.064032
https://arxiv.org/abs/1706.09875
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.09875
https://doi.org/10.1038/s41550-018-0449-5
https://arxiv.org/abs/1804.05812
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.05812
https://doi.org/10.1007/s10714-010-1027-z
https://arxiv.org/abs/1005.2999
https://inspirehep.net/search?p=find+EPRINT+arXiv:1005.2999
https://doi.org/10.1103/PhysRevD.55.3893
https://arxiv.org/abs/gr-qc/9607048
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9607048
https://doi.org/10.1088/1126-6708/2003/09/025
https://arxiv.org/abs/hep-th/0308056
https://inspirehep.net/search?p=find+EPRINT+hep-th/0308056
https://doi.org/10.1016/j.physletb.2018.04.060
https://arxiv.org/abs/1803.07916
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.07916
https://doi.org/10.1007/JHEP05(2016)115
https://arxiv.org/abs/1512.08550
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.08550


J
H
E
P
1
0
(
2
0
1
9
)
1
2
9

[60] P. Aniceto and J.V. Rocha, Dynamical black holes in low-energy string theory, JHEP 05

(2017) 035 [arXiv:1703.07414] [INSPIRE].
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