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1 Introduction

A fundamental characteristic of the gravity sector of the AdS/CFT correspondence is that

superstrings propagating in the AdS5 × S5 background can be described by a (classsical)

integrable model [1]. This geometry rises as a solution of the type IIB supergravity equa-

tions of motion when supported by a self-dual Ramond-Ramond (RR) five-form flux. It

is well known that a superstring moving on a curved background including a RR flux can

be correctly formulated by either the Green-Schwarz (GS) formalism [2] or the pure spinor

(PS) formalism [3] and that both formulations present manifest target-space supersymme-

try. In both formulations, classical integrability is ensured since the equations of motion

can be cast into a zero curvature equation satisfied by a Lax connection, see [1, 4]. Al-

though the complete quantization of the superstring in the AdS5 × S5 geometry has never

been fulfilled and still remains as an open problem, the use of integrability techniques yield

significant progress in understanding the excitation spectrum (see [5] for a review). It is

then reasonable to believe that integrability could play a prominent role on an eventual

first principle quantization approach of the theory.

Concerning the GS formalism, in the last years, two different but complementary types

of integrable deformations of the GS AdS5 × S5 superstring, have attracted a considerable

deal of attention. On one hand we have the Yang-Baxter (YB) deformations, so named be-

cause they are characterized by a linear operator acting on the Lie superalgebra psu(2, 2|4),
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which solves the modified classical Yang-Baxter equation mCYBE. This deformation was

first introduced for the principal chiral model by Klimč́ık in [6] and subsequenty devel-

oped in [7–9] for (super)-strings on (semi)-symmetric spaces (see [10, 11] as well). In order

to provide a target space which solves the equations of motion of type IIB supergravity,

these R-matrices must satisfy the unimodular condition [12]. On the other hand we have

the lambda deformations, which are based on a G/G gauged WZW model and are better

understood as deformations of the non-Abelian T-dual of the original theory, they were

first introduced for the principal chiral model by Sfetsos in [13] and subsequently developed

in [14–17] for (super)-strings on (semi)-symmetric spaces. An important fact of the lambda

deformation is that it produces string theory backgrounds solving the equations of motion

of type IIB supergravity, see [12, 18–20]. Although each family of deformations produce

different target space supergeometries, it has been proposed that, through an analytic con-

tinuation, the lambda deformations are Poisson-Lie T-dual to the YB deformations with

R-matrices satisfying the non-split mCYBE [21, 22]. In relation to the classical stringy

configurations on η and λ backgrounds, integrability conditions are discussed in [23].

In respect to the PS formalism, integrable deformations of the AdS5 × S5 superstring

have received much less attention and this is an unsatisfactory scenario for many reasons.

For instance, in the PS formalism the world-sheet metric is already in the conformal gauge

and the problematic κ-symmetry, signature of the GS superstring, is replaced by a global

and much better behaved BRST symmetry, therefore avoiding delicate issues involving the

light-cone gauge not to mention the lack of a satisfactory covariant quantization scheme

due to the fact that the first and second class fermionic constraints cannot be disentangled

covariantly in the GS formalism (a problem not present in the PS formalism by construc-

tion). Recently, the homogeneous YB deformations of the PS superstring were introduced

in [24], by following the homological perturbation theory developed in [25]. It was shown

that its target space background turns out to be the same found for the YB deformation of

the GS superstring [12]. From the PS point of view, the deformed space solving the type

IIB supergravity equations of motion is produced by a particular set of primary vertex

operators belonging to the BRST cohomology in AdS5 × S5. In this context, the mCYBE

condition on the R-matrices, needed for integrability of the deformed action, arises by

imposing the nilpotency of the deformed BRST charge, revealing a profound connection

between the integrability of the deformed theory and its BRST symmetry.

With this vision, in this paper we introduce the lambda deformation of the AdS5×S5

PS superstring. The deformation preserves the main characteristics of the un-deformed

theory: its BRST symmetry, its classical integrability, their local symmetries and its con-

formal symmetry at one-loop. In addition, it describes exactly the same supergeometry

associated to its lambda deformed GS counterpart, much in the same way as the YB defor-

mations of the GS and PS formulations describe the same background and are equivalent

as string theories, at least, from the classical theory point of view.

The paper is organized as follows. In section (2), we introduce the action functional

of the lambda deformed AdS5 × S5 pure spinor superstring and consider the equations of

motion, the classical integrability and the BRST symmetry of the theory. In section (3),

we run the Dirac procedure and study the integrability of the deformed theory from the
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Hamiltonian theory point of view. The analysis is simpler than in the GS formalism because

of the absence of kappa symmetry and is essentially the same of the lambda deformed hybrid

superstring. It is shown that the classical exchange algebra for the spatial component of the

Lax connection takes Maillet r/s form, as expected. In section (4), we consider the quantum

conformal symmetry and compute the one-loop beta function of the deformed theory and

show that it vanishes. Finally, we show that the effective action for the deformed theory

can be cast into the standard form of the Berkovits-Howe action functional. Once in this

form, the deformed target space fields can be easily identified. They are exactly the same

as the ones entering the geometry of the lambda deformed GS superstring, meaning that

both formulations describe the same classical system.

2 Lambda deformed pure spinor superstring

In this section we recall the lambda deformed action of the PS superstring in the AdS5×S5

background originally constructed in [26]. It is shown that the deformation preserves

the integrability of its parent theory, a discussion not covered previously in [26]. The

main characteristic of the deformed theory integrable structure is that its associated Lax

connection depends explicitly on the deformation parameter λ, a feature not observed

before in any of the known lambda models. BRST symmetry is briefly considered as well

from the symplectic theory point of view.

2.1 Action functional

Consider the Lie superalgebra f = psu(2, 2|4) and its Z4 decomposition induced by the

automorphism Φ

Φ(f(j)) = ijf(j), f =
⊕3

i=0
f(i), [f(i), f(j)] ⊂ f(i+j)mod 4. (2.1)

From this decomposition we associate a twisted loop superagebra given by

f̂ =
⊕

n∈Z

(

⊕3

i=0
f(i) ⊗ z4n+i

)

=
⊕

n∈Z
f̂(n), (2.2)

required later on for describing the integrable structure of the field theory, where z plays

the role of the spectral parameter.

The lambda deformation of the AdS5 × S5 pure spinor (PS) superstring is defined by

the following action functional1 [26]

Sλ = SΩ + SPS . (2.3)

The first contribution is given by the matter sector

SΩ = SF/F (F , A±)−
k

π

∫

Σ
d2σ 〈A+(Ω− 1)A−〉 , k ∈ Z, (2.4)

1The 1+1 notation used is: σ± = τ ± σ, ∂± = 1
2
(∂τ ± ∂σ), ηµν = diag(1,−1), ǫ01 = 1, δσσ′=δ(σ − σ′)

and δ′σσ′=∂σδ(σ − σ′). Also a± = 1
2
(aτ ± aσ) and sometimes we use τ = σ0 and σ = σ1 interchangeably.
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where 〈∗, ∗〉 = str(∗, ∗) is the supertrace in some faithful representation of the Lie super-

algebra f, Σ = R× S1 is the world-sheet manifold parameterized by the coordinates (τ, σ)

and Ω ≡ Ω(λ), where

Ω(z) = P (0) + z−3P (1) + z−2P (2) + z−1P (3), λ−2 = 1 +
κ2

k
(2.5)

is the omega projector that defines the lambda deformation of the hybrid superstring [26].

Above, we have that

SF/F (F ,Aµ)=SWZW (F)k−
k

π

∫

Σ
d2σ

〈

A+∂−FF−1−A−F
−1∂+F−A+FA−F

−1+A+A−

〉

,

(2.6)

where SWZW (F)k is the level k WZW model action

SWZW (F)k = −
k

2π

∫

Σ
d2σ

〈

F−1∂+FF−1∂−F
〉

−
k

4π

∫

B
χ(F ′), χ(F ′) =

1

3
〈(F ′−1

dF ′)
3
〉.

(2.7)

The κ2 is the coupling constant of the undeformed theory and the P (i) are projectors along

the subspaces f(i) ⊂ f induced by the Z4 decomposition. The deformation parameter λ

takes values in 0 ≤ λ ≤ 1.

The second contribution is given by the ghost sector

SPS = −
k

π
(λ−4 − 1)

∫

Σ
d2σ〈w

(3)
+ D

(0)
− l(1) + ŵ

(1)
− D

(0)
+ l̂(3) −N

(0)
+ N̂

(0)
− 〉, (2.8)

where

N
(0)
+ = −[w

(3)
+ , l(1)]+, N̂

(0)
− = −[ŵ

(1)
− , l̂(3)]+ (2.9)

are the pure spinor Lorentz currents, (w
(3)
+ , ŵ

(1)
− ) are the conjugate fields of the bosonic pure

spinor ghosts (l(1), l̂(3)) and D
(0)
± = ∂(∗) + [A

(0)
± , ∗] is a covariant derivative with respect

to the gauge symmetry associated to the subalgebra f(0) ⊂ f . The ghosts satisfy the pure

spinor conditions

[l(1), l(1)]+ = 0, [l̂(3), l̂(3)]+ = 0, (2.10)

where [∗, ∗]+ denotes the anti-commutator.

The relation of the action (2.3) and the action of the un-deformed theory is found by

considering the λ → 1 limit, which is defined by expanding the group-like Lagrangian field

near the identity F =1+κ2ν/k+. . . while taking k → ∞ and keeping κ2 fixed. We find that

Ω = 1 +
κ2

k
θ + . . . , θ = P (2) +

3

2
P (1) +

1

2
P (3). (2.11)

In this limit, the deformed action reduces to the action of the pure spinor superstring

written in the first order (or non-Abelian Buscher) form

SPS =−
κ2

π

∫

Σ
d2x〈A+θA−+νF+−〉−

2κ2

π

∫

Σ
d2x

〈

w
(3)
+ D

(0)
− l(1)+ ŵ

(1)
− D

(0)
+ l̂(3)−N

(0)
+ N̂

(0)
− 〉+ . . . ,

(2.12)
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where the ellipsis denote sub-leading terms of order 1/k and F+− is the field strength of

A±. After using the equations of motion for the (now) Lagrange multiplier field ν and

by fixing the gauge A± = J± = f−1∂±f, we recover the pure spinor superstring action

functional. If we instead integrate out the gauge fields A± the non-Abelian T-dual of the

PS superstring is constructed. The content of the lambda deformation is now clear, it is a

deformation of the non-Abelian T-dual2 of the PS superstring, see (4.21) and (4.22) for the

fully deformed effective action functional obtained after elimination of the gauge fields. As

we shall see along this text, it also preserves all the properties of the un-deformed theory.

In order to avoid clutter in the expressions to be written in the rest of the paper, it

will be useful to introduce the following notation, i.e.

s = λ−4 − 1, (2.13)

and3

O = Ω−D. (2.14)

2.2 Equations of motion

Before considering the equations of motion in detail, let us first prove an useful identity.

Consider the gauge field equations of motion derived from the action (2.3), i.e.

A+ = O−T [F−1∂+F − sN
(0)
+ ],

A− = −O−1[∂−FF−1 + sN̂
(0)
− ].

(2.15)

Then, the Maurer-Cartan identity for the flat current F−1∂±F , in the presence of the

equations (2.15), takes the form

ξ1 −DT ξ2 = 0, (2.16)

where
ξ1 = [∂+ +ΩTA+ + sN

(0)
+ , ∂− +A−],

ξ2 = [∂+ +A+, ∂− +ΩA− + sN̂
(0)
− ].

(2.17)

Now, the F equations of motion when combined with (2.15) are equivalent to having ξ1 = 0

and ξ2 = 0 separately, while the ghosts equations of motion

D
(0)
− l(1) − [N̂

(0)
− , l(1)] = 0, D

(0)
− w

(3)
+ − [N̂

(0)
− , w

(3)
+ ] = 0,

D
(0)
+ l̂(3) − [N

(0)
+ , l̂(3)] = 0, D

(0)
+ ŵ

(1)
− − [N

(0)
+ , ŵ

(1)
− ] = 0

(2.18)

imply that the PS Lorentz currents (2.9) satisfy

D
(0)
− N

(0)
+ − [N̂

(0)
− , N

(0)
+ ] = 0, D

(0)
+ N̂

(0)
− − [N

(0)
+ , N̂

(0)
− ] = 0. (2.19)

In terms of the dual currents

I
(0)
± = A

(0)
± , I

(1)
+ = λ−1/2A

(1)
+ , I

(1)
− = λ−3/2A

(1)
− ,

I
(2)
± = λ−1A

(2)
± , I

(3)
+ = λ−3/2A

(3)
+ , I

(3)
− = λ−1/2A

(3)
− ,

(2.20)

2This is the main characteristic of the λ deformed sigma models.
3We have that D(∗) ≡ AdF (∗) = F(∗)F−1 and DT (∗) ≡ AdF−1(∗) = F−1(∗)F .
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introduced in [26] for the lambda deformed hybrid formulation of the superstring, the F

equations of motion, i.e. ξ1 = ξ2 = 0 are (for generic values of λ) equivalent to the following

set of equations

D
(0)
+ I

(3)
− + [I

(1)
+ , I

(2)
− ] + [I

(2)
+ , I

(1)
− ]− [N

(0)
+ , I

(3)
− ] + λ−2[I

(3)
+ , N̂

(0)
− ] = 0,

D
(0)
− I

(1)
+ + [I

(3)
− , I

(2)
+ ] + [I

(2)
− , I

(3)
+ ]− [N̂

(0)
− , I

(1)
+ ] + λ−2[I

(1)
− , N

(0)
+ ] = 0,

D
(0)
+ I

(2)
− + [I

(1)
+ , I

(1)
− ]− [N

(0)
+ , I

(2)
− ] + λ−2[I

(2)
+ , N̂

(0)
− ] = 0,

D
(0)
− I

(2)
+ + [I

(3)
− , I

(3)
+ ]− [N̂

(0)
− , I

(2)
+ ] + λ−2[I

(2)
− , N

(0)
+ ] = 0,

D
(0)
+ I

(1)
− − [N

(0)
+ , I

(1)
− ] + λ−2[I

(1)
+ , N̂

(0)
− ] = 0,

D
(0)
− I

(3)
+ − [N̂

(0)
− , I

(3)
+ ] + λ−2[I

(3)
− , N

(0)
+ ] = 0,

F
(0)
+− + s[N

(0)
+ , N̂

(0)
− ] = 0,

(2.21)

where

F
(0)
+− = ∂+I

(0)
− − ∂−I

(0)
+ + [I

(0)
+ , I

(0)
− ] + [I

(1)
+ , I

(3)
− ] + [I

(2)
+ , I

(2)
− ] + [I

(3)
+ , I

(1)
− ]. (2.22)

The full set of equations of motion (2.19) and (2.21) follow from the zero curvature

condition of the Lax connection

L+(z) = I
(0)
+ + zI

(1)
+ + z2I

(2)
+ + z3I

(3)
+ + (z4 − λ2)λ−2N

(0)
+ ,

L−(z) = I
(0)
− + z−3I

(1)
− + z−2I

(2)
− + z−1I

(3)
− + (z−4 − λ2)λ−2N̂

(0)
− ,

(2.23)

satisfying the condition

Φ(L±(z)) = L±(iz), (2.24)

under the action of Φ in (2.1).

However, in contrast to all known lambda models, see for instance [13, 14, 16, 26],

this theory has an explicit λ-dependent Lax connection, i.e. the parameter λ can not be

absorbed by the ghost currents. Indeed, the un-deformed theory has a Lax pair given by [4]

L+(z) = J
(0)
+ + zJ

(1)
+ + z2J

(2)
+ + z3J

(3)
+ + (z4 − 1)N

(0)
+ ,

L−(z) = J
(0)
− + z−3J

(1)
− + z−2J

(2)
− + z−1J

(3)
− + (z−4 − 1)N̂

(0)
− ,

(2.25)

where J± = f−1∂±f is a flat current defined in terms of the Lagrangian field f . The

integrability of the action (2.3) was not considered in [26] because of the discrepancy of the

equations of motion (2.21) with the equations of motion of the un-deformed theory. Notice

it explicit λ-dependence. However, this apparent anomalous behavior is quite natural once

we realize it is just a consequence of the pole structure of the deformed theory, materialized

in the twisting function, see (3.29) below.

Using the Kac-Moody currents expressions defined below in (3.1), we can write (2.15)

in the equivalent forms
2π

k
J+ = ΩTA+ −A− + sN

(0)
+ ,

−
2π

k
J− = A+ − ΩA− − sN̂

(0)
− ,

(2.26)
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from which follows that

Lσ(z±) = ∓
2π

k
J∓, (2.27)

where z± = λ±1/2. This important result will be invoked later on.

The lambda deformation preserves the integrability of the original theory albeit with a

slight modification of the Lax connection when compared to its un-deformed counterpart.

2.3 BRST symmetry

The action (2.3) is invariant under the following BRST variations [26]

δF = −αF + Fβ, δŵ
(1)
− = −λbA

(1)
− ,

δA+ = D+α, δw
(3)
+ = −λaA

(3)
+ ,

δA− = D−β, δl(1) = δl̂(3) = 0,

(2.28)

where a, b ∈ R are arbitrary real numbers4 and

α = λal(1) + bl̂(3), β = al(1) + λbl̂(3). (2.29)

We can verify the consistency of the BRST variations by showing that its square is formally

a gauge transformation. We find that

δ
2
F = −[α2,F ], δ

2
ŵ

(1)
− = −λb(D−β)

(1),

δ
2
A+ = D+α

2, δ
2
w

(3)
+ = −λa(D+α)

(3),

δ
2
A− = D−α

2, δ
2
l(1) = δ

2
l̂(3) = 0,

(2.30)

where we have used the constraints (2.10) in order to show that α2 = β2. Classical

nilpotency of the BRST action must be accomplished up to classical equations of motion

and local gauge transformations. In relation to the action functional (2.3), we find that

such an action is indeed nilpotent

δ
2
Sλ = 0. (2.31)

In showing this last result, derivatives of the constraints (2.10) are to be used. This is

consistent with the bosonic gauge symmetry of (2.3) generated by the grade zero subalgebra

f(0). In particular, (2.30) shows that for the lambda deformation of the PS superstring the

Lorentz transformation must be modified as

δLorF = [Λ(0),F ], (2.32)

as expected for a lambda deformation. Recall that in the un-deformed case the Lorentz

transformation is of the form

δLorf = Λ(0)f. (2.33)

In order to find the associated BRST charge in an elegant manner, we consider the

symplectic form of the action (2.3). Namely,

ω = ω+ − ω−, (2.34)

4This is a freedom found in [26], where the BRST symmetry variations were constructed.

– 7 –
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where

ω+ =
k

4π

∫

dσ+〈δFF−1 ∧D+(δFF−1) + 2δFF−1 ∧ δA+ + 2(λ−4 − 1)δw
(3)
+ ∧ δl(1)〉,

ω− =
k

4π

∫

dσ−〈F−1δF ∧D−(F
−1δF)− 2F−1δF ∧ δA− + 2(λ−4 − 1)δŵ

(1)
− ∧ δl̂(3)〉.

(2.35)

Here, the δ is to be understood as the exterior derivative in the symplectic manifold. Using

the following contractions

δF(X) = −αF + Fβ, δŵ
(1)
− (X) = −λbA

(1)
− ,

δA+(X) = D+α, δw
(3)
+ (X) = −λaA

(3)
+ ,

δA−(X) = D−β, δl(1)(X) = δl̂(3)(X) = 0,

(2.36)

we find that

− iXω = δQBRST , (2.37)

where

QBRST = −
k

2π

s

λ

∫

S1

dσ〈al(1)A
(3)
+ + bl̂(3)A

(1)
− 〉. (2.38)

This result is found only after using the gauge field equations of motion (2.15), which allow

to write the right hand side as a total differential.

We now consider the conservation and the nilpotency of (2.38). Using (2.10), (2.20)

and the equations of motion (2.21), we get

∂τQBRST = −
k

2π

s

λ

∫

S1

dσ∂σ〈al
(1)A

(3)
+ − bl̂(3)A

(1)
− 〉, (2.39)

ensuring the conservation of the BRST charge after imposing periodic boundary conditions

on the fields. Concerning the nilpotency of the BRST charge care must taken because of

the equations (2.15) imply that A± are now determined by the Lagrangian field F and

consistency of the BRST symmetry must be guaranteed first. This means that the correct

variations δA± must be deduced from the variation5 δF . In order to show this, we start

with the general result

δA+ = O−T {DTD+(δFF−1)− sδN
(0)
+ },

δA− = −O−1{DD−(F
−1δF) + sδN̂

(0)
− }

(2.40)

and use the following BRST variations

δF = −αF + Fβ, δŵ
(1)
− = −λbA

(1)
− ,

δw
(3)
+ = −λaA

(3)
+ , δl(1) = δl̂(3) = 0,

(2.41)

with A
(1)
− and A

(3)
+ extracted from (2.15). After imposing the PS constraints (2.10), we

obtain
δA+ = D+α− sλbO−T {D

(0)
+ l̂(3) − [N

(0)
+ , l̂(3)]},

δA− = D−β − sλaO−1{D
(0)
− l(1) − [N̂

(0)
− , l(1)]}.

(2.42)

5Recall that in (2.28), A± and F are taken as independent fields.
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This shows that the BRST symmetry is consistent with (2.15) only after the use of PS ghosts

equations of motion (2.18), i.e. the BRST symmetry is now an on-shell symmetry. This

same situation occurs in the un-deformed theory. Now, using the new BRST symmetry

transformations (2.41) together with (2.10), we verify that the BRST charge is indeed

nilpotent

δQBRST = 0. (2.43)

Furthermore, it follows from the ghost equations of motion, (2.21) and (2.10) that the

currents defined by

j+(σ
+) = 〈l(1)A

(3)
+ 〉, j−(σ

−) = 〈l̂(3)A
(1)
− 〉, (2.44)

are chiral, just as their counterparts in the un-deformed theory. A comment is in order, it is

known [21] that the eta and the lambda backgrounds are related via Poisson-Lie T-duality

plus analytic continuation of their deformation parameters (at least for purely bosonic

theories), thus it is sensible to think that the charge (2.38) and the BRST charge of the

eta deformed pure spinor supertring [24] might be related under this type of duality.

In summary, all the properties of the original action functional are preserved under the

deformation, i.e. its BRST symmetry, its integrability and its local symmetries. Below, we

will show that its 1-loop conformal symmetry is also maintained.

3 Hamiltonian structure and integrability

In this section, we run the Dirac procedure and study the integrable structure from the

Hamiltonian theory point of view. We will follow the strategy of [27–30] and show that

the Poisson bracket of the spatial component of the extended Lax connection takes the

Maillet algebra form [31]. This is possible after constructing a suitable extension of the

Lax connection outside the constraint surface. As expected, the extended monodromy

matrix is conserved and their charges preserve the constraint surface where the classical

motion of the deformed string theory takes place.

3.1 Dirac procedure

The phase space associated to the action functional (2.3) is described by the following

phase space coordinates: two currents J± given by

J+ =
k

2π

(

F−1∂+F + F−1A+F−A−

)

, J− = −
k

2π

(

∂−FF−1−FA−F
−1+A+

)

, (3.1)

obeying the relations of two commuting Kac-Moody algebras6

{J±(σ)1,J±(σ
′)2} = −[C12,J±(σ

′)2]δσσ′ ∓
k

2π
C12δ

′
σσ′ , {J±(σ)1,J∓(σ

′)2} = 0,

(3.2)

two conjugated pairs of fields (A±, P∓) with Poisson brackets

{P±(σ)1, A∓(σ
′)2} =

1

2
C12δσσ′ (3.3)

6For the Lie (super)-algebra we use the definitions ηAB = 〈TA, TB〉 , C12 = ηABTA⊗TB and u1 = u⊗ I,

u2 = I ⊗ u, etc.
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and two pairs of conjugated ghosts (l(1), w
(3)
+ ) and (l̂(3), ŵ

(1)
− ), satisfying

{l(1)(σ)1, w
(3)
+ (σ′)2} = −αλ2C

(13)
12

δσσ′ , {l̂(3)(σ)1, ŵ
(1)
− (σ′)2} = −αλ2C

(31)
12

δσσ′ , (3.4)

where7

α =
2π

k

1

(λ−2 − λ2)
. (3.5)

The time flow is determined by the canonical Hamiltonian density

HC = HΩ +HPS , (3.6)

where

HΩ = −
k

π

〈

(π

k

)2
(

J 2
+ + J 2

−

)

+
2π

k
(A+J− +A−J+) +

1

2

(

A2
+ +A2

−

)

−A+ΩA−

〉

(3.7)

and

HPS = −
1

αλ2

〈

w
(3)
+ ∂σl

(1) − ŵ
(1)
− ∂σ l̂

(3) − 2N
(0)
+ A− − 2N̂

(0)
− A+ + 2N

(0)
+ N̂

(0)
−

〉

(3.8)

through the relation

∂τf =
{

f, hC
}

, hC =

∫

S1

dσHC(σ). (3.9)

Above, f is an arbitrary functional of the phase space variables.

Now, we run the Dirac algorithm. There are two primary constraints

P+ ≈ 0, P− ≈ 0. (3.10)

By adding them to the canonical Hamiltonian (3.6) we construct the total Hamiltonian

HT = HC − 2 〈u+P− + u−P+〉 , (3.11)

where u± are arbitrary Lagrange multipliers.

Stability of the primary constraints (3.10) under the flow of HT leads to two secondary

constraints given by

C+ = J+ −
k

2π

(

ΩTA+ −A− + sN
(0)
+

)

≈ 0,

C− = J− +
k

2π

(

A+ − ΩA− − sN̂
(0)
−

)

≈ 0,

(3.12)

which are nothing but the gauge field equations of motion (2.15). In this formulation of the

superstring we must add by hand the pure spinor constraints (2.10) to the set of constraints

found so far, i.e.

Φ =
1

2
l(1)l(1) ≈ 0, Φ̂ =

1

2
l̂(3) l̂(3) ≈ 0. (3.13)

From this, we construct the extended Hamiltonian

HE = HC − 2
〈

u+P− + u−P+ + µ+C− + µ−C+ + vΦ+ v̂Φ̂
〉

, (3.14)

where µ± and v, v̂ are arbitrary Lagrange multipliers.

7Not to be confused with the alpha defined in (2.29).
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Stability of the constraints under the time flow of HE produce no new constraints but

rather determine some of the Lagrange multipliers. However, their explicit form will not

be required in what follows and algorithm stops.

We now consider the constraints and split them between first and second class. Along

the coset directions, the constraints

P
(i)
± ≈ 0, C

(i)
± ≈ 0, for i = 1, 2, 3 (3.15)

form three second class pairs of constraints and we impose them strongly by means of a

Dirac bracket. The brackets (3.2) and (3.3) are not modified in this process, so we continue

using their usual definitions. Then, we have the strong relations

I
(3)
+ = α(λ−1/2J

(3)
+ + λ1/2J

(3)
− ), I

(3)
− = α(λ3/2J

(3)
+ + λ−3/2J

(3)
− ),

I
(2)
+ = α(λ−1J

(2)
+ + λJ

(2)
− ), I

(2)
− = α(λJ

(2)
+ + λ−1J

(2)
− ),

I
(1)
+ = α(λ−3/2J

(1)
+ + λ3/2J

(1)
− ), I

(1)
− = α(λ1/2J

(1)
+ + λ−1/2J

(1)
− ).

(3.16)

Along the grade zero part of the algebra, we notice that the combination

P
(0)
+ + P

(0)
− ≈ 0 (3.17)

is a first class constraint, while

P
(0)
+ − P

(0)
− ≈ 0, C

(0)
− ≈ 0 (3.18)

form a pair of second class constraints. The first class constraint (3.17) can be gauge fixed

by means of the condition

A
(0)
− ≈ 0. (3.19)

This is a good gauge fixing condition and now we impose (3.17), (3.18) and (3.19) strongly

by means of a Dirac bracket. Fortunately, the brackets (3.2) and (3.3) are not modified at

this step. Then, we get the strong relation

I
(0)
1 = −

2π

k
J

(0)
− + sN̂

(0)
− . (3.20)

At this level of analysis, the remaining constraints are (ϕ(0),Φ, Φ̂), where

ϕ(0) ≡ C
(0)
+ = J

(0)
+ + J

(0)
− −

1

αλ2
(N

(0)
+ + N̂

(0)
− ). (3.21)

They weakly commute among themselves and are first class.

When compared to the Hamiltonian analysis of the lambda deformed GS super-

string [30], we realize that for the PS formalism the same analysis is simpler and less

involved because of the absence of the fermionic constraints associated to the kappa sym-

metry.

– 11 –



J
H
E
P
1
0
(
2
0
1
9
)
1
0
8

3.2 Maillet algebra

Due to the presence of Hamiltonian constraints, the Poisson bracket of the spatial compo-

nent of the Lax connection does not take the standard Maillet form [31] and an extension of

the Lax connection (2.23) outside the constraint surface must be considered. Only after a

proper extension have been chosen, the Maillet algebra is recovered. See [27, 28] for string

theories with this characteristic, see also [30] for a more direct approach devoted to lambda

models. Here, we will apply the same strategy to the PS superstring lambda model.

We start by writing the spatial component of the Lax connection (2.23) in terms of

the Kac-Moody currents and in the partial gauge considered so far, where (3.16), (3.19)

and (3.20) are valid in the strong sense. We have

Lσ(z) = −
2π

k
J

(0)
− + f−(z)

{

z3+
z3

J
(1)
− +

z2+
z2

J
(2)
− +

z+
z

J
(3)
−

}

+ f+(z)

{

z3−
z3

J
(1)
+ +

z2−
z2

J
(2)
+ +

z−
z

J
(3)
+

}

+
f+(z)

αz4+

{

N
(0)
+ +

z4−
z4

N̂
(0)
−

}

,

(3.22)

where

f±(z) = α(z4 − z4±). (3.23)

The extension of the Lax connection we will consider is defined by imposing that the

relations (2.27) are valid outside the constraint surface and hence on the whole phase space.

We consider the following obvious extension8

L σ(z) = Lσ(z) + f+(z)ϕ
(0) (3.24)

and obtain

L σ(z) = f+(z)Ω(z/z−)J+ + f−(z)Ω(z/z+)J− −
2ϕ−1

λ (z)

αz4+
N̂

(0)
− , (3.25)

where

ϕ−1
λ (z) =

f+(z)f−(z)

2αz4
. (3.26)

The Poisson bracket of (3.25) with itself takes the r/s Maillet algebra form [31]

{L σ(σ; z)1,L σ(σ
′;w)2} = [r12(z, w),L σ(σ; z)1 + L σ(σ

′;w)2]δσσ′ (3.27)

+ [s12(z, w),L σ(σ; z)1 − L σ(σ
′;w)2]δσσ′ − 2s12(z, w)δ

′
σσ′ ,

where

r12(z, w) = −
1

z4 − w4

∑3

j=0
{zjw4−jC

(j,4−j)
12

ϕ−1
λ (w) + z4−jwjC

(4−j,j)
12

ϕ−1
λ (z)},

s12(z, w) = −
1

z4 − w4

∑3

j=0
{zjw4−jC

(j,4−j)
12

ϕ−1
λ (w)− z4−jwjC

(4−j,j)
12

ϕ−1
λ (z)},

(3.28)

8This choice is based on the extension constructed in [30] for the GS superstring simply by dropping the

contributions coming from kappa symmetry. A similar choice is considered in [27] for the un-deformed PS

superstring.
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are the anti-symmetric and symmetric parts of an R12(z, w) matrix and ϕλ(z) is the asso-

ciated deformed twisting function given by

ϕλ(z) =
2

α
.

1

(z2 − z−2)2 − (z2+ − z2−)
2
. (3.29)

The algebra (3.27) is the same found for the Green-Schwarz [30] and the hybrid formu-

lations [26]. At the points z = z±, the Maillet algebra (3.27) reduce to the Kac-Moody

algebras we wrote above in (3.2).

The extended Lax connection is given by

L +(z) = L+(z) + f+(z)ϕ
(0), L −(z) = L−(z) (3.30)

and from it we get an extension of the equations of motion found from (2.23) by terms

involving the bosonic constraint ϕ(0). Furthermore, from its flatness, it follows that the

time derivative of the (super)-trace of the monodromy matrix

m(z) = P exp

[

−

∮

S1

dσL σ(σ; z)

]

, (3.31)

vanishes, i.e.
d

dτ
〈m(z)〉 = 0. (3.32)

As a consequence, an infinite number of integrals of motion can be found by expanding

the monodromy matrix in powers of the spectral parameter z. The extended Lax connec-

tion (3.30) satisfy the condition (2.24) as well.

The Poisson brackets of (3.25) with (3.13) weakly vanish, while the Poisson bracket

of (3.25) with ϕ(0) is a gauge transformation, in the sense that
{

L σ(σ; z)1, ϕ
(0)(σ′)2

}

= −C
(00)
12

δ′σσ′ +
[

C
(00)
12

,L σ(σ; z)1
]

δσσ′ , (3.33)

meaning that the (super)-trace of the mononodromy matrix Poisson commute with ϕ(0)

{

〈m(z)〉, ϕ(0)
}

= 0. (3.34)

Then, the monodromy matrix is a first class function in phase space, preserving the con-

straint surface where the lambda model motion takes place.

Finally, it is not difficult to verify that the BRST chiral currents (2.44) remain chiral

under the extended set of equations of motion.

4 Conformal invariance

In this section we consider the one loop conformal symmetry of the deformed theory by

following the method of [32] used to compute the 1-loop beta function of the lambda

deformed GS superstring. The same method was used in [26] to deal with the lambda

deformation of the hybrid superstring. As the PS superstring is essentially based on the

hybrid formulation plus the addition of the pure spinor ghosts, the calculation is quite

straightforward. We also consider the supergeometry underlying the action functional (2.3)

and show that it is the same of the GS superstring in the AdS5×S5 lambda background [12].

Thus, both theories describe the same classical theory.
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4.1 1-loop beta function: un-deformed case

For the sake of completeness and in order to understand the method of [32] in a known

situation, we will compute here the 1-loop beta function of the PS superstring in the

AdS5 × S5 background. We calculate the fluctuations around the background field in

terms of the currents of the theories rather than their fundamental field directly, as was

originally done in [33].

The equations of motion of the un-deformed theory are obtained from the flatness

condition of the Lax connection (2.25). They are given by (2.21) after the substitutions

I± → J±, λ → 1. (4.1)

The ghost equations of motion are still given by (2.19) without any modification. The

approach of [32] is based on taking the variations of the equations of motion in order to

obtain the operators governing the fluctuations of the currents in an straightforward way.

By choosing a purely bosonic background, the bosonic and fermionic sectors completely

decouple at the 1-loop order. We choose

I
(2)
± = θ±, N

(0)
+ = n+, N̂

(0)
− = n̂−, (4.2)

satisfying the conditions

[θµ, θν ] = [θµ, n+] = [θµ, n̂−] = [n+, n̂−] = 0. (4.3)

Other current components being zero, meaning that at the group level this choice corre-

sponds to

f = expxµθµ, θµ ∈ f(2). (4.4)

The equations of motion are to be supplemented with a gauge-fixing condition associated

to the f(0) gauge symmetry. We choose the following one

∂+J
(0)
− + ∂−J

(0)
+ = 0. (4.5)

After variation, we obtain the operators governing the fluctuations. For the bosonic

sector we get

DB(x) =



















∂− − n̂− −n+ 0 −θ+ θ− θ+
−n̂− ∂+ − n+ −θ− 0 θ− θ+
−θ− θ+ −∂− ∂+ 0 0

0 0 ∂− ∂+ 0 0

0 0 0 −n+ ∂− − n̂− n+

0 0 −n̂− 0 n̂− ∂+ − n+



















acting on























δJ
(2)
+

δJ
(2)
−

δJ
(0)
+

δJ
(0)
−

δN
(0)
+

δN̂
(0)
−























,

(4.6)

where the fourth line from top to bottom corresponds to the variation of the gauge fixing

condition. For the fermionic sector, we obtain

DF (x) =











∂− − n̂− −n+ θ− −θ+
−n̂− ∂+ − n+ 0 0

0 0 ∂− − n̂− −n+

−θ− θ+ −n̂− ∂+ − n+











acting on













δJ
(1)
+

δJ
(1)
−

δJ
(3)
+

δJ
(3)
−













. (4.7)
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In (4.6) and (4.7) by acting on, we mean the adjoint action, e.g. θ+(∗) means [θ+, ∗] and

so on.

The 1-loop contribution to the effective Lagrangian, in Euclidean signature, is

L
(1)
E =

1

2

∫

|p|<µ

d2p

(2π)2
tr[logDB(p)− logDF (p)], (4.8)

where

DB(p) =



















p− − n̂− −n+ 0 −θ+ θ− θ+
−n̂− p+ − n+ −θ− 0 θ− θ+
−θ− θ+ −p− p+ 0 0

0 0 p− p+ 0 0

0 0 0 −n+ p− − n̂− n+

0 0 −n̂− 0 n̂− p+ − n+



















(4.9)

and

DF (p) =











p− − n̂− −n+ θ− −θ+
−n̂− p+ − n+ 0 0

0 0 p− − n̂− −n+

−θ− θ+ −n̂− p+ − n+











. (4.10)

The contributions associated to the logarithmic divergences (denoted by
·
=) are

1

2

∫

|p|<µ

d2p

(2π)2
tr[logDB(p)]

·
= −

1

8π
lnµ[Tr

(0)
adj + Tr

(2)
adj ] (θ+θ− + 2n+n̂−) ,

1

2

∫

|p|<µ

d2p

(2π)2
tr[logDF (p)]

·
= −

1

8π
lnµ[Tr

(1)
adj + Tr

(3)
adj ] (θ+θ− + 2n+n̂−) .

(4.11)

Then, L
(1)
E ≈ c2(f) = 0, matching perfectly with the known result originally obtained

in [33].

4.2 1-loop beta function: deformed case

In order to compute the 1-loop beta function of the deformed theory, we consider the

following classical background fields

F = expxµΛµ, N
(0)
+ = n+, N̂

(0)
− = n̂−, (4.12)

satisfying the conditions

[Λµ,Λν ] = [Λµ, n+] = [Λµ, n̂−] = [n+, n̂−] = 0, (4.13)

where Λµ ∈ f(2). From this choice and (2.15), we get the dual currents

I
(2)
± ≡ θ± = ±

λ

(1− λ2)
Λ±, I

(i)
± = 0, i = 0, 1, 3. (4.14)

The advantage of this choice lies in the fact that the matter and ghost sectors decouple.
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Now, from the equations of motion (2.19) and (2.21), we obtain the operators governing

the fluctuations of the bosonic and fermionic sectors. For the bosonic sector we get

DB(x) =



















∂− − n̂− −λ−2n+ 0 −θ+ λ−2θ− θ+
−λ−2n̂− ∂+ − n+ −θ− 0 θ− λ−2θ+
−θ− θ+ −∂− ∂+ −sn̂− sn+

0 0 ∂− ∂+ 0 0

0 0 0 −n+ ∂− − n̂− n+

0 0 −n̂− 0 n̂− ∂+ − n+



















acting on























δI
(2)
+

δI
(2)
−

δI
(0)
+

δI
(0)
−

δN
(0)
+

δN̂
(0)
−























,

(4.15)

where the fourth line from top to bottom corresponds to the gauge fixing condition of the

remnant gauge symmetry. For the fermionic sector, we obtain

DF (x) =











∂− − n̂− −λ−2n+ θ− −θ+
−λ−2n̂− ∂+ − n+ 0 0

0 0 ∂− − n̂− −λ−2n+

−θ− θ+ −λ−2n̂− ∂+ − n+











acting on













δI
(1)
+

δI
(1)
−

δI
(3)
+

δI
(3)
−













. (4.16)

The 1-loop contribution to the effective Lagrangian, in Euclidean signature, is

L
(1)
E =

1

2

∫

|p|<µ

d2p

(2π)2
tr[logDB(p)− logDF (p)], (4.17)

where

DB(p) =



















p− − n̂− −λ−2n+ 0 −θ+ λ−2θ− θ+
−λ−2n̂− p+ − n+ −θ− 0 θ− λ−2θ+
−θ− θ+ −p− p+ −sn̂− sn+

0 0 p− p+ 0 0

0 0 0 −n+ p− − n̂− n+

0 0 −n̂− 0 n̂− p+ − n+



















(4.18)

and

DF (p) =











p− − n̂− −λ−2n+ θ− −θ+
−λ−2n̂− p+ − n+ 0 0

0 0 p− − n̂− −λ−2n+

−θ− θ+ −λ−2n̂− p+ − n+











. (4.19)

The contributions associated to the logarithmic divergences (denoted by
·
=) are

1

2

∫

|p|<µ

d2p

(2π)2
tr[logDB(p)]

·
= −

1

8π
lnµ[Tr

(0)
adj + Tr

(2)
adj ]

(

θ+θ− + 2λ−4n+n̂−

)

,

1

2

∫

|p|<µ

d2p

(2π)2
tr[logDF (p)]

·
= −

1

8π
lnµ[Tr

(1)
adj + Tr

(3)
adj ]

(

θ+θ− + 2λ−4n+n̂−

)

.

(4.20)

Then, L
(1)
E ≈ c2(f) = 0, because of the dual Coxeter number c2(f) of f = psu(2, 2|4) vanishes.

As a consequence, the deformation preserves the 1-loop conformal invariance of its parent

theory. The same fate is found in the Green-Schwarz formalism in the AdS5 × S5 lambda

background [32] and the hybrid formalism in the AdS2 × S2 lambda background [26].
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4.3 Relating the lambda deformed PS/GS background fields

To compute the target space supergeometry, the gauge fields A± must be integrated out

completely. Then, after using the gauge fields equations of motion we obtain the following

effective action

Seff = Smatter + Sghost, (4.21)

where

Smatter = −
k

2π

∫

Σ
d2σ

〈

F−1∂+F
{

1 + 2O−1D
}

F−1∂−F
〉

+ SWZ ,

Sghost = −
k

π
s

∫

Σ
d2σ

〈

N̂
(0)
− O−TF−1∂+F−N

(0)
+ O−1∂−FF−1 − sN

(0)
+ O−1N̂

(0)
−

〉

−
k

π
s

∫

Σ
d2σ

〈

w
(3)
+ ∂−l

(1) + ŵ
(1)
− ∂+ l̂

(3) −N
(0)
+ N̂

(0)
−

〉

(4.22)

and O as defined in (2.14). This action is, as expected, invariant under the (on-shell) BRST

symmetry variations (2.41).

From the expressions of the projectors in the PS and the GS lambda models, i.e.

Ω = P (0) + λ−3P (1) + λ−2P (2) + λ−1P (3),

Ωgs = P (0) + λP (1) + λ−2P (2) + λ−1P (3),
(4.23)

we get an important relation between both formalisms

O = Ogs + sλP (1), (4.24)

where

Ogs = Ωgs −D. (4.25)

The strategy for obtaining a clear and direct relation between the target space geometry

of the PS and the GS lambda models start by introducing the following GS super-vielbeins

defined by

E± = O−T
gs F−1∂±F , Ê± = O−1

gs ∂±FF−1. (4.26)

This strategy was used successfully in [24] for understanding the relation between the Yang-

Baxter deformations of the PS and the GS formulations of the AdS5×S5 superstring. Our

purpose here is to apply the same approach to the case at hand.

Consider now the quantity

X = Ogs

(

1 + 2O−1D
)

OT
gs. (4.27)

The metric and the antisymmetric fields are extracted, respectively, from the symmetric

and the anti-symmetric parts of X, namely

G′ = Ogs

(

1 +O−1D +DTO−T
)

OT
gs

= (ΩgsΩ
T
gs − 1)− sλ

{

P (1)O−1DOT
gs +OgsD

TO−TP (3)
}

= s
[

P (2) − λ
{

P (1)O−1DOT
gs +OgsD

TO−TP (3)
}]

(4.28)
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and
B′ = Ogs

(

O−1D −DTO−T
)

OT
gs

=
(

DΩT
gs − ΩgsD

T
)

− sλ
{

P (1)O−1DOT
gs −OgsD

TO−TP (3)
}

.
(4.29)

Then, we have that

〈

F−1∂+F
{

1 + 2O−1D
}

F−1∂−F
〉

=
〈

E+(G
′ +B′)E−

〉

, (4.30)

where

〈

E+G
′E−

〉

= s〈E
(2)
+ E

(2)
− − {E

(3)
+ PÊ

(1)
− + E

(3)
− PÊ

(1)
+ }〉,

〈

E+B
′E−

〉

=
〈

E+

(

DΩT
gs − ΩgsD

T
)

E−

〉

− s〈E
(3)
+ PÊ

(1)
− − E

(3)
− PÊ

(1)
+ 〉

(4.31)

and where we have defined9

P = λOgsO
−1P (1). (4.32)

Form these results, the matter contribution to the effective action take the form

Smatter = −
k

2π
s

∫

Σ
d2σ

〈

E
(2)
+ E

(2)
− + E+BE− − 2E

(3)
+ PÊ

(1)
−

〉

, (4.33)

where

B = s−1B0 + (DΩT
gs − ΩgsD

T ). (4.34)

Above, we have written the WZ term, locally, in the form

SWZ = −
k

2π

∫

Σ
d2σ 〈E+B0E−〉 . (4.35)

Before focusing on the ghost contribution, consider first the following two identities

P (0)O−TOT
gs = P (0) − sλP (0)O−TP (3)

= P (0) + ĈP̂ ,

P (0)O−1Ogs = P (0) − sλP (0)O−1P (1)

= P (0) − CP,

(4.36)

where10

P̂ = P T = λOT
gsO

−TP (3), C = sP (0)O−1
gs , Ĉ = −sP (0)O−T

gs . (4.37)

It follows from these expressions that

〈

N
(0)
− O−TF−1∂+F

〉

=
〈

N
(0)
−

(

E
(0)
+ + ĈP̂E

(3)
+

)〉

,
〈

N
(0)
+ O−1∂−FF−1

〉

=
〈

N
(0)
+

(

Ê
(0)
− − CPÊ

(1)
−

)〉

.
(4.38)

Using these results, we have the ghost contribution to the effective action

Sghost = −
k

π
s

∫

Σ
d2σ

〈

N
(0)
+

(

Θ̂−+CPÊ
(1)
−

)

+N̂
(0)
−

(

Θ++ĈP̂E
(3)
+

)

+N
(0)
+ SN̂

(0)
−

〉

+Slw, (4.39)

9Notice that P : f(1) → f(1).
10Notice that P̂ : f(3) → f(3) and C, Ĉ 6= CT : f → f(0).
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where Slw is given by the usual ghost term

Slw = −
k

π
s

∫

Σ
d2σ

〈

w
(3)
+ ∂−l

(1) + ŵ
(1)
− ∂+ l̂

(3)
〉

(4.40)

and

S = −P (0) − sP (0)O−1P (0), Θ+ = E
(0)
+ , Θ̂− = −Ê

(0)
− . (4.41)

Remarkably, the effective action of the lambda deformed PS superstring (4.21) takes

the standard form of the Berkovits-Howe (BH) action functional [34]

SBH = −T

∫

Σ
d2σLBH, T =

k

π
(λ−4 − 1), (4.42)

where

LBH =
〈1

2
E

(2)
+ E

(2)
− +

1

2
E+BE− − E

(3)
+ PÊ

(1)
− +N

(0)
+

(

Θ̂− + CPÊ
(1)
−

)

+ N̂
(0)
−

(

Θ+ + ĈP̂E
(3)
+

)

+N
(0)
+ SN̂

(0)
−

〉

+ Llw.

(4.43)

The BH action is the most general action functional which possesses BRST symmetry,

classical world-sheet conformal symmetry and zero ghost number. As argued in [34], the

ten-dimensional supergravity constraints are a consequence of the BRST symmetry11 of

the action (4.43) and because of the action (4.21) fulfils this condition, it describes a

supergravity background.

Once the action is in this canonical form, the background fields are easily identified

and in our case they are encoded in the objects of the following list:

Background metric : P (2),

Superspace two-form : B,

Ramond-Ramond bispinor : P,

Gravitini and dilatini : C, Ĉ,

Left/right moving spin connection : Θ+, Θ̂−

Riemann curvature : S.

(4.44)

The vielbeins, the metric, the B-field, the RR-bispinor P (actually its inverse in index

notation) and the spin connections Θ+, Θ̂− are equal to the SUGRA background fields of

the AdS5 × S5 Green-Schwarz lambda model found in [12]. The C, Ĉ and S are auxiliary

fields, i.e. can be defined in terms of the vielbeins [34, 35].

Thus, we conclude that both models (the lambda deformations of the GS and PS

superstring) describe the same type IIB supergravity background and this means that our

action (4.21) corresponds to the pure spinor formulation of the AdS5 × S5 superstring in

the lambda background. In order to accomplish the correct equations of motion for type

IIB supergravity, the dilaton must be the same as that obtained for the lambda model of

11In constrast, for the Green-Schwarz formulation the supergravity constraints are a consequence of

kappa symmetry, a condition also satisfied by the lambda deformation of the Green-Schwarz AdS5 × S5

superstring [16].
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the GS superstring [12]. However, the contribution from integrating out the gauge fields

A±, gives rise to the following dilaton field

e−2φ = sdetO, (4.45)

which is different from the GS dilaton as both are related via

e−2φ = sdet(O−1
gs O)e−2φgs . (4.46)

Then, for consistency with the supergravity equations of motion, the extra term

J = sdet(O−1
gs O)−1/2, (4.47)

should be interpreted as a Jacobian determinant arising from a change of group field vari-

ables in the path integral Haar measure12 DF → DF ′.

Finally, we write the BRST currents (2.44) in the standard curved space form [35]

j+ =
〈

l(1)d(3)
〉

, j− =
〈

l̂(3)d̂(1)
〉

, (4.48)

in terms of the world-sheet auxiliary fields

d(3) = P̂
(

E
(3)
+ − CTN

(0)
+

)

, d̂(1) = −P
(

Ê
(1)
− − ĈT N̂

(0)
−

)

, (4.49)

which is the correct form for the BRST chiral currents in the BH approach [34].

5 Conclusions

We have shown how to lambda deform the pure spinor formalism of the superstring in the

AdS5×S5 background in a consistent way. The deformation preserves the BRST symmetry,

the classical integrability, the local symmetries and the 1-loop conformal symmetry of its

parent theory. Furthermore, the target space supergeometry is exactly the same as that of

the lambda model of the Green-Schwarz formulation of the superstring and satisfy the same

set of supergravity equations of motion. This result complements an analogous equivalence,

found recently, between the Yang-Baxter deformations of the PS and GS formulations of

the superstring in the AdS5 × S5 background.

Concerning the quantum conformal symmetry of the deformed theory, some comments

are in order. For the AdS background, it has been argued that the effective action of the

un-deformed theory is conformal invariant to all-loop [36]. This is proven by using cohomo-

logical arguments and the fact that the cohomology of the BRST charge at ghost number

1 is empty. In this sense, it would be interesting to understand whether this result can be

generalized for the λ-deformed BRST charge. In [37] it was shown that the one-loop beta

function for the type II pure spinor superstring in a curved background vanish as a conse-

quence of the BRST invariance of the Berkovits-Howe action. The conformal invariance at

all-loop has never been proven and, in the particular case of the λ-deformation, because of

12This is reasonable, as the group field F intrinsically depend on the deformation parameter λ and this

dependence might differ on both formulations.
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the fact that we still do not have a diagrammatic proof of conformal invariance at all-loop

level this is a challenging problem clearly out of the scope of the present contribution. For

these reasons, we shall content ourselves with the one-loop proof of conformal symmetry

provided above and leave the general problem for a future work.

It would be interesting to study as well the relation between the PS formalism of

the AdS5 × S5 superstring and the Chern-Simons theories considered in [29, 30]. In case

of a consistent relation, the non-ultralocality term present in the algebra (3.27) of the

PS formalism could be eliminated (for any value of the deformation parameter λ) with the

added advantages of not having to deal neither with the kappa symmetry nor the light-cone

gauge. This will be considered in a companion paper.
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