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1 Introduction and summary

1.1 Introduction

The Shapiro time delay and angle deflection of light are two of the four classic tests of

general relativity [1]. A closely related object is the phase shift — or equivalently the

eikonal phase — in gravitational high energy (Regge) scattering (see e.g. [2] for a recent

review). Such a phase shift arises as a result of the eikonal resummation of graviton

exchanges in 2-to-2 scattering amplitudes [3–7]. As explained in [4], an alternative way of

obtaining the phase shift for the 2-to-2 scattering of two light particles involves studying

the propagation of a lightlike particle in the background of a shock wave geometry (created

by the second lightlike particle). The null geodesic experiences a time delay as it travels

through the shock wave; the resulting phase shift can be computed as the product of this

time delay and the lightcone momentum.

The leading eikonal approximation to the phase shift in gravity involves computing a

single tree-level graviton exchange diagram, which then exponentiates. To go beyond the

eikonal approximation one needs to compute subleading diagrams. This has been performed
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in various regimes. The situation which will be of particular interest to us involves high

energy scattering of a light particle off a much heavier particle (see e.g. [8–20]). In this case

the subleading eikonal contribution comes from triangle-type diagrams and is suppressed

by the ratio of the Schwarzschild radius of the heavy particle to the impact parameter.

The AdSd+1/CFTd correspondence [21–23] provides another angle on the subject of

high energy scattering. In [24–28] this problem has been studied for an AdS scalar field

dual to a CFT operator O. In the dual CFT language, the problem involves computing a

four-point function in a certain kinematic limit (the Regge limit). It receives contributions

from the stress tensor conformal block and conformal blocks of the O�n∂µ∂νO double-

trace operators. The Fourier transform of the amplitude produces the eikonal phase (a.k.a.

the phase shift); interestingly, it is only sensitive to the contribution from the stress tensor

while double-trace operators decouple. Using crossing symmetry one can also show that

the phase shift encodes information on the anomalous dimensions of the O�n∂µ1 . . . ∂µ`O
operators, which dominate in the cross channel.1

Consider now the AdS version of the high energy scattering of a light particle off a

heavy one. As in flat space, the amplitude is expected to exponentiate. The leading eikonal

phase comes from the single-graviton exchange, while the first subleading correction comes

from the triangle Witten diagrams analogous to the triangle diagrams in flat space.2 The

eikonal expansion parameter µ is, roughly speaking, the Schwarzschild radius of the AdS-

Schwarzschild black hole measured in units of the AdS radius. The amplitude also depends

on the impact parameter L.

In [40] the AdS phase shift was computed to all orders in µ by studying null geodesics

in a black hole background. One can take the flat space limit of that result and compare

with the corresponding eikonal phase of flat space amplitudes computed in the probe limit.

Consider Regge scattering in D-dimensional Minkowski spacetime, where a massless par-

ticle of energy E scatters off a very heavy particle of mass M . The leading δ(1) and the

subleading δ(2) terms in the eikonal phase can be found in e.g. eqs. (3.7) and (3.9) of [20].

Taking the heavy-light limit

m2 = 0, m1 = M, s−m1 = 2ME (1.1)

the expressions become

δ(1) = Eb

(
Rs
b

)d−2 (d− 1)
√
πΓ(d−3

2 )

4Γ(d2)
, Rd−2

s =
16πGM

(d− 1)Ωd−1
(1.2)

1An interesting generalization of this story involves studying 2-to-2 Regge scattering of scalars and

gravitons (which corresponds to a four point function of two scalars and two stress tensors in the CFT

language). In [29] it was shown that positivity of the time delay is equivalent to the absence of generic

higher derivative corrections to gravity. In the CFT language this translates into the statement that

the imaginary part of the phase shift defined as a Fourier transform of the four point function, must be

positive, and its positivity fixes the couplings of the stress tensor (which results in the “a = c” condition in

the superconformal case) [30, 31]; see also [32–39] for alternative derivations and generalizations.
2As explained in [40], the relevant Witten diagrams are semi-geodesic, since the trajectory of the heavy

particle’s worldline does not fluctuate.
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and

δ(2) = Eb

(
Rs
b

)2d−4 (4d(d− 2) + 3)
√
πΓ(d− 5

2)

16Γ(d− 1)
(1.3)

where b is the impact parameter, d = D−1 and Ωd−1 is the area of the (d−1)-dimensional

sphere. Restricting to the leading (k = 1) and subleading (k = 2) terms in eq. (2.33)

of [40] and identifying µ = Rd−3
s , L = b,

√
−p2 = E one recovers eqs. (1.2) and (1.3).

We expect the agreement above to persist to all orders in µ. In fact, we expect

agreement beyond the flat space limit: one should be able to reproduce the result of [40] by

computing the corresponding AdS amplitudes (Witten diagrams).3 From the holographic

point of view it is natural to identify the eikonal phase δ = −p ·∆x with the product of the

boundary momentum p and vector ∆x, which specifies the time delay and angle deflection

of the null geodesic [40]. The argument goes as follows (see [40] for more details). The

Fourier transform of the four-point function in the dual CFT defines an on-shell amplitude

in the dual gravity. The Regge limit implies that at large momentum p the phase in the

exponential simply picks up the pole in the amplitude, which happens at the point ∆x

where the corresponding null geodesic emerges at the boundary of AdS.

The gravity computation of the eikonal phase in AdS [40] has nontrivial implications for

the dual CFT. The four-point function of two light and two heavy operators can in principle

be computed by CFT methods. If the gravity and the CFT computations agree, it would

imply that the phase shift is an observable which does not distinguish a generic heavy state

in the CFT from a thermal state (which is described in gravity by the black hole). This

was one of the motivations of [40], where we considered a 〈OH(∞)OL(1)OL(z, z̄)OH(0)〉
correlator. Here OL is a light operator with conformal dimension ∆L ∼ O(1) and OH a

heavy operator with ∆H ∼ O(CT ), (the central charge CT of the conformal field theory

is taken to be large). The Regge limit corresponds to taking the two OL insertions close

together. In [40] we showed that the expansion in powers of the Schwarzschild radius in

gravity corresponds to the expansion of the correlator in powers of µ ∼ ∆H/CT in the

CFT (note that µ remains fixed as both ∆H and CT are taken to infinity). Furthermore,

we showed that the leading order µ result for the phase shift, as computed in gravity, is

exactly reproduced by the exchange of the stress-tensor in the “T-channel” (in the limit

z, z̄ → 1 after an appropriate analytical continuation).

Studying higher orders in µ in the CFT is more involved. Given the gravitational result

for the phase shift, in [41] crossing symmetry was used to derive the anomalous dimensions

and OPE coefficients of the double trace operators [OHOL]n,l ∼ OH�n∂µ1 . . . ∂µlOL con-

tributing to the “S-channel” (z, z̄ → 0) expansion of the same correlator. The expressions

obtained in [41] precisely matched those independently computed in gravity up to next-to-

leading order in µ in [40]. For this to happen, the thermalization of the heavy state in the

holographic CFT was essential.

However, reproducing second and higher order terms in the gravitational phase shift di-

rectly from the CFT, remains a challenging endeavour. Consider for example the T-channel

3It would be nice to verify this by computing the corresponding amplitudes with graviton exchanges

in AdS.
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expansion of the correlator at O(µ2). Evaluation of the correlator in this case requires sum-

ming the contributions from the exchange of infinitely many double-trace operators built

out of products of the stress tensor (henceforth referred to as double stress tensor opera-

tors).4 In the standard analytic bootstrap approach, typically one studies kinematic limits

where finitely many operators dominate in a particular channel. Harnessing the power

of crossing symmetry then enables one to infer non-perturbative information about the

spectrum and the OPE coefficients appearing in the other channel. In cases where both

sides of the crossing equations involve infinite sums, one often needs to perform the sum-

mation before taking any kinematics limit. Unless one knows the OPE coefficients of these

infinitely many operators, it is not clear how to proceed.

The d = 2 case provides a solvable model, where these issues are very clearly illustrated.

In this case the infinite-dimensional Virasoro symmetry constrains the full stress tensor

sector completely. All multi-stress-tensor contributions can be summed into the Virasoro

vacuum block, which can be computed at large CT [42–44]. As explained in [40], to compute

the phase shift at O(µ2), one needs to first sum over an infinite number of double stress

tensor operators of increasing spin. This sum produces log2 z and log z terms which after

analytic continuation of z around zero give rise to double and single poles at z = 1. The

leading pole is consistent with the exponentiation of the O(µ) result while the subleading

pole encodes the value of the phase shift at order µ2.

In higher dimensions we have to work harder. In this paper we will mostly consider

the d = 4 case, although we do not expect any conceptual differences in other dimensions.

In d = 4, a set of OPE coefficients COOTk between two scalars and a multi-stress tensor

have recently been computed in [45] for holographic CFTs.5 It has also been argued in [45]

that at each power of k, the OPE coefficients for the leading twist multi stress tensors

are universal (independent of the higher derivative corrections to the bulk gravitational

Lagrangian). We conjecture a formula which fits all the OPE coefficients with the leading

twist double stress tensors (k = 2) listed in [45] (and is consistent with many more OPE

coefficients which we computed by following the prescription of [45]). Using this conjec-

tured formula we managed to sum the contributions of all leading twist double-stress-tensor

operators and hence obtain the O(µ2) correlator in the lightcone limit z̄ → 1. Further-

more, the resulting compact and closed-form expression is used to extract the behavior of

the 〈OH(∞)OL(1)OL(z, z̄)OH(0)〉 correlator both in the large impact parameter sector of

the Regge limit and in the small z lightcone region. In the former case, an independent

computation of the same correlator from the S-channel has been performed in [41] and

agrees perfectly with the T-channel result of this paper. In the latter case, the S-channel

computation to O(µ2) contained herein is new. We observe precise agreement in both cases.

These results yield an independent check of our proposal for the OPE coefficients of

double stress tensor operators while providing strong evidence in favor of thermalization

for generic heavy states in holographic CFTs.

4Things are slightly more subtle than that, but we still call them double stress tensor operators. The

subtlety will be commented on later on.
5See also [46] for generalizations involving the inclusion of matter in the bulk.
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1.2 Summary of the results

We will consider a four-dimensional unitary CFT with a large central charge CT ∼ N2,

which admits an expansion around the mean free theory at N = ∞. An important con-

sequence is the existence of double trace operators in the spectrum of the theory — they

are required by crossing symmetry [47, 48]. We will also focus on CFTs whose spectrum of

primary single-trace operators is characterised by an infinite gap ∆gap separating operators

of spin greater than two from the rest.

A notable class of double-trace operators in this context concerns those constructed

from the stress tensor, with dimension ∆n,s = 4+2n+s, spin s and twist ∆n,s−s = 4+2n

(to leading order in 1/CT ):

[T 2]n,s ≡ Tµν�n∂µ1 . . . ∂µs−4Tρσ + . . . . (1.4)

Here, the . . . include terms built out of descendants of stress tensor and terms required by

symmetrization and tracelessness. We are interested in extracting the OPE coefficient,

Cn,s(∆) ≡ COO[T 2]n,s (1.5)

between the double trace stress-tensor operators and two identical primary, scalar opera-

tors O of dimension ∆. Note that we have normalized the two-point functions of O and

all operators [T 2]n,s to have unit coefficient (this fixes the form of the conformal blocks,

discussed in the following section).

Focusing on the lowest-twist double stress tensor OPE coefficient, i.e. the n = 0 case,

we propose that:

C0,s(∆) = COO[T 2]0,s =
160

3

1

CT

∆

∆− 2
as
[
∆2 + bs∆ + cs

]
+O(1/C2

T ) , (1.6)

for any ∆ 6= 2, where

bs = −1 +
36

s(s+ 3)
+ cs

cs =
288

(s− 2)s(s+ 3)(s+ 5)
, (1.7)

and

a2
s =

(s− 2)s(s+ 3)(s+ 5)(2s+ 3)

8(s− 3)(s− 1)(s+ 1)(s+ 2)(s+ 4)(s+ 6)
× Γ (s+ 2)2

Γ(2s+ 4)
. (1.8)

It is very easy to check that these equations are consistent with the OPE coefficients

computed in [45] for a few double stress tensor operators of low spin. In fact, a slight

generalization of the arguments of [45] allows one to prove eq. (1.8) — this proof is presented

in section 5, where we also write down a generalization of (1.8) to any d.

To verify (1.7) we perform two nontrivial independent checks. As we review below, in

the context of holographic CFTs, multi-stress-tensor operators play a central role in the

determination of the heavy-heavy-light-light (HHLL) four-point function,

G(z, z̄) = lim
x4→∞

x2∆H
4 〈OH(x4)OL(1)OL(z, z̄)OH(0)〉 , (1.9)

– 5 –



J
H
E
P
1
0
(
2
0
1
9
)
1
0
7

where OH denotes an operator whose conformal dimension ∆H scales with CT , whereas

OL denotes an operator whose dimension ∆L is of order one (scales like C0
T ).

In the limit z̄ → 1, the dominant contribution in the T-channel expansion (OL(z, z̄)→
OL(1)) is due to the operators of lowest twist. Expanding further in powers of µ ∼ ∆H/CT ,

one identifies the leading contribution coming from the identity operator at O(µ0), the

stress-tensor operator of twist two at O(µ) and the double-stress-tensor operators of lowest

twist (n = 0) at O(µ2). Using the above OPE formula, one can sum over the relevant

conformal blocks to the following lightcone behavior of the correlator at O(µ2):

G(z, z̄)|µ2 '
z̄→1

[(1−z)(1−z̄)]−∆L+2

(1−z)2

(
∆L

∆L−2

)
1

28800
(1.10)

×
[
(∆L−4)(∆L−3)f3(z)2+

15

7
(∆L−8)f2(z)f4(z)+

40

7
(∆L+1)f1(z)f5(z)

]
where

fa(z) ≡ (1− z)a 2F1(a, a, 2a, 1− z) , (1.11)

and “ '
z̄→1

” implies equality up to subleading terms in (1 − z̄). It is impressive that the

result is of such a compact form. We shall discuss possible relations of the light-cone limit

with “eikonalization” in 4d CFT in section 6.

The first non-trivial check of eq. (1.10) involves taking the large impact parameter

regime of the Regge limit. This indeed reproduces the corresponding expression obtained

earlier in [41]. Another check involves taking the subsequent z → 0 limit of the lightcone

result eq. (1.10). This produces

G(z, z̄)|µ2 '
z̄→1, z→0

(1−z̄)2−∆L
∆L

∆L−2

{
1

32
∆L(∆L−1) log2 z+

1

16

(
3∆2

L−7∆L−1
)

logz+· · ·
}

(1.12)

which can be exactly matched to the respective limit of the correlator computed in the cross-

ing channel, provided O(µ2) anomalous dimensions of certain heavy-light double trace op-

erators. Fortunately, the results for these anomalous dimensions are available [40]. Again,

we observe perfect agreement.

1.3 Outline

The rest of the paper is organized as follows. In section 2, we set up notations and write

general expressions for the heavy-heavy-light-light correlator in the T- and S-channels. In

section 3, we use the conjectured OPE coefficients in the T-channel to perform the sum

over the leading twist double stress tensor conformal blocks, deriving an explicit O(µ2)

expression for the correlator in the lightcone limit z̄ → 1. In section 4 we compute the

subsequent z → 0 behavior of the lightcone correlator using the S-channel data and verify its

agreement with the T-channel result. We also show that the Regge limit of the correlator,

obtained using the phase shift, agrees with the results of section 3. Following that, in

section 5, we prove eq. (1.8) and generalise it to any number of dimensions d. We discuss

our results in section 6. Appendix A proves a useful identity relating hypergeometric

functions while appendix B provides the details of the summations performed in section 3.

Appendix C discusses the case of two-dimensional CFT.

– 6 –
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2 Heavy-heavy-light-light correlator in holographic CFTs

In this section, the crossing relations for a heavy-heavy-light-light correlator of pairwise

identical scalars are reviewed. We consider large N CFTs, with N2 ∼ CT and CT the cen-

tral charge, with a parametrically large gap ∆gap in the spectrum of single trace operators

with spin J > 2. The object that we study is a four-point correlation function between two

light scalar operators OL, with scaling dimension ∆L of order one, and two heavy scalar

operators OH , with scaling dimension ∆H of order CT . The relevant correlation function is

〈OH(x4)OL(x3)OL(x2)OH(x1)〉 =
A(u, v)

x2∆H
14 x2∆L

23

, (2.1)

where u, v are the cross-ratios defined as6

u = (1− z)(1− z̄) =
x2

14x
2
23

x2
13x

2
24

v = zz̄ =
x2

12x
2
34

x2
13x

2
24

(2.2)

and xij = xi − xj . Conformal symmetry allows us to fix the positions of three out of four

operators and focus on

G(z, z̄) = lim
x4→∞

x2∆H
4 〈OH(x4)OL(1)OL(z, z̄)OH(0)〉 =

A(z, z̄)

[(1− z)(1− z̄)]∆L
. (2.3)

The four point function (2.3) can be expanded in the S-channel, OL(z, z̄)→ OH(0), as

G(z, z̄) = (zz̄)−
1
2

(∆H+∆L)
∑
τ, `

PHL,HLτ,` g∆HL,−∆HL

τ,` (z, z̄) , (2.4)

where we defined

PHL,HLτ,` =

(
−1

2

)`
λOHOLOλOLOHO, (2.5)

and ∆HL = ∆H − ∆L. Here λO1O2O3 denote the relevant OPE coefficients and the sum

runs over primaries O of spin ` and twist τ ≡ ∆− ` with corresponding conformal blocks

denoted by gτ,`.

Likewise, eq. (2.3) can be expanded in the T-channel, OL(z, z̄)→ OL(1), as follows

G(z, z̄) =
1

[(1− z)(1− z̄)]∆

∑
t,s

PHH,LLt,s gt,s(1− z, 1− z̄), (2.6)

where

PHH,LLt,s =

(
−1

2

)s
λOHOHOλOLOLO , (2.7)

and the sum runs over primary operators O of spin s and twist t.

The equality of (2.4) and (2.6) constitutes an example of a crossing relation. In both

channels the sum is over an infinite set of conformal blocks, each of which contains the

6Note the slightly non-standard definition of (u, v) here.
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contribution from a primary operator and all its descendants. Here, to distinguish between

the generically different primary operators contributing in the T- and S-channel, we denoted

their twists and spin by (t, s) and (τ, `) respectively.

In this article we focus on the lightcone limit, u � 1 with v = fixed, or equivalently,

z̄ → 1 and z = fixed. We will further distinguish two cases: the first corresponds to the

u � v � 1 regime of the lightcone limit, where z̄ is sent to unity followed by z → 0.

The second is slightly more involved and makes contact with the Regge limit. It requires

performing an analytic continuation of the lightcone limit result, by taking z → ze−2iπ,

followed by z → 1. We will refer to the former case as the small z or small v regime of the

lightcone limit and to the latter, as the large impact parameter region of the Regge limit.

Finally, let us note that on general grounds we expect that the correlator can be

expressed as a series expansion in the parameter µ defined as

µ =
4Γ(d+ 2)

(d− 1)2Γ(d/2)2

∆H

CT
, (2.8)

which is kept fixed as CT →∞. Our conventions mostly follow those of [40, 41].

3 T-channel expansion in the lightcone limit

In this section we will focus on the T-channel expansion of the correlator. In particular,

we will produce a closed form result to O(µ2) in the lightcone limit, u� 1.

In the T-channel expansion, only the OPE coefficients may depend on the external

operator’s dimensions, we may thus write

P
(HH,LL)
t,s =

∑
k≥0

P
(HH,LL);(k)
t,s µk , (3.1)

which allows us to express the T-channel expansion as follows:

G(z, z̄) =
1

[(1− z)(1− z̄)]∆L

∞∑
k=0

µk

[∑
t,s

P
(HH,LL);(k)
t,s g

(HH,LL)
t,s (1− z, 1− z̄)

]
. (3.2)

Further taking the limit u� 1 results in

G(z, z̄) '
u�1

u−∆L

∞∑
k=0

µku
1
2
tm(1− v)−

tm
2

[∑
sm

P
(HH,LL);(k)
tm,sm f tm

2
+sm

(v)

]
, (3.3)

where we used the fact that the dominant contribution at each order in µ comes from oper-

ators of minimum twist denoted by tm, and approximated the conformal blocks by [47, 48]7

g
(HH,LL)
tm,sm (u, v) '

u�1
u
tm
2 (1− v)−

tm
2 f tm

2
+sm

(1− v),

f tm
2

+sm
(v) ≡ (1− v)

tm
2

+sm
2F1

[
tm
2

+ sm,
tm
2

+ sm, tm + 2sm, 1− v
]
.

(3.4)

7Note that our notations here are slightly different from those in [47, 48].
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Note that the summation in brackets in (3.3) is over operators of the same minimum twist

tm but varied spins sm. For reasons of convenience we henceforth denote

P
(k)
t,s ≡ P

(HH,LL);(k)
t,s . (3.5)

To leading order in µ, i.e., O(µ0), the dominant contribution to the correlator comes

from the identity operator. Moving on to O(µ), single-trace operators of minimum twist

dominate. These are conserved currents. In a generic holographic CFT without additional

symmetries, we expect only one such conserved current, i.e., the stress tensor operator. In

this case, tm = d−2 and sm = 2, while the OPE coefficients are fixed by the Ward identity to

P
(1)
d−2,2 =

∆L

4

Γ(d2 + 1)2

Γ(d+ 2)
. (3.6)

The O(µ) contribution to the correlator is then

G(u, v)|µ 'u�1
u−∆L u

d−2
2

∆L

4

Γ(d2 + 1)2

Γ(d+ 2)
(1− v)2

2F1

[
d

2
+ 1,

d

2
+ 1, d+ 2, 1− v

]
. (3.7)

Further taking the limit, v → 0, leads to:

G(u, v)|µ '
u�v�1

−u−∆L u
d−2

2
∆L

4

(
2H d

2
+ ln v

)
, (3.8)

where Ha denotes the a-th harmonic number.

Considering further terms quadratic in µ, we focus on the contribution of double-trace

operators built from the stress tensor. In higher dimensional CFTs there are three types

of such operators, depending on whether none, one or two pairs of indices are contracted.

The minimum twist ones necessarily belong to the first class, with twist tm = 2(d − 2).

There are infinitely many such operators of minimum twist, schematically denoted by

Tµν∂ρ1 · · · ∂ρs−4Tκλ, with spin ranging from sm = 4 all the way to infinity. Note however

that only even spin operators contribute in the OPE of two identical operators, hence

sm = 4, 6, 8, · · · .
We are now ready to address the main objective of this section, which is to use the

conjectured OPE coefficients to explicitly perform the summation over the infinite tower

of operators contributing in the T-channel expansion at O(µ2) in the limit u� 1. In what

follows we focus on holographic CFTs in d = 4. Explicitly, we need to evaluate:

G(u, v)|µ2 '
u�1

u−∆+2(1− v)2
∞∑

s=4,6,···
P

(2)
4,s f2+s(v) (3.9)

where we dropped the subscript denoting minimum twist to simplify the notation. To

perform the sum we will use the conjectured OPE coefficients whose product reads8

P
(2)
4,s =

∆L

∆L − 2
a2
s

[
∆2
L + bs∆L + cs

]
, (3.10)

8An analogous expression for d = 2 is given in appendix C. In d = 2, such an OPE formula can be

proven by studying the heavy-heavy-light-light Virasoro vacuum block or by a direct construction of the

double stress operators. Both of these methods are presented in appendix C.
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with

bs = −1 +
36

s(s+ 3)
+ cs

cs =
288

(s− 2)s(s+ 3)(s+ 5)
(3.11)

and

a2
s =

(s− 2)s(s+ 3)(s+ 5)(2s+ 3)

8(s− 3)(s− 1)(s+ 1)(s+ 2)(s+ 4)(s+ 6)
× Γ (s+ 2)2

Γ(2s+ 4)
. (3.12)

Next, we set s ≡ 2m+ 4, and split the sum in (3.9) into three parts:

G(u, v)|µ2 '
u�1

u−∆Lu2 ∆L

∆L − 2
(Sa + Sb + Sc) , (3.13)

where

Sa ≡
∞∑

s=4,6,···
a2
s(1− v)s 2F1[2 + s, 2 + s, 8 + 2s, 1− v]

=
∞∑
m=0

q2(m)(1− v)2m+4
2F1[6 + 2m, 6 + 2m, 12 + 4m, 1− v] ,

(3.14)

Sb ≡
∞∑

s=4,6,···
a2
sbs (1− v)s2F1[2 + s, 2 + s, 4 + 2s, 1− v]

= −
∞∑
m=0

q2(m)(1− v)2m+4
2F1[6 + 2m, 6 + 2m, 12 + 4m, 1− v]+

+
∞∑
m=0

36 q1(m) (1− v)2m+4
2F1[6 + 2m, 6 + 2m, 12 + 4m, 1− v]+

+
∞∑
m=0

288 q0(m) (1− v)2m+4
2F1[6 + 2m, 6 + 2m, 12 + 4m, 1− v] ,

(3.15)

and

Sc ≡
∞∑

s=4,6,···
a2
s cs (1− v)s 2F1[2 + s, 2 + s, 4 + 2s, 1− v] =

= 288

∞∑
m=0

q0(m) (1− v)2m+4
2F1[6 + 2m, 6 + 2m, 12 + 4m, 1− v] ,

(3.16)

with

q2(m) ≡
√
π2−4m−12(m+ 1)2(m+ 2)2(2m+ 7)(2m+ 9)Γ(2m+ 1)

(m+ 3)(m+ 4)(m+ 5)Γ
(
2m+ 11

2

)
q1(m) ≡ q2(m)

(2m+ 4)(2m+ 7)
, q0(m) ≡ q2(m)

(2m+ 2)(2m+ 4)(2m+ 7)(2m+ 9)
.

(3.17)
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It turns out that these three infinite sums can be performed with the help of the following

identity for hypergeometric functions (for a proof see appendix A):

2F1[a,a,2a,w]2F1[b,b,2b,w] =

∞∑
m=0

p[a,b,m]w2m
2F1[2m+a+b,2m+a+b,4m+2a+2b,w]

p[a,b,m] =
2−4mΓ

(
a+ 1

2

)
Γ
(
b+ 1

2

)
Γ
(
m+ 1

2

)
Γ(a+m)Γ(b+m)Γ

(
a+b+m− 1

2

)
Γ(a+b+2m)

√
πΓ(a)Γ(b)Γ(m+1)Γ

(
a+m+ 1

2

)
Γ
(
b+m+ 1

2

)
Γ(a+b+m)Γ

(
a+b+2m− 1

2

) ,

(3.18)

by expressing the coefficients qi(m) in (3.17) as linear combinations of the p[a, b,m] for

certain values of (a, b) (the interested reader may consult appendix B for more details).

The result is:

G(z, z̄)|µ2 '
z→1

[(1−z)(1−z̄)]−∆L+2

(1−z)2

(
∆L

∆L−2

)
1

28800

×
[
(∆L−4)(∆L−3)f3(z)2+

15

7
(∆L−8)f2(z)f4(z)+

40

7
(∆L+1)f1(z)f5(z)

]
(3.19)

where we restored u = (1− z)(1− z̄), set

fa(z) ≡ (1− z)a 2F1(a, a, 2a, 1− z) , (3.20)

and substituted v ' z since we are working in the limit z̄ → 1. This is the exact expression

of the correlator in the lightcone limit at O(µ2).

To check the validity of our result, we further determine the behavior of eq. (3.19) in

both the small z region of the lightcone limit and the large impact parameter regime of

the Regge limit. This is because in the aforementioned regimes it is possible to compute

the same correlator from the S-channel expansion.

Reaching the small z lightcone limit starting from (3.19), requires further expanding

the expression obtained around v ∼ 0, or equivalently, z � 1. This leads to:

G(z, z̄)|µ2 '
u�v�1

(1−z̄)2−∆L
∆L

∆L−2

[
1

32
∆L(∆L−1) log2 z+

1

16

(
3∆2

L−7∆L−1
)

logz+· · ·
]
.

(3.21)

On the other hand, to evaluate the correlator in the large impact parameter Regge limit

starting from (3.19), we first analytically continue z around zero according to z → ze−2πi.

We then set

z = 1− σ eρ, z̄ = 1− σ e−ρ (3.22)

and determine the behavior of (3.19) for small values of σ, σ � 1. The result is:

G(σ,η)|µ2 '
ρ�1,σ�1

1

σ2∆L

[
−9π2

2

e−6ρ

σ2

∆L(∆L+1)(∆L+2)

∆L−2
+i

35π

2

e−5ρ

σ

∆L(∆L+1)

∆L−2
+· · ·

]
.

(3.23)

Notice that the imaginary part behaves like e−5ρ/σ, in accordance with the expected be-

haviour for large impact parameters (ρ� 1) [41].
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4 S-channel expansion in the lightcone limit

In this section we will use the S-channel expansion of the correlator to determine its be-

haviour in both the small z lightcone region and the large impact parameter region of the

Regge limit at O(µ2). We will further show that the result precisely matches eqs. (3.21)

and (3.23).

The starting point is the S-channel expansion of G(z, z̄),

G(z, z̄) = (zz̄)−
1
2

(∆H+∆L)
∑
τ, `

PHL,HLτ,` g∆HL,−∆HL

τ,` (z, z̄) , (4.1)

with PHL,HLτ,` defined in (2.5). In a holographic CFT with an infinite gap in the spectrum

of operators, the protagonists of the S-channel are double-trace primaries built out of one

heavy and one light operator, schematically denoted by

OH�n∂µ1 · · · ∂µ`OL . (4.2)

It will be convenient in what follows to denote the dependence of the OPE coefficients on

(n, `) instead of (τ, `).

In the S-channel expansion corrections to the correlator arise from corrections to the

conformal dimensions and OPE coefficients of the double-trace operators from their gen-

eralized free field theory values [49]:

τ = ∆H + ∆L + 2n , (4.3)

and

P
HL,HL;(0)
n,`

=
(∆L−1)n (∆H−1)n (∆L)`+n (∆H)`+n

`!n! (2+`)n (n+∆L+∆H−3)n (`+2n+∆L+∆H−1)` (`+n+∆H+∆L−2)n
. (4.4)

Generally we expect that:

τ = ∆H + ∆L + 2n+ γn,`(µ), with γn,`(µ) =
∞∑
k=1

µkγ
(k)
n,` , (4.5)

and

PHL,HLn,` =
∞∑
k=0

µkP
HL,HL;(k)
n,` . (4.6)

For convenience in what follows we drop the superscripts and set P
(k)
n,` ≡ P

HL,HL;(k)
n,` .

In the regime where ∆H is much larger than any other parameter of the system, the

S-channel conformal blocks reduce to

g∆HL,−∆HL

τ,` (z, z̄) = (zz̄)
1
2

(∆H+∆L+γn,`)z̄` , (4.7)

while the generalized free field OPE coefficients simplify considerably as well

P
(0)
n,` = `∆L−1

Γ(∆L) .
(4.8)
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The region of interest here is ∆H � ` � 1 and n = 0. We expect from [40] that the

corrections to the conformal dimensions at large ` will behave as follows

γ
(k)
n,` ≈

γ
(k)
n

`k
. (4.9)

Since we are interested in n = 0, we set γ(k) ≡ γ
(k)
0 and P

(k)
` ≡ P

(k)
0,` . In the large ` limit

for k ≥ 2 we further assume that

P
(k)
` ≈ P (0)

`

P (k)

`k
, (4.10)

where we have denoted the `-independent coefficient as P (k).

The O(µ0) term of the correlator can now be easily computed to yield

G(z, z̄)|µ0 =

∫ ∞
0

d` P
(0)
` z̄` = (− log z̄)−∆L '

z̄→1

1

(1− z̄)∆L
(4.11)

where we replaced the summation with integration, valid for large `. Note that this is

precisely the disconnected correlator in the limit where z̄ → 1 and z → 0.

Moving on to the O(µ) term in the lightcone limit, we find:

G(z, z̄)|µ =

∫ ∞
0

d`P
(0)
`

(
P (1)

`
+
γ(1)

2`
logz

)
z̄` '

z̄→1

1

(1−z̄)∆L−1

(
P (1)

∆L−1
+

γ(1)

2(∆L−1)
logz

)
.

(4.12)

The first order corrections to the OPE coefficients and conformal dimensions in the light-

cone limit of the heavy-heavy-light-light correlator are not explicitly known. However we

can easily compute them by matching (4.12) to the respective lightcone expansion from

the T-channel, eq. (3.8). This yields,

P (1) =
3γ(1)

2
, γ(1) = −∆L(∆L − 1)

2
. (4.13)

Finally, we consider the O(µ2) terms. Expanding conformal blocks and OPE coeffi-

cients to quadratic order in µ in the regime z � 1 leads to:

G(z, z̄)|µ2 =

∫ ∞
0

d` P
(0)
`

[
(γ(1))2

8`2
log2 z +

γ(2) + P (1)γ(1)

2`2
log z

]
z̄` . (4.14)

Integrating and keeping only the leading term as z̄ → 1 yields:

G(z, z̄)|µ2 '
z�z̄→1

(1−z̄)2−∆L
∆L

∆L−2

[
1

32
∆L(∆L−1) log2 z+

1

16

(
3∆2

L−7∆L−1
)

logz

]
,

(4.15)

where we used (4.8), (4.13) and the expression for γ(2) = −(∆L−1)∆L(4∆L+ 1)/8 in [40].

We find precise agreement with eq. (3.21) obtained in the same limit from the T-channel

expansion of the correlator.

Let us now move on to the large impact parameter regime of the Regge limit. In this

case, explicit results from the S-channel expansion already exist in the literature [41]. In

particular, eq. (A.11) of [41] is precisely the imaginary part of the correlator at O(µ2)

as computed from the S-channel expansion of the correlator for large impact parameter.

Comparing with eq. (3.23), we observe exact agreement.
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5 On geodesics in AdS-Schwarzschild and a2
s

In this section we argue that the a2
s term in the OPE coefficient comes purely from the

square of the stress tensor block. This was termed “eikonalization” in the work of [50] (see

also [51]). Here we will rehash the ideas and arguments of [50, 51] in our context.

Let us denote O ≡ OL and ∆ ≡ ∆L in this section. Consider the limit 1 � ∆� CT .

By the standard AdS/CFT dictionary, the (boundary) two-point function can be evaluated

by the geodesic distance computed in the bulk geometry dual to the boundary heavy states:

lim
∆→∞

〈OH |O(x3)O(x4)|OH〉 ≈ e−∆σreg(x3,x4) (5.1)

where the ends of the geodesic are anchored at x3 and x4. The geodesic distance σreg

is the regularized geodesic distance where the IR-divergence has been subtracted. This

regularization procedure is done in pure AdS and has no effect on the µ-dependent terms.

We shall drop the subscript ‘reg’ from now on. Note that σ depends on ∆H (but not ∆)

though we shall not display it explicitly so as not to clutter notations. Finally, we shall

refer to this 1� ∆� CT limit as the ‘geodesic limit’.

We will extract the µ-dependent terms following the discussion in section 3.2.3 of [45]

for (spherical) AdS black holes. Studying the geodesic limit does not allow us to determine

the exact lowest-twist double-stress tensor OPE coefficients. However, it enables us to

compute the correct a2
s part of the OPE. This is due to the fact that the relevant OPE

coefficient is rational function of ∆ which in the limit ∆ � 1 gives

lim
∆�1

P
(2)
4,s = a2

s∆
2. (5.2)

Here P
(2)
4,s denotes the product of the T-channel OPE coefficients defined in eq. (2.5) and

eq. (3.5).

In fact, we will not need to compute the geodesic distance σ explicitly but will make

use of the fact that it can be expanded as a power series in µ:

σ =
∑

µkσ(k) . (5.3)

Substituting this expansion into the equation above and focusing on the µ2 term, we obtain

lim
∆→∞

〈OH |O(x3)O(x4)|OH〉

≈ e−∆
∑
µkσ(k) ≈ e−∆σ(0)

[
1−∆µσ(1) +

(
1

2
σ2

(1)∆
2 +O(∆)

)
µ2 +O(µ3)

]
. (5.4)

Note that, as discussed in [50], the µ2∆2 term is exactly equal to half of the square of the

term linear in µ.

Now, since the O(µ) term σ(1) reproduces the full stress tensor block (cf. [45]), the µ2∆2

term should be equal to one-half of the square of the stress tensor block times the OPE

coefficient. Note that this is true for general x3 and x4 or cross-ratios u and v. In particular,

in the light-cone limit, the stress-tensor block with its associated OPE coefficient is:

− σ(1) =
1

120
× (1− v)2

2F1 (3, 3, 6, 1− v) (5.5)
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and so
1

2
σ2

(1) =
1

2

[
1

120
× (1− v)2

2F1 (3, 3, 6, 1− v)

]2

. (5.6)

Eq. (5.6) can now be decomposed into a sum over an infinite number of lowest-twist double-

stress tensor conformal blocks as explained in detail in (B.3), with the help of the iden-

tity (3.18). As a result one proves that indeed a2
s is given as in eq. (1.8).

Let us finish this section with a few comments on possible generalizations of the above

arguments:

1. Clearly this section’s result is not confined to d = 4. One can obtain a2
s by the same

method in any dimension. By squaring the stress-tensor block with its associated

OPE coefficient, the µ2∆2 term in any dimension is given by

1

2

[
Γ
(
d+2

2

)2
4Γ(d+ 2)

× (1− v)2 × 2F1

(
d+ 2

2
,
d+ 2

2
; d+ 2; 1− v

)]2

(5.7)

which when decomposed into the light-cone blocks yields the coefficient

a2
s =

42d+s−2Γ
(
d+3

2

)2
Γ
(
s−3

2

)
Γ
(
d+ s−1

2

)
Γ
(

1
2(d+ s− 2)

)4
π2Γ

(
d
2 + 1

)2
Γ
(
s
2 − 1

)
Γ
(
d+ s

2

)
Γ(2d+ 2s− 5)

. (5.8)

2. So far we have not discussed how higher order corrections to the geodesic dis-

tance (5.3) impact the correlator. In principle, one can compute σ(2) from an expan-

sion in µ of the bulk geodesic and use it to determine the µ2∆ term in the correlator.

However, the situation is more complicated as µ2∆ terms may also originate from
1
∆ -corrections to the geodesic approximation [51].

3. Finally, as was first discussed in [50], at order µk, the leading ∆-term (i.e., ∆k term)

is given by (1/k!)σk(1) exactly. There exists a similar decomposition of higher-powers

of the stress tensor block into sums over triple and higher-stress-tensor blocks. It

would be interesting to explore such structures.

6 Discussion

We conclude this paper with a few generalizations, discussions and speculations.

Let us start by pointing out that the z̄ → 1 limit of the correlator computed here in four

dimensions has a structure very similar to the Virasoro vacuum block in two dimensions.9

The two dimensional case was discussed around eq. (4.12) of [40], where it was noticed that

the O(µ2) term in the Virasoro vacuum is a sum of two terms, each of which is a product

of two hypergeometric functions. It is intriguing that we find a similar structure in the

lightcone limit of the heavy-heavy-light-light correlator in four dimensions.

9In appendix C we discuss the d = 2 case in detail.
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This leads us to the following conjecture for the lightcone behavior of the heavy-heavy-

light-light correlator in arbitrary even dimensions:

G(z)|µ2 ∼
(d+2)/2∑
i=1

Adi (∆L)fi(z)fd+2−i(z) , (6.1)

where fi is the hypergeometric function defined in eq. (1.11). It would be nice to verify

this expression and evaluate the coefficients Adi in any d.

In two dimensions the coefficients in the expansion of the Virasoro vacuum block can

be determined by a set of diagrammatic rules [52]. It would be interesting to explore the

possibility of deriving similar rules for the lightcone limit of the four-dimensional correlator.

A related direction, as mentioned in the introduction, involves the study of the sub-

leading eikonal terms in AdS, given by corresponding Witten diagrams. It is plausible that

the diagrammatic rules set forth in [52] for large-CT two-dimensional CFTs can be refor-

mulated at the level of AdS Witten diagrammatic rules. If this were true, one could hope

to reverse engineer the CFT diagrammatic rules and generalize [52] to higher dimensions.

So far we have been discussing O(µ2) terms. In two dimensions, it is clear from eq.

(4.12) of [40], that the Virasoro vacuum block structure retains similar features at order

O(µk) — here one finds a sum where each term is a product of k hypergeometric functions.

It would be interesting to generalize the OPE formula and the summation we did in this

paper to higher orders in µ to explore whether the analogy with two dimensions persists.

If this were true, one could potentially hope to build a closed-form expression for the four

dimensional heavy-heavy-light-light correlator in the lightcone limit.

It is natural to inquire whether a direct computation of the OPE coefficients can be

done using purely CFT techniques. As we explicitly show in appendix C, this is indeed

possible in two dimensions. A direct construction of the double-stress-tensors and the

computation of the OPE coefficients10 appears challenging in higher dimensions, yet the

results of this paper indicate that it may be possible in the lightcone limit.

Finally, recall that in two dimensional CFTs, the Virasoro algebra implies the exis-

tence of infinitely many commuting conserved charges, called the KdV charges [56]. This

integrable structure is expected to play an important role in understanding thermalization

in holographic two-dimensional CFTs beyond leading-CT . This in turn will allow for a

more thorough and systematic study of the quantum corrections of BTZ black holes.11

Generalizing this story to higher dimensions, one may hope to discover hidden integrable

structures in holographic CFTs. Could this be related to various integrable structures12 of

general relativity?

10For some work related to the explicit construction of double-trace operators, see [49, 53–55].
11See [57–64] for recent work on understanding generalized Gibbs ensemble in this context.
12For an inexhaustive list of reviews and recent works on this subject, we refer the readers to [65–72] and

the references within.
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A Identities for a product of hypergeometric functions

We would like to show that the following identity

2F1[a, a, 2a,w] 2F1[b, b, 2b, w] =
∞∑
m=0

p[a, b,m]w2m
2F1[2m+a+b, 2m+a+b, 4m+2a+2b, w]

(A.1)

with

p[a, b,m]

≡
2−4mΓ

(
a+ 1

2

)
Γ
(
b+ 1

2

)
Γ
(
m+ 1

2

)
Γ(a+m)Γ(b+m)Γ

(
a+ b+m− 1

2

)
Γ(a+ b+ 2m)

√
πΓ(a)Γ(b)Γ(m+ 1)Γ

(
a+m+ 1

2

)
Γ
(
b+m+ 1

2

)
Γ(a+ b+m)Γ

(
a+ b+ 2m− 1

2

)
(A.2)

is true.

This is fairly simple once one realizes that the identity above is actually a special case

of a more general one, known as the multiplication formula,

2F1[a1,a2,a3,w]2F1[b1, b2, b3,w] =
∞∑
n=0

{
(a1)n(a2)n(b3)n

n! (a3)n(a3+b3+n−1)n

3F2[{b1,1−a3−n,−n},{b3,1−a1−n},1]3F2[{b2,1−a3−n,−n},{b3,1−a2,−n},1]

}
×wn 2F1[a1+b1+n,a2+b2+n,a3+b3+2n,w] , (A.3)

and was proven in section 10 of [73]. To arrive at (A.1) one simply needs to set a1 = a2 =

a, a3 = 2a and b1 = b2 = b, b3 = 2b and observe that the relevant 3F2 simplify considerably

due to the identity

3F2

[
{c1, c2, c3} ,

{
2c3,

1+c1+c2

2

}
,1

]
=

√
πΓ[c3+ 1

2 ]Γ[ c1+c2+1
2 ]Γ[c3+ 1−c2−c3

2 ]

Γ[ c1+1
2 ]Γ[ c2+1

2 ]Γ[c3+ 1−c1
2 ]Γ[c3+ 1−c2

2 ]
(A.4)

valid as long as 2c3 − c1 − c2 > −1. This allows one to show firstly that all the coefficients

of odd natural numbers n in (A.3) vanish identically, and prove secondly that all the ones

for even natural numbers n = 2m reduce to

(a)2m(a)2m(2b)2m (3F2[{b, 1− 2a− 2m,−2m}, {2b, 1− a− 2m}, 1])2

(2m)! (2a)2m(2a+ 2b+ 2m− 1)2m
= p[a, b,m] . (A.5)
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B On performing the infinite sums

In this appendix we will present some further details regarding the summations performed

in section 3. The starting point is eq. (3.13) expressed in terms of the Sa, Sb and Sc as

defined in (3.14)–(3.16):

G(u, v)|µ2 '
u�1

u−∆Lu2 (Sa + Sb + Sc) . (B.1)

In what follows we will set v = 1 − w for convenience. Let us consider first the term

proportional to ∆2, i.e., Sa. In this case, it is easy to see that

q2(m) =
1

2
× 1

1202
p[3, 3,m] (B.2)

with p[a, b,m] as defined in (A.1). This allows us to immediately write

Sa =
1

2
× 1

1202
×
(
w2

2F1[3, 3, 6, w]
)2

(B.3)

Next we wish to compute the term proportional to ∆ in (3.10), i.e. Sb. As seen from (3.11)

and (3.15), this term can decomposed into three separate sums. Explicitly, we have that:

Sb = −
∞∑
m=0

q2(m)w2m+4
2F1[6 + 2m, 6 + 2m, 12 + 4m,w]+

+
∞∑
m=0

36 q1(m)w2m+4
2F1[6 + 2m, 6 + 2m, 12 + 4m,w]+

+

∞∑
m=0

288 q0(m)w2m+4
2F1[6 + 2m, 6 + 2m, 12 + 4m,w] .

(B.4)

The summation in the first line can be readily performed as above. To evaluate the other

two sums, it suffices to notice that the coefficients q1(m), q0(m) can be expressed as linear

combinations of certain p[a, b,m]. Explicitly,

q1(m) =
1

28800

(
15

28
p[2, 4,m]− 1

2
p[3, 3,m]

)
,

q0(m) =
1

28800

(
− 5

84
p[2, 4,m] +

5

252
p[1, 5,m] +

1

24
p[3, 3,m]

)
.

(B.5)

It then becomes straightforward to perform the relevant summations, leading to:

Sb =
1

560

{
− 49

360

(
w2

2F1[3, 3, 6, w]
)2

+
1

24
(w2F1[2, 2, 4, w])

(
w3

2F1[4, 4, 8, w]
)

+

+
1

9
2F1[1, 1, 2, w]

(
w4

2F1[5, 5, 10, w]
)} (B.6)

Finally, for Sc we can use the expressions found above relating q0(m) to certain p[a, b,m],

to write:

Sc =
1

400

{
1

6

(
w2

2F1[3, 3, 6, w]
)2 − 5

21
(w2F1[2, 2, 4, w])

(
w3

2F1[4, 4, 8, w]
)

+

+
5

63
2F1[1, 1, 2, w]

(
w4

2F1[5, 5, 10, w]
)}

.

(B.7)
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Combining the above we can finally write

G(z, z̄)|µ2 'z→1 [(1−z)(1−z̄)]−∆+2(1−z)4 ∆

∆−2

{
∆2 1

28800
2F1(3,3;6;1−z)2+

+
∆

560

(
− 49

360
2F1(3,3;6;1−z)2+

1

24
2F1(2,2;4;1−z)2F1(4,4;8;1−z)+

+
1

9
2F1(1,1;2;1−z)2F1(5,5;10;1−z)

)
+

1

400

(
1

6
2F1(3,3;6;1−z)2

− 5

21
2F1(2,2;4;1−z)2F1(4,4;8;1−z)+

5

63
2F1(1,1;2;1−z)2F1(5,5;10;1−z)

)}
(B.8)

where we restored u = (1− z)(1− z̄) and set v ' z since we are working in the limit z̄ → 1.

C The case of d = 2

In this section, we use the fact that in d = 2, the vacuum block is known exactly in the

heavy-heavy-light-light-limit. By expanding in the light-cone limit, we derive the analogous

set of OPE coefficients of lowest-twist double-trace built out of the square of the stress-

tensor. Moreover, we can explicitly construct these double-trace operators. Not only does

this section serve as an example of how the T-channel sum works in 2d, this calculation

also provides an insight that multi-trace mixing is important in the large-CT order that we

are working with. The direct computation also suggests that there is perhaps a direct way

to generalize the calculation to higher dimension, paving a way to prove the OPE formula

we conjectured for holographic CFTs in 4d.

C.1 T-channel sum

From section 4 of [42], in the heavy-heavy-light-light limit, the Virasoro vacuum block in

the T -channel dominates, resumming all multi-trace contributions of the stress tensors:

Vvac(u, v) ≈ α∆Lv−
1
2

∆L(1−α)

[
1− v
1− vα

]∆L

(C.1)

where α ≡
√

1− µ. Note that CT = c/2. We shall drop the subscript ‘L’ from now on and

write ∆ ≡ ∆L.

Expanded in power of µ up to order µ2, one obtains:

Vvac(u,v)≈ 1+µ∆

[
(v+1)

4(v−1)
logv− 1

2

]
+

1

2
µ2

{
∆2

[
(v+1)logv

4(v−1)
− 1

2

]2

+
∆

8

[
−4+

(v+1)

v−1
logv+

2v

(v−1)2
(logv)2

]}
+O(µ3). (C.2)

From [40], we know that we can rewrite this as (with w = 1− v):

Vvac ≈ 1 +
µ

24
∆f2(v) +

µ2

1152

[
(∆− 2)∆f2(v)2 +

12∆

5
f1(v)f3(v)

]
+O(µ3). (C.3)
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We remind the readers that

fa(v) ≡ (1− v)a 2F1(a, a, 2a, 1− v) . (C.4)

Using eq. (3.18), in the µ2 term, we can decompose into the S-channel block by

Vvac|µ2 = ∆
∑

s≥4,even

a2
s (∆ + bs)× ws2F1 [s, s, 2s, w] (C.5)

with

a2
s =

√
π2−2s−1(s− 2)

s2(s+ 2)(s− 3)(s− 1)

Γ(s+ 2)

Γ
(
s− 1

2

)
bs =

4

(s− 2)(s+ 1)
, (C.6)

where s ≥ 4 and is even. These are analogous to the P4,s for d = 4 given in eq. (3.10). The

OPEs of the lowest few spin are given below

a2
4 × (∆ + b4) =

1

1152

(
∆ +

2

5

)
a2

6 × (∆ + b6) =
1

51840

(
∆ +

1

7

)
a2

8 × (∆ + b8) =
9

12812800

(
∆ +

2

27

)
. (C.7)

C.2 OPE coefficients by direct calculation

In this section, we shall explicitly construct the OPE coefficients as for the double-trace op-

erators built out of T 2. Before we begin, we shall set out some convention. Let CT ≡ c/2 in

2d CFT and normalize the two-point function of stress tensor to be 1. In this normalization

First of all, the OPE of stress tensors is given by13

T (y)T (0) =
1

y4
+

2√
CT

[
1

y2
T (0)+

1

2y
∂T (0)

]
+(T 2)(0)+. . .(T (∂T ))(0)+

1

2
y2(T (∂2T ))(0)+. . .

(C.9)

Let Λs be the quasi-primary double-trace operator (T (∂s−4T )) − . . . where . . . are

single-trace terms. We will write out these single-trace terms explicitly in a moment.

Before doing so, we shall make the following comment: to compute COOΛs , one would

naively thought that the lowest-trace terms will be irrelevant at leading CT . However, we

shall now see explicitly that when we compute COOΛ4 that this is not correct.

In terms of quasiprimary, the OPE reads (suppressing the partial waves)

T (y)T (0) =
1

y4
+

2√
CT

1

y2
T (0) +

∑
a≥0

y2aCTTΛ4+2aΛ4+2a , (C.10)

13In this normalization,

T (y)O(0) =
∆O

2
√
CT

1

y2
O(0) +

1√
CT

1

y
∂O(0) + (TO(0)) + . . . . (C.8)
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where Λ4+2a is the quasi-primary double-trace operator (T∂2aT )− . . . of spin s = 4 + 2a.

To work out the explicit relations between the Λ4+2a and (T (∂2aT )). We equate the two

expressions for the OPE in eq. (C.9) and eq. (C.10). First, let us be explicit about the

expansion into the quasiprimary for general OPE. Given any two operator O1 and O2 with

holomorphic dimension h1 and h2, the OPE in z12 ≡ z1 − z2 is given by:

O1(z1)O2(z2) =
∑
p

CO1O2OpC
(h1,h2;hp)(z12, ∂2)Op(z2), (C.11)

where Op is a quasiprimary appearing in the OPE. In 2d, this is given explicit by (see [74])

C(h1,h2;hp)(z12, ∂2) = 1F1 [h1 − h2 + hp, 2hp, z12∂2] . (C.12)

For e.g., this implies that the whole contribution (including descendants) of T in the TT

OPE is

T (z1)T (z2)|T =
2√
CT

1

z2
12

[
1+

1

2
z12∂T (z2)+

3

20
z2

12∂
2T (z2)+

1

30
z3

12∂
3T (z2)+. . .

]
. (C.13)

This contributes to the order z0
12 term in the OPE of TT as

2√
CT
× 3

20
∂2
zT (z2) (C.14)

The relation between Λ4 and T 2 then differs by this term

(T 2)(z) =
2√
CT
× 3

20
∂2T (z) + CTTΛ0Λ4(z). (C.15)

The OPE CTTΛs will be fixed by the convention that Λs has unit norm or that its

two-point function is unit normalized. After this is done, we obtain

Λ4 =
1√

22
5CT

+ 2

[
T 2 − 1√

CT
× 3

10
∂2T (z)

]
. (C.16)

In the large CT limit, we have

Λ4 ≈
1√
2

[
T 2 − 1√

CT
× 3

10
∂2T (z)

]
+O(1/CT ) (C.17)

Here, we see that the single-trace term has a 1/
√
CT coefficient compared to the coefficient

of T 2. We shall see that both terms in the square bracket contributes to COOΛ4 at the

same order in the large CT limit.

Let us now compute COOΛ0 . The first step involve computing COOT 2 . This requires

first defining T 2 as the (holomorphic) point-splitting limit:

T 2(w) ≡
∮
Cw

dx

x− w
T (x)T (w) , (C.18)
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where the contour Cw means a closed-contour circling w. This trivially reproduces the

definition in eq. (C.9). For convenience we have absorbed the 1/(2πi) in the definition of∮
. Then according to the generalized Wick’s theorem (see around 6.211 of [75]), we have

O(z)T 2(w) =

∮
Cw

dx

x− w
{[O(z)T (x)]OPET (w) + T (x)[O(z)T (w)]OPE} (C.19)

where [. . .]OPE means doing OPE on the two operators in the brackets first before per-

forming the contour integral. We also need to compute

O(z)T (w) =
∆O

2
√
CT (z − w)2

O(w) +
1
2∆O − 1
√
CT (z − w)

O′(w) + . . . (C.20)

by expanding the operators appearing in the OPE of T (w)O(z) when z goes to w.

Collecting all the ingredients, after some straightforward series expansion and picking

up the pole, we have

O(z)T 2(w) =
∆O(∆O + 4)

4CT (z − w)4
O(w) +

(∆O
2 )2 − 1

CT (z − w)3
O′(w) + . . . (C.21)

This yields

COOT 2 =
∆O
4CT

(∆O + 4). (C.22)

The other term (i.e. −(3/10)∂2T ) is simpler as we can obtain that from

〈O(∞)O(1)T (z)〉 =
∆O

2
√
CT

(z − 1)−2 =
∆O

2
√
CT

[
1 + 2z + 3z2 + . . .

]
(C.23)

and comparing with the expansion T (z) = T (0) + zT ′(0) + 1
2z

2T ′′(0), we obtain

COO∂2T =
3∆O√
CT

. (C.24)

All in all

COOT 2 −
3

10
√
CT

COO∂2T =
∆O
4CT

(
∆O +

2

5

)
. (C.25)

We note that in the ∆2
O term, only T 2 contributes while for the ∆O term, both the T 2

and the ∂2T terms contribute at the same order. We can then divide by the norm of this

state and appropriately normalize and take large N limit to obtain the result from previous

section. The result is

COOΛ4 =
∆O

(
∆O + 2

5

)
4CT

√
2 + 22

5CT

(C.26)

which in the large CT limit becomes

COHOHΛ4COLOLΛ4 =
∆2
H

32C2
T

∆(∆ + 2/5) =
µ2∆

1152

(
∆ +

2

5

)
(C.27)

where ∆H ≡ CTµ/6 is the dimension of the heavy operator OH while ∆ is the dimension

of the light operator OL.
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Here, we make an important observation: since we are after µ2 term, in each OPE coef-

ficient COOΛ4 , we are after 1/CT term. The COOT 2 term is of order 1/CT as can be roughly

estimated from the square of COOT ∼ 1/
√
CT . On the other hand, the COO∂2T is of order

1/
√
CT but it comes with a prefactor 1/

√
CT in the construction of Λ4. Therefore, both

the double-trace and the single trace terms contribute at order 1/CT in the OPE COOΛ4 .

Similar considerations in the large CT limit gives

Λ6 =

√
63

280

[
1

2
(T ′′T )− 1

84
√
CT

∂4T− 5

36
∂2Λ4

]
=

√
63

280

[
2

9
(T ′′T )− 5

18
(T ′T ′)+

5

756
√
CT

T ′′′′
]
,

(C.28)

where in the large CT limit

COHOHΛ6COLOLΛ6 ≈
µ2∆

51840

(
∆ +

1

7

)
. (C.29)

Finally, for Λ8, we have

Λ8 =

√
143

350

[
1

24
(T ′′T )− 1

4320
√
CT

∂6T − 7
√

2

1584
∂4Λ4 −

7

39

√
5

2
∂2Λ6

]
(C.30)

which yields

COHOHΛ9COLOLΛ8 ≈ µ2∆
9

12812800
(∆ + 2/27). (C.31)

Note that the explicitly constructed OPEs in eq. (C.27), eq. (C.29) and (C.31) agree with

eq. (C.7) which were obtained from the Virasoro vacuum block when expanded in the

T-channel.

It would be interesting to compute similar OPE coefficients for d > 2, though there

might be a few subtleties and difficulties. The first issue is the definition of T 2 in higher-

dimension. In 2d, due to holomorphic factorization, we could define T 2 nicely through

the contour-integral representation above. In higher-dimensional, presumably a carefully

constructed point-splitting procedure should yield similar definition. Secondly, due to the

tensor-structures of OPE and spinning operator, the generalization of the above compu-

tations might be messy. It could be that for the lowest-twist double-trace stress-tensor

operator, things simplify and presumably we could focus on light-cone OPE and define

T 2 appropriately and compute the relevant OPE coefficient. Lastly, one might apply the

technology of “conglomeration” in [49] to compute this OPE directly in higher-dimensions.
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