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1 Introduction

In recent years cluster algebras have shed interesting light on the mathematical properties

of scattering amplitudes in planar N = 4 supersymmetric Yang-Mills (SYM) theory [1].

Cluster algebraic structure manifests itself in several distinct ways, notably including the

appearance of certain Gr(4, n) cluster coordinates in the symbol alphabets [1–4], cobrack-

ets [1, 5–8], and integrands [9] of n-particle amplitudes.

There has been a recent revival of interest in the cluster structure of SYM amplitudes

following the observation [10] that certain amplitudes exhibit a property called cluster

adjacency. Cluster coordinates are grouped into sets called clusters, with two coordinates

being called adjacent if there exists a cluster containing both. The central problem of

the “cluster adjacency” literature is to identify (and, hopefully, to explain!) correlations

between sets of pairs (or larger groupings) of cluster coordinates, and the manner in which

those pairs are observed to appear together in various amplitudes.

For example, for loop amplitudes, all evidence available to date [11–22] supports the

hypothesis that two cluster coordinates appear in adjacent symbol entries only if they

are cluster adjacent. In [22] it was shown that this type of cluster adjacency implies

the Steinmann relations [23–25]. For tree amplitudes a somewhat analogous version of

cluster adjacency was proposed in [19], where it was checked in several cases, and con-

jectured in general, that every Yangian invariant in the BCFW expansion of tree-level

amplitudes in SYM theory has poles given by cluster coordinates that are all contained in

a common cluster.

In this paper we provide further evidence for this and the even stronger conjecture that

cluster adjacency holds for every rational Yangian invariant in SYM theory, even those that

do not appear in any representation of tree amplitudes.

In section 2 we review the main tool of our analysis, the Sklyanin Poisson bracket [26,

27] which can be used to diagnose whether two cluster coordinates on Gr(4, n) are adjacent,
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which we will call the bracket test [22]. In section 3 we review the Yangian invariants of

SYM theory and explain how (in principle) to use the bracket test to provide evidence that

NkMHV Yangian invariants satisfy cluster adjacency. We carry out this check for all k ≤ 2

invariants and many k = 3 invariants.

Before proceeding we make a few comments clarifying the ways in which our tests are

weaker than the analysis of [19], and the ways in which they are stronger:

1. It could have happened that only certain repreresentations of tree-level amplitudes

(depending, perhaps, on the choice of shifts during intermediate steps of BCFW re-

cursion) satisfy cluster adjacency, but as already noted, our results suggest that every

rational Yangian invariant satisfies cluster adjacency. If true, this suggests that the

connection between cluster adjacency and Yangian invariants admits a mathematical

explanation independent of the physics of scattering amplitudes.

2. For any fixed k there are finitely many functionally independent NkMHV Yangian

invariants. If it is known that these all satisfy cluster adjacency, it immediately

follows that the n-particle NkMHV amplitude satisfies cluster adjacency for all n.

Our results therefore extend the analysis of [19] in both k and n.

3. However, unlike in [19], we make no attempt to check whether each of the polynomial

factors we encounter is actually a Gr(4, n) cluster coordinate. Indeed for n > 7

there is no known algorithm for determining, in finite time, whether or not a given

homogeneous polynomial in Plücker coordinates is a cluster coordinate. The bracket

does not help here; it is trivial to write down pairs of polynomials that pass the

bracket test but are not cluster coordinates.

4. In the examples checked in [19] it was noted that each term in a BCFW expansion

of an amplitude had the property that there exists a cluster of Gr(4, n) that simulta-

neously contains all of the cluster coordinates appearing in the denominator of that

term. Our test is much weaker in that it can only establish pairwise cluster adja-

cency. For example, if we encounter a term with three polynomial factors p1, p2 and

p3, our test provides evidence that there is some cluster containing p1 and p2, and

also some cluster containing p2 and p3, and also some cluster containing p1 and p3,

but the bracket test cannot provide any evidence for or against the existence of a

cluster simultaneously containing all three.

In this paper we rely on theoretical experimentation to find evidence in support of

the cluster adjacency of Yangian invariants, but it is natural to hope that some kind of

connection might be discovered that could shine light on a path towards a general proof.

This seems to be a difficult problem on two fronts: SYM theory admits a whole zoo of

Yangian invariants (see chapter 12 of [9] for a discussion of their classification), and the

structure of Gr(4, n) is still rather mysterious for n > 7 (when the algebra is infinite). In

particular, as noted above, there is no known algorithm for determining whether a given

quantity is a cluster coordinate, let alone whether two coordinates are cluster adjacent.

Encouragingly, however, some progress towards a general proof has recently been made
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in [28], which studied Yangian invariants in the so-called m = 2 toy model of SYM theory.

There it was found to be possible to write down an explicit formula for arbitrary Yangian

invariants, in a form that manifestly exhibits cluster adjacency with respect to the Gr(2, n)

cluster algebra, whose simple structure is completely understood.

2 Cluster coordinates and the Sklyanin Poisson bracket

The objects of study in this paper will be certain rational functions on the kinematic

space of n cyclically ordered massless particles, of the type that appear in tree-level gluon

scattering amplitudes. A point in this kinematic space is conveniently parameterized by

a collection of n momentum twistors [29] ZI
1 , . . . , Z

I
n, each of which can be regarded as a

four-component (I ∈ {1, . . . , 4}) homogeneous coordinate on P3.

In these variables dual conformal symmetry [30] is realized by SL(4,C) transformations.

For a given collection of nmomentum twistors, the
(
n
4

)
Plücker coordinates are the SL(4,C)-

invariant quantities

〈i j k l〉 ≡ εIJKLZ
I
i Z

J
j Z

K
k Z

L
l . (2.1)

The Gr(4, n) Grassmannian cluster algebra, whose structure has been found to under-

lie at least certain amplitudes in SYM theory, is a commutative algebra with generators

called cluster coordinates. Every cluster coordinate is a polynomial in Plückers that is ho-

mogeneous under a projective rescaling of each momentum twistor separately, for example

〈1 2 6 7〉〈2 3 4 5〉 − 〈1 2 4 5〉〈2 3 6 7〉 . (2.2)

Every Plücker coordinate is, on its own, a cluster coordinate. For n < 8 the number of

cluster coordinates is finite and they can easily be enumerated, but for n > 7 the number

of cluster coordinates is infinite.

The cluster coordinates of Gr(4, n) are grouped into non-disjoint sets of cardinality

4n−15 called clusters. Two cluster coordinates are said to be cluster adjacent if there

exists a cluster containing both. The n Plücker coordinates 〈1 2 3 4〉, 〈2 3 4 5〉, · · · , 〈n 1 2 3〉
containing four cyclically adjacent momentum twistors play a special role; these are called

frozen coordinates and are elements of every cluster. Therefore, each frozen coordinate is

adjacent to every cluster coordinate.

Two Plücker coordinates are cluster adjacent if and only if they satisfy the so-called

weak separation criterion [31, 32]. In order to address the central problem posed in the

Introduction, it is desirable to have an efficient algorithm for testing whether two more

general cluster coordinates are cluster adjacent. As proposed in [22], the Sklyanin Poisson

bracket [26, 27] { , } can serve because of the expectation (not yet completely proven,

as far as we are aware) that two cluster coordinates a1, a2 are adjacent if and only if

{log a1, log a2} ∈ 1
2Z.

In the next section we use the Sklyanin Poisson bracket to test the cluster adjacency

properties of Yangian invariants. To that end let us briefly review, following [22] (see
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also [33]) how it can be computed. First, any generic 4 × n momentum twistor matrix ZI
i

can be brought into the gauge-fixed form

ZI
i =


1 0 0 0 y15 · · · y1n
0 1 0 0 y25 · · · y2n
0 0 1 0 y35 · · · y3n
0 0 0 1 y45 · · · y4n

 (2.3)

by a suitable GL(4,C) transformation. The Sklyanin Poisson bracket of the y’s is defined as

{yIa, yJ b} =
1

2
(sign(J − I)− sign(b− a))yJay

I
b . (2.4)

Finally, the Sklyanin Poisson bracket of two arbitrary functions f , g of momentum twistors

can be computed by plugging in the parameterization (2.3) and then using the chain rule

{f(y), g(y)} =
n∑

a,b=1

4∑
I,J=1

∂f

∂yIa

∂g

∂yJ b
{yIa, yJ b} . (2.5)

3 An adjacency test for Yangian invariants

The conformal [34] and dual conformal symmetry of scattering amplitudes in SYM theory

combine to generate a Yangian [35] symmetry. Yangian invariants [9, 30, 36–42] are the

basic building blocks in terms of which amplitudes can be constructed. We say that a

Yangian invariant1 is rational if it is a rational function of momentum twistors; equiv-

alently, it has intersection number Γ = 1 in the terminology of [9, 43]. Any n-particle

tree-level amplitude in SYM theory can be written as the n-particle Parke-Taylor-Nair

superamplitude [44, 45] times a linear combination of rational Yangian invariants (see for

example [46]). In general the linear combination is not unique since Yangian invariants

satisfy numerous linear relations.

Yangian invariants are actually superfunctions: an n-particle invariant is a polynomial

of uniform degree 4k in 4kn Grassmann variables χA
i , where k is the NkMHV degree. For a

rational Yangian invariant Y , the coefficient of each distinct term in its expansion in χ’s can

be uniquely factored into a ratio of products of polynomials in Plücker coordinates, with

each polynomial having uniform weight in each momentum twistor separately. Let {pi}
denote the union of all such polynomials that appear in the denominator of the expansion

of Y . Then we say that Y passes the bracket test if

Ωij ≡ {log pi, log pj} ∈
1

2
Z ∀i, j . (3.1)

As explained in [9], n-particle Yangian invariants can be classified in terms of permu-

tations on n elements. Since the bracket test is invariant2 under the Zn cyclic group that

1Importantly, throughout this paper it should be understood that whenever we say “Yangian invariant”

we mean “positive Yangian invariant,” in the spirit of [9].
2Certainly the value of the Sklyanin Poisson bracket is not in general cyclic invariant, since evaluating

it requires making a gauge choice which breaks cyclic symmetry, such as in (2.3), but the binary statement

of whether some pair does or does not have half-integer valued bracket is cyclic invariant.
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shifts the momentum twistors Zi → Zi+1modn, we only need to consider one member from

each cyclic equivalence class. The number of cyclic classes of rational NkMHV Yangian

invariants with nontrivial dependence on n momentum twistors was tabulated for various

k and n in table 3 of [9]. We record these numbers here, correcting typos in the (3, 15) and

(4, 20) entries:

k

n
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Total

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 1 2 5 4 1 0 0 0 0 0 0 0 0 0 0 13

3 0 0 1 6 54 177 298 274 134 30 3 0 0 0 0 0 977

4 0 0 0 1 13 263 1988 7862 18532 28204 28377 18925 8034 2047 270 17 114533

When they appear in scattering amplitudes, Yangian invariants typically have trivial

dependence on several of the particles. For example the five-particle NMHV Yangian

invariant Y (1)(Z1, Z2, Z3, Z4, Z5) could appear in a nine-particle NMHV amplitude as

Y (1)(Z2, Z4, Z5, Z7, Z8), among other possibilities. Fortunately, because of the simple

sign(b− a) dependence on column number in the definition (2.4), the bracket test is insen-

sitive to trivial dependence on additional momentum twistors.3

Therefore for any fixed k, but arbitrary n, we can provide evidence for the cluster

adjacency of every rational n-particle NkMHV Yangian invariant by applying the bracket

test described above (3.1) to each one of the (finitely many) rational Yangian invariants. In

the next few subsections we present the results of our analysis, beginning with the trivial

but illustrative case of k = 1.

3.1 NMHV

The unique k = 1 Yangian invariant is the well-known five-bracket [36] (originally presented

as an “R-invariant” in [30])

Y (1) = [1, 2, 3, 4, 5] ≡ δ(4)(〈1 2 3 4〉χA
5 + cyclic)

〈1 2 3 4〉〈2 3 4 5〉〈3 4 5 1〉〈4 5 1 2〉〈5 1 2 3〉
(3.2)

whose denominator contains the five factors

{p1, . . . , p5} = {〈1 2 3 4〉, 〈2 3 4 5〉, 〈3 4 5 1〉, 〈4 5 1 2〉, 〈5 1 2 3〉} , (3.3)

each of which is simply a Plücker coordinate. Evaluating these in the gauge (2.3) gives

{p1, . . . , p5} = {1,−y15,−y25,−y35,−y45} (3.4)

and evaluating the bracket (3.1) in this basis using (2.4) gives

Ω
(1)
ij = {log pi, log pj} =


0 0 0 0 0

0 0 1
2

1
2

1
2

0 −1
2 0 1

2
1
2

0 −1
2 −

1
2 0 1

2

0 −1
2 −

1
2 −

1
2 0

 . (3.5)

Since each entry is half-integer, the five-bracket (3.2) passes the bracket test.

3As in footnote 2, the actual value of the Sklyanin Poisson bracket will in general change if the particle

relabeling affects any of the first four gauge-fixed columns of Z.
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We wrote out the steps in detail in order to illustrate the general procedure, although

in this trivial case the conclusion was foregone: for n = 5 each Plücker coordinate in (3.2)

is frozen, so each is automatically cluster adjacent to each of the others. It is however

interesting to note that if we uplift (3.2) by introducing trivial dependence on additional

particles, this simple argument no longer applies. For example, [1, 3, 5, 7, 9] still passes the

bracket test even though it does not involve any frozen coordinates. The fact that the five-

bracket [i, j, k, l,m] passes the bracket test for any choice of indices can be understood in

terms of the weak separation criterion [31, 32] for determining when two Plücker coordinates

are cluster adjacent. The connection between the weak separation criterion and all Yangian

invariants with n = 5k will be explored in [47].

3.2 N2MHV

The 13 rational Yangian invariants with k = 2 are listed in table 1 of [9] (we disregard the

ninth entry in the table, which is algebraic but not rational4). They are given by

Y
(2)
1 = [1, 2, (23) ∩ (456), (234) ∩ (56), 6][2, 3, 4, 5, 6]

Y
(2)
2 = [1, 2, (34) ∩ (567), (345) ∩ (67), 7][3, 4, 5, 6, 7]

Y
(2)
3 = [1, 2, 3, (345) ∩ (67), 7][3, 4, 5, 6, 7]

Y
(2)
4 = [1, 2, 3, (456) ∩ (78), 8][4, 5, 6, 7, 8]

Y
(2)
5 = [1, 2, 3, 4, 8][4, 5, 6, 7, 8]

Y
(2)
6 = [1, 2, 3, (45) ∩ (678), 8][4, 5, 6, 7, 8]

Y
(2)
7 = [1, 2, 3, (45) ∩ (678), (456) ∩ (78)][4, 5, 6, 7, 8] (3.6)

Y
(2)
8 = [1, 2, 3, 4, (456) ∩ (78)][4, 5, 6, 7, 8]

Y
(2)
9 = [1, 2, 3, 4, 9][5, 6, 7, 8, 9]

Y
(2)
10 = [1, 2, 3, 4, (567) ∩ (89)][5, 6, 7, 8, 9]

Y
(2)
11 = [1, 2, 3, 4, (56) ∩ (789)][5, 6, 7, 8, 9]

Y
(2)
12 = ϕ× [1, 2, 3, (45) ∩ (789), (46) ∩ (789)][(45) ∩ (123), (46) ∩ (123), 7, 8, 9]

Y
(2)
13 = [1, 2, 3, 4, 5][6, 7, 8, 9, 10]

where

(ij) ∩ (klm) = Zi〈j k lm〉 − Zj〈i k lm〉 (3.7)

denotes the point of intersection between the line (ij) and the plane (klm) in momentum

twistor space. The Yangian invariant Y
(2)
12 has the prefactor

ϕ =
〈4 5 (123) ∩ (789)〉〈4 6 (123) ∩ (789)〉
〈1 2 3 4〉〈4 7 8 9〉〈5 6 (123) ∩ (789)〉

, (3.8)

4As mentioned in [19], it would be very interesting if some suitably generalized version of cluster adja-

cency could be found which applies to algebraic functions of momentum twistors.
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where

(ijk) ∩ (lmn) = (ij)〈k lmn〉+ (jk)〈i l mn〉+ (ki)〈j l mn〉 (3.9)

denotes the line of intersection between the planes (ijk) and (lmn).

Following the same procedure outlined in the previous subsection, for each Yangian

invariant Y
(2)
a listed in (3.6) we enumerate all polynomial factors its denominator contains,

and then compute the associated bracket matrix Ω
(2)
a . Explicit results for these matrices

are given in appendix A. We find that each matrix is half-integer valued, and therefore

conclude that all rational k = 2 Yangian invariants satisfy the bracket test.

3.3 N3MHV and higher

For k > 2 it is too cumbersome, and not particularly enlightening, to write explicit formulas

for each of the 977 rational Yangian invariants. We can use [43] to compute a symbolic

formula for each Yangian invariant Y in terms of the parameterization (2.3). Then we

read off the list of all polynomials in the yIa’s that appear in the denominator of Y and

compute the bracket matrix (3.1). We have carried out this test for all 238 rational N3MHV

invariants with n ≤ 10 (and many invariants with n > 10), and find that each one passes

the bracket test. Although it is straightforward in principle to continue checking higher n

(and k) invariants, it becomes computationally prohibitive.
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A Explicit matrices for k = 2

Using the notation given in (3.6), we present here for each rational N2MHV Yangian

invariant the bracket matrix of its polynomial factors:

Ω
(2)
1 =



0 0 1 1 0 0 0 1
2 −

1
2 −1

0 0 0 0 −1
2 0 −1

2
1
2 −

1
2 −1

−1 0 0 −1 −3
2 0 −1

2 −
1
2 −

1
2 −1

−1 0 1 0 −3
2 0 −1

2 0 −1 −1

0 1
2

3
2

3
2 0 1

2 0 1
2 −

1
2 −1

0 0 0 0 −1
2 0 −1

2 0 0 0

0 1
2

1
2

1
2 0 1

2 0 0 0 0

−1
2 −

1
2

1
2 0 −1

2 0 0 0 −1
2 −

1
2

1
2

1
2

1
2 1 1

2 0 0 1
2 0 −1

2

1 1 1 1 1 0 0 1
2

1
2 0


Ω
(2)
2 =



0 0 1 0 0 0 0 −1 −1
2 −

1
2

0 0 0 −1
2 −

1
2 0 −1

2 −
1
2 −

1
2 −

1
2

−1 0 0 −3
2 −

3
2 0 −1

2 −
3
2 −

1
2 −

1
2

0 1
2

3
2 0 −1

2
1
2 0 −1 −1

2 −
1
2

0 1
2

3
2

1
2 0 1

2 0 −1 −1
2 −

1
2

0 0 0 −1
2 −

1
2 0 −1

2 −
1
2 0 0

0 1
2

1
2 0 0 1

2 0 −1
2 0 0

1 1
2

3
2 1 1 1

2
1
2 0 0 0

1
2

1
2

1
2

1
2

1
2 0 0 0 0 −1

2
1
2

1
2

1
2

1
2

1
2 0 0 0 1

2 0
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Ω
(2)
3 =



0 0 1
2 0 0 0 0 −1 0 −1

2

0 0 −1
2 −

1
2 −

1
2 0 −1

2 −
1
2 0 −1

2

−1
2

1
2 0 −1 −1 0 −1

2 −
3
2 −

1
2 −

1
2

0 1
2 1 0 −1

2
1
2 0 −1 0 −1

2

0 1
2 1 1

2 0 1
2 0 −1 0 −1

2

0 0 0 −1
2 −

1
2 0 −1

2 −
1
2 0 0

0 1
2

1
2 0 0 1

2 0 −1
2 0 0

1 1
2

3
2 1 1 1

2
1
2 0 0 0

0 0 1
2 0 0 0 0 0 0 −1

2
1
2

1
2

1
2

1
2

1
2 0 0 0 1

2 0


Ω
(2)
4 =



0 0 0 0 0 0 0 −1 −1 0

0 0 −1
2 −

1
2 −

1
2 0 −1

2 −
1
2 −

1
2 0

0 1
2 0 −1

2 −
1
2

1
2 0 −1 −1 0

0 1
2

1
2 0 −1

2
1
2 0 −1 −1 0

0 1
2

1
2

1
2 0 1

2 0 −1 −1 0

0 0 −1
2 −

1
2 −

1
2 0 −1

2 −
1
2 −

1
2 0

0 1
2 0 0 0 1

2 0 −1
2 −

1
2 0

1 1
2 1 1 1 1

2
1
2 0 −1

2 0

1 1
2 1 1 1 1

2
1
2

1
2 0 0

0 0 0 0 0 0 0 0 0 0



Ω
(2)
5 =



0 0 0 0 0 0 0 0 0 0

0 0 −1
2 −

1
2 −

1
2 0 −1

2 −
1
2 −

1
2 0

0 1
2 0 −1

2 −
1
2

1
2 0 0 0 0

0 1
2

1
2 0 −1

2
1
2 0 0 0 0

0 1
2

1
2

1
2 0 1

2 0 0 0 0

0 0 −1
2 −

1
2 −

1
2 0 −1

2 −
1
2 −

1
2 0

0 1
2 0 0 0 1

2 0 −1
2 −

1
2 0

0 1
2 0 0 0 1

2
1
2 0 −1

2 0

0 1
2 0 0 0 1

2
1
2

1
2 0 0

0 0 0 0 0 0 0 0 0 0


Ω
(2)
6 =



0 0 0 0 0 0 0 0 −1 0

0 0 −1
2 −

1
2 −

1
2 0 −1

2 −
1
2 −

1
2 0

0 1
2 0 −1

2 −
1
2

1
2 0 0 −1 0

0 1
2

1
2 0 −1

2
1
2 0 0 −1 0

0 1
2

1
2

1
2 0 1

2 0 0 −1 0

0 0 −1
2 −

1
2 −

1
2 0 −1

2 −
1
2 −

1
2 0

0 1
2 0 0 0 1

2 0 −1
2 −

1
2 0

0 1
2 0 0 0 1

2
1
2 0 −1

2 0

1 1
2 1 1 1 1

2
1
2

1
2 0 0

0 0 0 0 0 0 0 0 0 0



Ω
(2)
7 =



0 0 0 0 0 0 0 0 −1 0

0 0 −1 −1 −1 0 0 −1 −1 0

0 1 0 −1
2 −

1
2

1
2

1
2 −

1
2 −

3
2 0

0 1 1
2 0 −1

2
1
2

1
2 −

1
2 −

3
2 0

0 1 1
2

1
2 0 1

2
1
2 −

1
2 −

3
2 0

0 0 −1
2 −

1
2 −

1
2 0 −1

2 −
1
2 −

1
2 0

0 0 −1
2 −

1
2 −

1
2

1
2 0 −1

2 −
1
2 0

0 1 1
2

1
2

1
2

1
2

1
2 0 −1

2 0

1 1 3
2

3
2

3
2

1
2

1
2

1
2 0 0

0 0 0 0 0 0 0 0 0 0


Ω
(2)
8 =
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2 0 0 0 0
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Ω
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Ω
(2)
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Each matrix Ω

(2)
i is written in the basis Bi of polynomials shown below:

B1 = {〈1, 2, (23) ∩ (456), (234) ∩ (56)〉, 〈6, 1, 2, (23) ∩ (456)〉, 〈(234) ∩ (56), 6, 1, 2〉,
〈(23) ∩ (456), (234) ∩ (56), 6, 1〉, 〈2, (23) ∩ (456), (234) ∩ (56), 6〉, 〈2, 3, 4, 5〉,
〈6, 2, 3, 4〉, 〈5, 6, 2, 3〉, 〈4, 5, 6, 2〉, 〈3, 4, 5, 6〉},

B2 = {〈1, 2, (34) ∩ (567), (345) ∩ (67)〉, 〈7, 1, 2, (34) ∩ (567)〉, 〈(345) ∩ (67), 7, 1, 2〉,
〈(34) ∩ (567), (345) ∩ (67), 7, 1〉, 〈2, (34) ∩ (567), (345) ∩ (67), 7〉, 〈3, 4, 5, 6〉,
〈7, 3, 4, 5〉, 〈6, 7, 3, 4〉, 〈5, 6, 7, 3〉, 〈4, 5, 6, 7〉},

B3 = {〈1, 2, 3, (345) ∩ (67)〉, 〈7, 1, 2, 3〉, 〈(345) ∩ (67), 7, 1, 2〉, 〈3, (345) ∩ (67), 7, 1〉,
〈2, 3, (345) ∩ (67), 7〉, 〈3, 4, 5, 6〉, 〈7, 3, 4, 5〉, 〈6, 7, 3, 4〉, 〈5, 6, 7, 3〉, 〈4, 5, 6, 7〉},

B4 = {〈1, 2, 3, (456) ∩ (78)〉, 〈8, 1, 2, 3〉, 〈(456) ∩ (78), 8, 1, 2〉, 〈3, (456) ∩ (78), 8, 1〉,
〈2, 3, (456) ∩ (78), 8〉, 〈4, 5, 6, 7〉, 〈8, 4, 5, 6〉, 〈7, 8, 4, 5〉, 〈6, 7, 8, 4〉.〈5, 6, 7, 8〉},

B5 = {〈1, 2, 3, 4〉, 〈8, 1, 2, 3〉, 〈4, 8, 1, 2〉, 〈3, 4, 8, 1〉, 〈2, 3, 4, 8〉, 〈4, 5, 6, 7〉, 〈8, 4, 5, 6〉,
〈7, 8, 4, 5〉, 〈6, 7, 8, 4〉, 〈5, 6, 7, 8〉},

B6 = {〈1, 2, 3, (45) ∩ (678)〉, 〈8, 1, 2, 3〉, 〈(45) ∩ (678), 8, 1, 2〉, 〈3, (45) ∩ (678), 8, 1〉,
〈2, 3, (45) ∩ (678), 8〉, 〈4, 5, 6, 7〉, 〈8, 4, 5, 6〉, 〈7, 8, 4, 5〉, 〈6, 7, 8, 4〉.〈5, 6, 7, 8〉},

B7 = {〈1, 2, 3, (45) ∩ (678)〉, 〈(456) ∩ (78), 1, 2, 3〉, 〈(45) ∩ (678), (456) ∩ (78), 1, 2〉,
〈3, (45) ∩ (678), (456) ∩ (78), 1〉, 〈2, 3, (45) ∩ (678), (456) ∩ (78)〉, 〈4, 5, 6, 7〉,
〈8, 4, 5, 6〉, 〈7, 8, 4, 5〉, 〈6, 7, 8, 4〉.〈5, 6, 7, 8〉},

B8 = {〈1, 2, 3, 4〉, 〈(456) ∩ (78), 1, 2, 3〉, 〈4, (456) ∩ (78), 1, 2〉, 〈3, 4, (456) ∩ (78), 1〉,
〈2, 3, 4, (456) ∩ (78)〉, 〈4, 5, 6, 7〉, 〈8, 4, 5, 6〉, 〈7, 8, 4, 5〉, 〈6, 7, 8, 4〉.〈5, 6, 7, 8〉},

B9 = {〈1, 2, 3, 4〉, 〈9, 1, 2, 3〉, 〈4, 9, 1, 2〉, 〈3, 4, 9, 1〉, 〈2, 3, 4, 9〉, 〈5, 6, 7, 8〉,
〈9, 5, 6, 7〉, 〈8, 9, 5, 6〉, 〈7, 8, 9, 5〉, 〈6, 7, 8, 9〉},

B10 = {〈1, 2, 3, 4〉, 〈(567) ∩ (89), 1, 2, 3〉, 〈4, (567) ∩ (89), 1, 2〉, 〈3, 4, (567) ∩ (89), 1〉,
〈2, 3, 4, (567) ∩ (89)〉, 〈5, 6, 7, 8〉, 〈9, 5, 6, 7〉, 〈8, 9, 5, 6〉, 〈7, 8, 9, 5〉, 〈6, 7, 8, 9〉},

B11 = {〈1, 2, 3, 4〉, 〈(56) ∩ (789), 1, 2, 3〉, 〈4, (56) ∩ (789), 1, 2〉, 〈3, 4, (56) ∩ (789), 1〉,
〈2, 3, 4, (56) ∩ (789)〉, 〈5, 6, 7, 8〉, 〈9, 5, 6, 7〉, 〈8, 9, 5, 6〉, 〈7, 8, 9, 5〉, 〈6, 7, 8, 9〉},

B12 = {〈1, 2, 3, 4〉, 〈4, 7, 8, 9〉, 〈5, 6, (123) ∩ (789)〉, 〈1, 2, 3, (45) ∩ (789)〉,
〈(46) ∩ (789), 1, 2, 3〉, 〈(45) ∩ (789), (46) ∩ (789), 1, 2〉,
〈3, (45) ∩ (789), (46) ∩ (789), 1〉, 〈2, 3, (45) ∩ (789), (46) ∩ (789)〉,
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〈(45) ∩ (123), (46) ∩ (123), 7, 8〉, 〈9, (45) ∩ (123), (46) ∩ (123), 7〉,
〈8, 9, (45) ∩ (123), (46) ∩ (123)〉, 〈7, 8, 9(45) ∩ (123)〉, 〈(46) ∩ (123), 7, 8, 9〉},

B13 = {〈1, 2, 3, 4〉, 〈5, 1, 2, 3〉, 〈4, 5, 1, 2〉, 〈3, 4, 5, 1〉, 〈2, 3, 4, 5〉, 〈6, 7, 8, 9〉,
〈10, 6, 7, 8〉, 〈9, 10, 6, 7〉, 〈8, 9, 10, 6〉, 〈7, 8, 9, 10〉}.

Each basis Bi is simply a list of the factors in the denominator of the Yangian invariant

Y
(2)
i given in (3.6). These may be evaluated explicitly in terms of the yij variables by taking

the appropriate maximal minors of (2.3), using also the definitions (3.7) and (3.9). For

example, the basis B1 given above evaluates on (2.3) to

B1 ={p11, p12, . . . , p110}
={
(
y15y

3
6 − y16y35

) (
y16y

4
5 − y15y46

)
, y46
(
y16y

3
5 − y15y36

)
, y16
(
y35y

4
6 − y36y45

)
,

y16
(
y26y

3
5 − y25y36

) (
y16y

4
5 − y15y46

)
, y16
(
y16y

3
5 − y15y36

) (
y16y

4
5 − y15y46

)
,

− y15, y16, y15y46 − y16y45, y15y36 − y16y35, y15y26 − y16y25} .

Then one can compute the matrix Ω
(2)
1,ij = {log p1i , log p1j} simply by taking derivatives

using (2.4) and the chain rule (2.5).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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