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1 Introduction and conclusions

Discrete symmetries are key to our understanding of quantum field theory and the Standard

Model, and it is an interesting question to address their realization in fundamental theories

like string theory. In particular, the general arguments about absence of global symmetries

in theories of quantum gravity (see [1–3] for early viewpoints, and e.g. [4, 5] and refer-

ences therein, for more recent discussions) suggest that discrete symmetries should have a

gauge nature in such theories [6–13] (see [14–16] for recent discussions in the swampland

[17–19] context).
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Discrete gauge symmetries have been studied in string theory from different perspec-

tives. Abelian gauge symmetries, and their application to MSSM-like models have been

explored in D-brane models in [20–24]. Non-abelian discrete gauge symmetries in 4d string

compactifications were systematically studied in [25]. In fact, the first appearance of non-

abelian discrete gauge symmetries in string theory arose in [26] in the gravity dual of the

quiver gauge theory on D3-branes at the C3/Z3 singularity. This was subsequently gener-

alized to other particular orbifolds of C3, the conifold and Yp,q in [27, 28]. The symmetries

were constructed as global discrete symmetries of the quiver theory, by laboriously solv-

ing the conditions of invariance of the superpotential and cancellation of discrete gauge

anomalies. The symmetries correspond to discrete Heisenberg groups, with ZN generators

A, B anticommuting to a central element C, namely AB = CBA. In the gravity dual,

the discrete symmetries arise from torsion homology cycles, and the non-abelian nature is

encoded in brane creation effects among the ZN charged objects [26], or alternatively in

the KK reduction of Chern-Simons terms for torsion forms with non-trivial relations [25].

In this paper we apply the powerful description of D3-branes at toric CY threefold

singularities in terms of dimer diagrams [29–31] to unravel the underlying structure of

discrete symmetries in general orbifolds of general toric singularities. We find discrete

Heisenberg groups for the whole class of theories, generalizing earlier results for particular

examples. We show that the discrete symmetry structure for any orbifold of a given parent

theory follows from a universal structure in the infinite dimer in R2 giving the covering

space of the unit cell of the parent theory. The general structure is as follows. The

generator A is realized as a shift in the dimer diagram, associated to the orbifold quantum

symmetry; the action of B is determined by equations describing a 1-form in the dimer

graph in the unit cell of the parent theory with twisted boundary conditions. The element

C is a discrete subgroup of the non-anomalous U(1) symmetries (mesonic, and baryonic,

if present), determined by a simple set of equations related to geometric identities among

the elements of the dimer graph in the parent theory.

Our findings allow to easily construct the discrete symmetries for infinite classes of

orbifolds. To illustrate the power of our methods, we provide explicit examples by con-

structing the discrete symmetries for general orbifolds of C3, conifold, and complex cones

over the toric del Pezzo surfaces, dP1, dP2 and dP3.

These discrete global symmetries of the quiver gauge theories are holographically dual

to discrete gauge symmetries from torsion cycles in the horizon, as we also briefly discuss.

Our techniques thus provide the largest ensemble of discrete gauge symmetries in string

theory models, in this case in AdS. They thus provide a natural setup to explore the

properties of discrete symmetries in AdS quantum gravity, with interesting interplay with

holography and hopefully with the swampland constraints for AdS vacua [14, 15, 32, 33].

The paper is organized as follows. In section 2 we revisit the dimer diagram description

of quiver gauge theories on D3-branes at toric CY threefold singularities. We review the

ingredients of their dimer diagrams and periodic quivers in section 2.1, and describe their

continuous U(1) symmetries in section 2.2. In section 2.3 we re-derive the latter from a

new ingredient, which we dub Geometric Identities for the dimer regarded as a graph.

In section 3 we give a first pass discussion of discrete symmetries for orbifolds of toric

– 2 –



J
H
E
P
1
0
(
2
0
1
9
)
0
9
1

geometries. In section 3.1 we describe general orbifolds of general toric singularities and

the corresponding gauge theories. In section 3.2 we describe the general structure of the

discrete Heisenberg groups, and in section 3.3 we uncover their origin from an underlying

structure of a 1-form defined on the infinite dimer in R2 of the parent theory. We exploit

this understanding to solve by inspection the discrete symmetries for general orbifolds of

C3, in section 3.4, and of the conifold, in section 3.5. In section 4 we provide the systematic

procedure to construct the explicit solution for the discrete symmetries of a general orbifold

of a general toric singularity, in terms of equations for 1-forms on the graph of the parent

theory dimer/quiver in its unit cell (with twisted boundary conditions). Section 5 is devoted

to the explicit construction of the discrete symmetries in infinite families of orbifolds. In

sections 5.1 and 5.2 we recover the discrete symmetries for orbifolds of C3 and the conifold,

and in section 5.3 we construct the discrete symmetries for the infinite class of general

orbifolds of the dP1 theory. Further examples are postponed to appendix B, in particular

infinite classes of orbifolds of the dP2 theory (in appendix B.1) and of the dP3 theory (in

appendix B.2). Finally, section 6 contains a sketch of the realization of these symmetries

in the gravity dual, in terms of torsion classes in the 5d horizon geometry. Appendix A

introduces some topological concepts for the dimer/quiver graphs, useful for the discussion

in the main text.

2 Dimer diagrams and quiver gauge theories

2.1 Dimer diagram and periodic quiver

The gauge theories on D3-branes at toric CY threefold singularities are efficiently encoded

in dimer diagrams [29–31]. These are bipartite tilings of T2. The bipartite property means

that vertices can be colored black and white, with edges joining vertices of different color;

it endows edges with an orientation e.g. from black to white nodes, and an orientation

around vertices e.g. clockwise (resp. counter-clockwise) for black (resp. white) vertices.

The correspondence with the gauge theory is such that each face Fa corresponds to a

gauge factor SU(Na). Actually, there is a U(Na) symmetry group, but the U(1)a factor

is generically massive due to BF couplings with closed string modes [34] (often also in-

volved in a Green-Schwarz mechanism to cancel mixed anomalies). These U(1)’s remain

as (perturbatively exact) global symmetries, and will play a prominent role in this paper.

The correspondence also sets that each edge Ei, which separates faces Fa and Fb,

corresponds to a bifundamental chiral multiplet ( a, b) if one crosses Ei with positive

orientation in going from Fa to Fb. Finally, black and white vertices, denoted by Vα or V ′α,

respectively, introduce superpotential terms ±Tr (ΦE1 . . .ΦEn), with {E1, . . . , En} is the

ordered set of edges surrounding the vertex, and the sign is positive or negative for black

and white nodes, respectively.

The dimer diagram for the conifold and the dP1 theory are shown in figure 1.

It will be convenient to introduce the periodic quiver as the dual of the dimer diagram.

Namely, each face is replaced by a node, which we continue to denote by Fa; each edge

Ei separating face Fa from face Fb is replaced by an oriented arrow (again denoted by Ei)

between nodes Fa and Fb; and vertices Vα, V ′α now correspond to plaquettes of arrows with
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(a)
(b)

Figure 1. Dimer diagram for the conifold with its zig-zag paths 1a and the dimer diagram for

dP1 1b.

(a)
(b)

Figure 2. Periodic quiver for the conifold 2a and dP1 2b.

clockwise or counter-clockwise orientation, respectively. Namely, in the periodic quiver,

nodes correspond to gauge factors, arrows to bifundamental matter, and plaquettes to

superpotential couplings. The periodic quiver is similar to the standard quivers used to

describe gauge theories, with the extra periodic structure providing also the information

about the superpotential. The periodic quivers for the conifold and dP1 theories are given

in figure 2.

It will be useful to have in mind that these ingredients in the dimer and the periodic

quiver allow to define a (co)homology in the corresponding diagrams, ultimately related

to the (co)homology in the underlying 2-torus. We have collected this description in ap-

pendix A.

In the above description we have considered general ranks Na. In general, these are

constrained by cancellation of non-abelian anomalies. Denoting the (net) number of bifun-

damentals ( a, b) by Iab (defined as an anti-symmetric matrix, with negative entries

indicating matter in the conjugate representation), the conditions are∑
a

NaIab = 0 ∀b . (2.1)
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(a)

(b)

Figure 3. Toric diagram 3a and (p,q)-web diagram 3b for dP1 theory.

In a bipartite dimer, any face has an even number of edges, so if we choose Na = N

for all a there are cancellations among consecutive edges and the anomaly-cancellation

constraints are satisfied. This corresponds to the so-called regular or dynamical D3-branes

(which can move off the singular point and explore the geometry). Choices of non-equal

ranks include the so-called fractional branes, which can be regarded as higher-dimensional

branes wrapped on the cycles collapsed at the singular point. In the following we will focus

on regular D-branes, and mostly have the case N = 1 in mind.

The toric geometry associated to a given dimer diagram can be recovered in several

(equivalent) ways. A very direct method is to introduce zig-zag paths. A zig-zag path in

the dimer is a consecutive sequence of edges such that the path turns maximally to the

left at e.g. black vertices and maximally to the right at white nodes. It can be depicted

as a oriented path following edges and forced to cross them in the middle, see figure 1a.

Each edge is thus crossed by two oppositely oriented zig-zag paths. Zig-zag paths cannot

self-intersect, and define (p, q) 1-cycles in the dimer 2-torus. Each such path corresponds

to an external leg in the web diagram1 corresponding to the toric threefold singularity,

namely the diagram dual to the toric data, see figure 3b.

Intuitively, this follows because the threefold geometry can be obtained as the mesonic

moduli space of the gauge theory, and the zig-zag paths correspond to mesons of the

gauge theory (obtained as the trace of the product of bifundamentals corresponding to the

sequence of edges); notice that the F-term relations imply that mesons are only defined by

the homology classes of the paths.

A more detailed method to obtain the threefold geometry is by introducing perfect

matchings. A perfect matching in the dimer diagram is a set of edges such that each vertex

1This correspondence is by defining a height function, defined as an integer-valued stepwise function

increasing by one unit as one crosses the path (with positive orientation). The labels of the external leg

in the web diagram are obtained as the jumps of the height function along the two basic 1-cycles in the

2-torus. In practice, this is equivalent (up to some relabeling) to just taking the (p, q) labels of the zig-zag

path to be those of the external leg of the web diagram.
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Figure 4. Set of perfect matchings for dP1 theory.

in the dimer belongs to just one edge in the set, see figure 4 for an example. There is

no closed formula for the number of perfect matchings in a given dimer, but it is easily

determined in most examples. At this point, one can recover the toric diagram as follows:

regarding the perfect matchings pA as 1-chains (with orientation of edges from black to

white nodes), one can fix a reference matching p0 and obtain a set of 1-cycles in the dimer

given by pA−p0. The (p, q) labels of these 1-cycles correspond to the coordinates of points

in the toric diagram of the threefold singularity, see figure 3a. Note that this description

is related to the previous paragraph because zig-zag paths can be obtained as differences

of perfect matchings at consecutive external points in the toric diagram, namely segments

in the toric diagram dual to precisely external legs in the web diagram.

An even more detailed relation with the toric description is by noticing that perfect

matchings correspond to coordinates in the linear sigma model (or holomorphic quotient)

description of the mesonic moduli space of the gauge theory. Let us review it, as it is useful

to describe U(1) symmetries. In general, the bifundamentals are not useful coordinates to

describe the moduli space, because they are constrained by the F-term conditions; perfect

matchings are an efficient ingredient to solve these constraints automatically. The key idea

is to define the bifundamentals in terms of the perfect matchings by the following relation

ΦEi =
∏
A

p
ki,A
A , (2.2)

where ki,A = 1 if Ei belongs to the perfect matching pA, and is zero otherwise. With this

relation, all F-term constraints for the bifundamentals are solved automatically, with no

restriction on the pA. This is related to the fact that, from the very definition of perfect

matchings, any term in the superpotential is given by the product of all perfect matchings

W ∼
∏
A

pA . (2.3)

On the other hand, the above relation (2.2) introduces a redundancy, as C∗ transformations

of the pA which leave the ΦEi invariant. These are defined by a set of charges qA,r satisfying∑
A

ki,AqA,r = 0 ∀i . (2.4)
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The moduli space of F-flat directions is thus generated by the complex coordinates pA
modulo these C∗ actions. In addition, to obtain the mesonic moduli space we have to

quotient by the U(1)’s associated to the faces in the dimer. A bifundamental Φab in the

( a, b) carries charges (+1,−1) under U(1)a × U(1)b, and we need to translate these

to charges for the coordinates pA. Denoting by qi,a the charge of the bifundamental ΦEi

under U(1)a, we introduce a matrix of charges qA,a satisfying

qi,a =
∑
A

ki,AqA,a ∀i . (2.5)

The charges qA,a define C∗ actions on the pA which implement the U(1)a actions at the

level of perfect matchings. The mesonic moduli space is thus obtained as the quotient of

the complex coordinates pA by the C∗ actions generated by the charges qA,r and qA,a.

For illustration, consider one explicit example. In figure 4 we see the perfect matchings

for dP1 theory. The moduli space of F -flat directions is found solving equation (2.4), which

in our case, for instance, gives the following two C∗ actions on the perfect matchings: p1 p2 p3 p4 s1 s2 s3 s4

1 0 −1 1 −1 −1 0 1

−1 −1 0 −1 1 1 1 0

 . (2.6)

The other C∗ actions can be found using equation (2.5), obtaining
p1 p2 p3 p4 s1 s2 s3 s4

0 0 0 0 0 0 1 −1

0 0 0 0 1 0 0 −1

0 0 0 0 0 1 0 −1

 . (2.7)

Combining the two matrices you get the complete set of C∗ actions on the perfect matchings

which defines the mesonic moduli space. The kernel of the matrix is 0 −1 1 1 0 0 0 0

1 0 0 −1 0 0 0 0

−1 1 −1 0 0 0 0 0

 . (2.8)

The columns of this matrix are coordinates of points in 3d. All the points are on the plane

defined by the equation y = −x − z and, on that plane, the toric diagram of figure 3a

is reproduced.

2.2 Continuous U(1) symmetries

In the above discussion, it is implicit that the number of perfect matchings minus the

number of C∗ actions is equal to 3, so that the symplectic quotient defines a threefold. An

important implication is that the resulting geometry enjoys a U(1)3 symmetry (namely,

the toric action making it a toric geometry). Namely, C∗ actions on the pA which are

orthogonal to those we are quotienting by. Labeling them with m = 0, 1, 2, their charges

qm,A are given by the kernel of the combined matrix (qA,a|qA,r), namely satisfy:∑
A

qm,A qA,a = 0 ∀a ,
∑
A

qm,A qA,r = 0 ∀r . (2.9)
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One of these U(1)’s (which we label with m = 0) is an R-symmetry,2 whereas two linear

combinations satisfying
∑

A qm,A = 0, m = 1, 2, leave W in (2.3) invariant, and correspond

to U(1)2 mesonic symmetries. In addition, there are U(1)a symmetries associated to the

faces. These correspond to baryonic symmetries, most of which are in fact anomalous. The

mixed U(1)a-SU(Nb)
2 anomaly is given by

Aab ∝ Na Iab (no sum) , (2.10)

where Na arises as a normalization of the U(1)a generator and Iab is defined as around (2.1).

It is thus clear that, denoting by Qa the generator of U(1)a, a general linear combination

QB =
∑
a

naQa (2.11)

defines an anomaly free baryonic U(1) when the na satisfy the anomaly cancellation con-

dition (2.1), namely ∑
a

naIab = 0 . (2.12)

That is, there is an anomaly-free baryonic U(1) for coefficients na such that they could

define a fractional brane. Let us emphasize, however, that for the anomaly-free baryonic

U(1) to exist, it is not necessary that the fractional brane is present; hence our use of

lowercase na instead of Na in (2.11).

2.3 A new toolkit: U(1) global symmetries from geometric identities

In this section we introduce a new ingredient, which to our knowledge has not appeared in

the literature.

Let us discuss global U(1) symmetries in the gauge theory from a somewhat more ab-

stract perspective, using the topological intuitions in the dimer/quiver diagrams introduced

in appendix A.

A U(1) symmetry is an assignment of charges to the edges Ei (or arrows Ei) in the

dimer (resp. quiver) diagram of the gauge theory. We may regard this as a 1-form γ on

the quiver, namely a map that to each arrow Ei assigns a number (the charge) γ(Ei).

Regarding the arrow as a 1-chain, this is also the integral of the 1-form over the 1-chain.

One may also regard it as a 1-form in the dimer, which we also denote γ.

These charge assignments are constrained by demanding invariance of the superpoten-

tial. This means that for each plaquette Vα (or V ′α) in the quiver, with boundary given by

a concatenation of arrows {E1, E2, . . . , En}, the 1-form γ satisfies

∂Vα, ∂V
′
α → γ(E1) + γ(E2) + · · ·+ γ(En) = 0 . (2.13)

Recalling from appendix A the definition of exterior derivative and using Stokes’ theorem

over the plaquette, we have

dγ = 0 . (2.14)

2In the superconformal case, the actual R-symmetry is in general a combination determined by a-

maximization, see [35, 36].
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Regarding γ as realized in the dimer, these correspond to the so-called harmonic maps in

the math literature. We stick to the nomenclature suggested by the notation, and refer to

these as closed 1-forms in the periodic quiver.

As expected, closed 1-forms in finite graphs without torus periodicities must be exact,

namely there exists a 0-form f in the quiver (namely, a map assigning a number f(Fa) to

each quiver node Fa) such that

γ = df . (2.15)

Namely, if we denote by h(Ei), t(Ei) the head and tail of the arrow Ei, then

γ(Ei) = f(t(Ei))− h(t(Ei)) . (2.16)

Physically, if we denote na ≡ f(Fa), this means that the charge assignment for edges given

by γ is just inherited from the U(1)a charges via a linear combination

Q =
∑
a

naQa . (2.17)

Namely just like (2.11), with the only difference that we are not yet demanding cancel-

lation of anomalies. As explained above, such linear combinations in the toroidal graph

correspond to (still possibly anomalous) baryonic U(1) symmetries. Hence, mesonic U(1)

symmetries are defined as closed 1-forms (i.e. symmetries of the superpotential) which are

not exact (i.e. are not baryonic), and correspond to combinations of the two independent

homology classes of 1-forms in the 2-torus. Hence we recover the U(1)2 mesonic symmetry.

Let us discuss the anomaly cancellation conditions more explicitly, as follows. For each

face Fa in the dimer (resp. node in the quiver), surrounded by a concatenation of edges

(resp. arrows) {E1, . . . , Em}, the mixed SU(Na)
2 anomaly cancellation conditions read

∂̃Fa → γ(E1) + · · ·+ γ(Em) = 0 . (2.18)

Note that since the natural orientation of edges does not allow to write this equation as over

the boundary of Fa in the dimer, hence we use the notation ∂̃ for this ‘signed’ boundary.

In this language, an anomaly free U(1) symmetry is a charge assignment satisfying

the conditions (2.13) and (2.18). These form an homogeneous linear system of equations,

with the number of unknowns given by the number E of edges in the dimer, and with the

number of equations given by the number V of vertices plus the number F of faces. Since

the dimer is a tiling of the 2-torus, it satisfies

F + V = E . (2.19)

Hence, the only non-trivial solution defining U(1) charges must require the existence of

linear relations among the equations. Indeed, a general dimer always has two such relations,

which we may write ∑
α

∂Vα −
∑
α

∂V ′α = 0 ,∑
a

∂̃Fa −
∑
α

∂Vα −
∑
α

∂V ′α = 0 .
(2.20)
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These can be regarded as geometric identities which the elements of the dimer/quiver

diagrams satisfy. The two anomaly free solutions which exist for any general dimer due to

these universal geometric identities correspond to the U(1)2 mesonic symmetries.

In addition, we know that theories admitting fractional branes, have additional

anomaly-free baryonic U(1)’s. These correspond to linear combinations (2.11) satisfy-

ing (2.12). This requires that the above linear system of equations admits further geometric

identities for theories admitting fractional branes. Indeed, in such cases it is possible to

show that
∑

a na∂̃Fa can be recast as a combination of ∂Vα and ∂V ′α. We will find explicit

examples in later sections.

Incidentally, we would like to mention that, if we interpret γ(Ei) not as charges, but as

the exact anomalous dimensions for the bifundamental chiral multiplets, the above analysis

is very closely related to the Leigh-Strassler characterization of marginal couplings in N = 1

SCFTs [37] (see [38] for a discussion in the present context). Namely, the conditions of

vanishing of the exact beta functions for the superpotential couplings (at Vα, V ′α) and for the

gauge couplings (at Fa) form an inhomogeneous linear system of equations for γ(Ei), whose

associated homogeneous linear system is precisely given by the above, (2.13) and (2.18).

Moreover, the inhomogeneous system of equations satisfies relations given precisely by the

universal (2.20), allowing for the existence of a marginal coupling corresponding to the

complexified coupling constant of the diagonal gauge group on the recombined regular

brane. Additional geometric identities imply additional marginal couplings, associated to

the gauge couplings of the corresponding fractional branes.

Let us conclude by mentioning the realization of these U(1) symmetries and marginal

couplings in the holographic dual. For systems of D3-branes at toric singularities, there

is a generic U(1)3 isometry in the horizon, which includes the R-symmetry and the U(1)2

mesonic symmetry. There is also a universal massless scalar, given by the axio-dilaton, dual

to the marginal coupling. If the theory admits additional anomaly-free rank assignments

(fractional branes), the gravity dual internal space X5 contains homology 3-cycles, support-

ing additional U(1)’s arising from integrating the RR 4-form over them; also, their dual

2-cycles produce additional massless scalars from integrating the NSNS and RR 2-forms,

which are duals to the additional marginal couplings of the holographic dual gauge theory.

The purpose of this paper is to extend this matching to the discrete symmetries. The

natural arena are orbifolds.

3 Discrete symmetries in orbifolds of toric geometries: an appetizer

The purpose of this paper is to uncover the discrete symmetries in gauge/gravity duals

corresponding to orbifolds of toric geometries. We thus start with a general description of

orbifolds of general toric CY threefold singularities.

3.1 General orbifolds of general toric theories

Consider a general toric gauge theory, with a dimer (resp. quiver) diagram with unit cell

C, with faces Fa, edges Ei and vertices Vα, V
′
α. There is a general procedure to construct

– 10 –
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general abelian ZN orbifolds of this theory [39, 40] as follows. Denote by Q1, Q2 the two

mesonic U(1)’s, normalized to have minimal charge ±1, and consider the linear combination

Qθ = p1Q1 + p2Q2 p1, p2 ∈ Z , gcd(p1, p2) = 1 . (3.1)

Let us denote by kEi the charge under Qθ of the bifundamental associated to the edge Ei.

We consider the action of the generator θ of the orbifold group ZN to be given by

θ : ΦEi → exp
(

2πi
kEi
N

)
ΦEi . (3.2)

In addition, there is an action of θ on the gauge degrees of freedom, inspired by the

action of Chan-Paton indices of D-branes. Namely, such that an object in the fundamental

representation of U(Na) transforms with an order N matrix

γθ,a = diag
(
1na,0 , e

2πi/N 1na,1 , . . . , e
2πi(N−1)/N 1na,N−1

)
(3.3)

and with its inverse on anti-fundamental representations.

The orbifold theory is obtained by removing fields of the parent theory which are not

invariant under the combined action of the mesonic and gauge action. In particular, gauge

bosons are singlets under the mesonic action, so demanding invariance of the generators

λa of U(Na) under the gauge action of γθ,a

λa = γθ,a λa γ
−1
θ,a (3.4)

breaks the group as follows

⊗
a

U(Na) →
⊗
a

N−1⊗
r=0

U(na,r) . (3.5)

Here the treatment of the U(1)’s is as discussed above, namely they are realized just as

(potentially anomalous) global symmetries.

For an edge Ei separating two faces Fa, Fb in the dimer (respectively, an arrow with

t(Ei) = Fa, h(Ei) = Fb in the quiver), and with charge qEi under (3.1), the invariance of

the bifundamental field ΦEi , regarded as a matrix is

ΦEi = e2πi kEi/N γθ,a ΦEi γ
−1
θ,b , (3.6)

leading to a projection pattern of the bifundamental Ei into a set of bifundamentals Ei,r
as follows

( a, b) →
N−1⊕
r=0

( a,r, b,r+kEi
) . (3.7)

Finally, the superpotential of the orbifold theory is obtained by simply replacing the sur-

viving fields in the superpotential terms of the parent theory. It is easy to see that a

superpotential term in a vertex Vα (or V ′α), describing the interaction of a concatenated set

of fields {E1, . . . , En}, leads to a set of superpotential terms Vα,r (resp. V ′α,r) describing

the interaction of the set of fields {E1,r, . . . , En,r}.
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Figure 5. General orbifolding in a dimer using a periodic array of unit cells (in light blue). The

final unit cell CN is shown in blue.

The orbifold theory is described by a dimer/quiver diagram whose unit cell CN is

obtained by taking N copies of the unit cell C of the parent theory. Hence, each ingredient

of the parent theory has N descendant copies in the orbifold theory. We can be more

explicit about how the different copies of C are adjoined to form CN , as follows, see figure 5.

Consider the infinite periodic array in R2 corresponding to the parent theory, and choose

a unit cell C, and two basis 1-cycles. The latter correspond to vectors in R2 defining the

periodicities. The infinite copies of C can be labeled by two indices (r1, r2) according to

their position in the direction of the basic 1-cycles. Consider now mesons of the theory

in C, with winding numbers (1, 0) and (0, 1), and denote by k1, k2 the charges of these

mesons under Qθ (3.1), namely just the sums of the Qθ charges kEi of the edges/arrows

Ei involved in the corresponding meson. The mesons can be regarded as open paths in

the infinite array, starting from a face in C to its copy face/node in the copies of C at the

two independent adjacent positions. Now regarding the infinite array as the covering space

for the orbifold theory, the open path joins a starting face/node Fa,r with the faces/nodes

Fa,r+k1 , Fa,r+k2 in the two adjacent copies. In general, the copy of the face/node Fa,r in

the copy of C at the position (r1, r2) in the infinite array corresponds to the face/node

Fa,r+r1k1+r2k2 .

The integers k1, k2 determine the action of the orbifold on the mesons, namely on the

coordinates of the toric geometry. In fact, they are related to the construction of orbifolds

in terms of toric data. Basically, the ZN orbifold of any toric geometry is obtained by

refining the two-dimensional lattice by an order N vector, which in our present context

is (k1, k2)/N . The action on the mesons is inherited from this by the standard relation

between mesons and toric data as explained in section 2.1. See figure 15c for an example.

Note that in general, if e.g. gcd(k1, N) = 1, we may take the unit cell CN of the orbifold

theory as the N copies of C in the direction of the (1, 0) 1-cycle in C. However, we prefer to

work in the infinite array, and work for general k1, k2 with no special relation with N . On

the other hand, notice that since all N copies of the unit cells arise in the infinite array,

we may choose gcd(k1, k2) = 1.
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3.2 Structure of the discrete Heisenberg group

In the above construction, there is a manifest global discrete symmetry, with generator A

acting as r → r+ 1 on the labels of the N copies of the fields of the parent theory, namely

A : Fa,r → Fa,r+1 ⇒ SU(na,r) → SU(na,r+1)

Ei,r → Ei,r+1 ⇒ ΦEi,r → ΦEi,r+1

Vα,r → Vα,r+1 (similar for V ′α,r ) .

(3.8)

This is just a ZN rotation of the theory, which in the context of orbifolds of C3 is often

referred to as quantum symmetry (as it is a symmetry of the quantum worldsheet theory,

in the sense of the α′ expansion).

This transformation corresponds to a shift of the unit cell of the parent theory C in the

CN , which in fact is most easily discussed in the infinite periodic array in R2. The shifts of

C to the adjacent unit cells in the two independent directions correspond to the operations

Ak1 and Ak2 , respectively. Since gcd(k1, k2) = 1, by Bezout’s theorem there exist integers

r1, r2 such that r1k2 + r2k2 = 1, hence A corresponds to the shift of the unit cell C to its

copy in the position (r1, r2).

As pioneered in [26], and further explored in [27] (see also [28, 41, 42]) there are

several examples or orbifolds of simple geometries, this discrete group can be accompanied

by further symmetry generator B, defined as phase rotations of the bifundamentals, such

that the symmetry is enhanced to a discrete Heisenberg group.

Consider for instance the orbifold C3/Z3 studied in [26]. There are 3 gauge factors

SU(Nr) with bifundamentals Xr,r+1, Yr,r+1, Zr,r−2 and a superpotential as follows from

the dimer in figure 6. We can define ω = exp[2πi/(3N)], so that on top of the global SU(3)

symmetry, acting on the fields associated to the three complex planes, there is a global

symmetry B under which the fields transform, for instance, as

B

X01

Y01

Z01

 = ω

X01

Y01

Z01

 , B

X12

Y12

Z12

 = ω−1

X12

Y12

Z12

 and B

X20

Y20

Z20

 =

X20

Y20

Z20

 .

(3.9)

The actions A and B satisfy the commutation relation

AB = CBA , (3.10)

where the action of C is

C

X01

Y01

Z01

 = ω−2

X01

Y01

Z01

 , C

X12

Y12

Z12

 = ω

X12

Y12

Z12

 and C

X20

Y20

Z20

 = ω

X20

Y20

Z20

 ,

(3.11)

and commutes with both A and B so, it is central. Hence we recover a discrete Heisenberg

group H3, also known as ∆27.
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Figure 6. Dimer diagram for the orbifold C3/Z3.

There are examples of other orbifolds of C3 studied for instance in [27]. In the case

of C3/Z5, we can call Wr,r+1 = (Xr,r+1, Yr,r+1), while we keep Zr,r−2 as it is. Let us also

define ω = exp[2πi/(5N)], so that the Heisenberg algebra is given by

B (W01 , W12 , W23 , W34 , W40) =
(
W01 , ωW12 , ω2W23 , ω3W34 , ω−6W40

)
,

B (Z03 , Z14 , Z20 , Z31 , Z42) =
(
ω3Z03 , ω6Z14 , ω−1Z20 , ω−3Z31 , ω−5Z42

)
,

C (W01 , W12 , W23 , W34 , W40) =
(
ωW01 , ωW12 , ωW23 , ωW34 , ω−4W40

)
,

C (Z03 , Z14 , Z20 , Z31 , Z42) =
(
ω3Z03 , ω3Z14 , ω−2Z20 , ω−2Z31 , ω−2Z42

)
.

(3.12)

We are looking for this structure on general orbifolds of general toric geometries. As

explained above, the symmetry A corresponds to the shift r → r + 1, which implements

an order N cyclic permutation among the gauge factors, acting correspondingly on the

bifundamentals and superpotential terms. In addition, we look for an action B under

which the different bifundamental fields Ei,r will transform with charges bEi,r , which in

general depend on r. The actions A and B should anticommute to an action C, under

which the bifundamentals Ei,r transform with charges cEi , which, in order for C to be

central (and in particular commute with A), must be independent of r.

The procedure to construct the solution for these charges in general orbifolds of general

toric theories is explained in section 4. Before entering this discussion, it is useful to

introduce an important viewpoint.

3.3 Discrete symmetries from the covering space

Consider a given parent geometry, and the quotients defined by a ZN group with generator

θ defined by an action (3.1) associated to the two integers (p1, p2). As discussed, there is a

Γ = ZN quantum symmetry whose generator we denote by AN , to emphasize its order. We

also have a ZN generated by BN , under which bifundamentals have charges bEi,r defined

modulo N .

In this section we are going to uncover the existence of a most important structure for

the B symmetry for the family of orbifolds of a given parent theory, for fixed (k1, k2), but

different orders N .

The first observation is that it is useful to regard the charge assignments for the BN
symmetry in the infinite periodic array in R2, with periodicities (for fixed k1, k2) depending

on N . This is motivated by the following argument. We regard the set of BN charges bEi,r
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as defined for arbitrary r ∈ Z, hence on the infinite periodic dimer/quiver, but satisfying

the periodicity bEi,r = bEi,r+N mod N . We also have to impose the condition that BN
leaves the superpotential invariant, and that it has no mixed anomaly with the gauge

factors. These can be written ∑
∂Vα,r

bEi,r = 0 ,

∑
∂̃Fa,r

bEi,r = 0 .
(3.13)

Here the equations have to be satisfied modulo N . However, we now show that they actually

must be satisfied as equations for integers, without resorting to the mod N condition,

as follows.

It is a familiar fact that quotienting the orbifold theory by the quantum symmetry

Γ, one recovers the parent theory back. Similarly, if we consider some non-prime order

N = pN ′ with p,N ′ ∈ Z, and consider the element (AN )N
′
, it generates a Zp subgroup

Γ′ ⊂ Γ. Quotienting the theory by Γ′ should result in a theory which is a ZN ′ quotient of

the parent, with the same pair (k1, k2). This merely corresponds to considering the unit

cell CN of the ZN orbifold, and imposing the identification r → r + p on all elements to

achieve a unit cell CN ′ for the ZN ′ orbifold theory. Going back to the infinite periodic

version, we have an initial set of charges bEi,r (defined mod N) and we are changing from

a periodicity set by N to a periodicity set by N ′. The requirement that the initial charges

are compatible with the symmetry BN ′ of the discrete Heisenberg group of the ZN ′ theory

implies that bEi,r = bEi,r+p mod N ′. Transferring this to the set of constraints (3.13), and

we find that they must be obeyed modulo N ′. Considering N ’s large enough, or rather,

with large enough number of divisors, it is easy to convince oneself that the equations (3.13)

have to be obeyed in Z, without use of the mod N conditions.

In other words, the family of ZN theories, for fixed (k1, k2) and varying N , has B

charges inherited from a universal assignment of integer charges bEi,r ∈ Z, in the infinite

periodic quiver/dimer i.e. r ∈ Z. The charges for the theory of a given N are obtained

by restricting the integer charges modulo N . The fact that this is compatible with the

periodicities bEi,r = bEi,r+N mod N , for any N , implies that (3.13) have to be obeyed

directly, not modulo N .

In the following we ignore the sub-index N in the discrete symmetry generators like

B, C, and mostly work in whole families of ZN orbifolds, for fixed (k1, k2), but varying N .

As anticipated, this is most efficiently done by working on the infinite periodic array, with

B charges realized as integer charges therein.

The fact that the constraints (3.13) are defined without using the modulo N condition

has an interesting implication. In the language of appendix A, the set of charges can

be regarded as defining a 1-form γ, namely γ(Ei,r) = bEi,r . Then the invariance of the

superpotential requires the 1-form to be closed

dγ = 0 . (3.14)
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As explained above, solutions in the dimer 2-torus correspond to continuous U(1) mesonic

(for non-exact γ 6= df) or baryonic (for exact γ = df) symmetries. This, together with the

above considerations, suggests to look for symmetries defined by 1-forms γ defined on the

covering infinite periodic array. In R2, any closed form must be exact γ = df ; hence, we

introduce a 0-form f on the infinite periodic array. More concretely, using a label r for the

infinite set of faces/nodes, we assign an integer na ≡ f(Fr) to each face of the (infinite)

dimer (resp. node of the infinite quiver). This amounts to choosing a formal infinite linear

combination of the U(1)a,r generators Qa,r

QB =
∑
a,r

na,rQa,r . (3.15)

So that a bifundamental associated to an edge E separating faces Fr and Fs (resp. an

arrow from node Fa,r to node Fb,s) has an associated B charge

bE = γ(E) = na,r − nb,s , for t(E) = Fa,r , h(E) = Fb,s . (3.16)

The values of nr are further constrained by cancellation of anomalies. In the following

we use the description in term of the linear combination QB to construct the discrete sym-

metries in several infinite classes of models, by solving the anomaly cancellation conditions

by inspection. A systematic procedure to solve general orbifolds of general geometries is

given in section 4.

3.4 Example 1: the infinite class of general orbifolds of C3

Consider the infinite class of general orbifolds of C3,defined by a generator θ acting as

x→ e2πi k1/N x , y → e2πi k2/N y , z → e2πi k3/N z , (3.17)

with k1 + k2 + k3 = 0, so we take the twist vector (k1, k2,−k1 − k2)/N . The notation k1,

k2 is chosen with hindsight to agree with their meaning in section 3.1.

The parent theory of D3-branes in flat space C3 has three adjoints, X, Y , Z. They are

the basic mesons parametrizing C3, so the orbifold action on them is inherited from (3.17).

They carry charges (1, 0), (0, 1) and (−1,−1) under the mesonic U(1)2, so this action

corresponds to the Qθ combination (3.1) with p1 = k1, p2 = k2.

In the orbifold, the gauge group is a product of unitary factors U(n)r, with r =

0, . . . , N − 1, and there are bifundamental fields

Xr,r+k1 , Yr,r+k2 , Zr,r+k3 , (3.18)

where the sub-indices denote the bifundamental representation, i.e. Φrs transforms in the

( r, s). All the information, including the cubic superpotential, is encoded in a

honeycomb dimer, where now the unit cell contains N different faces, labeled by r =

0, . . . , N − 1, and where the index of the faces changes by k1 and k2 between neighboring

faces, in the two independent directions (and hence, by −k1 − k2 in the third, not linearly

independent, direction). As explained, we prefer to consider the general class of orbifolds

for arbitrary N , by considering the infinite periodic array in R2, as shown in figure 7.
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Figure 7. Dimer diagram for a general C3/ZN orbifold.

As explained above, the generator A of the Heisenberg group is realized as the action

r → r+1. On the other hand, the generator B can be obtained from the combination (3.15),

dropping the index a since there is only one face in the parent theory. The anomaly

cancellation conditions for the coefficients nr thus reads

nr+k1 − nr−k1 + nr+k2 − nr−k2 + nr+k3 − nr−k3 = 0 . (3.19)

It is not difficult to use known examples to try and infer a viable solution to the anomaly

conditions, given by

nr =
r(r + 1)

2
. (3.20)

This will be re-derived in section 5.1 from a general procedure, but for the moment we take it

at face value. Using the charges for bifundamentals (3.16), see figure 8, it is straightforward

to check that the anomalies for an arbitrary face cancel.

We can now extract the charges under the C symmetry. From the commutation relation

AB = CBA and the fact that C is central, we have ABk1 = Ck1Bk1A, which implies that

the charges of the different bifundamentals under the C symmetry can be obtained from

the difference of charges of two copies of the bifundamental related by r → r + k1. The

result is that for bifundamentals of X, Y or Z kind, the C-charge is given by

QC(E) = ki with i = 1, 2, 3 for bifundamentals of X,Y, Z kind . (3.21)

It is straightforward to check that the anomalies cancel, and that periodicities are satisfied.

In fact, this follows directly from the fact that the C-charges must be equal for all copies

of a given bifundamental. This means that the C-charge can be defined on the dimer of

the 2-torus of the parent theory. In other words, it is part of the mesonic U(1)2 symmetry
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Figure 8. General face and B-charges (in blue) for bifundamentals for a general C3/ZN orbifold.

of the C3 theory (note that there are no baryonic U(1)’s in this case), as is moreover clear

from the above explicit charges.

Given this universal solution, we can now find the discrete symmetry for any ZN
orbifold by interpreting the labels r mod N , and thus recovering the unit cell CN of the

orbifold theory as dictated by the corresponding identifications of faces in the infinite

dimer. It is easy to check that the set of B charges for the bifundamentals respects the

corresponding periodicities, as follows. Consider moving in the direction of r → r + k1,

until we hit r again (mod N). If we denote gcd(k1, N) = p, this will happen after N/p

steps, so we have an identification r ∼ r + k1N/p. The charges of all the bifundamentals

charged under U(1)r shifts by an amount kik1N/p (with i = 1, 2, 3 for fields of the X, Y or

Z kind, respectively), which is 0 mod N in all cases. Clearly, a similar result is obtained

for the identifications in the directions r → r + k2 or t→ r + k3.

Hence we have explicitly constructed the discrete Heisenberg groups HN for all orb-

ifolds C3/ZN with twist vector (k1, k2,−k1 − k2)/N . We invite the reader to check that

this general solution reproduces all known examples of discrete symmetries in orbifolds of

C3, in particular those of section 3.2.

3.5 Example 2: the infinite class of general orbifolds of the conifold

We now consider the infinite class of general orbifolds of the conifold. As show in figure 1a,

the conifold theory is described by two factors SU(N)0× SU(N)1, and bifundamentals A1,

A2 in the ( , ), and B1, B2 in the ( , ). We define the orbifold by the action of its

generator θ on these fields

θ :A1 → e2πi
p1
N A1 , A2 → e−2πi

p1
N A2

B1 → e2πi
p2
N B1 , B2 → e−2πi

p2
N B2 .

(3.22)

This agrees with the notation (3.1), by noticing that the charges of A1, A2, B1, B2 under

the mesonic U(1)2 symmetries3 are (1, 0), (−1, 0), (0, 1), (0,−1).

3In this case, they are part of a larger SU(2)2 global symmetry.
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Figure 9. Dimer for general orbifold of the conifold. We show a unit cell of the parent theory with

its two faces, and we display different background colors for their images.

Introducing the mesons

x = A1B1 , y = A2B2 , z = A1B2 , w = A2B1 , (3.23)

which satisfy xy = zw, the orbifold action is

θ : x→ e2πi
p1+p2
N x , y → e2πi

−p1−p2
N y , z → e2πi

p1−p2
N z , w → e2πi

−p1+p2
N w . (3.24)

Hence, in the notation of section 3.1, we have k1 = p1 + p2, k2 = p1 − p2.

The dimer of this theory is shown in figure 9. Note that in this case, there are two faces

Fa in the parent theory, and hence two kinds of faces Fa,r in the quotient, r ∈ Z, shown

in different background colors for clarity. The label displayed in the figure corresponds to

the index r of the corresponding kind of face.

The A symmetry acts by r → r+ 1 as usual. To build the B symmetry, we consider a

general linear combination (3.15). The anomaly cancellation conditions are

na,r+p1 + na,r−p1 − na,r+p2 − na,r−p2 = 0 for a = 0, 1 . (3.25)

The condition for a = 0 and a = 1 decouple, and this makes it easy to find solutions. In

particular we can take

n0,r = r , n1,r = 0 . (3.26)

The charges obtained are shown in figure 10, where the white faces are taken to cor-

respond to n1,r = 0, and the colored faces to n0,r = 0. Hence the charges for edges around

a face correspond to the face label weighted by the orientation of the bifundamental. It is

straightforward to check that the anomalies for an arbitrary face cancel.

The charges C can be read as the jumps in the B charges as one acts with the shifts

corresponding to A, and read

QC(A1) = 1 , QC(A2) = 1 , QC(B1) = −1 , QC(B2) = −1. (3.27)

As is clear from these charges, the C symmetry is actually an element of the baryonic U(1)

of the parent theory.

The above results will be re-derived in section 5.2 from a general procedure.
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Figure 10. B-charges for general orbifold of the conifold. We take colored faces to have zero

coefficient in the linear combination of U(1), while the coefficient for white faces is just its label.

Hence, charges of edges around a white face are just given by the face label, with a sign corresponding

to the bifundamental orientation.

4 Discrete symmetries in orbifolds of toric geometries:

general solution

In this section we provide a systematic recipe to construct the discrete symmetries of

general orbifolds of general toric theories, by formulating the problem in the framework

of the unit cell C of the parent theory. Morally, the problem amounts to solving for the

set of charges (eventually, B-charges) for the edges/arrows in C, with a twisted boundary

conditions encoding the information of the orbifold action.

We start with a short recap of the main lessons from the previous section. Given a toric

theory, we consider the infinite periodic array for its dimer/quiver diagram, and label the

copies of the ingredients (faces/nodes, edges/arrows, vertices/plaquettes) in the basic unit

cell with an index r ∈ Z. Considering a unit cell C, the orbifold is defined by two integers

(k1, k2), which specify the jumps r → r+ki in the labels of ingredients as one moves from C
to the adjacent unit cells in the two independent directions. For fixed (k1, k2), this defines

a family of orbifolds, with an extra parameter N specifying the order of the ZN quotient.

For a given N , there is a discrete Heisenberg group HN acting as a discrete symmetry

of the theory. However, it is useful to consider generators A, B, C, with AB = CBA, of

the symmetry in general, without explicit reference to N . This is done by considering the

infinite array of the dimer/quiver diagram as the natural structure on which the symmetry

acts. In particular, motion by one unit cell in the two independent directions corresponds

to application of Aki , i = 1, 2. Also, the B-charges for the edges/arrows Ei,r are defined as

integer charges QB(Ei,r) = bEi,r for the edges/arrows in the infinite array, satisfying the

conditions (3.13) of invariance of the superpotential and anomaly cancellation, exactly and

not just mod N . Finally, the commutation relations of the Heisenberg group imply that

the C-charges for Ei,r are defined as r-independent integers QC(Ei,r) = cEi in the infinite

array, namely satisfying the periodicity of the unit cell C of the parent theory (hence, again
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Figure 11. B-charges in the unit cell of a general toric diagram. We display some of the ingredients,

whereas the general structure is suggested by the blob. The structure of the orbifold is encoded in

the jumps in B-charges in the two periodic directions of the unit cell.

independent of N). From this universal structure, the discrete symmetry generators for a

particular choice of N are obtained by restricting to the corresponding unit cell CN and

interpreting the B- and C-charges modulo N .

We now show that the infinite set of B-charges and equations in the infinite array can

be actually reduced to a finite set in the unit cell C of the parent theory. This basically

follows from the observation that the B charges of two copies of an edge/arrow in the

infinite array, Ei,r and Ei,r+m1k1+m2k2 must be related by

QB(Ei,r+m1k1+m2k2) = QB(Ei,r) + (m1k1 +m2k2)QC(Ei) . (4.1)

This moreover allows to reduce the number of constraints from superpotential invariance

and anomaly cancellation to just those of the unit cell C. To show that, we can for instance

simply relate the anomaly cancellation constraints corresponding to edges bounding a face

Fa,r and its copy Fa,r+m1k1+m2k2 , as follows

QB(∂̃Fa,r+m1k1+m2k2) = QB(∂̃Fa,r) + (m1k1 +m2k2)QC(∂̃Fa) . (4.2)

Thus, the anomaly cancellation in the general copy of the unit cell reduces to the cancel-

lation of the anomaly for the B- and C-charges for faces/nodes in the basic unit cell C.
Let us be a bit more explicit about the structure of B- charges. Consider the unit cell

of a general theory, as shown in figure 11. We assign general charges bEi to the edges Ei in

the interior of C. On the other hand, each edge on the boundary of C has a copy at another

corresponding point of the boundary; hence, on the boundary we assign charges bEi to a

set of independent edges, and determine the charges of their copies by applying (4.1), i.e.

bEi + . . ., where the dots denote a piece depending on the C-charge cEi of the edge, see
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again figure 11. Hence the general problem has a finite number of unknowns, corresponding

to the bEi and C-charges cEi of the edges/arrows of the unit cell.

This number of variables would in principle be twice the number E of edges/arrows

in C. However, recall that the C-charges have the periodicity of the unit cell C. Moreover

they must be symmetries of the superpotential and cancel mixed anomalies, i.e. regarding

the C-charges cEi as defining a 1-form γ (via γ(Ei) = cEi in the dimer/quiver in C, they

must satisfy

γ(∂Vα) = γ(∂V ′α) = 0 , γ(∂̃Fa) = 0 . (4.3)

These equations are just (2.13) and (2.18). This shows that C is a discrete subgroup of the

anomaly-free U(1) symmetries of the theory. This includes the U(1)2 mesonic symmetries

Q1, Q2. In addition, there are in general NB baryonic U(1)’s which we denote by QBi .

Incidentally, we recall that these U(1)’s arise from linear relations among the above equa-

tions, due to the geometric identities. The result is that the C charge is a combination of

these symmetries

QC = m1Q1 +m2Q2 +

NB∑
1=1

mBi QBi . (4.4)

So the actual number of unknowns is given by E from the B-charges and 2 +NB from the

coefficients in the above combination for the C-charges.

Consider now the superpotential invariance and anomaly cancellation constraints the

B-charges have to obey. These are given by (4.3) where now γ is the 1-form defined by the

B-charges. Notice however that, since the B-charges do not satisfy the periodicities of the

unit cell C, this defines a twisted 1-form. In order to work with standard forms, we define

the 1-form γ by γ(Ei) = bEi , so the constraints correspond to an inhomogeneous linear set

of equations for the bEi , whose associated homogeneous system is precisely (4.3), and the

inhomogeneous terms are combinations of the C-charges cEi . The number of equations is

F + V , where F is the number of faces/nodes and V the number of vertices/plaquettes

in C. We may be tempted to consider that this defines a unique solution for the b’s

in terms of the c’s, but additional care is required. Remember that the homogeneous

system of equations is not linearly independent, since there are 2 + NB linear relations

arising from the geometric identities. This implies that, for the inhomogeneous system to

admit solutions, the inhomogeneous terms must satisfy non-trivial consistency constraints.

Namely, evaluating the geometric identities with the (twisted) B-charge assignments, the

dependence on the bEi disappears (because they are well-defined in C and hence obey the

identity automatically), and we obtain certain combinations of the C-charges cEi for some

of the edges; these combinations must be zero for the inhomogeneous system to admit

solutions. This provides 2 + NB constraints on the c′Ei , which are just enough to fix the

2 +NB coefficients (4.4) and thus determine the C-charges.

We may now take the inhomogeneous system of equations for the bEi and solve it in

terms of the cEi . Since the number of independent equations (again, due to the geometric

identities) is F + V − 2 − NB, the solutions for the bEi are unique up to (2 + N − NB)

free parameters. But this is expected, since the discrete symmetry B-charges can only
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be defined up to the addition of an arbitrary combination of the 2 + NB continuous U(1)

global symmetries.

In our procedure to solve for the B-charges we have not used the description in terms

of the linear combination (3.15), which we exploited in the examples in sections 3.4, 3.5.

Instead, the equations of invariance of the superpotential are written as part of our general

linear system and handled simultaneously with the anomaly cancellation conditions. This

is because, whereas the twisting of B-charges along the periodic directions in the unit cell C
are easy to understand, it is a priori not clear how the coefficients na,r change as one moves

in these periodic directions. On the other hand, given a solution for the B and C-charges,

it is easy to go back to the linear combination (3.15) and disclose these transformation

properties, as follows.

Consider the unit cell C and pick a face/node Fa0,0 in the dimer/quiver, for which

we choose na0,0 = 0 without loss of generality. Now we may propagate to neighboring

faces/nodes by crossing edges / following arrows and obtain the corresponding values of na,0
by adding the B charges of the edges crossed / arrows followed. A particularly interesting

case is the behavior when we propagate from a face/node Fa,0 in C to the copy Fa,r1k1+r2k2

located in the copy of C located in the position (r1, r2) with respect to the two basic

directions, in the infinite dimer/quiver diagram. To propagate from the initial to the final

face/arrow, we may pick any path, since the result is path independent. For instance,

we can pick edges/arrows forming a meson M1,0 in the direction of k1 (resp. M2,0 in

the direction of k2) in C, and we can follow the sequence of r1 mesons M1,s1 for s1 =

0, . . . , r1 − 1, to reach Fa,r1k1 , and then follow the sequence of r2 mesons M2,r1k2+s2k2 for

s2 = 0, . . . , r2 − 1to reach Fa,r1k1+r2k2 . Using the B- and C-charges, we have

na,r1k1+r2k2−na,0 =

r1−1∑
s1=0

(bM1 +k1s1cM1)+

r2−1∑
s2=0

(bM2 +k1r1cM2 +k2s2cM2)

= r1bM1 +r2bM2 + r1r2k1cM2 +
r1(r1−1)

2
k1cM1 +

r2(r2−1)

2
k2cM2 ,

(4.5)

where we have dropped sub-indices for charges in the unit cell C at r = 0.

Note that mesons carry no baryonic charge, hence the C-charges appearing above only

have the mesonic contributions. From the above, we can easily understand different patters

of growth of the n’s with the r’s: if the QC linear combination (4.4) involves the mesonic

U(1)’s, the C-charges in the above equation are active, and the n’s grow quadratically

with the r’s; if the QC linear combination does not contain the mesonic U(1)′s, then the

above C-charges vanish and the n’s grow linearly with the r’s. This underlies the different

behavior of the ni’s for C3 and the conifold, as we see in the examples in the next section.

5 Examples: discrete symmetries for infinite classes of orbifolds

In this section we illustrate the procedure of the previous section, by applying it to sys-

tematically construct the discrete symmetries for several infinite classes of orbifolds of

different geometries.
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Figure 12. Unit cell in the dimer diagram for C3. We display the charge assignments corresponding

to the B-charges.

5.1 General orbifolds of C3

We consider general orbifolds of the C3 theories described in section 3.4. The dimer and

unit cell of the parent C3 are shown in figure 12. There are no baryonic U(1)’s, and the

mesonic charges are

Q1 Q2 QC
X 1 0 m1

Y 0 1 m2

Z −1 −1 −m1 −m2

where the last column shows the charges under the combination QC = m1Q1 +m2Q2.

There are two geometric identities in the graph. Denoting V and V ′ the black and

white nodes and F the unique face, they are given by

∂V − ∂V ′ = 0

∂̃F − ∂V − ∂V ′ = 0 .
(5.1)

Consider now a general orbifold, and consider the B-charge assignment in figure 12.

The conditions of invariance of the superpotential terms in the black and white nodes, and

anomaly cancellation are

V → bX + bY + bZ = 0

V ′ → bX − k2cX + bY + k1cY + bZ = 0

F → 2bX + k1cX + 2bY + k1cY + (k1 + k2)cY + 2bZ + (k1 + k2)cZ = 0 .

(5.2)

To extract the consistency conditions for the charges cEi , we use the geometric combina-

tions (5.1), and obtain

− k2cX + k1cY = 0

k1cX + (2k1 + k2)cY + (k1 + k2)cZ = 0 .
(5.3)
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Figure 13. Dimer diagram with a unit cell for the conifold. We display the charge assignments

corresponding to the B-charges.

Expressing the charges in terms of QC = m1Q1 +m2Q2 in the table above, the equations

reduce to

− k2m1 + k1m2 = 0 . (5.4)

Choosing m1 = k1, m2 = k2 to yield integer C-charges, we have

cX = k1 , cY = k2 , cZ = −k1 − k2 . (5.5)

These C-charges ensure that the equations (5.2) admit a solution for the B-charges. The

equations reduce to

bX + bY + bZ = 0 . (5.6)

As explained above, this determines the B-charges up to the action of mesonic U(1)2. One

may choose the latter to set bX = bY = 0 and then obtain bZ = 0. Alternatively, we can

recover the general solution in section 3.4 by solving (5.6) with the values

bX = −k2

2
+
k 2

2

2
, bY = k1k2 −

k1

2
+
k 2

1

2
, bZ =

k1 + k2

2
− (k1 + k2)2

2
. (5.7)

5.2 General orbifolds of the conifold

Consider the orbifolds of the conifold discussed in section 3.5. The dimer diagram with

a unit cell and ansatz for the B-charge assignment is shown in figure 13. There are two

mesonic U(1)’s and one baryonic U(1). The latter is associated to the existence of one

kind fractional brane, so it corresponds to the overall U(1) on one of the faces, say face

1. The charges of the different fields under these U(1)’s, and under a general combination
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QC = m1Q1 +m2Q2 +mBQB, are

Q1 Q2 QB QC
A1 1 0 1 m1 +mB

A2 −1 0 1 −m1 +mB

B1 0 1 −1 m2 −mB

B2 0 −1 −1 −m2 −mB

The geometric identities correspond to the two generic ones, and one associated to the

fractional brane. They can be written

∂V − ∂V ′ = 0

∂̃F1 + ∂̃F2 − ∂V − ∂V ′ = 0

∂̃F1 − ∂V = 0 .

(5.8)

Using the B-charge assignments in figure 13, the constraints from invariance of the super-

potential terms at the two nodes, and anomaly cancellation on the two faces, are

∂V → bA1 + bB1 + bA2 + bB2 = 0

∂V ′ → bA1 + k2cA1 + bB1 + (k1 + k2)cB1 + bA2 + k1cA2 + bB2 = 0

∂̃F1 → bA1 + bB1 + k1cB1 + bA2 + k1cA2 + bB2 = 0

∂̃F2 → bA1 + k2cA1 + bB1 + k2cB1 + bA2 + bB2 = 0 .

(5.9)

Taking combinations of these equations as in the geometric identities, we obtain the con-

sistency conditions for the C-charges (there are only two independent ones)

k2cA1 + (k1 + k2)cB1 + k1cA2 = 0

k2(cA2 − cB1) = 0 .
(5.10)

Expressing them in terms of the generator QC = m1Q1 + m2Q2 + mBQB as in the table

above, the equations imply

m1 = m2 = 0 , mB arbitrary . (5.11)

Taking the minimal choice to obtain integer charges, we let mB = 1, and have

cA1 = cA2 = 1 , cB1 = cB2 = −1 . (5.12)

Replacing into (5.9) leads to the unique constraint

bA1 + bB1 + bA2 + bB2 = 0 . (5.13)

These charges are as usual defined modulo the action of the two mesonic and the baryonic

U(1) symmetries. The simplest solution is to use them to set bA1 = bA2 = bB1 = 0 and

then we get bB2 = 0. This actually leads to the solution found in section 3.5.
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Figure 14. Dimer diagram with a unit cell for the dP1 theory. We display the charge assignments

corresponding to the B-charges.

5.3 General orbifolds of the dP1 theory

To illustrate the power of our method, we construct the discrete symmetries for a new

infinite class of theories. They correspond to general orbifolds of the dP1 theory. The dimer

diagram with a unit cell and ansatz for the B-charge assignment is shown in figure 14.

There are two mesonic U(1)’s and one baryonic U(1). The latter is associated to the

existence of one kind fractional brane, given by N0 = 1, N1 = 3, N2 = 0, N3 = 2.

The charges of the different fields under these U(1)’s, and under a general combination

QC = m1Q1 +m2Q2 +mBQB, are

Q1 Q2 QB QC

X30 0 1 1 m2 +mB

X01 −1 0 −2 −m1 − 2mB

X23 −1 0 −2 −m1 − 2mB

Y30 1 0 1 m1 +mB

Y02 1 0 1 m1 +mB

Y13 1 0 1 m1 +mB

Z30 0 0 1 mB

Z01 −1 −1 −2 −m1 −m2 − 2mB

Z23 −1 −1 −2 −m1 −m2 − 2mB

Φ12 1 1 3 m1 +m2 + 3mB

The geometric identities correspond to the two generic ones, and one associated to the

fractional brane. They read

∂V1 + ∂V2 + ∂V3 − ∂V ′1 − ∂V ′2 − ∂V ′3 = 0

∂̃F0 + ∂̃F1 + ∂̃F2 + ∂̃F3 − (∂V1 + ∂V2 + ∂V3)−
(
∂V ′1 + ∂V ′2 + ∂V ′3

)
= 0

∂̃F0 + 3∂̃F1 + 2∂̃F3 − 3∂V1 − 2∂V2 − ∂V3 − 2∂V ′1 + ∂V ′3 = 0 .

(5.14)
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Using the B-charge assignments in figure 14, the constraints from invariance of the super-

potential terms at the three nodes, and anomaly cancellation on the four faces, are

∂V1 −→ bZ30 + bY13 + bX01 = 0

∂V2 −→ k1cY30 + bY30 + bZ01 + bX23 + bΦ12 = 0

∂V3 −→ k2cX30 + bX30 + bY02 + bZ23 = 0

∂V ′1 −→ bX30 + bY13 + bZ01 = 0

∂V ′2 −→ (k1 + k2) cZ30 + bZ30 + bX23 + bY02 = 0

∂V ′3 −→ bY30 + bZ23 + bX01 + bΦ12 = 0

∂̃F0 −→ bY02 + bZ30 + (k1 + k2)cZ30 + bX01 + (k1 + k2)cX01 + bY30+

+ (k1 + k2)cY30 + bZ01 + k2cZ01 + bX30 + k2cX30 = 0

∂̃F1 −→ bY13 + bZ01 + bX01 + bΦ12 = 0

∂̃F2 −→ bX23 + bY02 + bZ23 + bΦ12 = 0

∂̃F3 −→ bX23 + bY30 + k1cY30 + bZ23 + k1cZ23 + bX30 + (k1 + k2)cX30 + bY13+

+ (k1 + k2)cY13 + bZ30 + (k1 + k2)cZ30 = 0 .

(5.15)

The consistency conditions for the C-charges are

k2cX30 +k1cY30−(k1+k2)cZ30 = 0

(k1+k2)cX01 +(k1+k2)cX30 +k2cY30 +(k1+k2)cY13 +k1cZ23 ++k2cZ01 +(k1+k2)cZ30 = 0

(k1+k2)cX30 +(k1+k2)cY13 +k1cZ23 +2k1cZ30 +2k2cZ30 = 0 . (5.16)

Using the C-charges as in the table above, the system reduces to

k1m1 + k2m2 = 0

2k1 +mB + k2(m1 +m2 + 4mB) = 0 .
(5.17)

To obtain integer C-charges, we choose

mB = k2(k1 − k2) , m1 = 2k2(k1 + 2k2) , m2 = −2k1(k1 + 2k2) . (5.18)

And obtain

cX30 = −(k1 + k2)(2k1 + k2) cY13 = 3k2(k1 + k2)

cX01 = −2k2(2k1 + k2) cZ30 = k2(k1 − k2)

cX23 = −2k2(2k1 − k2) cZ01 = 2
(
k2

1 − k2
2

)
(5.19)

cY30 = 3k2(2k1 + k2) cZ23 = 2
(
k2

1 − k2
2

)
cY02 = 3k2(k1 + k2) cΦ12 = −(k1 − k2)(2k1 + k2) .
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The solutions for the B-charges are

bX01 = −bZ30 − bY30 + k2

(
k2

1 − k2
2

)
bX23 = −bZ30 − bY30 − 3k1k2(k1 + k2)

bY02 = bY30 + k2(k1 + k2)(2k1 + k2)

bY13 = bY30 + k2

(
k2

1 − k2
2

)
bZ01 = −bX30 − bY30 − k2

(
k2

1 − k2
2

)
bZ23 = −bX30 − bY30
bΦ12 = bX30 + bY30 + bZ30 + k2

(
k2

1 − k2
2

)
.

(5.20)

where bX30 , bY30 , bZ30 are left as undetermined parameters encoding the freedom to shift

charges by the global U(1)3 symmetry.

We hope this example suffices to show the power of our general approach. We provide

further examples of orbifolds of the dP2 and dP3 theories in appendix B.

6 Some remarks on the gravity dual

In this section we sketch some of the main ingredients about the realization of the discrete

symmetries in the gravity dual. It was established in [26], that the discrete symmetries in

the C3/Z3 theory are associated to torsion classes in the 5d horizon S5/Z3 of the orbifold

theory (see also [27] for other geometries), such that objects charged under the generators

of the discrete Heisenberg group correspond to branes wrapped on torsion cycles. In a

general orbifold, for the 5d horizon X5 = S5/ZN , the generator of H3(X5,Z) = ZN is a

torsion 3-cycle, such that wrapped D5- and NS5-branes produce 5d codimension 2 objects,

around which the theory experiences monodromies associated to the A and B generators.

The non-abelian nature of the discrete gauge symmetry followed because two torsion 3-

cycles intersect over a torsion 1-cycle in H1(X5,Z) = ZN ; hence when the wrapped NS5-

and D5-branes associated to the A and B actions are crossed in 5d, one generates, by

the Hanany-Witten effect, [43] a D3-brane wrapped on the torsion 1-cycle. This precisely

corresponds to the element C in the discrete Heisenberg group. Alternatively, one can

characterize the discrete symmetry by the representations formed by (di)baryons, which

are realized in the gravity side as D3-branes wrapped in 3-cycles with non-trivial torsion 1-

cycles, on which one can turn on ZN valued Wilson lines; this leads to N -plets of D3-brane

states, on which the discrete Heisenberg group acts faithfully.

We expect a similar mechanism to work in general orbifold theories, and hence are

led to looking for such 3-cycles in the horizon geometry of general orbifolds of general

toric theories. The 3-cycles on the Sasaki-Einstein 5d horizon of CY threefold singularities

have been extensively studied in the context of the holographic description of baryons,

and it is well-established that calibrated 3-cycles are in correspondence with non-compact

holomorphic 4-cycles in the CY threefold singularity ([44], also for instance [45–48]). In

the toric setup, the non-compact 4-cycles were described in [49] (see also [50]) in terms

of pairs of punctures; namely, in the type IIA mirror geometry, the non-compact 4-cycle

becomes a non-compact 3-cycle, which is described as a 1-cycle in the mirror Riemann
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(a) (b)

(c) (d)

Figure 15. Toric and web diagrams of the dP1 theory and its quotient. We have highlighted in

red the perfect matching and wedge related to an example of non-compact 4-cycle.

surface, which comes in through a puncture and goes out through another puncture. In

particular, consider the baryonic operator corresponding to antisymmetrizing the indices

of a given bifundamental; the corresponding 4-cycle has as mirror a 3-cycle corresponding

to two punctures which are mirror to the two zig-zag paths crossing the bifundamental.

This leads to a one-to-one correspondence between such baryons and holomorphic 4-cycles

in the toric singularity.

The description in terms of pairs of punctures is manifest also in the original type

IIB picture for the non-compact 4-cycles bounded by adjacent external legs in the web

diagram; in this case the non-compact 4-cycle is defined by the equation pi = 0 of vanishing

of the linear sigma model coordinate corresponding to the perfect matching pi at the

corresponding external point in the toric diagram,4 see figure 15.

When one performs a ZN orbifold of a parent theory, the toric diagram of the original

theory is the same as the original one, but in a refined lattice, such that the original is an

index-N sub-lattice of the final one. Now recall that points of the toric diagram correspond

to perfect matchings of the dimer; although there is in general not a one-to-one map for

general points in the toric diagrams of the parent and quotient theory, there is such one-to-

one map for external points, as follows. Consider an external point pi of the toric diagram

4For simplicity, in this section we carry out the discussion for theories with no parallel external legs.
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of the parent theory; this corresponds to a perfect matching pi of the dimer in the parent

unit cell C; we can now obtain a perfect matching of the dimer of the orbifold theory with

unit cell CN by simply replicating pi N times in the N copies of C in CN . In brief, there is a

one-to-one correspondence between external perfect matchings of the toric diagrams of the

parent and quotient geometries, and similarly between external legs of the web diagrams,

and hence among 4-cycles, see figure 15. Hence the topology of the 4-cycle in the orbifold

is that of the parent 4-cycle, quotiented by the ZN action. At the level of the horizon,

the 3-cycle defined by the 4-cycle in the orbifold theory is a quotient of the 3-cycle of the

4-cycle in the parent theory modded out by the ZN action. This is the origin of the torsion

classes, as follows.

An easy to check important feature is that the pairing of (p, q) labels of two external

legs (namely, the quantity p1q2 − q1p2 for legs of labels (p1, q1), (p2, q2)) picks up a factor

of N in going from the parent to the orbifold theory. Hence, all the pairings are multiples

of N in any ZN orbifold of a general toric singularity. This introduces a subtlety in the

relation between 4-cycles and baryonic operators, in the sense that the geometric 4-cycle

is actually related to an N -plet of baryonic operators. Focusing on the simplest baryonic

operators, obtained by antisymmetrizing indices on a given bifundamental, this implies

that we have an N -plet of bifundamentals; they are just the N copies of the bifundamental

of the parent theory in the orbifold theory. These N copies form a representation of the

discrete Heisenberg groups, with the A generator acting as a shift and B- and C-charges

as determined in earlier sections. The holographic dual of the baryons associated to these

bifundamentals are given by D3-branes wrapped on the 3-cycle with different ZN -valued

Wilson lines turned on.

It would be interesting to pursue the gravitational dual description of the Heisenberg

group, and in particular to unveil the geometric interpretation of the B- and C- charges,

and their interplay with the mesonic and baryonic U(1)’s for general orbifolds of general

toric geometries. We leave this question for future work.
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A Some topological concepts in dimers and quivers

In this appendix we introduce some (co)homological tools for dimer diagrams and their

dual periodic quivers. As in the main text, we use the notation Fa for faces/nodes, Ei
for edges/arrows and Vα, V ′α for vertices/plaquettes. These ingredients can be regarded

as the analogues of simplices in singular homology, hence we consider their formal linear
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combinations (with negative coefficients corresponding to reversing the orientation these

objects carry), which we refer to as 0-, 1- and 2-chains.

On these diagrams we can define p-forms as linear maps assigning a (in general, com-

plex) number to every p-chain. For instance, in the dimer, we define 2-forms σ as assign-

ments of numbers σ(Fa) to the faces Fa, and similarly 1-forms λ(Ei) and 0-forms f(Vα),

f(V ′α). The assignments defining 2-, 1- and 0-forms in the dimer, when regarded in the

quiver, define 0-, 1- and 2-forms. This can be regarded as a duality (in a constructions

known as quad-edge in computational physics), although we will not exploit it at present.

In the quiver there is a very natural realization of (co)homology. The boundary ∂V of

a plaquette V (similarly for V ′) is the 1-chain given by the sum of the arrows surrounding

it; the boundary ∂E of an edge E is the formal difference of the nodes at its tail and its

head ∂E = t(E) − h(E). Clearly ∂2 ≡ 0, and we can define a homology. At the level of

forms, we introduce an exterior derivative d as follows. For a 0-form f , we define df as the

1-form given by

df(E) = f(∂E) = f(h(E))− f(t(E)) , (A.1)

where h(E), t(E) denote the node at the head and tail of the arrow E. Similarly, for a

1-form λ, we define the 2-form dλ by dλ(F ) = λ(∂F ). Finally, for a 2-form σ we define

dσ ≡ 0. One clearly has d2 ≡ 0 so this defines a cohomology. By defining integration

by evaluation, d and ∂ obey Stokes’ theorem. The above homology and cohomology are

realizations of those of the underlying surface on which the quiver is embedded, in our case

the 2-torus (or, as we occasionally focus on the infinite cover, R2).

In the main text, the assignments of (continuous or discrete) charges to bifundamen-

tals are used to define 1-forms λ on the quiver, and the conditions of invariance of the

superpotential amount to closedness, dλ = 0. Non-trivial cohomology classes correspond

to the mesonic U(1) symmetries, while exact forms λ = df correspond to U(1) baryonic

symmetries in the 2-torus, or related to the discrete B-symmetry in R2.

In the dimer, the notion of boundary and exterior derivative convenient for us includes

a subtlety. We define the boundary ∂̃F of a face F as the sum of the edges bounding

it, with their natural orientation (i.e. from black to white vertices). This differs from the

geometric intuition, where the boundary involves the same edges but with a weight ±
determined by the incidence relation between the edge and the face (i.e. the chirality of

the bifundamental). We use a tilde to emphasize this difference. We define the boundary

∂̃E of and edge E as the difference between the corresponding black and white vertices,

namely ∂̃E = b(E)−w(E). Correspondingly, we define the exterior derivative d̃ as follows.

For a 0-form f , we define d̃f by

d̃f(E) = f(∂̃E) = f(b(E))− f(w(E)) . (A.2)

Similarly, for a 1-form λ we define d̃λ(F ) = λ(∂̃F ). Defining integration by evaluation,

this obeys Stokes’ theorem. However, in general d̃2 6= 0, ∂̃2 6= 0; there is a well defined

cohomology only if we restrict to 0-forms f which satisfy that for any face F , the value

of f on the sum of black nodes equals its value on the sum of white nodes (and one may

define homology in a similar restricted sense). Since these restrictions render these tools
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Figure 16. Dimer diagram with a unit cell for the dP2 theory. We display the charge assignments

corresponding to the B-charges.

less natural, in the main text we simply use ∂̃ as a notational device. In terms of it, if the

charge assignments under continuous or discrete symmetries are used to define a 1-form λ,

the anomaly cancellation conditions read d̃λ = 0.

B More infinite classes of orbifolds

B.1 General orbifolds of the dP2 theory

We now construct the discrete symmetries for the general orbifolds of the dP2 theory. The

dimer diagram with a unit cell and the B-charge assignment is shown in figure 16. There

are two mesonic and baryonic U(1)’s. The charges of the different fields under these U(1)’s,

and under a general combination QC = m1Q1 +m2Q2 +mB1QB1 +mB2QB2 , are

Q1 Q2 QB1 QB2 QC

X10 0 −1/2 3 −1 −1/2m2 + 3mB1 −mB2

X21 0 0 −4 0 −4mB1

X32 −1/2 0 3 1 −1/2m1 + 3mB1 +mB2

X1
43 0 −1/2 −1 −1 −1/2m2 −mB1 −mB2

X2
43 0 1/2 −1 −1 1/2m2 −mB1 −mB2

X1
04 −1/2 0 −1 1 −1/2m1 −mB1 +mB2

X2
04 1/2 0 −1 1 1/2m1 −mB1 +mB2

X20 0 1/2 −1 −1 1/2m2 −mB1 −mB2

X31 1/2 0 −1 1 1/2m1 −mB1 +mB2

X14 −1/2 1/2 2 0 −1/2m1 + 1/2m2 + 2mB1

X42 1/2 −1/2 2 0 1/2m1 − 1/2m2 + 2mB1
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On dP2 there are two kinds of fractional branes given by:

1. N0 = 0, N1 = 2, N2 = 0, N3 = 1, N4 = 1;

2. N0 = 1, N1 = 0, N2 = 0, N3 = 1, N4 = 0.

The geometric identities correspond to the two generic ones, and two associated to fractional

branes. They read

∂V1 + ∂V2 + ∂V3 − ∂V ′1 − ∂V ′2 − ∂V ′3 = 0

∂̃F0 + ∂̃F1 + ∂̃F2 + ∂̃F3 + ∂̃F4 − (∂V1 + ∂V2 + ∂V3)−
(
∂V ′1 + ∂V ′2 + ∂V ′3

)
= 0

2(2∂̃F1 + ∂̃F3 + ∂̃F4) + ∂V1 − ∂V2 − ∂V3 − 5∂V ′1 − ∂V ′2 − 3∂V ′3 = 0

∂̃F0 + ∂̃F3 + ∂V2 − ∂V ′1 − ∂V ′2 − ∂V ′3 = 0 . (B.1)

Using the B-charge assignments in figure 16, the constraints from invariance of the super-

potential terms at the six nodes, and anomaly cancellation on the five faces, are

∂V1 −→ bX32 + bX1
43

+ bX2
04

+ bX20 = 0

∂V2 −→ −k2cX14 + bX14 + bX21 + bX42 = 0

∂V3 −→ k1cX31 + bX31 + bX2
43

+ bX10 + bX1
04

= 0

∂V ′1 −→ bX31 + bX14 + bX1
43

= 0

∂V ′2 −→ bX20 + bX42 + bX1
04

= 0

∂V ′3 −→ bX32 + k1cX32 + bX21 + k1cX21 + bX10 − k2cX10 + bX2
04
− k2cX2

04
+ bX2

43
= 0

∂̃F0 −→ bX10 + bX2
04

+ bX20 + bX1
04

= 0 (B.2)

∂̃F1 −→ k1cX31 + bX31 + k1cX14 + bX14 + (k1 + k2) cX21 + bX21 + bX10 = 0

∂̃F2 −→ bX32 + bX21 + bX20 + bX42 = 0

∂̃F3 −→ k1cX31 + bX31 + k1cX32 + bX32 + k1cX1
43

+ bX1
43

+ bX2
43

= 0

∂̃F4 −→ −k2cX14 + bX14 − k2cX2
04
− k2cX1

43
+ bX1

43
+ bX2

43
+ bX2

04
+ bX42 + bX1

04
= 0 .

Using the C-charges as in the table above, the system reduces to

k2 (m1 −m2) + k1m1 = 0

− 2k2 (4mB1 −m1 +m2) +
1

2
k1 (−8mB1 + 4mB2 + 3m1 +m2) = 0

1

2
k1 (4mB1 +m1 −m2)− k2 (m2 −m1) = 0 .

(B.3)

To obtain integer C-charges, we choose

mB1 =
k1

4
(k1+2k2) , m1 = k1k2 , m2 = k1(k1+k2) , mB2 =

1

4

(
k2

1 +8k1k2+8k2
2

)
. (B.4)
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Figure 17. Dimer diagram with a unit cell for the dP3 theory. We display the charge assignments

corresponding to the B-charges.

And we obtain

cX42 = 2k2(k1 + k2) cX2
54

= −2k2(k1 + k2)

cX43 = (k1 + 2k2)(k1 + k2) cX1
15

= k2(k1 + 2k2)

cX25 = k1(k1 + k2) cX2
15

= 2k2(k1 + k2)

cX32 = −k1(k1 + 2k2) cX31 = −2k2(k1 + k2) (B.5)

cX21 = −k2(k1 + 2k2) cX53 = k1k2

cX1
54

= −(k1 + 2k2)(k1 + k2) .

The solutions for the B-charges are

bX21 = −bX42 − bX25 − bX32

bX1
54

= −bX42 − bX25

bX2
54

= −bX43 + bX25 − 2k1k2(k1 + k2)

bX1
15

= bX43 + bX32

bX2
15

= bX42 + k1k2(k1 + k2)

bX31 = −bX43 + bX25 − k1k2(k1 + k2)

bX53 = −bX25 − bX32 + k1k2(k1 + k2) ,

(B.6)

where bX42 , bX43 , bX25 , bX32 are left as undetermined parameters encoding the freedom to

shift charges by the global U(1)4 symmetry.

B.2 General orbifolds of the dP3 theory

We now construct the discrete symmetries for the general orbifolds of the dP3 theory. The

dimer diagram with a unit cell and the B-charge assignment is shown in figure 17. There
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are two mesonic U(1)’s and three baryonic U(1)’s. The charges of the different fields under

these U(1)’s, and under a general combination QC = m1Q1+m2Q2+mB1QB1 +mB2QB2 +

mB3QB3 , are

Q1 Q2 QB1 QB2 QB3 QC

X10 −1 0 1 0 −1 −m1 +mB1 −mB3

X54 0 0 −1 1 −1 −mB1 +mB2 −mB3

X32 0 −1 0 −1 −1 −m2 −mB2 −mB3

X43 −1 1 1 0 1 −m1 +m2 +m3 +mB3

X21 1 0 −1 1 1 m1 −mB1 +mB2 +mB3

X05 1 0 0 −1 1 m1 −mB2 +mB3

X31 1 0 −1 0 0 m1 −mB1

X04 1 −1 −1 0 0 m1 −m2 −mB1

X15 −1 0 1 −1 0 −m1 +mB1 −mB2

X42 0 0 1 −1 0 mB1 −mB2

X53 0 0 0 1 0 mB2

X20 −1 1 0 1 0 −m1 +m2 +mB2

On dP3, instead, there are three kinds of fractional branes given by:

1. N0 = 0 , N1 = 1 , N2 = 0 , N3 = 0 , N4 = 1 , N5 = 0;

2. N0 = 0 , N1 = 0 , N2 = 1 , N3 = 0 , N4 = 0 , N5 = 1;

3. N0 = 1 , N1 = 0 , N2 = 1 , N3 = 0 , N4 = 1 , N5 = 0.

The geometric identities correspond to the two generic ones, and three associated to frac-

tional branes. They read

∂V1 + ∂V2 + ∂V3 − ∂V ′1 − ∂V ′2 − ∂V ′3 = 0

∂̃F0 + ∂̃F1 + ∂̃F2 + ∂̃F3 + ∂̃F4 + ∂̃F5 − (∂V1 + ∂V2 + ∂V3)−
(
∂V ′1 + ∂V ′2 + ∂V ′3

)
= 0

∂̃F1 + ∂̃F4 − ∂V2 − ∂V3 = 0

∂̃F2 + ∂̃F5 − ∂V1 − ∂V2 = 0

∂̃F0 + ∂̃F2 + ∂̃F4 − 2∂V ′2 − ∂V ′3 = 0 . (B.7)

Using the B-charge assignments in figure 17, the constraints from invariance of the super-

potential terms at the six nodes, and anomaly cancellation on the six faces, are

∂V1 −→ bX32 + bX20 + bX05 + bX53 = 0

∂V2 −→ −k2cX15 + bX15 + bX54 + bX42 + bX21 = 0

∂V3 −→ k1cX31 + bX31 + bX10 + bX04 + bX43 = 0

∂V ′1 −→ bX31 + bX15 + bX53 = 0

∂V ′2 −→ bX20 + bX04 + bX42 = 0
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∂V ′3 −→ bX32 + k1cX32 + bX21 + k1cX21 + bX10 − k2cX10 + bX05 − k2cX05+

+ bX54 + bX43 = 0

∂̃F0 −→ bX10 + bX04 + bX20 + bX05 = 0 (B.8)

∂̃F1 −→ k1cX31 + bX31 + k1cX15 + bX15 + (k1 + k2) cX21 + bX21 + bX10 = 0

∂̃F2 −→ bX32 + bX21 + bX20 + bX42 = 0

∂̃F3 −→ k1cX31 + bX31 + k1cX32 + bX32 + k1cX53 + bX53 + bX43 = 0

∂̃F4 −→ bX42 + bX04 + bX43 + bX54 = 0

∂̃F5 −→ bX15 − k2cX15 + bX54 + bX05 − k2cX05 + bX53 + k2cX53 = 0 .

Using the C-charges as in the table above, the system reduces to

k2m1 + k1m2 = 0

(k1 + k2)mB3 = 0

k2 (mB3 +m1) = 0

k1 (mB1 −m1 +m2)− k2 (mB2 −mB1) = 0 .

(B.9)

To obtain integer C-charges, we choose

mB1 = −k2 , m1 = 0 , m2 = 0 , mB2 = −k2 − k1 and mB3 = 0 . (B.10)

And we obtain

cX42 = k2 cX54 = −k2

cX43 = k1 + k2 cX16 = k1 + k2

cX26 = k1 cX15 = k2

cX32 = −k1 cX53 = k1 (B.11)

cX65 = −k1 cX64 = −k1 + k2

cX21 = −k2 cX31 = k1 + k2 .

The solutions for the B-charges are

bX21 = −bX42 − bX26 − bX32

bX54 = −bX43 + bX26 − k1k2

bX16 = bX42 − bX65 + k1k2

bX15 = bX43 + bX32

bX53 = −bX26 − bX32 − bX65 + k1k2

bX64 = −bX42 − bX26

bX31 = −bX43 + bX26 + bX65 − k1k2 ,

(B.12)

where bX42 , bX43 , bX26 , bX32 , bX65 are left as undetermined parameters encoding the freedom

to shift charges by the global U(1)5 symmetry.
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