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1 Introduction

In this paper we describe the classical integrable gly;, model given by the Hamiltonian of
the following form:

M 2 M M
p; op/( i 1 iy QJi
H=3 0+ Y HPE) + 5 Y UGSY, 84— qp). (1.1)
i=1 i=1 i,j1i#]

where p; and ¢; are the canonical variables:

{pi, a5} = 045, Api,pj} ={a@,4;1 =0, i, j=1...M. (1.2)

For alli,j =1...M SY are N x N matrices of “classical spin” variables, i.e.

N
S =" 8% eqw € Mat(N,C), (1.3)
a,b=1



where {e4,a,b=1... N} is the standard basis in Mat(N, C). They are naturally arranged
into NM x NM block-matrix &:

M M N
S=Y E;®87=> Y S8)E;®eycMat(NM,C), (1.4)
i,j=1 t,j=1a,b=1

where {F;;,i,j7 = 1... M} is the standard basis in Mat(M, C). The Poisson structure is
given by the Poisson-Lie brackets on gljy,, Lie coalgebra:

(84, Sy = 88 5 6,4 — SiL 6% 6y . (1.5)
Integrable tops. In order to clarify the structure of the Hamiltonian (1.1) consider the
case M = 1. Then the last term in (1.1) is absent, and we are left with a free particle (with
momenta p;) and the Hamiltonian H'*P(S!!) of integrable top of Euler-Arnold type [3-7].
Here we deal with the models admitting the Lax pairs with spectral parameter on elliptic
curves [61, 62]. The general form for equations of motion (for the top like models) is

S =18,J(S)], (1.6)

where S € Mat(N, C) is the matrix of dynamical variables, while the inverse inertia tensor

J is a linear map
N

J(S)= > Jijwei; S € Mat(N,C). (1.7)
i,k I=1
In the general case the model (1.6) is not integrable. It is integrable for some special
J(S) only. More precisely, here we consider special tops, which were described in [1, 36,
37, 39-41, 68] for elliptic, trigonometric and rational cases respectively. All of them can
be written [40, 41, 44] in the R-matrix form based on a quantum GLy R-matrix (in the
fundamental representation) satisfying the associative Yang-Baxter equation [25, 26, 54]:

Rl (q12) R (q23) = Ris(q13)Rl5 " (q12) + R " (a23) Ris(@13) s Gab = G — b - (1.8)

Having solution of (1.8) with some additional properties (see the next section) the inverse
inertia tensor comes from the term mj2(2) in the classical limit expansion:

1
R%(Z) = %1N®1N+T12(z)+ﬁm12(z)+O(ﬁ2). (19)
Namely, for
mia(z) = Z mijri(2) eij @ e (1.10)
ik l=1

the components of J are
Jijret = mijri(0) (1.11)

that is
J(S) = tra(m12(0)S2),  Sa=1In®S. (1.12)



The Hamiltonian of the model is of the form:
HP(S) = %tr(SJ(S)) _ %tm(mum)slsg), S =Sely.  (1.13)
This expression enters (1.1). The phase space of the model is a coadjoint orbit
MP = Oy (1.14)

of GLy Lie group, i.e. the space spanned by S;; with some fixed eigenvalues of matrix S (or
the Casimir functions Cj, = trS*). Its dimension depends on the eigenvalues. The minimal
orbit (’)}{}i“ corresponds to N — 1 coincident eigenvalues, i.e. the matrix S (up to a matrix
proportional to identity matrix) is of rank one:

dim O™ = 2(N —1). (1.15)
The Lax pair is given in the appendix C.

Spin Calogero-Moser model. In the case N = 1 the second term in (1.1) is trivial,
and the last one boils down to the spin Calogero-Moser model [8-10, 27, 28|:

M o M

P = Z EZ - Z SijSjiE2(qi — ;) » (1.16)
=1 1>

where Ey(q) is the second Eisenstein function (A.4). Some details of the spin Calogero-

Moser model are given in the appendix B. Let us only remark here that the model (1.16)

is integrable through the Lax representation and the classical r-matrix structure on the

constraints
Si=vioralli=1...M (1.17)

supplemented by some gauge fixation conditions generated by the coadjoint action of the
Cartan subgroup s C GLjs. That is the phase space of the model is given by

M = T*h 0 % O/ /S (1.18)

where hy; = Lie($ys) is the Lie algebra of $57, and Oy is an orbit of the coadjoint action of
GLjs. The first factor in (1.18) describes the many-body degrees of freedom (1.2), and the
second factor describes the “classical spin” variables. In the general case the spin variables
can be parameterized by the set of canonically conjugated variables:

N
Sy =Y _&nl,
a=1

(&, my =6mbij, i,j=1...M, ab=1...N.

(1.19)

The Poisson structure (B.7) is reproduced in this way. Using these notations it is easy to
see that

N
SiySji =Y &g = tr(8"87), (1.20)
a,b=1



and the potential in the Hamiltonian (1.16) takes the form
VIS ST i) = —tr(SUSIT) Ey(q; — q5) - (1.21)

Below we construct anisotropic (in Mat(N, C) space) generalizations of (1.21).
In the special case, when the matrix of spin variables S is of rank 1 (it is the minimal
Omin orbit (1.15))

Sij = éinj (1.22)
the reduction with respect to the action of $;; leads to the spinless Calogero-Moser (CM)
model [15-19, 38] since the second factor in (1.18) become trivial. Indeed, plugging (1.22)
into (1.16) and using (1.17) we get

M p2 M

i i 2

FsPin — Z Ez -V ZEQ(QZ‘ — Qj) . (1.23)
=1 1>]

The spinless Calogero-Moser models are gauge equivalent to the special top with the min-

imal orbit (1.15). See [1, 36, 37, 39] for details.

Interacting tops. Turning back to the gly;; model (1.1) consider the special case when
the matrix S is of rank 1:

s = it (1.24)
We will see that in this case the last term in (1.1) is rewritten in the form

US7, 8" ¢ — q;) = V(8" 8 . ¢i — q) , (1.25)

and the Hamiltonian (1.1) acquires the form

. M p? M . y 1 M o
oPS — =X HY™P(8") + = V(S", 8, qi — q;) . 1.26
W =3 B Y S g 3 WSS (1.26)
It describes mechanics of M interacting integrable gl tops. The Hamiltonian of (1.26) type
was introduced by A.P. Polychronakos [55-57] from his study of matrix models. Then the
elliptic version of model (1.1) and (1.26) was described as gly;; Hitchin system [49, 67, 68|
(see some details in section 4), and (1.1) was also generalized for arbitrary complex Lie
group [45-47].
Similarly to the spin Calogero-Moser model the general model (1.1) requires additional
constraints (cf. (1.17))
tr(S") =vforalli=1...M. (1.27)

They should be supplied with some gauge fixation conditions generated by the coadjoint
action of $y,, C Hna — subgroup of the Cartan subgroup Hnyar C GLy s with elements
of the form Zi\i 1 hi Ei; ® 1. Together with (1.27) the gauge fixation conditions are the
second class constraints, and one can perform the Dirac reduction procedure to compute
the final Poisson structure starting from the linear one (1.5). The phase space of the general
model (1.1) is of the from:

M =T*B s X Onat/ /9N s bvar = Lie(Har) - (1.28)



For the interacting tops case (1.24)—(1.26) the orbit Oy becomes O%Y. Then the phase
space

M =Ty x O/ /Dnu (1.29)
has dimension 2N M, while its “spin part” is of dimension

mm(oﬁ&ﬁﬁxM)zanf—zMx (1.30)

A brief summary of the described models is given in the following scheme:

glyas model (1.1)

M=1, NN =1
integrable gl top glys spin CM
rk(S) =1 rank(S)=1: rk(S) =1
special gly top OWn glys spinless CM
M =1~ S N=1

interacting tops (1.26)

(1.31)

Purpose of the paper. is to describe a family of the models (1.1) and (1.26) in terms of
R-matrices satisfying the associative Yang-Baxter equation (1.8). We give explicit formulae
for NM x NM Lax pair with spectral parameter (see the next section) and compute the
Hamiltonians (1.1) and (1.26). As a result we obtain the potentials

USY, 8", qi — q5) = triz (aQirzl(Qij)P12 Sijsgi) (1.32)
for the general model (1.1) and
V(S", 8V, q; — q;) = tr1g (%ﬁ"m(%j)gf%g) (1.33)

for the model of interacting tops (1.26). Notice that in the simplest case related to the
rational Yang’s XXX R-matrix

In® 1y " Pis

¥4
Gii) = 1.34
falay) = o (1.34)
we get just the spin Calogero-Moser model written in terms of matrix variables:
tr(S%SII
V:—ﬂ——%. (1.35)
(¢ — gq5)

Next, we proceed to the classical (dynamical) r-matrix. It is similar to the one for the
spin Calogero-Moser case [8-10] but this time its matrix elements are R-matrices them-
selves. The classical exchange relations are verified directly. This guarantees the Poisson
commutativity of the Hamiltonians generated by the Lax matrix.



The answers (1.32) and (1.33) depend on the classical r-matrix, which appears from the
quantum one in the limit (1.9). The quantum R-matrix enters the higher Hamiltonians. It
should satisfy a set of properties which we discuss in the next section. The most general R-
matrix satisfying all the required properties is the elliptic Baxter-Balavin’s one. In this case
the integrable models are known. They were first described by Polychronakos in [55-57]
and later reproduced as Hitchin type systems on the bundles with nontrivial characteristic
classes in [49, 67].

The family of the obtained models includes new integrable systems in the trigonometric
and rational cases. While the quantization of the potential V from (1.35) is given by
isotropic spin exchange operator V = — i/ (¢ — qj)?, the obtained general answer (1.32)—
(1.33) leads to the anisotropic potentials. An example of such anisotropic extension to the
spin (trigonometric) Calogero-Moser-Sutherland model was first suggested by Hikami and
Wadati [35] at quantum level. From the point of view of (1.33) their answer corresponds
to the gl, XXZ r-matrix. At the same time the set of trigonometric R-matrices satisfying
the required properties is much lager [2, 58, 59], and all these R-matrices can be used
for construction of the integrable tops [36, 37]. The results of the present paper are also
valid for all these cases. An example based on the gl, 7-th vertex deformation of the
XXZ R-matrix is given section 4. Similarly, in the rational case the admissible R-matrices
includes not only the Yang’s R-matrix (1.34) but also its deformations such as 11-vertex R-
matrix [20] and its higher rank versions [40, 41]. An example related to 11-vertex R-matrix
is given in section 4.

Possible applications of the described models are discussed in the end. Namely, we
argue that the obtained models can be used for construction of higher Hamiltonians for
the anisotropic generalizations of the Haldane-Shastry-Inozemtsev long-range spin chains.
The latter is important for the proof of integrability of these chains, which still remains an
open problem.

2 Lax equations

In this section we construct the NM x NM Lax pair £(z), M(z) satisfying the Lax equa-

tions

L(z) = [£(2), M(2)] (2.1)

for the model (1.1). Our construction is based on GLy R-matrix — solution of the asso-
ciative Yang-Baxter equation (1.8). Besides (1.8) the R-matrix should also satisfy a set of
properties.

2.1 R-matrix properties

We consider R-matrices satisfying (1.8) and (1.9). Let us also impose the following set of
conditions for GLy R-matrices under consideration:

Ezpansion near z = 0:

1
Rly(z) = - Puo + RO 4 2rMY 4 0(:2), (2.2)



Also,

P 1 1
Ry = SIv®ly+ ry +0(),  ria(z) = S et Y 2y + 0. (23)

Skew-symmetry:*

N
Riy(2) = =Ry/'(-2) = —PiaRyy (=2)Pia,  Pia=»  E;y®Ejs. (2.4)
ij=1
Unitarity:
Riy(2)Ryi(—2) = f"(z) In@1n,  ["(2) = p(h) — p(2). (2.5)
We are also going to use the Fourier symmetry:
R?Q(Z)PH = Ris(h). (2.6)

It is not necessary but convenient property. The following relations on the coefficients of
expansions (1.9) and (2.2) follow from the skew-symmetry:

r12(2) = —ra1(—2), mi2(2) = ma1(—2), @)
7, (0 —11,(0 0 0 :
R12( )= —Ry ( )a 7{2) = _Tél)'
Similarly, from the Fourier symmetry we have (see details in [69]):
Ri’g(o) = r12(2) P12,
Ri’(l) = mia(2) P12, (2.8)
r =l Prs.
In what follows we use special notation for the R-matrix derivative:
Fiy(q) = 94Ria(q) - (2.9)

It is the R-matrix analogue of the function (A.5) entering the M-matrix of the spin
Calogero-Moser model (B.3) likewise R-matrix itself is a matrix analogue of the Kronecker
function (A.1) due to similarity of (A.6) and (1.8). See [42, 43]. Then from the classical
limit (1.9) we have

F1y(q) = 04Ri5(a)|_o = Ogr12(q) - (2.10)

The latter is the R-matrix analogue of the function —FEs(q) (A.12) entering the Calogero-
Moser potential. Notice also that F(q) = F¥,(—q) due to (2.7). From (2.9) and (2.2) the
local expansion near ¢ = 0 is as follows

1 =
Fisla) = =5 P+ R+ 0(q) (2.11)

! Pi5 entering (2.4) is the permutation operator, (P12)? = 1y ® 1y.



and, therefore,

@) =~ Pu+ REY| | +0@) %~ Putma@Pa+ 0. (212)
On the other hand
Fh@ "= dyriale) ® — Pa+ 1Y) + 0(0). (213)
From (2.12) and (2.13) we conclude that
T%) =m12(0) P2 . (2.14)

In the elliptic case the set of properties is fulfilled by the Baxter-Belavin [11-13] R-
matrix (C.14). A family of trigonometric R-matrices include the XXZ 6-vertex one, its
7-vertex deformation [20] and GLy generalizations [2, 58, 59]. See a brief review and ap-
plications to integrable tops in [36, 37]. The rational R-matrices possessing the properties
are the XXX Yang’s R-matrix, its 11-vertex deformation [20] and higher rank analogues
obtained from the elliptic case by special limiting procedure [66]. The final answer for such
R-matrix was obtained in [40, 41] through the gauge equivalence between the relativistic
top with minimal orbit and the rational Ruijsenaars-Schneider model.

2.2 Lax pair and equations of motion

Using coefficients of the expansion of the GLy R-matrix near z = 0 we define NM x NM
Lax pair

M
L(z)= Y E;®L7(z), LY(z)eMaty  L(z) € Matyy (2.15)
ij=1
L99(2) = 8 (pilw + tra(S5 R Pi2) ) + (1= 03y) tra(Sy) Riglay)Pi2),  (216)

and similarly for M%(z) € Maty
M (2) = b tro(S5 Ry Pro) (1= 8y ea( Sy Fplaig) Pro) - (217)
where the entries are defined from (2.2) and (2.9). The tensor notations are similar to

those used in (C.3)—(C.6).

Proposition 2.1. Consider an R-matriz satisfying the associative Yang-Baxter equa-
tion (1.8), the classical limit (1.9) and the set of properties from the previous paragraph.
Then the Lazx equation (2.1) holds true for the Lax pair (2.15)—(2.17) on the constraints

tr(Sii) = const., Vi (2.18)
(cf. (4.4)) and provides the following equations of motion for off-diagonal N x N blocks
of §:
§7= 3 (S™tra(SyT Fhy(any) Piz) — tra(SH Fy(qa) Pr2) ™ ) +
ki,
+ 8"t (S Fra(gij) Pra) — tra(85'mi2(0))SY —
— tra(Sy Fy(g3) Pr2) S + Stra(83maa (0))

(2.19)



for diagonal N x N blocks of S:

M
8" = [8%, tra(m12(0)85)] + ) <Siktr2(S§iF201(Qik)Pl2) - tr2(5§ka)2(qz‘k)P12)5ki> )
k:k#i
(2.20)
and for momenta:
M
- Z tros (6ti§2(qik)P23 SékS§Z> . (2.21)
k:k#i

Proof. We imply p; = ¢; in the formulae above. This follows from the Hamiltonian de-

scription, which is given in the next paragraph.

1.

Let us begin with the non-diagonal blocks. Consider the one numbered ij (i # 7).
The Lh.s. of the Lax equations reads

Lhos. = £9(2) = tra(Sy Riy(qi5) Pr2) + tra(S5 Fio (i) Proa)(¢i — dj) - (2:22)
The r.h.s. of the Lax equation is as follows:
rhus. = L9MIT = ML 4 LOMIT — MILT 4+ Y (ﬁ’w’fﬂ - M”“E’”) . (2.23)
k:k#£i,j
The last sum is computed using identity
f2(2)F33(y) — Fia(2)Ras(y) = Fas(y) Ris(x +y) — Rig(z +y) Fiy(x),  (2.24)

which follows from (1.8). It is the R-matrix analogue of (A.7). In its turn (A.7) is
the key tool underlying ansatz for the Lax pairs with spectral parameter [38]. For
k # 1,7 we have

ik MK Ak ok
- tr23(RTQ(q““)PmSikFlz?’(ij)Plsszfj) — tros (Fiy(qin) PraS3* Rz (ary) PrsSy”) =
((R12 Gik) 33 (qnj) — FfQ(Qik)R§3(ij))P12P13 Séksgj) (2.24)
— trag ( (B9 (ans) Ri(aig) — Ria(a) Fla(aan) ) PraPrs SI°SY7) =
( 2(qij) P12 <S§k5 JF23(qu)P23 1?203((12,16)1923 Sgksécj)) '
(2.25)

This expression provides the upper line in the equations of motion (2.19). To pro-
ceed we need degenerations of the identity (2.24) when y — 0. It comes from the
expansions (2.2), (2.11) and (2.13):

2 z,(1 2 2,(0 1) 5z z 1 Z
(@) Ry — Fh(@) Ry = 1y Rig(w) — Rig(a)Fia(a) - 5 P 02Ri (@) . (2.26)
In the same way in the limit x — 0 (2.24) takes the form

mﬁﬁmwﬂﬁwﬁw=@m>mw—ﬁu@u»y ()P (2.27)



Similarly to the ordinary (spin) Calogero-Moser case the terms linear in momenta
in the r.h.s. (2.23) (p; — pj)M¥ are cancelled out by the last term in the Lh.s.
of (2.22). Consider the first and the fourth terms from (2.23) without momenta.
Using evaluations similar to (2.25) we get

LIMIT — MY (LY —pily) =
. .. i . i ii\ (2.26
= 23 <<R12(qm)323(1) - F12(Qij)R23(0)) PraPis S2JS~’]”]> =

1

1) »z z
= trog <<7"§3)R13(q2'j) - Rls(Qij)Floz(Qij) )

= trag(Riy(qij) P2 S5 S5 mas(0)) — tros (R (qij) PraFs(ai;) Pos Sy S5 ) —

Py3 (9§in3(61¢]')> PisPis 55j8§j> _

) .
-3 tro3 (95, Ri»(ij) P28y S ,
(2.28)

where the relation (2.14) was also used (for the first term in the answer). The first
and the second terms in the obtained answer provide the last line in the equations of
motion (2.19), while the last term in (2.19) is the “unwanted term”.

In the same way, using (2.27) one gets
= traa(Riz(qij) Pio S5 S5 F3y(gij) Pas) — tras(Ria(aij) Pramas(0)85' 85 )+ (2.29)

+3 tros(0;, Ry (qij) Pr2SYSy) .

Again, the first two terms provide an input to equations of motion — the second line
in (2.19). The last term is the “unwanted term”. It is cancelled by the one from (2.28)
after taking the trace over the third component and imposing the constraints (2.18).

. Consider a diagonal N x N block (numbered ii) of the Lax equation. The Lh.s. of
the Lax equations is

. . 2.8) . Si
Lhs. = £1(2) = pily + tra(ST RSO Pro) &) ity + tra(Sirin(2)). (2.30)

The r.h.s. of the Lax equation is as follows:
rhs. = [£7% M7+ Y (ﬁ’w’“ - M“fc’“) . (2.31)
k:k#£i

The commutator term in (2.31) provides the commutator term in the equations of
motion (2.20) since it is the input from the internal #i-th top’s dynamics, and this
was derived in [44]. See (C.2)—(C.4). In order to simplify expression in the sum we
need the following degeneration of (1.8):

T2(2) R33(y) = Riz(x + y)ria(x) + raa(y) Riz(z +y) — O:Riz(x +y),  (2.32)

,10,



It corresponds to A = 1 = z. In the scalar case it is the identity (A.9). In the limit
x =q=—y from (2.32) we get

12(0) Ris(—a) = Biy"ra(a) — raa(@)Ri3" — 0BG + Fy(@)Pis. (233)
or, using (2.8)
t2(0) Rs(—q) = (r13(2)rs2(q) — r32(q)r13(2)) Pis — Fi3(2) Pis + Fiy(q) Prs . (2.34)
By differentiating (2.34) with respect to ¢ we obtain
Riy(a)F35(—4q) — Fia(a) Ras3(—q) = [F5p(a), r13(2)] Pia — 8qF3?2(q)P13. (2.35)
For k # i consider
£k AR Aqik gk —
= tros ( (R (aan) Fi(ans) — Fi (0 Ris(an) ) PraPraSy' 8§

= tr23<([F?(>)2(Qik)a r13(2)] P13 — ati??Q(Qik)P13> P12P135§k5§i) .

2.35
B2 2.36)

The commutator term in the obtained expression yields the sum term in the equations
of motion (2.20), while the last term in (2.36) provides equations of motion (2.21).
Indeed,

tI‘23(<8ti§)2(qik)P13>P12P1385k85i> = 1ntrog <8qZF§)2(qzk)P23$§kS§Z) R (237)

and the momenta is the scalar component in the Lh.s. (2.30).

2.3 Hamiltonian description

The Hamiltonian function. Let us compute the Hamiltonian for the model (2.15)-
(2.21). It comes from the generating function

% (22 (e Nztr(ﬁu ) Ztr(ﬁ” )£ (2)) (2.38)

i#]

Consider
tr (ﬁ”(z)) = ]\fpl2 + 2p; trio (7“12(2)8;) + trio3 (7‘12(2)7“13(2)8528:?) . (2.39)

As before, the numbered tensor components are Mat(NV,C)-valued. In order to sim-
plify (2.39) we use the identity (see [42, 43])

7”12(2)7“13(24-’[11) — 7“23(’[11)7“12(2) + 7“13(Z—|—w)7“23(w) = m12(2) + m23(w) + m13(2+w) s (2.40)

— 11 —



which can be treated as a half of the classical Yang-Baxter equation.? In the limit w —
0 (2.40) yields

7’12(2)7’13(2’) = rég)rlg(z) — 7“13(2)7“5(;)) — F103(Z)P23 + mu(z) + m23(0) + mlg(z) . (2.41)

Also, we are going to use the following R-matrix property:
tr1 Ry (2) = traRiy(2) = (2, q) 1N, (2.42)

where ¢(z,q) is the Kronecker function (A.1) but with possibly different normalization
factor and normalization of arguments. The property (2.42) holds true in the elliptic
case (C.15) as well as for its trigonometric and rational degenerations. From (2.42), expan-
sion (1.9) and (A.10) we also have similar properties for trir19(2) = Ej(2) and trymgz(z)
— they are scalar operators:

trlR(fz(z) = q_llN + trir2(2) + gtrimaa(z) + O(q2) . (2.43)

Return now to (2.39). On the constraints (2.18) the second term is equal to 2p; E; (z)const.
After summation over i it provides the Hamiltonian proportional to Zf\i 1 pi- Plugging (2.41)
into the last term of (2.39) we get

tr123 (7"12(2’)7‘13(2)8?8?) =

- trl%((rég)rm(z) — r13(2)ry) — Fly(2)Pas + ma3(0) + maa(z) + m13(z))S§iS§i> .
(2.44)

Due to (2.42) the first two terms are cancelled out after taking the trace over the component
1. By the same reason the last two terms in (2.44) provide 2try (m12(z))tras (S5 SE). These
are constants on the constraints (2.18). The rest of the terms are

tria3 (( — Fi3(2)Pas + mgg(O))Séi §’> (242) Es(2)tr (S”) ’ + Ntrog (m23 (0)S% §Z> , (2.45)

where E‘g(z)lN = —tr1(F5(2)) = —0.tr1(r13(2)) = —GZEl(z)lN. It is a scalar function
coming from (2.43) and similar to Ea(z) (A.4). The factor N in the last term comes from
try. The first term in (2.45) is a part of the Casimir function trS?, and the second one is

H™P(S%) from (1.1):
i 1 L
Htop (Szz) — 5 tri9 (mu(O)SizSéz) ) (2.46)
Next, consider
tr (ﬁij(z)ﬁji(z)) = trio3 (Rﬁ(qij)PmR‘lz?’(qji)PlS S;jS§i> _
(2.34)

= trio3 (sz(Qij)Rgs(jS)Pme S;'jséi) = (2.47)

- tngs(([ms(z), ra2(qi;)] — Fis(2) + ng(qij))p% ngsgz‘) .

2The difference of two such equations gives the classical Yang-Baxter equation for the classical r-matrix.
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Again, the commutator term vanishes after taking the trace over the first tensor component.
Therefore,

tr (ﬁij(z)ﬁji(z)> = t1"123(( — Fi5(2) + F:QQ(Qij)>P23 5;j8§i> =

~ o L (2.48)
= EQ(Z)tI‘ <S”Sﬁ) + Ntr12 (F201 (Qij)PH S?S%l) .
Finally, for the potential term from (1.1) we have
U(Sij, Sji, qij) = t1"12 <F201 (qij)Plg S?S%l) (2.49)
and the Hamiltonian (1.1) is of the form:
M E M o M o
H= ; 5 13 ;tfu (m12(0)5iz 51) + ;trlQ(Fgl(Qij)Plz S{]S?) : (2.50)

In M = 1 case H reproduce the Hamiltonian of the integrable top, while in the M = 1
case we obtain the spin Calogero-Moser Hamiltonian (1.16) up to terms containing S;; —
they are constant in this case (1.17).

Poisson brackets. The Poisson structure (before reduction (1.28)) consists of the canon-
ical brackets for positions and momenta

{pisqi} =65, Apipi} ={a,¢;} =0, i=1...M (2.51)

and the linear Poisson-Lie brackets for the S variables. They are of the form (B.7) but
for Mat(INM, C) case instead of Mat(M,C) in (B.7). It is convenient to write down these
brackets in terms of Mat(N, C)-valued blocks S¥. For i,j,k,l = 1...M and a,b,c,d =
1...N:

{82, Sk} = 8% 6" Gag — Sity 89 Gy (2.52)

or

{SY,. S5} = Pia 817 6 — S} Py o (2:53)

where Pjo as before the permutation operator in Mat(N,C)®2. For the diagonal blocks
we have

It is verified directly that

Proposition 2.2. The Poisson structure (2.51), (2.53) and the Hamiltonian (2.50) pro-
vides equations of (2.19)—(2.21), i.e. for the Lh.s. of the Lazx equation (2.1) we have

L(2) = [H, L(2)}. (2.55)
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2.4 Interacting tops
Suppose the matrix S is of rank one, i.e. (1.24) is fulfilled. Consider the potential

N
tr12<F201(Qij)P12 Sy 551) = > (F(4i) Pi2)abcaSp ST - (2.56)
a,b,c,d=1
The right multiplication of an element T15 = Zgj’k’l:l TijuEi; ® By € Mat(N, C)®? by
permutation operator Pig yields Tjjr — T, i.e.

N
trag <F§)2(Qz‘j)P23 3§j5§Z> = Y (Fh(@i)adaSoSh (2.57)
a,b,c,d=1
In the rank 1 case we have
S ST = Emi&m. = SiLST . (2.58)
Therefore,
trag <F??2(Qij)P23 5§j3§i> = trio <F102(qg'z‘)5fj 5?) = tr12 (Ffz(qz‘j)SfiSSj) : (2.59)

The Hamiltonian of interacting tops model acquires the form:

HPS = Z pl + 5 Ztru <m12 0)St'S ) + Ztrlz (F12(qZ])S 15?) : (2.60)

1<j

From the Poisson brackets (2.51), (2.54) we get the corresponding equations of motion:

M
ST =[S, tra(m12(0)S5)] + > [S7, tra(Fia(qi)S5*)] (2.61)
k:k#£i
M ..
= >tz (0 Flyaw)STSE) (2.62)

Kikti

In this model we are left with M matrix variables S¥ € Mat(N,C) of rank one. It is
notable that the spin part of the phase space (1.29) is isomorphic to a product of M
minimal coadjoint orbits (1.15):

mll'l //S,:)NM ~ Omln X Omll’l . (263)

M times

Notice that the orbits OW™ come from the constraints conditions (2.18). Hence it ap-
pears that

1. For the model of interacting tops the constraints (2.18) play the role of fixation of
the Casimir functions for M copies of gly (of rank one). Consequently, equations of
motion (2.61) are not changed after reduction. For the N = 1 case (the spin Calogero-
Moser model) we get S;; = 0 since the r.h.s. of (2.61) consists of commutators.
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2. The model of interacting tops is formulated in terms of M Mat(N, C)-valued variables
of rank one, describing the minimal coadjoint orbits. The integrability condition is
that all Casimir functions tr(S%) are equal to each other.?

3. The spin part of the phase space for the model of interacting tops coincides with
the phase space of GLy classical spin chain on M sites with the spins described by
minimal coadjoint orbits at each site.

Let us also remark that the top like models with matrix-valued variables were studied
in [44, 69] and [14]. In contrast to these papers here we deal with the models, where the
matrix variables have their own internal dynamics.

3 Classical r-matrix

In this section we describe the classical r-matrix structure for the Lax matrix (2.16). Since
L € Mat(NM,C) then the corresponding classical gly,,; r-matrix r € Mat(N M, C)®2.
Recall that for the Lax matrix we use the matrix basis (2.15), in which £ € Mat(M,C) ®
Mat(N,C). Let the Mat(M, C)-valued tensor components be numbered by primed num-
bers, and the Mat(N, C)-valued components — without primes (as before). Introduce the

following r-matrix:

My 2 My 2 w
riye(z,w) = Z Eii ® Ei @r12(2 —w) + Z Eij ® Eji ®R15"(qij) P12, (3.1)
i=1 i#j

so that ry/912 € Mat(M, C)®? @ Mat(N,C)®2. In the case M = 1 we come to a non-
dynamical r-matrix describing the top model, while in the N = 1 we reproduce the
dynamical r-matrix of the spin Calogero-Moser model (B.9). r-matrices of these type
are known in glyj, case and can be extended for arbitrary complex semisimple Lie alge-
bras [22-24, 48]. In the elliptic case (3.1) is known in the quantum case as well [49]. At
the same time (3.1) includes the cases, which have not been described yet. For instance,
the new cases correspond to the rational R}, (¢)-matrix from [40, 41]. Similarly to the Lax
equations the construction of the r-matrix (3.1) is based on the associative Yang-Baxter
equation (1.8) and its degenerations.

Proposition 3.1. Consider an R-matriz satisfying the associative Yang-Baxter equa-
tion (1.8), the classical limit (1.9) and the set of properties from the section 2.1. Then
for the Laz pair (2.15)—(2.16) the following classical exchange relation holds true:

{L11(2), Laa(w)} = [L11(2), rr212(2, w)] = [Lora(w), rar1ror (w, 2)] =

M (3.2)
— Z tI‘(Skk)aku'yQ/lz(Z, w) s
k=1

®More precisely, we can not confirm that the model is not integrable in the case tr(S™) # tr(S%7), but
the presented Lax pair does not work in this case.
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where

M
Li(z) =Y Ei; @1y ®LI(2)® 1y, (3.3)
i,j=1
M
Lys(w) =Y 1y @By @ 1y @ LM (w). (3.4)
k=1

The Poisson brackets in the l.h.s. of (3.2) are given by (2.51)—(2.54).

Proof. The proof is direct. Let us demonstrate how to verify (3.2) for several components
1/ 2

of Eij ® By, which are similar to those considered in (B.11)-(B.16) for the spin Calogero-

Moser model.

1 oy
the tensor component Eij @ Eji (17 j, j #k, 1 #k):
Lh.s. of (3.2):

tray (sza(q@'j)P13Rf'z”4(q]'k)P24{5§jaSik}) = —tr3 <3§kR§”3(qjk)P23RT3(Qz‘j)P13> - (35)
r.h.s. of (3.2):
tr (Sék(Rffg(qik)Pmez_ “(arj)Pra — RYy w(ql'j)P12R12U3(Qik)P23)> . (36
Expressions (3.5) and (3.6) coincide due to (1.8) and (2.4).

% 2/
the tensor component Ei @ Eij (i # j):

Lh.s. of (3.2):
tra (s i)} Pas S ) + s (ria ) R Pas S S1Y) =
= tr3 (SéjaQiRéu3(qij)P23> — tr3 (3§jR§U3(Qij)P23T13(Z)> : o0

r.h.s. of (3.2):
trs (S (R¥a(a) PaRiy “ (a50) Pua = m1a(z = 0)Ri(ai)P)) . (38)

Expressions (3.7) and (3.8) coincide due to (2.32) rewritten through the Fourier
symmetry (2.6) as

R ()R (w) = —RY (2 — w)rac(2) + rpe(w)REY (2 — w) — 0, RY (2 —w)  (3.9)
for distinct a, b, c.

% 2
the tensor component Eij ® Eji (i # j):
Lh.s. of (3.2):

trs <5§j3f3(Qij)PlsRé”s(qji)P23 - SéiRé”s(qu‘)P23R'fg(qz'j)P13> : (3.10)
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r.h.s. of (3.2):
tra (Sgi(rls(z)ng(qij)Pm - R]Z:Q_w(Qz‘j)Pmng(w))) n
+ tr (S§j(—Rf5w(Qij)P12r13(z) + r23(w)Rf§w(q¢j)P12)) _ (3.11)
— trs ( (ng' _ ng) Oy R']Z_Q—W(qij)pm) _

The last term comes from the second line of (3.2). Again, expressions (3.10) and (3.11)
coincide due to (3.9).
The rest of the components are verified similarly.

4 Examples

4.1 Elliptic models
Let us begin with the elliptic model [29, 30, 49, 67]. The Lax pair is of the form:

M
L(z) = Z Eij ®L9(2), LY(z) € Maty L(z) € Matyas, (4.1)
ij=1

where

L(z) = bij [ piln + S0y In Br(2) + Y S8 T pa(z,wa) | +
o0 (4.2)

S ij 4ij
+(1 — di5) za:Sa To Va <z,wa + N) ,
where the basis (C.8) in Mat(N, C) is used. Similarly, the M-matrix is of the form

ij ii Ef(2) — p(z
M J(Z) = 5z'j 8(0’0)1()2]\7()

1 .
1N + N 52’]’ ZSOZ; Ta fa(sza)+
oF0 (4.3)
1 . Qi
— (1 =6 i s
—i—N (1 (513)20;80{ Ta fa (z,wa—i— N) .
These formulae can be obtained from (2.15)-(2.17) and the R-matrix (C.15) together
with (A.8).

The Lax equations hold on the constraints
S(ioi70) =const, Vi. (4.4)

Instead of the standard basis (1.3) here we use the basis (C.8) for each N x N block. Then
the Poisson structure (1.5) takes the form

(S, 85"} = b kiap SHL 5 — Onjhpa St g, (4.5)

where £, g are the constants from (C.10).
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The Hamiltonian easily follows from gktrf?(z) = 3k Ea(2)tr(S?) + H due to (C.11)
and (A.8):

zpz—fzzs“s" PRI ) SCUE N R P

i=1 a#0 £ «
Let us show how this Hamiltonian is reproduced from the general formula (2.50). In order
to get the second term in (4.6) one should substitute mi2(0) into (2.50) from (C.17) and
use relation (A.12). For evaluation of the last sum in (2.50) we need to calculate F,(q)Pyo.
The answer for F5(q) is given in (C.18). Multiply it by P12 = (1/N) Y., T, ® T from
the left:

F&(‘])Plz—*f ZTb@)T b

1
+ N2 Z ®a(q; wa) (E1(q + wa) — E1(q) + 2m0rwq) %2,11 Loty @Ta—p -
a£(0.0)
(@7)

Let us redefine the summation index b — b—a in the last sum. Since kg = Kqp—q We have

Fiy(q)Pr2 =
2 (C.22)
N2 Z Ty T | —E2(q) + Z ©a(q,wa) (E1(q +wa) — E1(q) + 2m0rwa) Koy | =
a#0;b
1 q
= _]\ﬂzb:Tb®TbE2 (wb + N) .
(4.8)
Finally,
o LG
tr12<F201(qij)P12 5?%’) 23” S, B < ﬁ) : (4.9)

In the rank 1 case the answer for the Hamiltonian is given by (2.60). Plugging (C.18)
into (2.60) we get

Htops sz_izzsu 87,7, E2 wa)

i=1 a#0

M
N o
— 03 | B SESE =3 Calais o) (B (@157+0a) — B (a1 +2mi0r0) S 52
i#j a0
(4.10)

Let us show how the latter expression appears from (4.6). In the rank one case using (C.11)
(so that S = tr(SYT_,)/N) we get

tr(n? T_o ) tr(n' Ta &) tr(W T-o &' Ta &)  tx(SUT,SVT_,)
N2 - N2 - N2 '

S8’ = (4.11)
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In this way the Hamiltonian (4.6) acquires the form

7{tops — sz . Z ZS” Sm E2 wa)

i=1 a0

M .. ..
1 tI‘(S” Ta Sjj T_a) qz-j
—32 2 e By (wa+ ) -
i7j o

(4.12)

which is the model of interacting tops of (1.26) type. The last terms in (4.12) can be
simplified in the following way. Substitute S* = > SffT7 and 8/ = > S/ T, into (4.12).
It follows from (C.10)—(C.11) that

tr(Ty Tl T-0) = NKZ ,0u4n - (4.13)
Therefore,
tr(S* T, SV T-,) . G\ o
3 = By (wa+22) = Z SH B (wa+2) k2, (419)
«

Using (C.20)—(C.21) and summing up over o we obtain the last term in (4.10).

4.2 Trigonometric models

The general classification of the unitary trigonometric R-matrices satisfying associative
Yang-Baxter equation was given in [58, 59]. It includes the 7-vertex deformation [20] of the
6-vertex R-matrix and its GLy generalizations such as the non-standard R-matrix [2]. The
integrable tops and related structures based on these R-matrices were described in [36, 37].

Here we restrict ourselves to the case N = 2. The 7-vertex R-matrix is of the follow-

ing form:
coth(z) + coth(h) 0 0 0
0 sinh~!(h) sinh~!(2) 0
Rly(z) = (4.15)
0 sinh ™! (2) sinh ™! (h) 0
C'sinh(z + h) 0 0 coth(z) + coth(h)

where C'is a constant. In the limit C' — 0 the lower left-hand corner vanishes and we get the
6-vertex XXZ R-matrix. For the classical r-matrix and its derivative (F(2) = 0,712(2))

we have
coth(z) 0 0 0
0 0 sinh™!(z) 0
= 4.16
r12() 0 sinhfl(z) 0 0 ( )
C'sinh(z) 0 0 coth(z)
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and

1
sinh?(q) 0 Oh( ) 0
0 0 — =
o= | _weww g7 (4.17)
inh
C cosh S 0 . 0o ——4
cos (Q) sinh?(q)

respectively. The Fourier transformed F° matrix is of the form:

1
sinh?(q) Oh( ) 0 0
0 — oM 0 0
B@re=| o 0y (1.15)
sinh?(q)
C cosh(q) 0 0 — m

From the latter matrix using (1.32) we obtain

UST, S q; — q;) = trig ((9%7“21((1@)1312 Sij3§i> =
o ij oji AN
= Sinh”(qs;) (511511 + 822522)

cosh(qij;)

eI (Stisth + Sibsh) + C cosh(ai) S
ij

(4.19)

Similarly, using (1.33) and (4.17) we get the potential for the model of interacting tops:

V(8",87,qi — qj) = tri <5qiT12(qij)5fngj> =

1 i Qjj i Qij cosh(gij) ( cii cjj i Qjj i Qij
= _sinhQ(qij)<SHSﬁ + 322‘3%%) - m (5125%{ + 5215%) + C cosh(g;;)S15S73 -
(4.20)
The top Hamiltonian H'°P(S%) entering (1.1) or (1.26) is of the form:
op(ciiy _ L ((qii i i
HP(S™) = 5 (817 + (5)?) + C(S1)*. (4.21)

4.3 Rational models

The rational R-matrices satisfying the required properties are represented by the 11-vertex
deformation [20] of the 6-vertex XXX (Yang’s) R-matrix. Its higher rank analogues were
derived in [66] and [40, 41]. As in trigonometric case here we restrict ourselves to the case
N = 2. The 11-vertex R-matrix is of the following form:

Al 4271 0 0 0
—h—z hl 21 0
Rl (2) = ) 4.22

W =22k —2h2—23 h+4+z h+z Khl4zl

In order to get the XXX R-matrix one may take the limit lim. g e ' R (ez).
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The classical r-matrix, the F{, matrix and its Fourier dual are of the form:

z1 0 0 0
-z 0 27t 0
= 4.23
ri2(2) —z 2zt 0 0 ( )
—23 2z oz 27!
—q2 0 0 0
-1 0 —¢g2 0
Fih(q) = 4.24
12(9) 1 —¢2 0 0 ( )
-3¢ 1 1 —q2
—q~2 0 0
-1 —¢2 0 0
Fpy(q)Prg = 4.2
12(9) P12 1 0 —a2 0 (4.25)
-3¢ 1 1 —q¢2
From (4.25) using (1.32) we obtain
U(SY, 8~ 4j) =~ 55 (ST + ShSh + Sk + St )+
%% =4 (4.26)
+ 815835 + S5 Sty — SipSh — Sty — 3(ai — 4) S -
Similarly, from (4.24) using (1.33) we obtain
VS" 80— 0y) =~ (ST + S} + S + SfisH) +
qi — qj (4.27)
+ 81583 + S5Si) — SipSH — SISH — 3(a; — 4))*S1a i3 -
The top Hamiltonian H*P(S%) entering (1.1) or (1.26) is of the form:
HIOP(S™) = S15(S5 — Sih) - (4.28)

5 Discussion

A possible application of the obtained family of integrable models is in constructing quan-
tum integrable anisotropic long-rang spin chains. The basic idea is that such spin chains
appear from the models of interacting tops by the so-called freezing trick likewise the
Haldane-Shastry-Inozemtsev spin chains [31-34] come from the ordinary spin Calogero-
Moser-Sutherland models. A direct quantization of the interacting tops is a separate prob-
lem, which will be discussed elsewhere. At the same time the quantum Hamiltonian of
interacting tops appears in the so-called R-matrix-valued Lax pairs for the (classical) spin-
less Calogero-Moser model [29, 30, 42, 43, 60]. These are the Lax pairs in a large space
Mat(M, C) ® Mat(N,C)®M:

M
LM=N"Eup®Lay, Lab=0wpa 3™ +v(1—6w)R:y, Riy=Ri(da—a). (5.1)
a,b=1
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and similarly for the accompany M-matrix

MM = vSpda + V(1 — 8ap) F2y + 10y FO,  F3 = 93, RZ (00 — @) (5.2)

a a

where

M M M
do = — Z Fc?c? ]:O = Z Fboc = Z 6!1brbc(ch) : (5'3)
c:c#a b,c:b>c b,c:b>c
In the N = 1 case this Lax pair coincides with the widely known Krichever’s result [38]
for gl,; Calogero-Moser model. The last term F° in (5.2) enters M as a scalar (it is an
identity matrix in Mat(M, C) component) in the auxiliary space Mat(M, C). Therefore, it
can be moved to the Lh.s. of the Lax equation. This yields

{HM MY L wF0 LM (2)] = [£%M(2), MM (2)], (5.4)

where MM = MM _ 1, ® FO. On the one hand (5.4) is just a rewritten classical Lax
equation for the spinless Calogero-Moser model. On the other hand we may treat it as
half-quantum Lax equation in a sense that the dynamics is given by the interacting tops
Hamiltonian (2.60), where the spin variables are already quantized, while the positions and
momenta remain classical. Indeed, the quantization of S{i in fundamental representation
of GLy is given by the permutation operator P;;. Plugging it into the potential of (2.60)
we get the FO term from (5.2) and (5.4).

Thus the R-matrix valued Lax pairs are multidimensional classical Lax pairs for the
spinless Calogero-Moser models and at the same time they are quantum Lax pairs for
the models of interacting tops with the spin variables being quantized in the fundamental
representation of GLy, i.e. the ¥ term is the quantization of the potential V(S%,S%7, ¢; —
a;) (1.39)

Let us also mention that there is another class of integrable models with the Hamilto-
nian of type (1.26). These are the Gaudin type models [53]. The corresponding Lax matrix
is of size M x M. It has simple poles at n points on elliptic curve (or its degenerations) with
the classical spin variables matrices attached to each point. The number of points is not
necessarily equal to M. It is an interesting task to find interrelations between the Gaudin
models and the models of interacting tops through the spectral duality [50-52] based on
the rank-size duality transformation.

The classical spinless Calogero-Moser model possesses an equilibrium position, where
pi = 0 and ¢; = x; (for example, z; = i/M [21]). At this point the term {H®M LM}
vanishes from the Lh.s. of (5.4), and we are left with the quantum Lax equation for some
long-range (quantum) spin chain. It is an anisotropic generalization [60] of the Haldane-
Shastry-Inozemtsev type chains. An open question is which FO provide integrable spin
chains? To confirm integrability we need to construct higher Hamiltonians, which commute
with each other and with F°(¢; = ;). Taking into account all the above we guess that
the model of interacting tops together with the freezing trick (the quantum version of the
equilibrium position) can be used to calculate higher spin chain Hamiltonians and to prove
their commutativity. For this purpose we need to construct a quantization for the model
of interacting tops, which is the subject of our next paper.
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Another one intriguing question is to construct relativistic generalization of the models
discussed above. While the classical models of relativistic interacting tops are expected to
be relatively simple (the block L in (2.16) should be replaced by tra(S,” Rz, (gij +n1)P12))
its quantum versions and the related long-range spin chain were not studied yet as well as
the corresponding R-matrix valued Lax pairs.

A Definitions and identities

The following set of functions is used in this paper [63—65]. The first one is the Kronecker

function:
1/n+1/z — rational case,
®(n,z) = § coth(n) + coth(z) — trigonometric case, (A1)
% — elliptic case.

Its elliptic version is given in terms of the odd theta-function

I(z) = ;Zexp (m <k + ;)2 + 2m <z + ;) <k: + ;)) (A.2)

on elliptic curve with moduli 7 (Im(7) > 0). Next are the first Eisenstein (odd) function
and the Weierstrass (even) p-function:

1/z, 1/22,
Eq(z) = < coth(z), o(z) = ¢ 1/sinh?(2), (A.3)
P(2)/0(2), ~0.E1(2) + 35}
We also need the derivatives
Es(z) = —0,E1(2) (A.4)
and
f(z,0) = 049(2,q) = ¢(2,9)(Er(z + q) — Er(q)) - (A.5)

The one (A.4) is the second Eisenstein function.
The main relation is the Fay trisecant identity:

¢(z,Q)p(w, u) = ¢(z — w,q)p(w, ¢ + u) + d(w — z,u)p(2, ¢ + u). (A.6)

The following degenerations of (A.6) are necessary for the Lax equations and r-matrix
structures:

o(z,2)f(2,y) — d(2,9) f(2,2) = ¢(2, 2 + y)(p(z) — p(v)), (A7)
o(n,2)p(n, —2) = p(n) — p(z) = Ea(n) — Ea(z) . (A.8)
Also

(2, q)d(w, q) = d(z + w, q)(E1(2) + Er1(w) + Ei(q) — Ei(z +w +q)) =

(A.9)
=¢(z +w,q)(E1(2) + Er(w)) — f(z +w,q).
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The local behavior of the Kronecker function and the first Eisenstein function near its

simple pole at z = 0 is as follows:

B(,) = -+ By(u) + 5 (BA(w) — p(u)) + O(2),

B =L 220

From (A.10) and (A.5) it follows that

f(0,u) = —FEs(u) .

+0(2%).

B Spin gl,, Calogero-Moser model

The Lax equations
L9 (2) = [0 (2), MV ()]

with the Lax pair
ijpm(z) = 6ij(pi + SuEn(2)) + (1 — 0i5)Sijd(z, 4ij)
M (2)55 = (1= 6j) S5 (2,4 — a5)
provide (after restriction on the constraints (1.17)) equations of motion
M
Gi=pi, Gi= SySu¢le—q),
J#i
. . M
Si=0, Sij=> SuSiplsi—ar) —elgj —ar)), i #3-
kg
The Lh.s. of the Lax equations (B.1) is generated by the Hamiltonian (1.16)
Lspin(z) _ {HSpin, LSpin(Z)}
and the linear Poisson-Lie brackets on glj,:

{Sij, S} = —Subkj + Skjou or {Si,S2} = [S2, Pio].

(A.10)

(A.11)

(A.12)

(B.6)

(B.7)

Recall that the Poisson reduction with respect to Cartan action (1.18) is non-trivial. For

instance, in the rank 1 case (1.22) such reduction leads to the spinless model (1.23). Explicit

expression of the reduced Poisson structure depends on a choice of gauge fixation conditions.

The equations of motion (B.4)—-(B.5) are not the reduced. They are obtained by a simple

restriction. To get the final equations one should perform the Dirac reduction and evaluate

the Dirac terms.
The classical r-matrix structure is as follows:

(L™ (2), L™ (w)} = [LP™(2), 15" (2, w)] — [LP™ (w), 3™ (w, )]~

=D By ® Eji(Si — Sj5) f (2 — w, qij)

i#]
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with

rigm(z, w) = Fi(z — Z E; @ E;; + Z ¢z —w,qi5) Eij @ Ej; . (B.9)
i#j
Here the linear Poisson brackets (B.7) are assumed as well. The Dirac reduction is not yet
performed. However, we can see that the restriction on the constraints (1.17) kills the last
term in (B.8), and we are left with the standard linear classical r-matrix structure. It is
enough for Poisson commutativity

{tr(LF(2)), tr(L™(w))} =0, VYk,neZy, z,weC (B.10)

necessary for the Liouville integrability. The proof of (B.8) is direct. It is based on the
identities (A.6)—(A.9). Let us write down a few examples of verification of (B.8):

the tensor component Eijj @ Ej, (i #j,j # k., k#1):
Lh.s. of (B.8):

{LSpm( )s Ljiin(w)} = {Sij, Sjr}é(2, qij)p(w, qjx) = =S (2, Gij)p(w, ) . (B.11)
r.h.s. of (B.8):
Sikd(2, @ir)P(2 — w, qrj) + Sikd(w, qir)p(w — 2, ¢53) - (B.12)
Expressions (B.11) and (B.12) coincide due to (A.6).

the tensor component Ey @ Eij (i # j):
Lh.s. of (B.8):

(L™ (2), L™ (W)} = {pi, d(w, 4i5)}Sij + {Sis, Sij }E1 (2)d(w, 4ij) =

(B.13)
= Sij f(w, qij) — SijEr(2)d(w, ¢;5) -
r.h.s. of (B.8):
Sij(ﬁ(?:, qij)gb(z —w, qji) + SijEl(w — z)¢(w, qij) . (B.14)
Expressions (B.13) and (B.14) coincide due to (A.9).
the tensor component E;; @ Ej; (i # j):
Lh.s. of (B.8):
{Lspln( ) Spln( )} — (B 15)

= {Sij, Sji} (2, 4ij)p(w, qji) = (Sii — Sj5)(2, Gij)(—w, ¢ij) -
The last term from the r.h.s. of (B.8) contributes in this component. The r.h.s.
of (B.8):
(Pi + SiiEr(2) = pj = SjiE1(2)) (2 — w, qij) =
= (pj + SjEr(w) — pi = SiEr (w))d(w — 2, 4ji) — (S — Sj5) f(2 — w, q35) =
= (Sii = Sjj) ((El(Z) — E1(w))d(z —w,q;5) — f(z —w, qz’j)) :
(B.16)

Expressions (B.15) and (B.16) coincide due to (A.9).
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C Integrable gl tops

It was shown in [44] (see also [40, 41]) that the Lax equations

L(z,8) = [L(z,5), M(z,S)] (C.1)
are equivalent to equations
S =[S,J(S)) (C.2)
for the Lax pair
L(Z,S) :tFQ(Tlg(Z)Sz), M(Z,S) :trQ(mlg(z)Sg), Sz = 1N®S (03)
and
J(S) = tr2(m12(0)52) . (04)

constructed by means of the coefficients of the (classical limit) expansion (1.9) for an R-
matrix satisfying the associative Yang-Baxter equation (1.8) and the properties (2.2)—(2.5).
The answer (C.3) can be written more explicitly. For

N
ri(z) = D rijulz) e © ex (C.5)
il l=1
(C.3) means
N
L(z,8) = Y riju(2)Skei (C.6)
ig Jel=1

since tr(eg;S) = Sik.
Let us briefly describe how these formulae reproduce the elliptic top from [39]. In the
elliptic case we need special matrix basis in Mat(V,C). Consider the matrices

271
Q1 = Ox1 exp <Nk> A =0k ir1—omoan, QY =AN =1y, (C.7)

Then the basis in Mat(NV, C) is given by the following set:

To = Toya, = €Xp (% a1a2> QYA a=(aj,a2) EZN X LN . (C.8)
Since
2
o (5 o10r) @ = 4 (C9)
we have
T
ToTp = kaplarp, Hap = eXp (N(&OQ - ﬁ2041)> . (C.10)

where ao+ 8 = (a1 + 1, 22 + B2). The non-degenerate pairing is given by the matrix trace:

tr(TaTﬁ) = N5a+5 , To=1pn. (C.11)
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Define the set of functions numerated by a = (a1,a2) € Zn X Zn:

a1 + asT

¥ (C.12)

@a(zawa + u) = exp (27”% Z) ¢(Zawa =+ u) y Wa =
and introduce notation
fa(z,wa +u) = exp (2#2% z) f(z,we +u). (C.13)

The Baxter-Belavin R-matrix [11-13] satisfying all required properties including the Fourier
symmetry (2.6) is of the form:

REP(h2)= Y ¢alz,h+we) Ty T4 € Mat(N,C)*?. (C.14)

ac ZN XZN

This R-matrix satisfies required properties but with different normalizations. For example,
the Fourier symmetry has form REP(h, 2)Pia = REP(2/N, Nh) (see the Fourier transfor-
mation formulae in [69]). To fulfill all requirements including the normalization (2.5) we
consider

1 h
Rl (2) = REB(R/N, 2) = N > a <z N —i—wa> T, ®T_, € Mat(N,C)®?. (C.15)

a€ELNXTLN

The corresponding classical r-matrix is as follows

1 1
ria(2) = & Ba(2) In @ Iy + > Ga(z,wa) Ta® T_q € Mat(N,C)®?,  (C.16)
a#(0,0)

and

_ Bi(z) — p(2)

1
mi(z) = == v Iy + o D falz,we) T @ T-q € Mat(N,C)®*. (C.17)

a#(0,0)
Then the formulae for the Lax pair (C.3) reproduce the Lax pair of the elliptic top. It is
contained in the Lax pair (4.1)—(4.3) as a diagonal N x N block.
The derivative of the classical r-matrix is obtained through (A.5):

FRhy(2) = 0.1m12(2) = —— Ea(2) In ® 1y +

+ Ya(z,wa) (F1(z + wqe) — E1(2) + 2m0rwa) Ty @ T—q -

a#(0,0)

=z = 2|

(C.18)

The Fourier symmetry Rfy(z) = Ri,(h)Pia for the R-matrix (C.15) is based on the following
set of identities for the functions (C.12):

1 z
Do KE e (N, wo + N) = oo (z,w0y +h), VyEZyxZLy. (C.19)
(0%
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Be degeneration of the latter identities on can deduce (see [69]):

3" Balwa +4) = N*Ex(Ng) (C.20)

and for v # 0

Z ni7,yE2(wa +q) = —N?p,(Nq,w,)(E1(Nq + w,) — E1(Nq) + 2md,w,).  (C.21)

Conversely,

— Ba(q) + 3 K2 %a(0,wa) (Br (g + wa) = Br(q) +2mdswa) = —Es (w, + %) . (C.22)
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