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1 Introduction

In this paper we describe the classical integrable glNM model given by the Hamiltonian of

the following form:

H =
M∑

i=1

p2i
2

+
M∑

i=1

Htop(Sii) +
1

2

M∑

i,j: i 6=j

U(Sij ,Sji, qi − qj) , (1.1)

where pi and qj are the canonical variables:

{pi, qj} = δij , {pi, pj} = {qi, qj} = 0 , i, j = 1 . . .M . (1.2)

For all i, j = 1 . . .M Sij are N ×N matrices of “classical spin” variables, i.e.

Sij =
N∑

a,b=1

Sij
ab eab ∈ Mat(N,C) , (1.3)
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where {eab , a, b = 1 . . . N} is the standard basis in Mat(N,C). They are naturally arranged

into NM ×NM block-matrix S:

S =
M∑

i,j=1

Eij ⊗ Sij =
M∑

i,j=1

N∑

a,b=1

Sij
abEij ⊗ eab ∈ Mat(NM,C) , (1.4)

where {Eij , i, j = 1 . . .M} is the standard basis in Mat(M,C). The Poisson structure is

given by the Poisson-Lie brackets on gl∗NM Lie coalgebra:

{Sij
ab,S

kl
cd} = Skj

cb δil δad − Sil
ad δ

kj δbc . (1.5)

Integrable tops. In order to clarify the structure of the Hamiltonian (1.1) consider the

case M = 1. Then the last term in (1.1) is absent, and we are left with a free particle (with

momenta p1) and the Hamiltonian Htop(S11) of integrable top of Euler-Arnold type [3–7].

Here we deal with the models admitting the Lax pairs with spectral parameter on elliptic

curves [61, 62]. The general form for equations of motion (for the top like models) is

Ṡ = [S, J(S)] , (1.6)

where S ∈ Mat(N,C) is the matrix of dynamical variables, while the inverse inertia tensor

J is a linear map

J(S) =

N∑

i,j,k,l=1

Jijkl eij Slk ∈ Mat(N,C) . (1.7)

In the general case the model (1.6) is not integrable. It is integrable for some special

J(S) only. More precisely, here we consider special tops, which were described in [1, 36,

37, 39–41, 68] for elliptic, trigonometric and rational cases respectively. All of them can

be written [40, 41, 44] in the R-matrix form based on a quantum GLN R-matrix (in the

fundamental representation) satisfying the associative Yang-Baxter equation [25, 26, 54]:

R~
12(q12)R

η
23(q23) = Rη

13(q13)R
~−η
12 (q12) +Rη−~

23 (q23)R
~
13(q13) , qab = qa − qb . (1.8)

Having solution of (1.8) with some additional properties (see the next section) the inverse

inertia tensor comes from the term m12(z) in the classical limit expansion:

R~
12(z) =

1

~
1N ⊗ 1N + r12(z) + ~m12(z) +O(~2) . (1.9)

Namely, for

m12(z) =
N∑

i,j,k,l=1

mijkl(z) eij ⊗ ekl (1.10)

the components of J are

Jijkl = mijkl(0) , (1.11)

that is

J(S) = tr2(m12(0)S2) , S2 = 1N ⊗ S . (1.12)
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The Hamiltonian of the model is of the form:

Htop(S) =
1

2
tr(SJ(S)) =

1

2
tr12(m12(0)S1S2) , S1 = S ⊗ 1N . (1.13)

This expression enters (1.1). The phase space of the model is a coadjoint orbit

Mtop = ON (1.14)

of GLN Lie group, i.e. the space spanned by Sij with some fixed eigenvalues of matrix S (or

the Casimir functions Ck = trSk). Its dimension depends on the eigenvalues. The minimal

orbit Omin
N corresponds to N − 1 coincident eigenvalues, i.e. the matrix S (up to a matrix

proportional to identity matrix) is of rank one:

dimOmin
N = 2(N − 1) . (1.15)

The Lax pair is given in the appendix C.

Spin Calogero-Moser model. In the case N = 1 the second term in (1.1) is trivial,

and the last one boils down to the spin Calogero-Moser model [8–10, 27, 28]:

Hspin =
M∑

i=1

p2i
2

−
M∑

i>j

SijSjiE2(qi − qj) , (1.16)

where E2(q) is the second Eisenstein function (A.4). Some details of the spin Calogero-

Moser model are given in the appendix B. Let us only remark here that the model (1.16)

is integrable through the Lax representation and the classical r-matrix structure on the

constraints

Sii = ν for all i = 1 . . .M (1.17)

supplemented by some gauge fixation conditions generated by the coadjoint action of the

Cartan subgroup HM ⊂ GLM . That is the phase space of the model is given by

Mspin = T ∗hM ×OM//HM , (1.18)

where hM = Lie(HM ) is the Lie algebra of HM , and OM is an orbit of the coadjoint action of

GLM . The first factor in (1.18) describes the many-body degrees of freedom (1.2), and the

second factor describes the “classical spin” variables. In the general case the spin variables

can be parameterized by the set of canonically conjugated variables:

Sij =
N∑

a=1

ξiaη
j
a ,

{ξia, η
j
b} = δabδij , i, j = 1 . . .M , a, b = 1 . . . N .

(1.19)

The Poisson structure (B.7) is reproduced in this way. Using these notations it is easy to

see that

SijSji =
N∑

a,b=1

ξiaη
j
aξ

j
bη

i
b = tr(SiiSjj) , (1.20)
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and the potential in the Hamiltonian (1.16) takes the form

Vspin(Sii,Sjj , qij) = −tr(SiiSjj)E2(qi − qj) . (1.21)

Below we construct anisotropic (in Mat(N,C) space) generalizations of (1.21).

In the special case, when the matrix of spin variables S is of rank 1 (it is the minimal

Omin
M orbit (1.15))

Sij = ξiηj (1.22)

the reduction with respect to the action of HM leads to the spinless Calogero-Moser (CM)

model [15–19, 38] since the second factor in (1.18) become trivial. Indeed, plugging (1.22)

into (1.16) and using (1.17) we get

Hspin =
M∑

i=1

p2i
2

− ν2
M∑

i>j

E2(qi − qj) . (1.23)

The spinless Calogero-Moser models are gauge equivalent to the special top with the min-

imal orbit (1.15). See [1, 36, 37, 39] for details.

Interacting tops. Turning back to the glNM model (1.1) consider the special case when

the matrix S is of rank 1:

Sij
ab = ξiaη

j
b . (1.24)

We will see that in this case the last term in (1.1) is rewritten in the form

U(Sij ,Sji, qi − qj) = V(Sii,Sjj , qi − qj) , (1.25)

and the Hamiltonian (1.1) acquires the form

Htops =
M∑

i=1

p2i
2

+
M∑

i=1

Htop(Sii) +
1

2

M∑

i,j: i 6=j

V(Sii,Sjj , qi − qj) . (1.26)

It describes mechanics ofM interacting integrable glN tops. The Hamiltonian of (1.26) type

was introduced by A.P. Polychronakos [55–57] from his study of matrix models. Then the

elliptic version of model (1.1) and (1.26) was described as glNM Hitchin system [49, 67, 68]

(see some details in section 4), and (1.1) was also generalized for arbitrary complex Lie

group [45–47].

Similarly to the spin Calogero-Moser model the general model (1.1) requires additional

constraints (cf. (1.17))

tr(Sii) = ν for all i = 1 . . .M . (1.27)

They should be supplied with some gauge fixation conditions generated by the coadjoint

action of H′
NM ⊂ HNM — subgroup of the Cartan subgroup HNM ⊂ GLNM with elements

of the form
∑M

i=1 hiEii ⊗ 1N . Together with (1.27) the gauge fixation conditions are the

second class constraints, and one can perform the Dirac reduction procedure to compute

the final Poisson structure starting from the linear one (1.5). The phase space of the general

model (1.1) is of the from:

Mgen = T ∗h′NM ×ONM//H′
NM , h′NM = Lie(H′

NM ) . (1.28)
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For the interacting tops case (1.24)–(1.26) the orbit ONM becomes Omin
NM . Then the phase

space

Mtops = T ∗h′NM ×Omin
NM//H′

NM (1.29)

has dimension 2NM , while its “spin part” is of dimension

dim
(

Omin
NM//H′

NM

)

= 2NM − 2M . (1.30)

A brief summary of the described models is given in the following scheme:

glNM model (1.1)

M = 1 ւ


y ց N = 1

integrable glN top


y glM spin CM

rk(S) = 1



y rank(S) = 1 :



yrk(S) = 1

special glN top Omin
N



y glM spinless CM

M = 1 տ


y ր N = 1

interacting tops (1.26)

(1.31)

Purpose of the paper. is to describe a family of the models (1.1) and (1.26) in terms of

R-matrices satisfying the associative Yang-Baxter equation (1.8). We give explicit formulae

for NM ×NM Lax pair with spectral parameter (see the next section) and compute the

Hamiltonians (1.1) and (1.26). As a result we obtain the potentials

U(Sij ,Sji, qi − qj) = tr12

(

∂qir21(qij)P12 S
ij
1 Sji

2

)

(1.32)

for the general model (1.1) and

V(Sii,Sjj , qi − qj) = tr12

(

∂qir12(qij)S
ii
1 S

jj
2

)

(1.33)

for the model of interacting tops (1.26). Notice that in the simplest case related to the

rational Yang’s XXX R-matrix

Rz
12(qij) =

1N ⊗ 1N
z

+
P12

qi − qj
(1.34)

we get just the spin Calogero-Moser model written in terms of matrix variables:

V = −
tr(SiiSjj)

(qi − qj)2
. (1.35)

Next, we proceed to the classical (dynamical) r-matrix. It is similar to the one for the

spin Calogero-Moser case [8–10] but this time its matrix elements are R-matrices them-

selves. The classical exchange relations are verified directly. This guarantees the Poisson

commutativity of the Hamiltonians generated by the Lax matrix.

– 5 –



J
H
E
P
1
0
(
2
0
1
9
)
0
8
1

The answers (1.32) and (1.33) depend on the classical r-matrix, which appears from the

quantum one in the limit (1.9). The quantum R-matrix enters the higher Hamiltonians. It

should satisfy a set of properties which we discuss in the next section. The most general R-

matrix satisfying all the required properties is the elliptic Baxter-Balavin’s one. In this case

the integrable models are known. They were first described by Polychronakos in [55–57]

and later reproduced as Hitchin type systems on the bundles with nontrivial characteristic

classes in [49, 67].

The family of the obtained models includes new integrable systems in the trigonometric

and rational cases. While the quantization of the potential V from (1.35) is given by

isotropic spin exchange operator V̂ = −Pij/(qi − qj)
2, the obtained general answer (1.32)–

(1.33) leads to the anisotropic potentials. An example of such anisotropic extension to the

spin (trigonometric) Calogero-Moser-Sutherland model was first suggested by Hikami and

Wadati [35] at quantum level. From the point of view of (1.33) their answer corresponds

to the gl2 XXZ r-matrix. At the same time the set of trigonometric R-matrices satisfying

the required properties is much lager [2, 58, 59], and all these R-matrices can be used

for construction of the integrable tops [36, 37]. The results of the present paper are also

valid for all these cases. An example based on the gl2 7-th vertex deformation of the

XXZ R-matrix is given section 4. Similarly, in the rational case the admissible R-matrices

includes not only the Yang’s R-matrix (1.34) but also its deformations such as 11-vertex R-

matrix [20] and its higher rank versions [40, 41]. An example related to 11-vertex R-matrix

is given in section 4.

Possible applications of the described models are discussed in the end. Namely, we

argue that the obtained models can be used for construction of higher Hamiltonians for

the anisotropic generalizations of the Haldane-Shastry-Inozemtsev long-range spin chains.

The latter is important for the proof of integrability of these chains, which still remains an

open problem.

2 Lax equations

In this section we construct the NM ×NM Lax pair L(z),M(z) satisfying the Lax equa-

tions

L̇(z) = [L(z),M(z)] (2.1)

for the model (1.1). Our construction is based on GLN R-matrix — solution of the asso-

ciative Yang-Baxter equation (1.8). Besides (1.8) the R-matrix should also satisfy a set of

properties.

2.1 R-matrix properties

We consider R-matrices satisfying (1.8) and (1.9). Let us also impose the following set of

conditions for GLN R-matrices under consideration:

Expansion near z = 0:

R~
12(z) =

1

z
P12 +R

~,(0)
12 + zR

~,(1)
12 +O(z2) , (2.2)
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Also,

R
z,(0)
12 =

1

z
1N ⊗ 1N + r

(0)
12 +O(z) , r12(z) =

1

z
P12 + r

(0)
12 + z r

(1)
12 +O(z2) . (2.3)

Skew-symmetry :1

R~
12(z) = −R−~

21 (−z) = −P12R
−~

12 (−z)P12 , P12 =
N∑

i,j=1

Eij ⊗ Eji . (2.4)

Unitarity :

R~
12(z)R

~
21(−z) = f~(z) 1N ⊗ 1N , f~(z) = ℘(~)− ℘(z) . (2.5)

We are also going to use the Fourier symmetry :

R~
12(z)P12 = Rz

12(~) . (2.6)

It is not necessary but convenient property. The following relations on the coefficients of

expansions (1.9) and (2.2) follow from the skew-symmetry:

r12(z) = −r21(−z) , m12(z) = m21(−z) ,

R
~,(0)
12 = −R

−~,(0)
21 , r

(0)
12 = −r

(0)
21 .

(2.7)

Similarly, from the Fourier symmetry we have (see details in [69]):

R
z,(0)
12 = r12(z)P12 ,

R
z,(1)
12 = m12(z)P12 ,

r
(0)
12 = r

(0)
12 P12 .

(2.8)

In what follows we use special notation for the R-matrix derivative:

F z
12(q) = ∂qR

z
12(q) . (2.9)

It is the R-matrix analogue of the function (A.5) entering the M -matrix of the spin

Calogero-Moser model (B.3) likewise R-matrix itself is a matrix analogue of the Kronecker

function (A.1) due to similarity of (A.6) and (1.8). See [42, 43]. Then from the classical

limit (1.9) we have

F 0
12(q) = ∂qR

z
12(q)

∣
∣
z=0

= ∂qr12(q) . (2.10)

The latter is the R-matrix analogue of the function −E2(q) (A.12) entering the Calogero-

Moser potential. Notice also that F 0
12(q) = F 0

21(−q) due to (2.7). From (2.9) and (2.2) the

local expansion near q = 0 is as follows

F z
12(q) = −

1

q2
P12 +R

z,(1)
12 +O(q) (2.11)

1
P12 entering (2.4) is the permutation operator, (P12)

2 = 1N ⊗ 1N .

– 7 –
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and, therefore,

F 0
12(q) = −

1

q2
P12 +R

z,(1)
12

∣
∣
∣
z=0

+O(q)
(2.8)
= −

1

q2
P12 +m12(0)P12 +O(q) . (2.12)

On the other hand

F 0
12(q)

(2.10)
= ∂qr12(q)

(2.3)
= −

1

q2
P12 + r

(1)
12 +O(q) . (2.13)

From (2.12) and (2.13) we conclude that

r
(1)
12 = m12(0)P12 . (2.14)

In the elliptic case the set of properties is fulfilled by the Baxter-Belavin [11–13] R-

matrix (C.14). A family of trigonometric R-matrices include the XXZ 6-vertex one, its

7-vertex deformation [20] and GLN generalizations [2, 58, 59]. See a brief review and ap-

plications to integrable tops in [36, 37]. The rational R-matrices possessing the properties

are the XXX Yang’s R-matrix, its 11-vertex deformation [20] and higher rank analogues

obtained from the elliptic case by special limiting procedure [66]. The final answer for such

R-matrix was obtained in [40, 41] through the gauge equivalence between the relativistic

top with minimal orbit and the rational Ruijsenaars-Schneider model.

2.2 Lax pair and equations of motion

Using coefficients of the expansion of the GLN R-matrix near z = 0 we define NM ×NM

Lax pair

L(z) =
M∑

i,j=1

Eij ⊗ Lij(z) , Lij(z) ∈ MatN L(z) ∈ MatNM , (2.15)

Lij(z) = δij

(

pi1N + tr2(S
ii
2 R

z,(0)
12 P12)

)

+ (1− δij) tr2(S
ij
2 Rz

12(qij)P12) , (2.16)

and similarly for M ij(z) ∈ MatN

M ij(z) = δij tr2(S
ii
2 R

z,(1)
12 P12) + (1− δij) tr2(S

ij
2 F z

12(qij)P12) . (2.17)

where the entries are defined from (2.2) and (2.9). The tensor notations are similar to

those used in (C.3)–(C.6).

Proposition 2.1. Consider an R-matrix satisfying the associative Yang-Baxter equa-

tion (1.8), the classical limit (1.9) and the set of properties from the previous paragraph.

Then the Lax equation (2.1) holds true for the Lax pair (2.15)–(2.17) on the constraints

tr
(

Sii
)

= const. , ∀i (2.18)

(cf. (4.4)) and provides the following equations of motion for off-diagonal N × N blocks

of S:

Ṡij =
M∑

k:k 6=i,j

(

Siktr2(S
kj
2 F 0

12(qkj)P12)− tr2(S
ik
2 F 0

12(qik)P12)S
kj
)

+

+ Siitr2(S
ij
2 F 0

12(qij)P12)− tr2(S
ii
2 m12(0))S

ij−

− tr2(S
ij
2 F 0

12(qij)P12)S
jj + Sijtr2(S

jj
2 m12(0)) ,

(2.19)
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for diagonal N ×N blocks of S:

Ṡii = [Sii, tr2(m12(0)S
ii
2 )] +

M∑

k:k 6=i

(

Siktr2(S
ki
2 F 0

21(qik)P12)− tr2(S
ik
2 F 0

12(qik)P12)S
ki
)

,

(2.20)

and for momenta:

ṗi = −
M∑

k:k 6=i

tr23

(

∂qiF
0
32(qik)P23 S

ik
2 Ski

3

)

. (2.21)

Proof. We imply pi = q̇i in the formulae above. This follows from the Hamiltonian de-

scription, which is given in the next paragraph.

1. Let us begin with the non-diagonal blocks. Consider the one numbered ij (i 6= j).

The l.h.s. of the Lax equations reads

l.h.s. = L̇ij(z) = tr2(Ṡ
ij
2 Rz

12(qij)P12) + tr2(S
ij
2 F z

12(qij)P12)(q̇i − q̇j) . (2.22)

The r.h.s. of the Lax equation is as follows:

r.h.s. = LijMjj −MiiLij +LiiMij −MijLjj +
M∑

k:k 6=i,j

(

LikMkj −MikLkj
)

. (2.23)

The last sum is computed using identity

Rz
12(x)F

z
23(y)− F z

12(x)R
z
23(y) = F 0

23(y)R
z
13(x+ y)−Rz

13(x+ y)F 0
12(x) , (2.24)

which follows from (1.8). It is the R-matrix analogue of (A.7). In its turn (A.7) is

the key tool underlying ansatz for the Lax pairs with spectral parameter [38]. For

k 6= i, j we have

LikMkj −MikLkj =

= tr23(R
z
12(qik)P12S

ik
2 F z

13(qkj)P13S
kj
3 )− tr23(F

z
12(qik)P12S

ik
2 Rz

13(qkj)P13S
kj
3 ) =

= tr23

((

Rz
12(qik)F

z
23(qkj)− F z

12(qik)R
z
23(qkj)

)

P12P13 S
ik
2 Skj

3

)
(2.24)
=

= tr23

((

F 0
23(qkj)R

z
13(qij)−Rz

13(qij)F
0
12(qik)

)

P12P13 S
ik
2 Skj

3

)

=

= tr23

(

Rz
12(qij)P12

(

Sik
2 Skj

3 F 0
23(qkj)P23 − F 0

23(qik)P23 S
ik
3 Skj

2

))

.

(2.25)

This expression provides the upper line in the equations of motion (2.19). To pro-

ceed we need degenerations of the identity (2.24) when y → 0. It comes from the

expansions (2.2), (2.11) and (2.13):

Rz
12(x)R

z,(1)
23 − F z

12(x)R
z,(0)
23 = r

(1)
23 R

z
13(x)−Rz

13(x)F
0
12(x)−

1

2
P23 ∂

2
xR

z
13(x) . (2.26)

In the same way in the limit x → 0 (2.24) takes the form

R
z,(0)
12 F z

23(y)−R
z,(1)
12 Rz

23(y) = F 0
23(y)R

z
13(y)−Rz

13(y)r
(1)
12 +

1

2
∂2
yR

z
13(y)P12 . (2.27)
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Similarly to the ordinary (spin) Calogero-Moser case the terms linear in momenta

in the r.h.s. (2.23) (pi − pj)M
ij are cancelled out by the last term in the l.h.s.

of (2.22). Consider the first and the fourth terms from (2.23) without momenta.

Using evaluations similar to (2.25) we get

LijMjj −Mij(Ljj − pj1N ) =

= tr23

((

Rz
12(qij)R

z,(1)
23 − F z

12(qij)R
z,(0)
23

)

P12P13 S
ij
2 Sjj

3

)
(2.26)
=

= tr23

((

r
(1)
23 R

z
13(qij)−Rz

13(qij)F
0
12(qij)−

1

2
P23 ∂

2
qi
Rz

13(qij)

)

P12P13 S
ij
2 Sjj

3

)

=

= tr23(R
z
12(qij)P12 S

ij
2 Sjj

3 m23(0))− tr23(R
z
12(qij)P12F

0
23(qij)P23 S

ij
3 Sjj

2 )−

−
1

2
tr23(∂

2
qi
Rz

12(qij)P12S
ij
2 Sjj

3 ) ,

(2.28)

where the relation (2.14) was also used (for the first term in the answer). The first

and the second terms in the obtained answer provide the last line in the equations of

motion (2.19), while the last term in (2.19) is the “unwanted term”.

In the same way, using (2.27) one gets

(Lii − pi1N )Mij −MiiLij =

= tr23(R
z
12(qij)P12 S

ii
2 S

ij
3 F 0

23(qij)P23)− tr23(R
z
12(qij)P12m23(0)S

ii
3 S

ij
2 )+

+
1

2
tr23(∂

2
qi
Rz

12(qij)P12S
ii
3 S

ij
2 ) .

(2.29)

Again, the first two terms provide an input to equations of motion — the second line

in (2.19). The last term is the “unwanted term”. It is cancelled by the one from (2.28)

after taking the trace over the third component and imposing the constraints (2.18).

2. Consider a diagonal N × N block (numbered ii) of the Lax equation. The l.h.s. of

the Lax equations is

l.h.s. = L̇ii(z) = ṗi1N + tr2(Ṡ
ii
2 R

z,(0)
12 P12)

(2.8)
= ṗi1N + tr2(Ṡ

ii
2 r12(z)) . (2.30)

The r.h.s. of the Lax equation is as follows:

r.h.s. = [Lii,Mii] +
M∑

k:k 6=i

(

LikMki −MikLki
)

. (2.31)

The commutator term in (2.31) provides the commutator term in the equations of

motion (2.20) since it is the input from the internal ii-th top’s dynamics, and this

was derived in [44]. See (C.2)–(C.4). In order to simplify expression in the sum we

need the following degeneration of (1.8):

Rz
12(x)R

z
23(y) = Rz

13(x+ y)r12(x) + r23(y)R
z
13(x+ y)− ∂zR

z
13(x+ y) , (2.32)
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It corresponds to ~ = η = z. In the scalar case it is the identity (A.9). In the limit

x = q = −y from (2.32) we get

Rz
12(q)R

z
23(−q) = R

z,(0)
13 r12(q)− r32(q)R

z,(0)
13 − ∂zR

z,(0)
13 + F 0

32(q)P13 , (2.33)

or, using (2.8)

Rz
12(q)R

z
23(−q) = (r13(z)r32(q)− r32(q)r13(z))P13 − F 0

13(z)P13 + F 0
32(q)P13 . (2.34)

By differentiating (2.34) with respect to q we obtain

Rz
12(q)F

z
23(−q)− F z

12(q)R
z
23(−q) = [F 0

32(q), r13(z)]P13 − ∂qF
0
32(q)P13 . (2.35)

For k 6= i consider

LikMki −MikLki =

= tr23

((

Rz
12(qik)F

z
23(qki)− F z

12(qik)R
z
23(qki)

)

P12P13S
ik
2 Ski

3

)
(2.35)
=

= tr23

((

[F 0
32(qik), r13(z)]P13 − ∂qiF

0
32(qik)P13

)

P12P13S
ik
2 Ski

3

)

.

(2.36)

The commutator term in the obtained expression yields the sum term in the equations

of motion (2.20), while the last term in (2.36) provides equations of motion (2.21).

Indeed,

tr23

((

∂qiF
0
32(qik)P13

)

P12P13S
ik
2 Ski

3

)

= 1N tr23

(

∂qiF
0
32(qik)P23S

ik
2 Ski

3

)

, (2.37)

and the momenta is the scalar component in the l.h.s. (2.30).

2.3 Hamiltonian description

The Hamiltonian function. Let us compute the Hamiltonian for the model (2.15)–

(2.21). It comes from the generating function

1

2N
tr(L2(z)) =

1

2N

M∑

i=1

tr
(

Lii(z)
)2

+
1

2N

M∑

i 6=j

tr
(

Lij(z)Lji(z)
)

. (2.38)

Consider

tr
(

Lii(z)
)2

= Np2i + 2pi tr12

(

r12(z)S
ii
2

)

+ tr123

(

r12(z)r13(z)S
ii
2 S

ii
3

)

. (2.39)

As before, the numbered tensor components are Mat(N,C)-valued. In order to sim-

plify (2.39) we use the identity (see [42, 43])

r12(z)r13(z+w)− r23(w)r12(z)+ r13(z+w)r23(w) = m12(z)+m23(w)+m13(z+w) , (2.40)
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which can be treated as a half of the classical Yang-Baxter equation.2 In the limit w →

0 (2.40) yields

r12(z)r13(z) = r
(0)
23 r12(z)− r13(z)r

(0)
23 − F 0

13(z)P23 +m12(z) +m23(0) +m13(z) . (2.41)

Also, we are going to use the following R-matrix property:

tr1R
q
12(z) = tr2R

q
12(z) = φ̃(z, q)1N , (2.42)

where φ̃(z, q) is the Kronecker function (A.1) but with possibly different normalization

factor and normalization of arguments. The property (2.42) holds true in the elliptic

case (C.15) as well as for its trigonometric and rational degenerations. From (2.42), expan-

sion (1.9) and (A.10) we also have similar properties for tr1r12(z) = Ẽ1(z) and tr1m12(z)

— they are scalar operators:

tr1R
q
12(z) = q−11N + tr1r12(z) + qtr1m12(z) +O(q2) . (2.43)

Return now to (2.39). On the constraints (2.18) the second term is equal to 2piẼ1(z)const.

After summation over i it provides the Hamiltonian proportional to
∑M

i=1 pi. Plugging (2.41)

into the last term of (2.39) we get

tr123

(

r12(z)r13(z)S
ii
2 S

ii
3

)

=

= tr123

((

r
(0)
23 r12(z)− r13(z)r

(0)
23 − F 0

13(z)P23 +m23(0) +m12(z) +m13(z)
)

Sii
2 S

ii
3

)

.

(2.44)

Due to (2.42) the first two terms are cancelled out after taking the trace over the component

1. By the same reason the last two terms in (2.44) provide 2tr1(m12(z))tr23(S
ii
2 S

ii
3 ). These

are constants on the constraints (2.18). The rest of the terms are

tr123

((

−F13(z)P23+m23(0)
)

Sii
2 S

ii
3

)
(2.42)
= Ẽ2(z)tr

(

Sii
)2

+Ntr23

(

m23(0)S
ii
2 S

ii
3

)

, (2.45)

where Ẽ2(z)1N = −tr1(F
0
13(z)) = −∂ztr1(r13(z)) = −∂zẼ1(z)1N . It is a scalar function

coming from (2.43) and similar to E2(z) (A.4). The factor N in the last term comes from

tr1. The first term in (2.45) is a part of the Casimir function trS2, and the second one is

Htop(Sii) from (1.1):

Htop(Sii) =
1

2
tr12

(

m12(0)S
ii
1 S

ii
2

)

. (2.46)

Next, consider

tr
(

Lij(z)Lji(z)
)

= tr123

(

Rz
12(qij)P12R

z
13(qji)P13 S

ij
2 Sji

3

)

=

= tr123

(

Rz
12(qij)R

z
23(qji)P12P13 S

ij
2 Sji

3

)
(2.34)
=

= tr123

((

[r13(z), r32(qij)]− F 0
13(z) + F 0

32(qij)
)

P23 S
ij
2 Sji

3

)

.

(2.47)

2The difference of two such equations gives the classical Yang-Baxter equation for the classical r-matrix.
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Again, the commutator term vanishes after taking the trace over the first tensor component.

Therefore,

tr
(

Lij(z)Lji(z)
)

= tr123

((

− F 0
13(z) + F 0

32(qij)
)

P23 S
ij
2 Sji

3

)

=

= Ẽ2(z)tr
(

SijSji
)

+Ntr12

(

F 0
21(qij)P12 S

ij
1 Sji

2

)

.
(2.48)

Finally, for the potential term from (1.1) we have

U(Sij ,Sji, qij) = tr12

(

F 0
21(qij)P12 S

ij
1 Sji

2

)

(2.49)

and the Hamiltonian (1.1) is of the form:

H =
M∑

i=1

p2i
2

+
1

2

M∑

i=1

tr12

(

m12(0)S
ii
1 S

ii
2

)

+
M∑

i<j

tr12

(

F 0
21(qij)P12 S

ij
1 Sji

2

)

. (2.50)

In M = 1 case H reproduce the Hamiltonian of the integrable top, while in the M = 1

case we obtain the spin Calogero-Moser Hamiltonian (1.16) up to terms containing Sii —

they are constant in this case (1.17).

Poisson brackets. The Poisson structure (before reduction (1.28)) consists of the canon-

ical brackets for positions and momenta

{pi, qj} = δij , {pi, pj} = {qi, qj} = 0 , i = 1 . . .M (2.51)

and the linear Poisson-Lie brackets for the S variables. They are of the form (B.7) but

for Mat(NM,C) case instead of Mat(M,C) in (B.7). It is convenient to write down these

brackets in terms of Mat(N,C)-valued blocks Sij . For i, j, k, l = 1 . . .M and a, b, c, d =

1 . . . N :

{Sij
ab,S

kl
cd} = Skj

cb δil δad − Sil
ad δ

kj δbc (2.52)

or

{Sij
1 ,Skl

2 } = P12 S
kj
1 δil − Sil

1 P12 δ
kj , (2.53)

where P12 as before the permutation operator in Mat(N,C)⊗2. For the diagonal blocks

we have

{Sii
1 ,S

kk
2 } = [P12,S

ii
1 ] δ

ik . (2.54)

It is verified directly that

Proposition 2.2. The Poisson structure (2.51), (2.53) and the Hamiltonian (2.50) pro-

vides equations of (2.19)–(2.21), i.e. for the l.h.s. of the Lax equation (2.1) we have

L̇(z) = {H,L(z)} . (2.55)
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2.4 Interacting tops

Suppose the matrix S is of rank one, i.e. (1.24) is fulfilled. Consider the potential

tr12

(

F 0
21(qij)P12 S

ij
1 Sji

2

)

=

N∑

a,b,c,d=1

(F 0
12(qji)P12)ab,cdS

ij
baS

ji
dc . (2.56)

The right multiplication of an element T12 =
∑N

i,j,k,l=1 TijklEij ⊗ Ekl ∈ Mat(N,C)⊗2 by

permutation operator P12 yields Tijkl → Tilkj , i.e.

tr23

(

F 0
32(qij)P23 S

ij
2 Sji

3

)

=
N∑

a,b,c,d=1

(F 0
12(qji))ad,cbS

ij
baS

ji
dc . (2.57)

In the rank 1 case we have

Sij
baS

ji
dc = ξibη

j
aξ

j
dη

i
c = Sii

bcS
jj
da . (2.58)

Therefore,

tr23

(

F 0
32(qij)P23 S

ij
2 Sji

3

)

= tr12

(

F 0
12(qji)S

jj
1 Sii

2

)

= tr12

(

F 0
12(qij)S

ii
1 S

jj
2

)

. (2.59)

The Hamiltonian of interacting tops model acquires the form:

Htops =
M∑

i=1

p2i
2

+
1

2

M∑

i=1

tr12

(

m12(0)S
ii
1 S

ii
2

)

+
M∑

i<j

tr12

(

F 0
12(qij)S

ii
1 S

jj
2

)

. (2.60)

From the Poisson brackets (2.51), (2.54) we get the corresponding equations of motion:

Ṡii = [Sii, tr2(m12(0)S
ii
2 )] +

M∑

k:k 6=i

[Sii, tr2(F
0
12(qik)S

kk
2 )] , (2.61)

ṗi = −
M∑

k:k 6=i

tr12

(

∂qiF
0
12(qik)S

ii
1 S

kk
2

)

. (2.62)

In this model we are left with M matrix variables Sii ∈ Mat(N,C) of rank one. It is

notable that the spin part of the phase space (1.29) is isomorphic to a product of M

minimal coadjoint orbits (1.15):

Omin
NM//H′

NM
∼= Omin

N × . . .×Omin
N

︸ ︷︷ ︸

M times

. (2.63)

Notice that the orbits Omin
N come from the constraints conditions (2.18). Hence it ap-

pears that

1. For the model of interacting tops the constraints (2.18) play the role of fixation of

the Casimir functions for M copies of gl∗N (of rank one). Consequently, equations of

motion (2.61) are not changed after reduction. For the N = 1 case (the spin Calogero-

Moser model) we get Ṡii = 0 since the r.h.s. of (2.61) consists of commutators.

– 14 –



J
H
E
P
1
0
(
2
0
1
9
)
0
8
1

2. The model of interacting tops is formulated in terms ofM Mat(N,C)-valued variables

of rank one, describing the minimal coadjoint orbits. The integrability condition is

that all Casimir functions tr(Sii) are equal to each other.3

3. The spin part of the phase space for the model of interacting tops coincides with

the phase space of GLN classical spin chain on M sites with the spins described by

minimal coadjoint orbits at each site.

Let us also remark that the top like models with matrix-valued variables were studied

in [44, 69] and [14]. In contrast to these papers here we deal with the models, where the

matrix variables have their own internal dynamics.

3 Classical r-matrix

In this section we describe the classical r-matrix structure for the Lax matrix (2.16). Since

L ∈ Mat(NM,C) then the corresponding classical glNM r-matrix r ∈ Mat(NM,C)⊗2.

Recall that for the Lax matrix we use the matrix basis (2.15), in which L ∈ Mat(M,C)⊗

Mat(N,C). Let the Mat(M,C)-valued tensor components be numbered by primed num-

bers, and the Mat(N,C)-valued components — without primes (as before). Introduce the

following r-matrix:

r1′2′12(z, w) =
M∑

i=1

1′

Eii ⊗
2′

Eii ⊗ r12(z − w) +
M∑

i 6=j

1′

Eij ⊗
2′

Eji ⊗Rz−w
12 (qij)P12 , (3.1)

so that r1′2′12 ∈ Mat(M,C)⊗2 ⊗ Mat(N,C)⊗2. In the case M = 1 we come to a non-

dynamical r-matrix describing the top model, while in the N = 1 we reproduce the

dynamical r-matrix of the spin Calogero-Moser model (B.9). r-matrices of these type

are known in glNM case and can be extended for arbitrary complex semisimple Lie alge-

bras [22–24, 48]. In the elliptic case (3.1) is known in the quantum case as well [49]. At

the same time (3.1) includes the cases, which have not been described yet. For instance,

the new cases correspond to the rational Rz
12(q)-matrix from [40, 41]. Similarly to the Lax

equations the construction of the r-matrix (3.1) is based on the associative Yang-Baxter

equation (1.8) and its degenerations.

Proposition 3.1. Consider an R-matrix satisfying the associative Yang-Baxter equa-

tion (1.8), the classical limit (1.9) and the set of properties from the section 2.1. Then

for the Lax pair (2.15)–(2.16) the following classical exchange relation holds true:

{L1′1(z),L2′2(w)} = [L1′1(z), r1′2′12(z, w)]− [L2′2(w), r2′1′21(w, z)]−

−
M∑

k=1

tr(Skk)∂qkr1′2′12(z, w) ,
(3.2)

3More precisely, we can not confirm that the model is not integrable in the case tr(Sii) 6= tr(Sjj), but

the presented Lax pair does not work in this case.
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where

L1′1(z) =
M∑

i,j=1

Eij ⊗ 1M ⊗ Lij(z)⊗ 1N , (3.3)

L2′2(w) =
M∑

k,l=1

1M ⊗ Ekl ⊗ 1N ⊗ Lkl(w) . (3.4)

The Poisson brackets in the l.h.s. of (3.2) are given by (2.51)–(2.54).

Proof. The proof is direct. Let us demonstrate how to verify (3.2) for several components

of
1′

Eij ⊗
2′

Ekl, which are similar to those considered in (B.11)–(B.16) for the spin Calogero-

Moser model.

the tensor component
1′

Eij ⊗
2′

Ejk (i 6= j, j 6= k, i 6= k):

l.h.s. of (3.2):

tr34

(

Rz
13(qij)P13R

w
24(qjk)P24{S

ij
3 ,Sjk

4 }
)

= −tr3

(

Sik
3 Rw

23(qjk)P23R
z
13(qij)P13

)

. (3.5)

r.h.s. of (3.2):

tr3

(

Sik
3 (Rz

13(qik)P13R
z−w
12 (qkj)P12 −Rz−w

12 (qij)P12R
w
23(qik)P23)

)

. (3.6)

Expressions (3.5) and (3.6) coincide due to (1.8) and (2.4).

the tensor component
1′

Eii ⊗
2′

Eij (i 6= j):

l.h.s. of (3.2):

tr4

(

{pi, R
w
24(qij)}P24 S

ij
4

)

+ tr34

(

r13(z)R
w
24(qij)P24{S

ii
3 ,S

ij
4 }

)

=

= tr3

(

Sij
3 ∂qiR

w
23(qij)P23

)

− tr3

(

Sij
3 Rw

23(qij)P23r13(z)
)

.
(3.7)

r.h.s. of (3.2):

tr3

(

Sij
3 (Rw

13(qij)P13R
z−w
12 (qji)P12 − r12(z − w)Rw

23(qij)P23)
)

. (3.8)

Expressions (3.7) and (3.8) coincide due to (2.32) rewritten through the Fourier

symmetry (2.6) as

R
qij
ac (z)R

qji
bc (w) = −R

qij
ab (z − w)rac(z) + rbc(w)R

qij
ab (z − w)− ∂qiR

qij
ab (z − w) (3.9)

for distinct a, b, c.

the tensor component
1′

Eij ⊗
2′

Eji (i 6= j):

l.h.s. of (3.2):

tr3

(

Sjj
3 Rz

13(qij)P13R
w
23(qji)P23 − Sii

3 R
w
23(qji)P23R

z
13(qij)P13

)

. (3.10)
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r.h.s. of (3.2):

tr3

(

Sii
3 (r13(z)R

z−w
12 (qij)P12 −Rz−w

12 (qij)P12r23(w))
)

+

+ tr3

(

Sjj
3 (−Rz−w

12 (qij)P12r13(z) + r23(w)R
z−w
12 (qij)P12)

)

−

− tr3

((

Sii
3 − Sjj

3

)

∂qiR
z−w
12 (qij)P12

)

.

(3.11)

The last term comes from the second line of (3.2). Again, expressions (3.10) and (3.11)

coincide due to (3.9).

The rest of the components are verified similarly.

4 Examples

4.1 Elliptic models

Let us begin with the elliptic model [29, 30, 49, 67]. The Lax pair is of the form:

L(z) =
M∑

i,j=1

Eij ⊗ Lij(z) , Lij(z) ∈ MatN L(z) ∈ MatNM , (4.1)

where

Lij(z) = δij



pi1N + S ii
(0,0) 1N E1(z) +

∑

α 6=0

S ii
α Tα ϕα(z, ωα)



+

+(1− δij)
∑

α

S ij
α Tα ϕα

(

z, ωα +
qij
N

)

,

(4.2)

where the basis (C.8) in Mat(N,C) is used. Similarly, the M -matrix is of the form

Mij(z) = δij S
ii
(0,0)

E2
1(z)− ℘(z)

2N
1N +

1

N
δij

∑

α 6=0

S ii
α Tα fα(z, ωα)+

+
1

N
(1− δij)

∑

α

S ij
α Tα fα

(

z, ωα +
qij
N

)

.

(4.3)

These formulae can be obtained from (2.15)–(2.17) and the R-matrix (C.15) together

with (A.8).

The Lax equations hold on the constraints

S ii
(0,0) = const , ∀i . (4.4)

Instead of the standard basis (1.3) here we use the basis (C.8) for each N ×N block. Then

the Poisson structure (1.5) takes the form

{S ij
α ,S kl

β } = δil κα,β S
kj
α+β − δkj κβ,α S

il
α+β , (4.5)

where κα,β are the constants from (C.10).
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The Hamiltonian easily follows from 1
2N trL2(z) = 1

2NE2(z)tr(S
2) + H due to (C.11)

and (A.8):

H =
1

2

M∑

i=1

p2i −
1

2

M∑

i=1

∑

α 6=0

S ii
α Sii

−αE2(ωα)−
1

2

M∑

i 6=j

∑

α

S ij
α Sji

−αE2

(

ωα +
qij
N

)

. (4.6)

Let us show how this Hamiltonian is reproduced from the general formula (2.50). In order

to get the second term in (4.6) one should substitute m12(0) into (2.50) from (C.17) and

use relation (A.12). For evaluation of the last sum in (2.50) we need to calculate F 0
12(q)P12.

The answer for F 0
12(q) is given in (C.18). Multiply it by P12 = (1/N)

∑

b Tb ⊗ T−b from

the left:

F 0
12(q)P12 = −

1

N2
E2(q)

∑

b

Tb ⊗ T−b

+
1

N2

∑

a 6=(0,0);b

ϕa(q, ωa)(E1(q + ωa)− E1(q) + 2πı∂τωα)κ
2
a,b Ta+b ⊗ T−a−b .

(4.7)

Let us redefine the summation index b → b−a in the last sum. Since κa,b = κa,b−a we have

F 0
12(q)P12 =

1

N2

∑

b

Tb ⊗ T−b



−E2(q) +
∑

a 6=0;b

ϕa(q, ωa)(E1(q + ωa)− E1(q) + 2πı∂τωα)κ
2
a,b




(C.22)
=

= −
1

N2

∑

b

Tb ⊗ T−bE2

(

ωb +
q

N

)

.

(4.8)

Finally,

tr12

(

F 0
21(qij)P12 S

ij
1 Sji

2

)

=
∑

α

S ij
α Sji

−αE2

(

ωα +
qij
N

)

. (4.9)

In the rank 1 case the answer for the Hamiltonian is given by (2.60). Plugging (C.18)

into (2.60) we get

Htops=
1

2

M∑

i=1

p2i−
1

2

M∑

i=1

∑

α 6=0

S ii
α Sii

−αE2(ωα)−

−
N

2

M∑

i 6=j



E2(qij)S
ii
0 S

jj
0 −

∑

a 6=0

ϕa(qij , ωa)(E1(qij+ωa)−E1(qij)+2πı∂τωα)S
ii
−αS

jj
α



 .

(4.10)

Let us show how the latter expression appears from (4.6). In the rank one case using (C.11)

(so that Sij
α = tr(SijT−α)/N) we get

S ij
α Sji

−α =
tr(ηj T−α ξ

i) tr(ηi Tα ξ
j)

N2
=

tr(ηj T−α ξ
i ηi Tα ξ

j)

N2
=

tr(Sii Tα S
jj T−α)

N2
. (4.11)
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In this way the Hamiltonian (4.6) acquires the form

Htops =
1

2

M∑

i=1

p2i −
1

2

M∑

i=1

∑

α 6=0

Sii
α Sii

−αE2(ωα)−

−
1

2

M∑

i 6=j

∑

α

tr(Sii Tα S
jj T−α)

N2
E2

(

ωα +
qij
N

)

,

(4.12)

which is the model of interacting tops of (1.26) type. The last terms in (4.12) can be

simplified in the following way. Substitute Sii =
∑

γ S
ii
γ Tγ and Sjj =

∑

γ S
jj
µ Tµ into (4.12).

It follows from (C.10)–(C.11) that

tr(TγTαTµT−α) = Nκ2α,µδµ+γ . (4.13)

Therefore,

∑

α

tr(Sii Tα S
jj T−α)

N2
E2

(

ωα +
qij
N

)

=
1

N

∑

α,µ

Sii
−µS

jj
µ E2

(

ωα +
qij
N

)

κ2α,µ . (4.14)

Using (C.20)–(C.21) and summing up over α we obtain the last term in (4.10).

4.2 Trigonometric models

The general classification of the unitary trigonometric R-matrices satisfying associative

Yang-Baxter equation was given in [58, 59]. It includes the 7-vertex deformation [20] of the

6-vertex R-matrix and its GLN generalizations such as the non-standard R-matrix [2]. The

integrable tops and related structures based on these R-matrices were described in [36, 37].

Here we restrict ourselves to the case N = 2. The 7-vertex R-matrix is of the follow-

ing form:

R~
12(z) =











coth(z) + coth(~) 0 0 0

0 sinh−1(~) sinh−1(z) 0

0 sinh−1(z) sinh−1(~) 0

C sinh(z + ~) 0 0 coth(z) + coth(~)











(4.15)

where C is a constant. In the limit C → 0 the lower left-hand corner vanishes and we get the

6-vertex XXZ R-matrix. For the classical r-matrix and its derivative (F 0
12(z) = ∂zr12(z))

we have

r12(z) =








coth(z) 0 0 0

0 0 sinh−1(z) 0

0 sinh−1(z) 0 0

C sinh(z) 0 0 coth(z)








(4.16)
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and

F 0
12(q) =










− 1
sinh2(q)

0 0 0

0 0 − cosh(q)

sinh2(q)
0

0 − cosh(q)

sinh2(q)
0 0

C cosh(q) 0 0 − 1
sinh2(q)










(4.17)

respectively. The Fourier transformed F 0 matrix is of the form:

F 0
12(q)P12 =










− 1
sinh2(q)

0 0 0

0 − cosh(q)

sinh2(q)
0 0

0 0 − cosh(q)

sinh2(q)
0

C cosh(q) 0 0 − 1
sinh2(q)










(4.18)

From the latter matrix using (1.32) we obtain

U(Sij ,Sji, qi − qj) = tr12

(

∂qir21(qij)P12 S
ij
1 Sji

2

)

=

= −
1

sinh2(qij)

(

Sij
11S

ji
11 + Sij

22S
ji
22

)

−
cosh(qij)

sinh2(qij)

(

Sij
11S

ji
22 + Sij

22S
ji
11

)

+ C cosh(qij)S
ij
12S

ji
12 .

(4.19)

Similarly, using (1.33) and (4.17) we get the potential for the model of interacting tops:

V(Sii,Sjj , qi − qj) = tr12

(

∂qir12(qij)S
ii
1 S

jj
2

)

=

= −
1

sinh2(qij)

(

Sii
11S

jj
11 + Sii

22S
jj
22

)

−
cosh(qij)

sinh2(qij)

(

Sii
12S

jj
21 + Sii

21S
jj
12

)

+ C cosh(qij)S
ii
12S

jj
12 .

(4.20)

The top Hamiltonian Htop(Sii) entering (1.1) or (1.26) is of the form:

Htop(Sii) =
1

2

(

(Sii
11)

2 + (Sii
22)

2
)

+ C(Sii
12)

2 . (4.21)

4.3 Rational models

The rational R-matrices satisfying the required properties are represented by the 11-vertex

deformation [20] of the 6-vertex XXX (Yang’s) R-matrix. Its higher rank analogues were

derived in [66] and [40, 41]. As in trigonometric case here we restrict ourselves to the case

N = 2. The 11-vertex R-matrix is of the following form:

R~
12(z) =








~
−1 + z−1 0 0 0

−~− z ~
−1 z−1 0

−~− z z−1
~
−1 0

−~
3 − 2 z~2 − 2 ~ z2 − z3 ~+ z ~+ z ~

−1 + z−1








. (4.22)

In order to get the XXX R-matrix one may take the limit limǫ→0 ǫ
−1Rǫ~(ǫz).
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The classical r-matrix, the F 0
12 matrix and its Fourier dual are of the form:

r12(z) =








z−1 0 0 0

−z 0 z−1 0

−z z−1 0 0

−z3 z z z−1








(4.23)

F 0
12(q) =








−q−2 0 0 0

−1 0 −q−2 0

−1 −q−2 0 0

−3q2 1 1 −q−2








(4.24)

F 0
12(q)P12 =








−q−2 0 0 0

−1 −q−2 0 0

−1 0 −q−2 0

−3q2 1 1 −q−2








(4.25)

From (4.25) using (1.32) we obtain

U(Sij ,Sji, qi − qj) = −
1

(qi − qj)2

(

Sij
11S

ji
11 + Sij

22S
ji
22 + Sij

11S
ji
22 + Sij

22S
ji
11

)

+

+ Sij
12S

ji
22 + Sij

22S
ji
12 − Sij

12S
ji
11 − Sij

11S
ji
12 − 3(qi − qj)

2Sij
12S

ji
12 .

(4.26)

Similarly, from (4.24) using (1.33) we obtain

V(Sii,Sjj , qi − qj) = −
1

(qi − qj)2

(

Sii
11S

jj
11 + Sii

22S
jj
22 + Sii

12S
jj
21 + Sii

21S
jj
12

)

+

+ Sii
12S

jj
22 + Sii

22S
jj
12 − Sii

12S
jj
11 − Sii

11S
jj
12 − 3(qi − qj)

2Sii
12S

jj
12 .

(4.27)

The top Hamiltonian Htop(Sii) entering (1.1) or (1.26) is of the form:

Htop(Sii) = Sii
12(S

ii
22 − Sii

11) . (4.28)

5 Discussion

A possible application of the obtained family of integrable models is in constructing quan-

tum integrable anisotropic long-rang spin chains. The basic idea is that such spin chains

appear from the models of interacting tops by the so-called freezing trick likewise the

Haldane-Shastry-Inozemtsev spin chains [31–34] come from the ordinary spin Calogero-

Moser-Sutherland models. A direct quantization of the interacting tops is a separate prob-

lem, which will be discussed elsewhere. At the same time the quantum Hamiltonian of

interacting tops appears in the so-called R-matrix-valued Lax pairs for the (classical) spin-

less Calogero-Moser model [29, 30, 42, 43, 60]. These are the Lax pairs in a large space

Mat(M,C)⊗Mat(N,C)⊗M :

LCM =
M∑

a,b=1

Eab ⊗ Lab , Lab = δabpa 1
⊗M
N + ν(1− δab)R

z
ab , Rz

ab = Rz
ab(qa − qb) . (5.1)
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and similarly for the accompany M -matrix

MCM
ab = νδabda + ν(1− δab)F

z
ab + νδabF

0 , F z
ab = ∂qaR

z
ab(qa − qb) , (5.2)

where

da = −
M∑

c: c 6=a

F 0
ac , F0 =

M∑

b,c: b>c

F 0
bc =

M∑

b,c: b>c

∂qbrbc(qbc) . (5.3)

In the N = 1 case this Lax pair coincides with the widely known Krichever’s result [38]

for glM Calogero-Moser model. The last term F0 in (5.2) enters M as a scalar (it is an

identity matrix in Mat(M,C) component) in the auxiliary space Mat(M,C). Therefore, it

can be moved to the l.h.s. of the Lax equation. This yields

{HCM,LCM}+ [νF0,LCM(z)] = [LCM(z),M̄CM(z)] , (5.4)

where M̄CM = MCM − ν1M ⊗F0. On the one hand (5.4) is just a rewritten classical Lax

equation for the spinless Calogero-Moser model. On the other hand we may treat it as

half-quantum Lax equation in a sense that the dynamics is given by the interacting tops

Hamiltonian (2.60), where the spin variables are already quantized, while the positions and

momenta remain classical. Indeed, the quantization of Sii
1 in fundamental representation

of GLN is given by the permutation operator P1j . Plugging it into the potential of (2.60)

we get the F0 term from (5.2) and (5.4).

Thus the R-matrix valued Lax pairs are multidimensional classical Lax pairs for the

spinless Calogero-Moser models and at the same time they are quantum Lax pairs for

the models of interacting tops with the spin variables being quantized in the fundamental

representation of GLN , i.e. the F0 term is the quantization of the potential V(Sii,Sjj , qi−

qj) (1.33).

Let us also mention that there is another class of integrable models with the Hamilto-

nian of type (1.26). These are the Gaudin type models [53]. The corresponding Lax matrix

is of size M×M . It has simple poles at n points on elliptic curve (or its degenerations) with

the classical spin variables matrices attached to each point. The number of points is not

necessarily equal to M . It is an interesting task to find interrelations between the Gaudin

models and the models of interacting tops through the spectral duality [50–52] based on

the rank-size duality transformation.

The classical spinless Calogero-Moser model possesses an equilibrium position, where

pi = 0 and qi = xi (for example, xi = i/M [21]). At this point the term {HCM,LCM}

vanishes from the l.h.s. of (5.4), and we are left with the quantum Lax equation for some

long-range (quantum) spin chain. It is an anisotropic generalization [60] of the Haldane-

Shastry-Inozemtsev type chains. An open question is which F0 provide integrable spin

chains? To confirm integrability we need to construct higher Hamiltonians, which commute

with each other and with F0(qi = xi). Taking into account all the above we guess that

the model of interacting tops together with the freezing trick (the quantum version of the

equilibrium position) can be used to calculate higher spin chain Hamiltonians and to prove

their commutativity. For this purpose we need to construct a quantization for the model

of interacting tops, which is the subject of our next paper.
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Another one intriguing question is to construct relativistic generalization of the models

discussed above. While the classical models of relativistic interacting tops are expected to

be relatively simple (the block Lij in (2.16) should be replaced by tr2(S
ij
2 Rz

12(qij +η)P12))

its quantum versions and the related long-range spin chain were not studied yet as well as

the corresponding R-matrix valued Lax pairs.

A Definitions and identities

The following set of functions is used in this paper [63–65]. The first one is the Kronecker

function:

φ(η, z) =







1/η + 1/z — rational case ,

coth(η) + coth(z) — trigonometric case ,
ϑ′(0)ϑ(η+z)
ϑ(η)ϑ(z) — elliptic case .

(A.1)

Its elliptic version is given in terms of the odd theta-function

ϑ(z) =
∑

k∈Z

exp

(

πıτ

(

k +
1

2

)2

+ 2πı

(

z +
1

2

)(

k +
1

2

))

(A.2)

on elliptic curve with moduli τ (Im(τ) > 0). Next are the first Eisenstein (odd) function

and the Weierstrass (even) ℘-function:

E1(z) =







1/z ,

coth(z) ,

ϑ′(z)/ϑ(z) ,

℘(z) =







1/z2 ,

1/ sinh2(z) ,

−∂zE1(z) +
1
3
ϑ′′′(0)
ϑ′(0) .

(A.3)

We also need the derivatives

E2(z) = −∂zE1(z) (A.4)

and

f(z, q) ≡ ∂qφ(z, q) = φ(z, q)(E1(z + q)− E1(q)) . (A.5)

The one (A.4) is the second Eisenstein function.

The main relation is the Fay trisecant identity:

φ(z, q)φ(w, u) = φ(z − w, q)φ(w, q + u) + φ(w − z, u)φ(z, q + u). (A.6)

The following degenerations of (A.6) are necessary for the Lax equations and r-matrix

structures:

φ(z, x)f(z, y)− φ(z, y)f(z, x) = φ(z, x+ y)(℘(x)− ℘(y)) , (A.7)

φ(η, z)φ(η,−z) = ℘(η)− ℘(z) = E2(η)− E2(z) . (A.8)

Also

φ(z, q)φ(w, q) = φ(z + w, q)(E1(z) + E1(w) + E1(q)− E1(z + w + q)) =

= φ(z + w, q)(E1(z) + E1(w))− f(z + w, q) .
(A.9)
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The local behavior of the Kronecker function and the first Eisenstein function near its

simple pole at z = 0 is as follows:

φ(z, u) =
1

z
+ E1(u) +

z

2
(E2

1(u)− ℘(u)) +O(z2) , (A.10)

E1(z) =
1

z
+

z

3

ϑ′′′(0)

ϑ′(0)
+O(z3) . (A.11)

From (A.10) and (A.5) it follows that

f(0, u) = −E2(u) . (A.12)

B Spin gl
M

Calogero-Moser model

The Lax equations

L̇spin(z) = [Lspin(z),M spin(z)] (B.1)

with the Lax pair

Lspin
ij (z) = δij(pi + SiiE1(z)) + (1− δij)Sijφ(z, qij) , (B.2)

M spin(z)ij = (1− δij)Sijf(z, qi − qj) . (B.3)

provide (after restriction on the constraints (1.17)) equations of motion

q̇i = pi , q̈i =
M∑

j 6=i

SijSji℘
′(qi − qj) , (B.4)

Ṡii = 0 , Ṡij =
M∑

k 6=i,j

SikSkj(℘(qi − qk)− ℘(qj − qk)) , i 6= j . (B.5)

The l.h.s. of the Lax equations (B.1) is generated by the Hamiltonian (1.16)

L̇spin(z) = {Hspin, Lspin(z)} (B.6)

and the linear Poisson-Lie brackets on gl∗M :

{Sij , Skl} = −Silδkj + Skjδil or {S1, S2} = [S2, P12] . (B.7)

Recall that the Poisson reduction with respect to Cartan action (1.18) is non-trivial. For

instance, in the rank 1 case (1.22) such reduction leads to the spinless model (1.23). Explicit

expression of the reduced Poisson structure depends on a choice of gauge fixation conditions.

The equations of motion (B.4)–(B.5) are not the reduced. They are obtained by a simple

restriction. To get the final equations one should perform the Dirac reduction and evaluate

the Dirac terms.

The classical r-matrix structure is as follows:

{Lspin
1 (z), Lspin

2 (w)} = [Lspin
1 (z), rspin12 (z, w)]− [Lspin

2 (w), rspin21 (w, z)]−

−
∑

i 6=j

Eij ⊗ Eji(Sii − Sjj)f(z − w, qij)
(B.8)
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with

rspin12 (z, w) = E1(z − w)
M∑

i=1

Eii ⊗ Eii +
M∑

i 6=j

φ(z − w, qij)Eij ⊗ Eji . (B.9)

Here the linear Poisson brackets (B.7) are assumed as well. The Dirac reduction is not yet

performed. However, we can see that the restriction on the constraints (1.17) kills the last

term in (B.8), and we are left with the standard linear classical r-matrix structure. It is

enough for Poisson commutativity

{tr(Lk(z)), tr(Ln(w))} = 0 , ∀ k, n ∈ Z+ , z, w ∈ C (B.10)

necessary for the Liouville integrability. The proof of (B.8) is direct. It is based on the

identities (A.6)–(A.9). Let us write down a few examples of verification of (B.8):

the tensor component Eij ⊗ Ejk (i 6= j , j 6= k , k 6= i):

l.h.s. of (B.8):

{Lspin
ij (z), Lspin

jk (w)} = {Sij , Sjk}φ(z, qij)φ(w, qjk) = −Sik φ(z, qij)φ(w, qjk) . (B.11)

r.h.s. of (B.8):

Sikφ(z, qik)φ(z − w, qkj) + Sikφ(w, qik)φ(w − z, qji) . (B.12)

Expressions (B.11) and (B.12) coincide due to (A.6).

the tensor component Eii ⊗ Eij (i 6= j):

l.h.s. of (B.8):

{Lspin
ii (z), Lspin

ij (w)} = {pi, φ(w, qij)}Sij + {Sii, Sij}E1(z)φ(w, qij) =

= Sijf(w, qij)− SijE1(z)φ(w, qij) .
(B.13)

r.h.s. of (B.8):

Sijφ(z, qij)φ(z − w, qji) + SijE1(w − z)φ(w, qij) . (B.14)

Expressions (B.13) and (B.14) coincide due to (A.9).

the tensor component Eij ⊗ Eji (i 6= j):

l.h.s. of (B.8):

{Lspin
ij (z), Lspin

ji (w)} =

= {Sij , Sji}φ(z, qij)φ(w, qji) = (Sii − Sjj)φ(z, qij)φ(−w, qij) .
(B.15)

The last term from the r.h.s. of (B.8) contributes in this component. The r.h.s.

of (B.8):

(pi + SiiE1(z)− pj − SjjE1(z))φ(z − w, qij)−

− (pj + SjjE1(w)− pi − SiiE1(w))φ(w − z, qji)− (Sii − Sjj)f(z − w, qij) =

= (Sii − Sjj)
(

(E1(z)− E1(w))φ(z − w, qij)− f(z − w, qij)
)

.

(B.16)

Expressions (B.15) and (B.16) coincide due to (A.9).
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C Integrable gl
N

tops

It was shown in [44] (see also [40, 41]) that the Lax equations

L̇(z, S) = [L(z, S),M(z, S)] (C.1)

are equivalent to equations

Ṡ = [S, J(S)] (C.2)

for the Lax pair

L(z, S) = tr2(r12(z)S2) , M(z, S) = tr2(m12(z)S2) , S2 = 1N ⊗ S (C.3)

and

J(S) = tr2(m12(0)S2) . (C.4)

constructed by means of the coefficients of the (classical limit) expansion (1.9) for an R-

matrix satisfying the associative Yang-Baxter equation (1.8) and the properties (2.2)–(2.5).

The answer (C.3) can be written more explicitly. For

r12(z) =
N∑

i,j,k,l=1

rijkl(z) eij ⊗ ekl (C.5)

(C.3) means

L(z, S) =

N∑

i,j,k,l=1

rijkl(z)Slk eij (C.6)

since tr(eklS) = Slk.

Let us briefly describe how these formulae reproduce the elliptic top from [39]. In the

elliptic case we need special matrix basis in Mat(N,C). Consider the matrices

Qkl = δkl exp

(
2πı

N
k

)

, Λkl = δk−l+1=0modN , QN = ΛN = 1N . (C.7)

Then the basis in Mat(N,C) is given by the following set:

Ta = Ta1a2 = exp
(πı

N
a1a2

)

Qa1Λa2 , a = (a1, a2) ∈ ZN × ZN . (C.8)

Since

exp

(
2πı

N
a1a2

)

Qa1Λa2 = Λa2Qa1 (C.9)

we have

TαTβ = κα,βTα+β , κα,β = exp
(πı

N
(β1α2 − β2α1)

)

, (C.10)

where α+β = (α1+β1, α2+β2). The non-degenerate pairing is given by the matrix trace:

tr(TαTβ) = Nδα+β , T0 = 1N . (C.11)
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Define the set of functions numerated by a = (a1, a2) ∈ ZN × ZN :

ϕa(z, ωa + u) = exp
(

2πı
a2
N

z
)

φ(z, ωa + u) , ωa =
a1 + a2τ

N
(C.12)

and introduce notation

fa(z, ωa + u) = exp
(

2πı
a2
N

z
)

f(z, ωa + u) . (C.13)

The Baxter-BelavinR-matrix [11–13] satisfying all required properties including the Fourier

symmetry (2.6) is of the form:

RBB
12 (~, z) =

∑

a∈ZN×ZN

ϕa(z, ~+ ωa)Ta ⊗ T−a ∈ Mat(N,C)⊗2 . (C.14)

This R-matrix satisfies required properties but with different normalizations. For example,

the Fourier symmetry has form RBB
12 (~, z)P12 = RBB

12 (z/N,N~) (see the Fourier transfor-

mation formulae in [69]). To fulfill all requirements including the normalization (2.5) we

consider

R~
12(z) = RBB

12 (~/N, z) =
1

N

∑

a∈ZN×ZN

ϕa

(

z,
~

N
+ ωa

)

Ta ⊗ T−a ∈ Mat(N,C)⊗2 . (C.15)

The corresponding classical r-matrix is as follows

r12(z) =
1

N
E1(z) 1N ⊗ 1N +

1

N

∑

a 6=(0,0)

ϕa(z, ωa)Ta ⊗ T−a ∈ Mat(N,C)⊗2 , (C.16)

and

m12(z) =
E2

1(z)− ℘(z)

2N2
1N ⊗ 1N +

1

N2

∑

a 6=(0,0)

fa(z, ωa)Ta ⊗ T−a ∈ Mat(N,C)⊗2 . (C.17)

Then the formulae for the Lax pair (C.3) reproduce the Lax pair of the elliptic top. It is

contained in the Lax pair (4.1)–(4.3) as a diagonal N ×N block.

The derivative of the classical r-matrix is obtained through (A.5):

F 0
12(z) = ∂zr12(z) = −

1

N
E2(z) 1N ⊗ 1N+

+
1

N

∑

a 6=(0,0)

ϕa(z, ωa)(E1(z + ωa)− E1(z) + 2πı∂τωα)Ta ⊗ T−a .

(C.18)

The Fourier symmetryR~
12(z) = Rz

12(~)P12 for theR-matrix (C.15) is based on the following

set of identities for the functions (C.12):

1

N

∑

α

κ2α,γ ϕα

(

N~, ωα +
z

N

)

= ϕγ(z, ωγ + ~) , ∀γ ∈ ZN × ZN . (C.19)
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Be degeneration of the latter identities on can deduce (see [69]):
∑

α

E2(ωα + q) = N2E2(Nq) (C.20)

and for γ 6= 0

∑

α

κ2α,γE2(ωα + q) = −N2ϕγ(Nq, ωγ)(E1(Nq + ωγ)− E1(Nq) + 2πı∂τωγ) . (C.21)

Conversely,

− E2(q) +
∑

α

κ2α,γϕα(q, ωα)(E1(q + ωα)− E1(q) + 2πı∂τωα) = −E2

(

ωγ +
q

N

)

. (C.22)
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