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1 Introduction

Recently there has been much progress on the understanding the Seiberg-like dualities in

lower dimensions than 4. With the help of the recently developed localization results,

substantial evidences were cumulated in 2-dimensions and 3-dimensions. There’s a close

relation between the dualities in 4-dimensions, 3-dimensions and 2-dimensions [1]. In 2-

dimensions, Seiberg-like dualities for N = (2, 2) U(k) gauge theory with fundamental

chiral multiplets with/without anti-fundamental chiral multiplets were studied in [2–9],

and the elliptic genus was computed to give the evidences for such dualities. The peculiar

feature is that such duality holds for asymptotically free theories as well, while in higher

dimensions the duality holds for superconformal field theories (SCFT). Also the analogue

of the so-called Kutasov-Schwimmer-Seiberg dualities are studied by [10] for U(N) gauge

group following the conjecture about such dualities for 2-dimensional theories in [9] in the

context of AGT correspondence. The authors of [9] gives the evidences for such dualities

by working out the S2 partition function. Furthermore these 2-dimensional dualities are

shown to be derived from their 3-dimensional or 4-dimensional analogues.

When we consider the dualities involving orthogonal groups, many of the subtleties

arise. Given the Lie algebra of so(k), there are many possibilities of gauge groups such as

spin(k), SO(k),O(k). In 4-dimensions, we need more refinements due to the existence of dif-

ferent line operators. Thus there are rich structures of dualities involving so(k) Lie-algebra

and via dimensional reduction, equally rich structures of dualities in 3-dimensions [1]. We

also expect the similar rich structures in 2-dimensions concerning the dualities of orthogo-

nal groups. Here we study the N = (2, 2) Seiberg-like dualities of orthogonal gauge groups

with fundamental chiral multiplets. In fact such duality was proposed and studied by Hori

some while ago [13] and recently studied in [14]. Especially when we regard O(k) gauge

group as the (semi)-direct product of SO(k) n Z2, there are two choices of Z2 orbifold

actions. Thus we have two kinds of O(k) theories, denoted by O±(k) theories depending

on the Z2 actions. The pattern of the proposed dualities are

O+(k) ←→ SO(N − k + 1)

SO(k) ←→ O+(N − k + 1) (1.1)

O−(k) ←→ O−(N − k + 1).

where N is the number of chiral multiplets. We work out the elliptic genus of the pro-

posed dualities for a few cases and show that the elliptic genus perfectly matches, thereby

providing important evidences for such dualities. One subtlety arising for 2-dimensional

theory is the existence of the non-compact Coulomb branches. Whenever such non-compact

branches exist, the computation of the elliptic genus is subtle and the blind computation

of the elliptic genus does not give the sensible answer. When we deal with dualities of U(k)

gauge group, we turn on FI-term or θ term to lift such non-compact Coulomb branches.

When we deal with SO(k)/O(k) groups, we can turn on the discrete θ angle. Depending on

k,N some of the theories exhibit the non-compact Coulomb branches. They are called the

irregular theories. If the non-compact Coulomb branches are lifted such theory is called
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regular. All tests of dualities have been checked for regular theories. For irregular theories,

elliptic genus does not give the same answer for the candidate dual theories. The Witten

index as a limit of the elliptic genus typically gives rational number for irregular theories.

In this paper, we provide evidences for the dualities of the regular theories with orthogonal

gauge groups.

Also additional difficulty arises when evaluating the elliptic genus of the theory with

SO(k)/O(k) groups. For U(k) theory with fundamental flavors and adjoint chiral multi-

plets, the general formulae of the elliptic genus are known since the classification of the

nontrivial JK-residues are possible [10]. However for the theory with SO(k)/O(k) gauge

group with N fundamental multiplets, such general results are not known. Thus we have

to work out each case separately so that check of the dualities are done for small rank of

the gauge groups and small number of matter multiplets. Furthermore for the U(k) theory,

equality of the elliptic genus of the dual pair can be shown analytically [10]. Here we man-

age to prove the equality of the elliptic genus of the dual pair for small k,N and numerically

check the equality of the elliptic genus of the dual pair for more complicated cases.

The contents of the paper are as follows. In the section 1, we introduce the Z2 orbifold

of the massive chiral multiplet as a warm-up of the study of O(k) gauge group. In the

section 2, we work out the elliptic genus for the proposed dual pairs of orthogonal gauge

group and find the perfect match. In the appendix A, we work out the elliptic genus for

the pure SO(3) gauge theory. Depending on the mod 2 θ angle we can have both regular

and irregular theory. We indicate the subtleties of the elliptic genus arising due to the

existence of noncompact branches. Some useful formulae for the elliptic genus are also

collected at the appendices B and C. The chiral ring structure and operator matching

between the dual pairs are discussed at the appendix D. It’s more convenient to use the

superconformal index, which imposes NS boundary conditions on fermions, to enumerate

the gauge invariant operators, though superconformal index and the elliptic genus are

related by the spectral flow. At the appendix E, we provide the analytic proof of the

equality of elliptic genus of the dual pairs for small k,N .

Note added. As this work is completed, we receive the paper by Aharony et al. [11],

which overlaps partially with our paper. See the appendix B of their paper. Also as the 2nd

revision of our paper is completed, which includes the analytic proof of the elliptic genus of

dual pairs with gauge group SO(1),O±(1), SO(2),O±(2), the paper by Avraham et al. [12]

appears where the analytic proof of similar theories is worked out. On the third revision,

we extend the analytic proof to simple cases of theories with SO(3),O±(3), SO(4),O±(4)

gauge group.

2 Massive field and Z2 orbifolds

Let us consider a free chiral superfield Φ with either a complex mass or a twisted mass.

Because the theory has the mass gap, the Witten index of the theory is well-defined and

count the number of supersymmetric vacua. We consider its Z2 orbifolds. There are two

choices in the Z2 orbifold. The standard Z2 orbifold defined in [13] which acts as Φ→ −Φ

– 2 –
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has the number of vacua

Tr(−1)F =

{
1 for complex mass

2 for twised mass.
(2.1)

The theory of a chiral superfield with complex mass has one supersymmetric vacuum in

twisted sector while the theory with a twisted mass has two vacua, one in twisted sector

and one in untwisted sector. The other non-standard Z2 symmetry is denoted by Z2(−1)Fs

where (−1)Fs is the operator that acts as the sign flip of all states in the untwisted RR sec-

tor. The nonstandard Z2(−1)Fs orbifold theory of a chiral multiplet has the Witten index,

Tr(−1)F =

{
2 for complex mass

1 for twised mass.
(2.2)

We carry out a consistency check with the elliptic genus. The elliptic genus of a chiral

supermultiplet with a complex mass W = mΦ2 is given by

ZΦ,m(τ, z, ξ) =
θ1(τ | − z

2)

θ1(τ | z2)
= −1 (2.3)

where q = e2πiτ , y = e2πiz, τ is the complex structure of torus and z is a holonomy for

the left-moving U(1) R-symmetry. The value 1 represents a trivial vacuum where the sign

depends on the definition of the fermion number of the vacuum. The elliptic genus of the

Z2 orbifold theory of the massive chiral multiplet is given by

ZΦ/Z2,m(τ, z, ξ) =
1

2

1∑
a,b=0

Z
Φ/Z2,m
(ab) (τ, z, ξ) (2.4)

where

Z
Φ/Z2,m
(ab) (τ, z, ξ) = y−b/2

θ1(τ | − z
2 + a+bτ

2 )

θ1(τ | z2 + a+bτ
2 )

= (−1)(a+1)(b+1) . (2.5)

The factor y−b/2 is needed for the elliptic genus to show the sensible modular behavior.

Thus we have

ZΦ/Z2,m(τ, z, ξ) = 1 (2.6)

Contributions from untwisted sector is

ZΦ/Z2,m,untwisted(τ, z, ξ) =
1

2

1∑
a=0

Z
Φ/Z2,m
(a0) = 0 (2.7)

and that of twisted sector is

ZΦ/Z2,m,twisted(τ, z, ξ) =
1

2

1∑
a=0

Z
Φ/Z2,m
(a1) = 1 (2.8)
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Thus only twisted sector ground state survives. This Z2 orbifold in (2.4) is the standard

one in which the ground states of untwisted sector are projected out as defined in [13].

The elliptic genus of the non-standard Z2(−1)Fs is given by

ZΦ/Z2(−1)Fs ,m(τ, z, ξ) =
1

2

(
−ZΦ/Z2,m

(00) + Z
Φ/Z2,m
(10) + Z

Φ/Z2,m
(01) + Z

Φ/Z2,m
(11)

)
= 2 (2.9)

Now let’s consider a chiral multiplet with a twisted mass. If a theory has generic twisted

masses and has no non-compact Coulomb branch, namely a gapped theory, its Witten

index can be obtained by a limit of the elliptic genus of the theory with generic flavor

holonomies on the torus, which regulate bosonic zero modes. Witten index of one free

chiral multiplet having a twisted mass can be obtained by

ZΦ(τ, z, ξ) =
θ1(τ | − z + ξ)

θ1(τ |ξ)
(2.10)

Tr(−1)F = lim
z→0

ZΦ(τ, z, ξ) = 1 (2.11)

where ξ is a holonomy for U(1) flavor symmetry. Let us compute the Witten index of the

standard Z2 orbifold.

ZΦ/Z2(τ, z, ξ) =
1

2

1∑
a,b=0

Z
Φ/Z2

(ab) (τ, z, ξ) (2.12)

where

Z
Φ/Z2

(ab) (τ, z, ξ) = y−b/2
θ1(τ | − z + ξ + a+bτ

2 )

θ1(τ |ξ + a+bτ
2 )

(2.13)

We have

Tr(−1)F = lim
z→0

ZΦ/Z2(τ, z, ξ) = 2, (2.14)

thus both the untwisted RR vacuum and the twisted one survive. The Z2(−1)Fs orbifold

has the elliptic genus

ZΦ/Z2(−1)Fs (τ, z, ξ) =
1

2

(
−ZΦ/Z2

(00) + Z
Φ/Z2

(10) + Z
Φ/Z2

(01) + Z
Φ/Z2

(11)

)
(2.15)

so we have

Tr(−1)F = lim
z→0

ZΦ/Z2(−1)Fs (τ, z, ξ) = 1 (2.16)

Notice the sign flip of the (00) sector. (−1)F of the untwisted RR ground state is the

opposite to that of the twisted RR ground state.

– 4 –



J
H
E
P
1
0
(
2
0
1
9
)
0
7
9

U(1)L U(1) SU(N)

Q 0 1 N

M 0 2 N(N+1)
2

q 1
2 -1 N

Table 1. The quantum numbers of the chiral superfields for the left-moving R-symmetry U(1)L
and a flavor symmetry U(N).

3 Hori duality

Hori proposed the dualities between N = (2, 2) theories with gauge groups,

O+(k) ←→ SO(N − k + 1)

SO(k) ←→ O+(N − k + 1) (3.1)

O−(k) ←→ O−(N − k + 1).

for N ≥ k. We refer the theory with the gauge group on the left hand as the theory

A and the corresponding dual theory on the right hand side as the theory B. Theory

A has N massless chiral multiplets Qα, α = 1, . . . , N in the fundamental representation

with no superpotential. Theory B has N massless chiral multiplets qα in the fundamental

representation and N(N+1)
2 gauge singlet chiral multiplets Mαβ , Mαβ = Mβα, with the

superpotential,

W =

N∑
α,β=1

Mαβq
αqβ . (3.2)

The mesons QαQβ in the original theory correspond to Mαβ . The global charges of the

fields are given by the table 1.

The O(k) gauge theory can be treated as the Z2 orbifold of the SO(k) gauge theory.

There are two versions of Z2 orbifold for the theory. For a different choice of Z2 orbifold

the untwisted RR ground states can survive or be projected out while the twisted RR

ground states always survive. Following [13] we call “standard” for the Z2 orbifold under

which the untwisted RR ground states survive. The other “non-standard” Z2 orbifold is

denoted by Z2(−1)Fs where (−1)Fs is the operator that acts as the sign flip of all states

in the untwisted RR sector while the states in the twisted RR sector are invariant. This is

similar to the terminologies for the case of one chiral multiplet with twisted mass.

In order to define O+(k) and O−(k) gauge theory, the twisted mass deformation is

useful because it gives discrete quantum vacua. The number of ground states, especially

Z2 symmetric vacua, depends on k and N so do definitions of O+(k) and O−(k). When k is

odd, the theory with generic twisted masses has Z2 symmetric vacuum thus the spectrum

in this sector is sensitive to the choice of orbifold. When N is even, O+(k) gauge theory is

the one with standard Z2 orbifold while O−(k) theory has the non-standard one. For odd

N , the role of O+(k) and O−(k) are interchanged. When k is even and N is odd, the theory

– 5 –
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k N O+(k) O−(k) SO(k)

even even

(N
2
k
2

) (N
2
k
2

)
2

(N
2
k
2

)

even odd

(N−1
2
k
2

)
+ 2

( N−1
2

k
2 − 1

) (N−1
2
k
2

)
+

( N−1
2

k
2 − 1

)
2

(N−1
2
k
2

)
+

( N−1
2

k
2 − 1

)

odd even 2

( N
2

k−1
2

) ( N
2

k−1
2

) ( N
2

k−1
2

)

odd odd

(N−1
2

k−1
2

)
2

(N−1
2

k−1
2

) (N−1
2

k−1
2

)
Table 2. The total number of ground states of the O±(k) theories.

has Z2 symmetric vacua and O+(k) (resp. O−(k)) gauge theory is the one with standard

Z2 (resp. non-standard) orbifold. When k and N are even, the theory does not have Z2

symmetric vacua so we extend the definition of O+(k) and O−(k) theory with odd N to even

N . In other words, O+(k) (resp. O−(k)) gauge theory with even N is O+(k) (resp. O−(k))

gauge theory with N + 1 chiral fields where N massless and one massive chiral fields with

a complex mass. The standard orbifold has twice as many Z2 symmetric vacua as the non-

standard one. The total number of vacua for O+(k) and O−(k) is summarized in table 2.

Hori also claimed that the SO(k) gauge theory with N = k − 1 massless fundamental

chiral multiplets flows to a free theory of k(k−1)
2 mesons, Mαβ . Then the non-standard

Z2(−1)Fs orbifold, O−(k) gauge theory with N = k − 1 has no vacuum in the untwisted

sector and its twisted sector is dual to the free theory of mesons. On the other hand, the

standard Z2 orbifold, O+(k) gauge theory with N = k − 1, flows to two copies of the free

theory of mesons, one in each of the untwisted and twisted sectors.

When N < k−1, the supersymmetry is broken. The duality is valid when the theories

do not have non-compact Coulomb branch, which are referred to as regular theories [13].

Regularity is determined by vacuum solutions of the effective twisted superpotential for

the adjoint scalar field in the vector multiplets of the form, for even k (resp. odd k)

i



−σ1

σ1

. . .

−σ k
2

σ k
2


resp. i



−σ1

σ1

. . .

−σ k−1
2

σ k−1
2

0


. (3.3)

When the chiral fields have no twisted masses the effective twisted superpotential only

shifts the theta angle: θeff = Nπ for k even or θeff = (N + 1)π for k odd for each U(1)

factor. If effective theta angle is zero modulo 2π, the theory has non-compact Coulomb

– 6 –
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N O+(1) O−(1)

even Z2 Z2(−1)Fs

odd Z2(−1)Fs Z2

Table 3. Definitions of O±(1) group.

branch. Therefore, the theory is regular if and only if one of following is true,

1. N − k is odd and θ = 0 (3.4)

2. N − k is even and θ = π (3.5)

where θ is the tree level mod 2 theta angle. The mod 2 theta angle can be introduced by

adding a fundamental chiral field with a complex mass. As the massive chiral field is inte-

grated out it yields the theta angle π, which can be seen from the effective superpotential.

3.1 O±(1) gauge theories

Let us consider a O±(1) gauge theory or a free theory (SO(1)) with N massless fundamental

chiral multiplets, Qα. As discussed before, definitions of O±(1) group can be summarized

as follows.

The standard Z2 acts as simultaneous sign flip of all chiral fields

Z2 : Qα 7−→ −Qα (3.6)

and it keeps the ground states in the untwisted RR sector. On the other hand, the non-

standard Z2(−1)Fs orbifold projects out the untwisted RR ground states.

The elliptic genera of the theories can be written in terms of contributions from four

sectors

ZA, SO(1),N (τ, z, ξ) = Z
O(1),N
(00) (3.7)

ZA,O+(1),N (τ, z, ξ) =
1

2

(
(−1)NZ

O(1),N
(00) + Z

O(1),N
(10) + Z

O(1),N
(01) + Z

O(1),N
(11)

)
(3.8)

ZA,O−(1),N (τ, z, ξ) =
1

2

(
(−1)N+1Z

O(1),N
(00) + Z

O(1),N
(10) + Z

O(1),N
(01) + Z

O(1),N
(11)

)
(3.9)

where

Z
O(1),N
(ab) (τ, z, ξ) = y−

N
2
b
N∏
α=1

θ1(τ | − z + ξα + a+bτ
2 )

θ1(τ |ξα + a+bτ
2 )

(3.10)

The sign factors in front of Z
O(1),N
(00) in (3.8) and (3.9) are related to the type of orbifolds.

If a sign factor is +1 (resp. −1) then the theory corresponds to Z2 (resp. Z2(−1)Fs)

orbifold.1

1The additional minus sign can be introduced by introducing one massive chiral field with complex mass,

which maps Z2 to Z2(−1)Fs and vice versa. For example, Z2 orbifold of N massless and one massive chiral

fields is the same as Z2(−1)Fs orbifold of N massless chiral fields.
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Let’s compute the Witten index of the theories.

lim
z→0

ZA, SO(1),N (τ, z, ξ) = 1 (3.11)

lim
z→0

ZA,O+(1),N (τ, z, ξ) =
(−1)N + 1

2
+ 1 =

{
2 for N even

1 for N odd
(3.12)

lim
z→0

ZA,O−(1),N (τ, z, ξ) =
(−1)N+1 + 1

2
+ 1 =

{
1 for N even

2 for N odd
(3.13)

The result agrees with the number of ground states of the theories. The standard Z2

orbifold (O+(1) for even N or O−(1) for odd N) has one vacuum in each of the untwisted

and twisted sectors while the non-standard Z2(−1)Fs orbifold has only one vacuum in the

twisted sector.

Let us consider the theory B which is O±(1) theory or a SO(1) theory. The elliptic

genera of the dual theories can be written as

ZB, SO(1),N (τ, z, ξ) = Z̃
O(1),N
(00) (3.14)

ZB,O+(1),N (τ, z, ξ) =
1

2

(
(−1)N Z̃

O(1),N
(00) + Z̃

O(1),N
(10) + Z̃

O(1),N
(01) + Z̃

O(1),N
(11)

)
(3.15)

ZB,O−(1),N (τ, z, ξ) =
1

2

(
(−1)N+1Z̃

O(1),N
(00) + Z̃

O(1),N
(10) + Z̃

O(1),N
(01) + Z̃

O(1),N
(11)

)
(3.16)

where

Z̃
O(1),N
(ab) (τ, z, ξ) = ZM,N (τ, z, ξ)× ZO(1),N

(ab) (τ, z,−ξ + z/2) (3.17)

ZM,N (τ, z, ξ) =

 N∏
α=1

N∏
β=α

θ1(τ | − z + ξα + ξβ)

θ1(τ |ξα + ξβ)

 (3.18)

ZM,N is the contribution of the mesonic singlet fields and Z
O(1),N
(ab) (τ, z,−ξ + z/2) comes

from fundamental fields in the dual theory.

Let us check the dualities for N = 1, which require that

ZA, SO(1),1 = ZB,O+(1),1 (3.19)

ZA,O+(1),1 = ZB, SO(1),1 (3.20)

ZA,O−(1),1 = ZB,O−(1),1 (3.21)

and in terms of contributions of sectors,

Z
O(1),1
(00) =

1

2

(
−Z̃O(1),1

(00) +Z̃
O(1),1
(10) +Z̃

O(1),1
(01) +Z̃

O(1),1
(11)

)
(3.22)

Z̃
O(1),1
(00) =

1

2

(
−ZO(1),1

(00) +Z
O(1),1
(10) +Z

O(1),1
(01) +Z

O(1),1
(11)

)
(3.23)

Z
O(1),1
(00) +Z

O(1),1
(10) +Z

O(1),1
(01) +Z

O(1),1
(11) = Z̃

O(1),1
(00) +Z̃

O(1),1
(10) +Z̃

O(1),1
(01) +Z̃

O(1),1
(11) (3.24)
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Note that the equalities (3.22) and (3.23) imply (3.24).2 The duality between two O−(1)

theories have additional mapping of states that the twisted (resp. untwisted) sector of

the theory A corresponds to the untwisted (resp. twisted) sector of the theory B. At the

appendix E, we prove analytically

Z
O(1),1
(00) + Z

O(1),1
(10) = Z̃

O(1),1
(01) + Z̃

O(1),1
(11) (3.25)

Z
O(1),1
(01) + Z

O(1),1
(11) = Z̃

O(1),1
(00) + Z̃

O(1),1
(10) . (3.26)

Furthermore, we prove an additional identity,

Z
O(1),1
(01) − ZO(1),1

(11) = −Z̃O(1),1
(01) + Z̃

O(1),1
(11) . (3.27)

Because we have four independent equations, the contributions four sectors can be written

in terms of those of dual theories,
Z
O(1),1
(00)

Z
O(1),1
(10)

Z
O(1),1
(01)

Z
O(1),1
(11)

 =
1

2


−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1



Z̃
O(1),1
(00)

Z̃
O(1),1
(10)

Z̃
O(1),1
(01)

Z̃
O(1),1
(11)

 (3.28)

3.2 O±(2) gauge theories

Let us consider O±(2) theories with N fundamental chiral multiplets. The O(2) gauge

theory can be treated as the Z2 orbifold of the SO(2) gauge theory where Z2 is generated

by a group element,

h =

(
1 0

0 −1

)
(3.29)

There are two versions of the orbifold [13]. For N odd, the semi-classical vacuum equation

of the theory with generic twisted masses for all flavors has N−1
2 pair of solutions which

are mapped within themselves (σ1 6= 0 in (3.3)) and one solution which is Z2 symmetric,

σ1 = 0. We have two choices for the Z2 symmetric solution as in O(1) cases. If N is

odd O+(2) theory is defined to have two vacua from one twisted and one untwisted sector

while O−(2) theory is defined to have only one vacua in the twisted sector. Thus the total

number of ground states is

Tr(−1)F =

{
N−1

2 + 2 = N+3
2 in O+(2) theory

N−1
2 + 1 = N+1

2 in O−(2) theory
(3.30)

for odd N . The O(2) theory with even N flavors and generic twisted masses have only N
2

vacua which break the Z2 symmetry (σ 6= 0) so we have

Tr(−1)F =
N

2
in O±(2) theory (3.31)

2This is related to the fact that the duality between O−(k) theory can be derived from the duality

between SO(k) and O−(N − k + 1) theory by a suitable Z2 orbifolding [13].
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for even N . Since the vacua break Z2 we cannot use the twisted mass deformation to define

O±(2) theory. In [13], O±(2) theory with an even number of massless flavors is defined

from the O±(2) theory with odd number of flavors; even number of massless flavors and

one flavor with a complex mass.

Let us compute the elliptic genus of the O±(2) theories with this definition. All flat

connections of O(2) gauge theory on T 2 are explained in [5, 15]. The moduli space of the

flat connections consists of seven components. One corresponds to the flat connection of

SO(2) group, u ∈ C/(Z + τZ) modulo u ≡ −u. Its contribution to the elliptic genus is

given by

Z
O(2),N
(00) = −

N∑
β=1

iη(q)3

θ1(τ | − z)

∮
−ξβ

du

N∏
α=1

θ1

(
τ
∣∣− z + u+ ξα

)
θ1

(
τ
∣∣u+ ξα

) θ1

(
τ
∣∣− z − u+ ξα

)
θ1

(
τ
∣∣− u+ ξα

) (3.32)

=
N∑
β=1

 N∏
α=1,α 6=β

θ1

(
τ
∣∣− z + ξα − ξβ

)
θ1

(
τ
∣∣ξα − ξβ)

 N∏
γ=1

θ1

(
τ
∣∣− z + ξγ + ξβ

)
θ1

(
τ
∣∣ξγ + ξβ

)
 (3.33)

The other six components are represented by discrete holonomies labeled by s = (k, l,±)

for (k, l) = (1, 0), (0, 1), (1, 1) and each contributions to the elliptic genus is given by

ZO(2),N
s =

1

2
y−

(N−1)
2

l θ1(τ |a1
s + a2

s)

θ1(τ | − z + a1
s + a2

s)

N∏
α=1

θ1

(
τ
∣∣(−z + a1

s + ξα
)

θ1

(
τ
∣∣a1
s + ξα

) θ1

(
τ
∣∣− z + a2

s + ξα
)

θ1

(
τ
∣∣a2
s + ξα

)
(3.34)

where y−
(N−1)

2
l can be derived from modular properties of the elliptic genus and

(a1
(1,0,+), a

2
(1,0,+)) =

(
0,

1

2

)
, (a1

(1,0,−), a
2
(1,0,−)) =

(
−τ

2
,

1 + τ

2

)
(3.35)

(a1
(0,1,+), a

2
(0,1,+)) =

(
0,
τ

2

)
, (a1

(0,1,−), a
2
(0,1,−)) =

(
−1

2
,

1 + τ

2

)
(3.36)

(a1
(1,1,+), a

2
(1,1,+)) =

(
0,

1 + τ

2

)
, (a1

(1,1,−), a
2
(1,1,−)) =

(
1

2
,
τ

2

)
(3.37)

Elliptic genus of O(2) gauge theory can be written as

ZO(2),N =
1

2

(
Z
O(2),N
(00) +

∑
s

(−1)nsZO(2),N
s

)
(3.38)

where we took a positive sign for Z
O(2),N
(00) and the sign factors (−1)ns , ns ∈ Z come from

a choice of the two orbifolds and mod 2 θ angle [13]. We determine the sign factors as

follows. The contributions of components s = (1, 0,+), (0, 1,+), (1, 1,+) should have the

same phase and those of components s = (1, 0,−), (0, 1,−), (1, 1,−) should also have the

same phase. This can be seen from the modular property of the elliptic genus,

Z
O(2),N
(00)

(
−1

τ
,
z

τ
,
ξα
τ

)
= AZO(2),N

(00) (τ, z, ξα) , Z
O(2),N
(10±)

(
−1

τ
,
z

τ
,
ξα
τ

)
= AZO(2),N

(01±) (τ, z, ξα)

Z
O(2),N
(01±)

(
−1

τ
,
z

τ
,
ξα
τ

)
= AZO(2),N

(10±) (τ, z, ξα) , Z
O(2),N
(11±)

(
−1

τ
,
z

τ
,
ξα
τ

)
= AZO(2),N

(11±) (τ, z, ξα)

(3.39)
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where A = exp iπ
τ ((2N − 1)z2 − 4z

∑
α ξα) and

Z
O(2),N
(00) (τ+1,z,ξα) =Z

O(2),N
(00) (τ,z,ξα) , Z

O(2),N
(10±) (τ+1,z,ξα) =Z

O(2),N
(10±) (τ,z,ξα)

Z
O(2),N
(01±) (τ+1,z,ξα) =Z

O(2),N
(11±) (τ,z,ξα) , Z

O(2),N
(11±) (τ+1,z,ξα) =Z

O(2),N
(01±) (τ,z,ξα) (3.40)

Note that Z
O(2),N
(10±) and Z

O(2),N
(01±) are exchanged under the transformation τ → − 1

τ and

Z
O(2),N
(01±) and Z

O(2),N
(11±) are exchanged under τ → τ + 1. Thus, we have only two independent

sign factors in (3.38),

ZO(2),N =
1

2

ZO(2),N
(00) +

∑
k,l

(
(−1)n+Z

O(2),N
(k,l,+) + (−1)n−Z

O(2),N
(k,l,−)

) (3.41)

In order to fix the signs we consider O+(2) theory with N odd. It is a standard Z2

orbifold theory whose states in the untwisted sector survive. Furthermore, it is a regular

theory by setting the mod 2 theta angle zero. Therefore all sign factors in the elliptic genus

ZO+(2),N with N odd are positive,

ZO+(2),N =
1

2

ZO(2),N
(00) +

∑
k,l

(
Z
O(2),N
(k,l,+) + Z

O(2),N
(k,l,−)

) . (3.42)

For N even, O+(2) theory is defined as a IR theory of O+(2) theory with N+1 fundamental

chiral fields where N massless and one massive chiral having a complex mass. The elliptic

genus of O+(2) theory with N even is given by

ZO+(2),N =
1

2

ZO(2),N
(00) Z

O(2),1
(00),massive+

∑
k,l

(
Z
O(2),N
(k,l,+) Z

O(2),1
(k,l,+),massive+Z

O(2),N
(k,l,−) Z

O(2),1
(k,l,−),massive

)
=

1

2

ZO(2),N
(00) +

∑
k,l

(
−ZO(2),N

(k,l,+) +Z
O(2),N
(k,l,−)

) (3.43)

where Z
O(2),1
(00),massive, Z

O(2),1
(k,l,±),massive are the contribution of massive chiral whose left-moving

R-charge is 1
2 . As the massive chiral field is integrated out it changes the type of Z2 orbifold

as well as it shifts the mod 2 theta angle by π. Therefore, we can write the elliptic genus

of O+(2) theory for any N as

ZO+(2),N =
1

2

ZO(2),N
(00) + ε

∑
k,l

(
Z
O(2),N
(k,l,+) + eiθZ

O(2),N
(k,l,−)

) (3.44)

where ε = eiθ = (−1)N+1. We identify the factor ε as a choice of the two types of orbifolds

from the fact that ε determines a relative phase between sectors (00) and (10), which are

the contribution of untwisted sector. Next, we identify the other sign factor eiθ as the mod

2 theta angle, which changes as the massive chiral is integrated out.
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After we identified ε and eiθ it is straight forward to get elliptic genus of O−(2) theory.

For N odd, O−(2) theory is a non-standard orbifold so ε = −1 and it is a regular theory

for θ = 0. The elliptic genus of O−(2) theory for any N is given by

ZO−(2),N =
1

2

ZO(2),N
(00) + ε

∑
k,l

(
Z
O(2),N
(k,l,+) + eiθZ

O(2),N
(k,l,−)

) (3.45)

where ε = (−1)N , eiθ = (−1)N+1. Therefore, the elliptic genus of SO(2) and O±(2) theories

can be written as

ZA, SO(2),N (τ, z, ξα) = Z
O(2),N
(00) (3.46)

ZA,O+(2),N (τ, z, ξα) =
1

2

(
Z
O(2),N
(00) + (−1)N+1

(
Z
O(2),N
(10) + Z

O(2),N
(01) + Z

O(2),N
(11)

))
(3.47)

ZA,O−(2),N (τ, z, ξα) =
1

2

(
Z
O(2),N
(00) + (−1)N

(
Z
O(2),N
(10) + Z

O(2),N
(01) + Z

O(2),N
(11)

))
(3.48)

where

Z
O(2),N
(kl) =Z

O(2),N
(k,l,+) + (−1)N+1Z

O(2),N
(k,l,−) (3.49)

Let’s compute the Witten index. It is obtained by a limit y → 1,

lim
y→1

ZA,SO(2),N =N (3.50)

lim
y→1

ZA,O+(2),N =

(
N

2
+

(−1)N+1+1

4

)
+

(−1)N+1+1

2
=

{
N
2 for N even
N+1

2 +1 for N odd
(3.51)

lim
y→1

ZA,O−(2),N =

(
N

2
− (−1)N+1+1

4

)
− (−1)N+1+1

2
=

{
N
2 for N even
N−1

2 −1 for N odd
(3.52)

where contributions in the parentheses come from the untwisted sector and the others come

from the twisted sector. When N is even it reproduces (3.30) and (3.31). However, when

N is odd (3.52) is different from the number of ground states (the sum of ground states in

the untwisted and twisted sectors) of O−(2) gauge theory due to the relative sign difference

for (−1)F between the untwisted and twisted sector ground states.

Let us consider the theory B with O±(2) or SO(2) gauge group. The elliptic genus is

given by

ZB, SO(2),N (τ, z, ξα) = Z̃
O(2),N
(00) (3.53)

ZB,O+(2),N (τ, z, ξα) =
1

2

(
Z̃
O(2),N
(00) + (−1)N+1

(
Z̃
O(2),N
(10) + Z̃

O(2),N
(01) + Z̃

O(2),N
(11)

))
(3.54)

ZB,O−(2),N (τ, z, ξα) =
1

2

(
Z̃
O(2),N
(00) + (−1)N

(
Z̃
O(2),N
(10) + Z̃

O(2),N
(01) + Z̃

O(2),N
(11)

))
(3.55)

where

Z̃
O(2),N
(kl) (τ, z, ξ) =

 N∏
α=1

N∏
β=α

θ1(τ | − z + ξα + ξβ)

θ1(τ |ξα + ξβ)

× ZO(2),N
(kl) (τ, z,−ξ + z/2) (3.56)
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Let us check the dualities for N = 1, 2, 3. When N = 1 the dual theories are free

theories and we have

ZA, SO(2),1 = Z
O(2),1
(00) = ZM,1 =

θ1(τ | − z + 2ξ)

θ1(τ |2ξ)
(3.57)

ZA,O+(2),1 =
1

2

(
Z
O(2),1
(00) + Z

O(2),1
(10) + Z

O(2),1
(01) + Z

O(2),1
(11)

)
= 2ZM,1 (3.58)

ZA,O−(2),1 =
1

2

(
Z
O(2),1
(00) − ZO(2),1

(10) − ZO(2),1
(01) − ZO(2),1

(11)

)
= −ZM,1 (3.59)

where Z
O(2),1
(kl) = Z

O(2),1
(k,l,+) + Z

O(2),1
(k,l,−) and ZM,1 is the elliptic genus of one free chiral meson

M . At appendix E, we prove analytically

ZM,1 = Z
O(2),1
(00) = Z

O(2),1
(10) = Z

O(2),1
(01) = Z

O(2),1
(11) . (3.60)

When N = 2 the elliptic genera for the dualities are

ZA, SO(2),2 = ZB,O+(1),2 (3.61)

ZA,O+(2),2 = ZB, SO(1),2 (3.62)

ZA,O−(2),2 = ZB,O−(1),2 (3.63)

and in terms of contributions of sectors,

Z
O(2),2
(00) =

1

2

(
Z̃
O(1),2
(00) +Z̃

O(1),2
(10) +Z̃

O(1),2
(01) +Z̃

O(1),2
(11)

)
(3.64)

Z̃
O(1),2
(00) =

1

2

(
Z
O(2),2
(00) −Z

O(2),2
(10) −Z

O(2),2
(01) −Z

O(2),2
(11)

)
(3.65)

Z
O(2),2
(00) +Z

O(2),2
(10) +Z

O(2),2
(01) +Z

O(2),2
(11) =−Z̃O(1),2

(00) +Z̃
O(1),2
(10) +Z̃

O(1),2
(01) +Z̃

O(1),2
(11) (3.66)

where (3.64) and (3.65) implies (3.66). But the twisted sector and the untwisted sector are

exchanged under the duality so we also have

Z
O(2),2
(00) + Z

O(2),2
(10) = Z̃

O(1),2
(01) + Z̃

O(1),2
(11) (3.67)

Z
O(2),2
(01) + Z

O(2),2
(11) = −Z̃O(1),2

(00) + Z̃
O(1),2
(10) (3.68)

With additional equality

−ZO(2),2
(01) + Z

O(2),2
(11) = Z̃

O(1),2
(01) − Z̃O(1),2

(11) , (3.69)

the contribution of each sector can be written as
Z
O(2),2
(00)

Z
O(2),2
(10)

Z
O(2),2
(01)

Z
O(2),2
(11)

 =
1

2


1 1 1 1

−1 −1 1 1

−1 1 −1 1

−1 1 1 −1



Z̃
O(1),2
(00)

Z̃
O(1),2
(10)

Z̃
O(1),2
(01)

Z̃
O(1),2
(11)

 . (3.70)

At appendix E, we prove analytically the eq. (3.70).
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When N = 3 the elliptic genera for the dualities are

ZA, SO(2),3 = ZB,O+(2),3 (3.71)

ZA,O+(2),3 = ZB, SO(2),3 (3.72)

ZA,O−(2),3 = −ZB,O−(2),3 (3.73)

where the theory B with O−(2) group has additional sign flip for all states. In terms of

contributions of sectors, It is written as

Z
O(2),3
(00) =

1

2

(
Z̃
O(2),3
(00) +Z̃

O(2),3
(10) +Z̃

O(2),3
(01) +Z̃

O(2),3
(11)

)
(3.74)

Z̃
O(2),3
(00) =

1

2

(
Z
O(2),3
(00) +Z

O(2),3
(10) +Z

O(2),3
(01) +Z

O(2),3
(11)

)
(3.75)

Z
O(2),3
(00) −Z

O(2),3
(10) −Z

O(2),3
(01) −Z

O(2),3
(11) =−

(
Z̃
O(2),3
(00) −Z̃

O(2),3
(10) −Z̃

O(2),3
(01) −Z̃

O(2),3
(11)

)
(3.76)

We checked following relations numerically up to q3,
Z
O(2),3
(00)

Z
O(2),3
(10)

Z
O(2),3
(01)

Z
O(2),3
(11)

 =
1

2


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1



Z̃
O(2),3
(00)

Z̃
O(2),3
(10)

Z̃
O(2),3
(01)

Z̃
O(2),3
(11)

 (3.77)

We comment on the irregular theories. For irregular choice of mod 2 theta angle the

Witten index as the limit of the elliptic genus is generally not an integer. For example,

when N is even (resp. odd) the O+(2) theory is irregular for θ = 0 (resp. θ = π) and

the Witten index from its elliptic genus can be obtained by replacing (−1)N+1 with (−1)N

in (3.49). We have

lim
y→1

Z
A,O+(2),N
irregular =

1

2

(
N + (−1)N+1 3

2

(
1 + (−1)N

))
=

{
N−3

2 for N even
N
2 for N odd

(3.78)

The half-integer value can be understood as the contribution of bosonic zero mode param-

eterizing the non-compact Coulomb branch. We have checked that for irregular choice of

the theta angle, the elliptic genera do not match for the potential dual pairs.

3.3 O±(3) gauge theories

O(3) group is a direct product, SO(3) × Z2 where Z2 is generated by a group element

−13×3. As defined before there are two versions of Z2 orbifold depending on a choice of

the untwisted RR sector. Let us summarize the definition of O±(3) gauge group and the

number of vacua in table 4.

Let us compute the elliptic genus of the O±(3) theories using flat connections explained

in [15]. The moduli space of the flat connections consists of eight components. Four of

them are represented by continuous holonomies

(a1
(k,l,+), a

2
(k,l,+), a

3
(k,l,+)) =

(
u,−u, k + lτ

2

)
. (3.79)
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N O+(3) O−(3) SO(3)

even N N
2

N
2

odd N−1
2 N − 1 N−1

2

Table 4. The total number of ground states of the O±(3) theories. The standard Z2 orbifold has

twice as many vacua as the non-standard one. For even N , O+(3) is the standard Z2 orbifold while

O−(3) is the non-standard Z2(−1)Fs orbifold. For odd N, the role of O+(3) and O−(3) are reversed.

Contribution of each sector to the elliptic genus is

Z
O(3),N
(k,l,+) (τ, z, ξ) (3.80)

= −1

2

iη(q)3

θ1(τ | − z)
y−

N−2
2
l
∑

u∗ ∈M+
sing

∮
u=u∗

du
θ1(τ |u+ k+lτ

2 )

θ1(τ | − z + u+ k+lτ
2 )

θ1(τ | − u+ k+lτ
2 )

θ1(τ | − z − u+ k+lτ
2 )

×
N∏
α=1

θ1

(
τ
∣∣− z + u+ ξα

)
θ1

(
τ
∣∣u+ ξα

) θ1

(
τ
∣∣− z − u+ ξα

)
θ1

(
τ
∣∣− u+ ξα

) θ1

(
τ
∣∣− z + ξα + k+lτ

2

)
θ1

(
τ
∣∣ξα + k+lτ

2

)
where k, l = 0, 1 and M+

sing =
{
z− k+lτ

2 ,−ξα
}

. Evaluating the Jeffrey-Kirwan (JK) residue

we obtain

Z
O(3),N
(k,l,+) (τ, z, ξ) (3.81)

= −1

2
y−

N−2
2
l θ1(τ |−z+k+lτ)

θ1(τ |−2z+k+lτ)

N∏
α=1

θ1(τ |ξα−k+lτ
2 )

θ1(τ |z+ξα−k+lτ
2 )

θ1(τ |−2z+ξα+
k+lτ

2 )

θ1(τ |−z+ξα+k+lτ
2 )

θ1(τ |−z+ξα+k+lτ
2 )

θ1(τ |ξα+k+lτ
2 )

+
1

2
y−

N−2
2
l
N∑
α=1

θ1(τ |ξα + k+lτ
2 )

θ1(τ | − z + ξα + k+lτ
2 )

θ1(τ | − ξα + k+lτ
2 )

θ1(τ | − z − ξα + k+lτ
2 ) N∏

β=1,β 6=α

θ1(τ | − z − ξα + ξβ)

θ1(τ | − ξα + ξβ)

 N∏
γ=1

θ1(τ | − z + ξα + ξγ)

θ1(τ |ξα + ξγ)

θ1(τ | − z + ξγ + k+lτ
2 )

θ1(τ |ξγ + k+lτ
2 )


The other four are represented by discrete holonomies ai(k,l,−) and their contribution to the

elliptic genus is given by

Z
O(3),N
(k,l,−) (τ, z, ξ) (3.82)

=
1

4
y−

N−2
2
l

 3∏
i=1

3∏
j=i+1

θ1(τ |ai(k,l,−) + aj(k,l,−))

θ1(τ | − z + ai(k,l,−) + aj(k,l,−))

( N∏
α=1

3∏
i=1

θ1(τ | − z + ai(k,l,−) + ξα)

θ1(τ |ai(k,l,−) + ξα)

)
where

(a1
(0,0,−), a

2
(0,0,−), a

3
(0,0,−)) =

(
1

2
,−1 + τ

2
,
τ

2

)
(3.83)

(a1
(1,0,−), a

2
(1,0,−), a

3
(1,0,−)) =

(
−τ

2
,

1 + τ

2
, 0

)
(3.84)

(a1
(0,1,−), a

2
(0,1,−), a

3
(0,1,−)) =

(
−1

2
,

1 + τ

2
, 0

)
(3.85)

(a1
(1,1,−), a

2
(1,1,−), a

3
(1,1,−)) =

(
1

2
,
τ

2
, 0

)
(3.86)
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As in the O±(2) cases we fix the mod 2 theta angle contribution by introducing a

massive fundamental chiral field. As a result we define

Z
O(3),N
(kl) = Z

O(3),N
(k,l,+) + (−1)NZ

O(3),N
(k,l,−) (3.87)

where (k, l) = (0, 0), (1, 0), (0, 1), (1, 1) and mod 2 theta angle factor (−1)N is fixed to be

a regular theory. The elliptic genus of the theories is given by

ZA, SO(3),N (τ, z, ξα) = Z
O(3),N
(00) (3.88)

ZA,O+(3),N (τ, z, ξα) =
1

2

(
(−1)NZ

O(3),N
(00) + Z

O(3),N
(10) + Z

O(3),N
(01) + Z

O(3),N
(11)

)
(3.89)

ZA,O−(3),N (τ, z, ξα) =
1

2

(
(−1)N+1Z

O(3),N
(00) + Z

O(3),N
(10) + Z

O(3),N
(01) + Z

O(3),N
(11)

)
(3.90)

where the sign factors in front of Z
O(3),N
(00) correspond to a choice of the two type of orbifolds

as in O(1) theories.

Let’s check the Witten index limit y → 1.

lim
y→1

ZA,SO(3),N (τ,z,ξα) =
N

2
− 1

4
+

(−1)N

4
=

{
N
2 N even
N−1

2 N odd
(3.91)

lim
y→1

ZA,O+(3),N (τ,z,ξα) =

(
N

2
− 1

4
+

(−1)N

4

)(
(−1)N+1

2
+1

)
=

{
N for N even
N−1

2 for N odd

(3.92)

lim
y→1

ZA,O−(3),N (τ,z,ξα) =

(
N

2
− 1

4
+

(−1)N

4

)(
(−1)N+1+1

2
+1

)
=

{
N
2 for N even

N−1 for N odd

(3.93)

where in O+(3) (resp. O−(3)) theory the contribution (−1)N+1
2 (resp. (−1)N+1+1

2 ) and +1 in

the second parentheses come from the untwisted sector and the twisted sector respectively.

It reproduces the number of vacua in table 4.

Let us compute the elliptic genus of the theory B which has the gauge group, O±(3)

or SO(3).

ZB, SO(3),N (τ, z, ξα) = Z̃
O(3),N
(00) (3.94)

ZB,O+(3),N (τ, z, ξα) =
1

2

(
(−1)N Z̃

O(3),N
(00) + Z̃

O(3),N
(10) + Z̃

O(3),N
(01) + Z̃

O(3),N
(11)

)
(3.95)

ZB,O−(3),N (τ, z, ξα) =
1

2

(
(−1)N+1Z̃

O(3),N
(00) + Z̃

O(3),N
(10) + Z̃

O(3),N
(01) + Z̃

O(3),N
(11)

)
(3.96)

where

Z̃
O(3),N
(kl) (τ, z, ξ) = ZM,N (τ, z, ξ)Z

O(3),N
(kl) (τ, z,−ξ + z/2) (3.97)

and contribution of singlets ZM,N (τ, z, ξ) =
(∏N

α=1

∏N
β=α

θ1(τ |−z+ξα+ξβ)
θ1(τ |ξα+ξβ)

)
.
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We have checked the dualities for N = 2, 3, 4, 5 cases. For N = 2, the theory A is dual

to a free theory and we proved analytically at appendix E that

ZM,2 = Z
O(3),2
(00) = Z

O(3),2
(10) = Z

O(3),2
(01) = Z

O(3),2
(11) (3.98)

up to q3. Thus we have

ZA, SO(3),2 = ZM,2 (3.99)

ZA,O+(3),2 = 2ZM,2 (3.100)

ZA,O−(3),2 = ZM,2 (3.101)

For N = 3, 5, the dualities imply the following identities of the elliptic genera

Z
O(3),N
(00) =

1

2

(
−Z̃O(N−2),N

(00) +Z̃
O(N−2),N
(10) +Z̃

O(N−2),N
(01) +Z̃

O(N−2),N
(11)

)
(3.102)

Z̃
O(N−2),N
(00) =

1

2

(
−ZO(3),N

(00) +Z
O(3),N
(10) +Z

O(3),N
(01) +Z

O(3),N
(11)

)
(3.103)

Z
O(3),N
(00) +Z

O(3),N
(10) +Z

O(3),N
(01) +Z

O(3),N
(11) = Z̃

O(N−2),N
(00) +Z̃

O(N−2),N
(10) +Z̃

O(N−2),N
(01) +Z̃

O(N−2),N
(11)

(3.104)

where (3.102) and (3.103) imply (3.104). Furthermore, we checked the following relations
Z
O(3),N
(00)

Z
O(3),N
(10)

Z
O(3),N
(01)

Z
O(3),N
(11)

 =
1

2


−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1



Z̃
O(N−2),N
(00)

Z̃
O(N−2),N
(10)

Z̃
O(N−2),N
(01)

Z̃
O(N−2),N
(11)

 (3.105)

up to q3 for N = 3, 5 with some specific values of flavor holonomies such as ξα = α
N+1 for

computational simplicity.

For N = 4, the dualities imply the following identities of the elliptic genera

Z
O(3),N
(00) =

1

2

(
Z̃
O(N−2),N
(00) −Z̃O(N−2),N

(10) −Z̃O(N−2),N
(01) −Z̃O(N−2),N

(11)

)
(3.106)

Z̃
O(N−2),N
(00) =

1

2

(
Z
O(3),N
(00) +Z

O(3),N
(10) +Z

O(3),N
(01) +Z

O(3),N
(11)

)
(3.107)

−ZO(3),N
(00) +Z

O(3),N
(10) +Z

O(3),N
(01) +Z

O(3),N
(11) = Z̃

O(N−2),N
(00) +Z̃

O(N−2),N
(10) +Z̃

O(N−2),N
(01) +Z̃

O(N−2),N
(11)

(3.108)

where (3.106) and (3.107) implies (3.108). We further check the following relations
Z
O(3),N
(00)

Z
O(3),N
(10)

Z
O(3),N
(01)

Z
O(3),N
(11)

 =
1

2


1 −1 −1 −1

1 −1 1 1

1 1 −1 1

1 1 1 −1



Z̃
O(N−2),N
(00)

Z̃
O(N−2),N
(10)

Z̃
O(N−2),N
(01)

Z̃
O(N−2),N
(11)

 (3.109)

up to q3 for N = 4 with some specific values of flavor holonomies.
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)
0
7
9

N O+(4) O−(4) SO(4)

odd
(N−1

2
2

)
+N − 1

(N−1
2
2

)
+ N−1

2 2
(N−1

2
2

)
+ N−1

2

even
(N

2
2

) (N
2
2

)
2
(N

2
2

)
Table 5. The total number of ground states of the O±(4) theories.

3.4 O±(4) gauge theories

In this section we compute the elliptic genus for the O+(4), O−(4), SO(4) gauge theories

with N fundamental chiral fields and test the dualities. For odd N , O+(4) (resp. O−(4))

gauge theory is the standard Z2 (resp. the non-standard Z2(−1)Fs) orbifold theory of

SO(4) gauge theory. Z2 can be generated by a group element diag(1, 1, 1,−1). O+(4) and

O−(4) gauge theory have the same
(

(N−1)/2
2

)
vacua which break Z2 (σ1 6= 0, σ2 6= 0 in (3.3))

and N−1
2 vacua which preserve Z2 (σ1 6= 0, σ2 = 0). O+(4) gauge theory has N−1

2 vacua in

each of the untwisted and twisted sector while O−(4) gauge theory has N−1
2 vacua in only

in the twisted sector. When N is even the theories have only
(
N/2

2

)
Z2 breaking vacua.

Let us compute the elliptic genus of the O±(4) theories with flat connections ex-

plained in [15]. The moduli space of the flat connections consists of eight components,

ak,l,± = (a1
k,l,±, a

2
k,l,±, a

3
k,l,±, a

4
k,l,±)

a(0,0,+) = (u1,−u2, u2,−u2) , a(0,0,−) =
(

0,−1

2
,

1 + τ

2
,−τ

2

)
(3.110)

a(1,0,+) =
(
u1,−u1, 0,

1

2

)
, a(1,0,−) =

(
u1,−u1,−

τ

2
,

1 + τ

2

)
a(0,1,+) =

(
u1,−u1, 0,

τ

2

)
, a(0,1,−) =

(
u1,−u1,−

1

2
,

1 + τ

2

)
a(1,1,+) =

(
u1,−u1, 0,

1 + τ

2

)
, a(1,1,−) =

(
u1,−u1,

1

2
,
τ

2

)
where

∑4
i=1 a

i
k,l,± = k+lτ

2 . Contribution of a(0,0,+) to the elliptic genus is given by

Z
O(4),N
(0,0,+) (τ,z,ξ) =

1

4

1

(2πi)2

∑
u∗∈M∗

sing

∮
u∗

du1du2 Z
O(4),N
(0,0,+),1-loop (3.111)

Z
O(4),N
(0,0,+),1-loop

=

(
2πη(q)3

θ1(τ |−z)

)2
θ1
(
τ
∣∣u1+u2

)
θ1
(
τ
∣∣−z+u1+u2

) θ1
(
τ
∣∣u1−u2

)
θ1
(
τ
∣∣−z+u1−u2

) θ1
(
τ
∣∣−u1+u2

)
θ1
(
τ
∣∣−z−u1+u2

) θ1
(
τ
∣∣−u1−u2

)
θ1
(
τ
∣∣−z−u1−u2

)
N∏
α=1

θ1
(
τ
∣∣−z+ξα+u1

)
θ1
(
τ
∣∣ξα+u1

) θ1
(
τ
∣∣−z+ξα−u1

)
θ1
(
τ
∣∣ξα−u1

) θ1
(
τ
∣∣−z+ξα+u2

)
θ1
(
τ
∣∣ξα+u2

) θ1
(
τ
∣∣−z+ξα−u2

)
θ1
(
τ
∣∣ξα−u2

) (3.112)

where the set M∗sing is determined by JK residue [6, 15]. The poles u∗ = (u1∗, u2∗) with

non-trivial JK residues are

(1) : −z+u1+u2 = 0, −z−u1+u2 = 0 → (u1∗,u2∗) =

(
k+lτ

2
,z+

k+lτ

2

)
(3.113)

(2) : u2+ξα, −z+u1+u2 = 0 → (u1∗,u2∗) = (z+ξα,−ξα) (3.114)

(3) : u2+ξα, u1+ξβ = 0 → (u1∗,u2∗) = (−ξβ ,−ξα) (3.115)
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Then Z
O(4),N
(k,l,+) (τ, z, ξ) can be written as

Z
O(4),N
(0,0,+) (τ, z, ξ) =

1

4

(
Z
O(4),N
(0,0,+),(1) + Z

O(4),N
(0,0,+),(2) + Z

O(4),N
(0,0,+),(3)

)
(3.116)

where each contribution of the poles is

Z
O(4),N
(0,0,+),(1) =

1

2

1∑
k,l=0

y−l
θ1
(
τ
∣∣−z)

θ1
(
τ
∣∣−2z

) θ1
(
τ
∣∣−z−k−lτ)

θ1
(
τ
∣∣−2z−k−lτ

) (3.117)

N∏
α=1

θ1
(
τ
∣∣−z+ξα+ k+lτ

2

)
θ1
(
τ
∣∣ξα+ k+lτ

2

) θ1
(
τ
∣∣−z+ξα− k+lτ

2

)
θ1
(
τ
∣∣ξα− k+lτ

2

) θ1
(
τ
∣∣ξα+ k+lτ

2

)
θ1
(
τ
∣∣z+ξα+ k+lτ

2

) θ1(τ ∣∣−2z+ξα− k+lτ
2

)
θ1
(
τ
∣∣−z+ξα− k+lτ

2

)
Z
O(4),N
(0,0,+),(2) =−

N∑
α=1

θ1
(
τ
∣∣−z−2ξα

)
θ1
(
τ
∣∣−2z−2ξα

) θ1
(
τ
∣∣−z)

θ1
(
τ
∣∣−2z

) θ1(τ ∣∣z+2ξα
)

θ1
(
τ
∣∣2ξα) (3.118) N∏

β=1,β 6=α

θ1
(
τ
∣∣−z−ξα+ξβ

)
θ1
(
τ
∣∣−ξα+ξβ

)
 N∏
γ=1

θ1
(
τ
∣∣−z+ξα+ξγ

)
θ1
(
τ
∣∣ξα+ξγ

) θ1
(
τ
∣∣−2z−ξα+ξγ

)
θ1
(
τ
∣∣−z−ξα+ξγ

) θ1
(
τ
∣∣ξα+ξγ

)
θ1
(
τ
∣∣z+ξα+ξγ

)

Z
O(4),N
(0,0,+),(3) =

N∑
α=1

N∑
β=1,β 6=α

θ1
(
τ
∣∣−ξα−ξβ)

θ1
(
τ
∣∣−z−ξα−ξβ) θ1

(
τ
∣∣ξα+ξβ

)
θ1
(
τ
∣∣−z+ξα+ξβ

) (3.119)

 N∏
γ=1,γ 6=α,β

θ1
(
τ
∣∣−z−ξα+ξγ

)
θ1
(
τ
∣∣−ξα+ξγ

) θ1
(
τ
∣∣−z−ξβ+ξγ

)
θ1
(
τ
∣∣−ξβ+ξγ

)
 N∏
δ=1

θ1
(
τ
∣∣−z+ξα+ξδ

)
θ1
(
τ
∣∣ξα+ξδ

) θ1
(
τ
∣∣−z+ξβ+ξδ

)
θ1
(
τ
∣∣ξβ+ξδ

)
Contribution of a(0,0,−) to the elliptic genus is given by

Z
O(4),N
(0,0,−) =

1

8

θ1
(
τ
∣∣− 1

2

)
θ1
(
τ
∣∣−z− 1

2

) θ1
(
τ
∣∣ 1+τ

2

)
θ1
(
τ
∣∣−z+ 1+τ

2

) θ1
(
τ
∣∣− τ

2

)
θ1
(
τ
∣∣−z− τ

2

) θ1
(
τ
∣∣ τ
2

)
θ1
(
τ
∣∣−z+ τ

2

) θ1
(
τ
∣∣− 1+τ

2

)
θ1
(
τ
∣∣−z− 1+τ

2

) θ1
(
τ
∣∣ 1
2

)
θ1
(
τ
∣∣−z+ 1

2

)
N∏
α=1

θ1
(
τ
∣∣−z+ξα

)
θ1
(
τ
∣∣ξα) θ1

(
τ
∣∣−z+ξα− 1

2

)
θ1
(
τ
∣∣ξα− 1

2

) θ1
(
τ
∣∣−z+ξα+ 1+τ

2

)
θ1
(
τ
∣∣ξα+ 1+τ

2

) θ1
(
τ
∣∣−z+ξα− τ

2

)
θ1
(
τ
∣∣ξα− τ

2

) (3.120)

Contributions of a(1,0,±), a(0,1,±), a(1,1,±) can be written in terms of a(k,l,±) = (u1,−u1, a, b),

where a, b are given in (3.110) corresponding to (k, l,±).

Z
O(4),N
(k,l,±) =

1

4

1

2πi

∑
u∗∈M∗

sing

∮
u∗

du1 Z
O(4),N
(k,l,±),1-loop (3.121)

Z
O(4),N
(k,l,±),1-loop =

(
2πη(q)3

θ1(τ |−z)

)
θ1

(
τ
∣∣u1+a

)
θ1

(
τ
∣∣−z+u1+a

) θ1

(
τ
∣∣−u1+a

)
θ1

(
τ
∣∣−z−u1+a

) (3.122)

θ1

(
τ
∣∣u1+b

)
θ1

(
τ
∣∣−z+u1+b

) θ1

(
τ
∣∣−u1+b

)
θ1

(
τ
∣∣−z−u1+b

) θ1

(
τ
∣∣a+b

)
θ1

(
τ
∣∣−z+a+b

)
N∏
α=1

θ1

(
τ
∣∣−z+ξα+u1

)
θ1

(
τ
∣∣ξα+u1

) θ1

(
τ
∣∣−z+ξα−u1

)
θ1

(
τ
∣∣ξα−u1

) θ1

(
τ
∣∣−z+ξα+a

)
θ1

(
τ
∣∣ξα+a

) θ1

(
τ
∣∣−z+ξα+b

)
θ1

(
τ
∣∣ξα+b

)
where (k, l) = (1, 0), (0, 1), (1, 1) and M∗sing = {z − a, z − b, −ξα}. Evaluating JK-residue

we obtain

Z
O(4),N
(k,l,±) =

1

4
y−

N−3
2
l
(
Z
O(4),N
(k,l,±),(1) + Z

O(4),N
(k,l,±),(2) + Z

O(4),N
(k,l,±),(3)

)
(3.123)
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where

Z
O(4),N
(k,l,±),(1) =−

θ1

(
τ
∣∣−a+b+z

)
θ1

(
τ
∣∣−a+b

) θ1

(
τ
∣∣−z+2a

)
θ1

(
τ
∣∣−2z+2a

) θ1

(
τ
∣∣−z+a+b

)
θ1

(
τ
∣∣−2z+a+b

) θ1

(
τ
∣∣a+b

)
θ1

(
τ
∣∣−z+a+b

)
N∏
α=1

θ1

(
τ
∣∣ξα−a)

θ1

(
τ
∣∣ξα−a+z

) θ1

(
τ
∣∣ξα+a−2z

)
θ1

(
τ
∣∣ξα+a

) θ1

(
τ
∣∣ξα+b−z

)
θ1

(
τ
∣∣ξα+b

)
Z
O(4),N
(k,l,±),(2) =−

θ1

(
τ
∣∣−b+a+z

)
θ1

(
τ
∣∣−b+a) θ1

(
τ
∣∣−z+2b

)
θ1

(
τ
∣∣−2z+2b

) θ1

(
τ
∣∣−z+a+b

)
θ1

(
τ
∣∣−2z+a+b

) θ1

(
τ
∣∣a+b

)
θ1

(
τ
∣∣−z+a+b

)
N∏
α=1

θ1

(
τ
∣∣ξα−b)

θ1

(
τ
∣∣ξα−b+z) θ1

(
τ
∣∣ξα+b−2z

)
θ1

(
τ
∣∣ξα+b

) θ1

(
τ
∣∣ξα+a−z

)
θ1

(
τ
∣∣ξα+a

)
Z
O(4),N
(k,l,±),(3) =

N∑
α=1

θ1

(
τ
∣∣−ξα+a

)
θ1

(
τ
∣∣−ξα+a−z

) θ1

(
τ
∣∣−ξα+b

)
θ1

(
τ
∣∣−ξα+b−z

) θ1

(
τ
∣∣a+b

)
θ1

(
τ
∣∣−z+a+b

) θ1

(
τ
∣∣2ξα−z)

θ1

(
τ
∣∣2ξα)

N∏
β=1,β 6=α

θ1

(
τ
∣∣ξβ−ξα−z)

θ1

(
τ
∣∣ξβ−ξα) θ1

(
τ
∣∣ξβ+ξα−z

)
θ1

(
τ
∣∣ξβ+ξα

) θ1

(
τ
∣∣ξβ+a−z

)
θ1

(
τ
∣∣ξβ+a

) θ1

(
τ
∣∣ξβ+b−z

)
θ1

(
τ
∣∣ξβ+b

) .

We fix the mod 2 theta angle and a choice of two orbifolds as in O(2) theories. We

define

Z
O(4),N
(kl) = Z

O(4),N
(k,l,+) + (−1)N+1Z

O(4),N
(k,l,−) (3.124)

where (kl) = (00), (10), (01), (11). Finally we obtain the elliptic genus for the theory A

ZA, SO(4),N (τ, z, ξα) = Z
O(4),N
(00) (3.125)

ZA,O+(4),N (τ, z, ξα) =
1

2

(
Z
O(4),N
(00) + (−1)N+1

(
Z
O(4),N
(10) + Z

O(4),N
(01) + Z

O(4),N
(11)

))
(3.126)

ZA,O−(4),N (τ, z, ξα) =
1

2

(
Z
O(4),N
(00) + (−1)N

(
Z
O(4),N
(10) + Z

O(4),N
(01) + Z

O(4),N
(11)

))
(3.127)

and for theory B

ZB, SO(4),N (τ, z, ξα) = Z̃
O(4),N
(00) (3.128)

ZB,O+(4),N (τ, z, ξα) =
1

2

(
Z̃
O(4),N
(00) + (−1)N+1

(
Z̃
O(4),N
(10) + Z̃

O(4),N
(01) + Z̃

O(4),N
(11)

))
(3.129)

ZB,O−(4),N (τ, z, ξα) =
1

2

(
Z̃
O(4),N
(00) + (−1)N

(
Z̃
O(4),N
(10) + Z̃

O(4),N
(01) + Z̃

O(4),N
(11)

))
(3.130)

where

Z̃
O(4),N
(kl) (τ, z, ξ) =

 N∏
α=1

N∏
β=α

θ1(τ | − z + ξα + ξβ)

θ1(τ |ξα + ξβ)

× ZO(4),N
(kl) (τ, z,−ξ + z/2) (3.131)
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Let’s compute the Witten index from the elliptic genus.

lim
y→1

ZA,SO(4),N =
1

4

(
N(N−2)+

1+(−1)N+1

2

)
=

{
N(N−2)

4 for N even
(N−1)2

4 for N odd
(3.132)

lim
y→1

ZA,O+(4),N =
1

8

(
N(N−2)+

1+(−1)N+1

2
+(N−1)(1+(−1)N+1)

)
+

1

2
(N−1)

1+(−1)N+1

2

=

{
N(N−2)

8 for N even
N2−1

8 +N−1
2 for N odd

(3.133)

lim
y→1

ZA,O−(4),N =
1

8

(
N(N−2)+

1+(−1)N+1

2
−(N−1)(1+(−1)N+1)

)
− 1

2
(N−1)

1+(−1)N+1

2

=

{
N(N−2)

8 for N even
(N−1)(N−3)

8 −N−1
2 for N odd

(3.134)

where two terms for odd N correspond to the number of vacua in the untwisted sector and

the twisted sector respectively. Note that for odd N , the Witten index of the O−(4) gauge

theory has a relative sign difference between the untwisted sector and the twisted sector.

We have tested dualities for N = 3, 4, 5, 6, 7. N = 3 we checked

ZM,3 = Z
O(4),3
(00) = Z

O(4),3
(10) = Z

O(4),3
(01) = Z

O(4),3
(11) (3.135)

analytically at appendix E. Thus we have

ZA, SO(4),3 = ZM,3 (3.136)

ZA,O+(4),3 = 2ZM,3 (3.137)

ZA,O−(4),3 = ZM,3 (3.138)

For N = 5, 7 we checked that the elliptic genera satisfy
Z
O(4),N
(00)

Z
O(4),N
(10)

Z
O(4),N
(01)

Z
O(4),N
(11)

 =
1

2


1 1 1 1

−1 −1 1 1

−1 1 −1 1

−1 1 1 −1



Z̃
O(N−3),N
(00)

Z̃
O(N−3),N
(10)

Z̃
O(N−3),N
(01)

Z̃
O(N−3),N
(11)

 (3.139)

up to q3 with some specific values of flavor holonomies such as ξα = α
N+1 for computational

simplicity. For N = 4, 6 we checked
Z
O(4),N
(00)

Z
O(4),N
(10)

Z
O(4),N
(01)

Z
O(4),N
(11)

 =
1

2


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1



Z̃
O(N−3),N
(00)

Z̃
O(N−3),N
(10)

Z̃
O(N−3),N
(01)

Z̃
O(N−3),N
(11)

 (3.140)

up to q3 with some specific values of flavor holonomies.
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A SU(2) VS SO(3)

A.1 N = (2, 2) pure SU(2) gauge theory

Let us consider an N = (2, 2) pure SU(2) gauge theory. The elliptic genus is given by [5]

Z(τ, z, ξ) =
1

2

∑
u∗ ∈M+

sing

iη(q)3

θ1(τ | − z)

∮
u∗

du
θ1(τ |2u)

θ1(τ | − z + 2u)

θ1(τ | − 2u)

θ1(τ | − z − 2u)
(A.1)

The set M+
sing is

M+
sing =

{
z + a+ bτ

2

∣∣ a, b = 0, 1

}
. (A.2)

We have

ZSU(2)(τ, z, ξ) =
1

4

1∑
a,b=0

y−b
θ1(τ | − z − a− bτ)

θ1(τ | − 2z − a− bτ)
(A.3)

=
θ1(τ | − z)

θ1(τ | − 2z)
(A.4)

This is the same as elliptic genus of a Y2 = Tr Σ2 twisted chiral field which has vector-like R-

charge 4. The Witten index limit z → 0 of the elliptic genus gives limz→0 Z
SU(2)(τ, z, ξ) = 1

2

where non-integer value comes from the bosonic zero mode of Y2.

A.2 N = (2, 2) pure SO(3) gauge theory

Let us consider an N = (2, 2) pure SO(3) gauge theory. The elliptic genus is given by

ZT 2(τ, z, ξ) = −1

2

iη(q)3

θ1(τ | − z)

∮
u=z

du
θ1(τ |u)

θ1(τ | − z + u)

θ1(τ | − u)

θ1(τ | − z − u)
(A.5)

+ eiθ
1

4

θ1(τ |+ 1
2)

θ1(τ | − z + 1
2)

θ1(τ | − 1+τ
2 )

θ1(τ | − z − 1+τ
2 )

θ1(τ |+ τ
2 )

θ1(τ | − z + τ
2 )

= −1

2

θ1(τ | − z)

θ1(τ | − 2z)
+ eiθ

1

4

θ1(τ |+ 1
2)

θ1(τ | − z + 1
2)

θ1(τ | − 1+τ
2 )

θ1(τ | − z − 1+τ
2 )

θ1(τ |+ τ
2 )

θ1(τ | − z + τ
2 )

where θ is a tree level mod 2 theta angle which is a phase difference between holonomies.

We checked that

θ1(τ | − z)

θ1(τ | − 2z)
=

1

2

θ1(τ |+ 1
2)

θ1(τ | − z + 1
2)

θ1(τ | − 1+τ
2 )

θ1(τ | − z − 1+τ
2 )

θ1(τ |+ τ
2 )

θ1(τ | − z + τ
2 )

(A.6)

so we have

ZT 2(τ, z, ξ) =
θ1(τ | − z)

θ1(τ | − 2z)

(
−1 + eiθ

2

)
(A.7)

In the convention of [13], the pure SO(3) gauge theory is regular for θ = 0 and irregular

for θ = π. The elliptic genus shows that the pure SO(3) theory has no supersymmetric
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vacuum for θ = 0 while it has a non-compact Coulomb branch for θ = π as in the pure

SU(2) theory. According to [13], we expect the supersymmetry is broken for the pure SO(3)

gauge theory whether it is regular or not. The elliptic genus computation of the regular

theory is consistent with it, but for the irregular theory it gives the unexpected answer.

We interpret such discrepancy is due to the existence of the noncompact branch [16].

B Elliptic genus formula

The elliptic genus of a gauge theory with gauge group G of rank one is given by [5]

ZT 2(τ, z, ξ) = − 1

|W |
∑

uj ∈M+
sing

∮
u=uj

du
iη(q)3

θ1(q, y−1)

∏
α∈G

θ1(q, xα)

θ1(q, y−1xα)
×

×
∏
Φi

∏
ρ∈Ri

θ1

(
q , yRi/2−1 xρ e2πiPi(ξ)

)
θ1

(
q , yRi/2 xρ e2πiPi(ξ)

) (B.1)

where |W | is the order of the Weyl group. The integrand in the first line is a contribution

of gauge multiplet and the factors in the second line come from matter fields. Elliptic genus

of a chiral multiplet is given by

ZΦ,R,Q(τ,z,u) =
θ1

(
τ |(R2 −1)z+Qu

)
θ1

(
τ |R2 z+Qu

) (B.2)

=−y
R
2
− 1

2xQ
1−y1−R

2 x−Q

1−y
R
2 xQ

∞∏
n=1

(
1−y

R
2
−1xQqn

)(
1−y−(R2 −1)x−Qqn

)
(

1−y
R
2 xQqn

)(
1−y−

R
2 x−Qqn

) . (B.3)

C Eta and theta functions

The Dedekind eta function and the Jacobi theta function are

η(q) = q1/24
∞∏
n=1

(1− qn) (C.1)

θ1(τ |z) = −iq1/8y1/2
∞∏
k=1

(1− qk)(1− yqk)(1− y−1qk−1) (C.2)

θ3(τ |z) =

∞∏
n=1

(1− qn)(1 + yqn−
1
2 )(1 + y−1qn−

1
2 ) (C.3)

where q = e2πiτ , y = e2πiz and Im τ > 0. Two Jacobi theta functions are related as

θ1

(
τ
∣∣z) = e

πi
4
τ+πi

2
(2z−1)θ3

(
τ
∣∣z +

1 + τ

2

)
(C.4)

The modular properties are

θ1

(
τ + 1

∣∣z) = e
πi
4 θ1

(
τ
∣∣z) , θ1

(
−1

τ

∣∣z
τ

)
= −i

√
−iτe

πi
τ
z2θ1

(
τ
∣∣z) (C.5)

θ3

(
τ + 1

∣∣z) = θ3

(
τ
∣∣z +

1

2

)
, θ3

(
−1

τ

∣∣z
τ

)
=
√
−iτe

πi
τ
z2θ3

(
τ
∣∣z) (C.6)
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Under shifts of z the Jacobi theta functions transform as

θ1

(
τ
∣∣z + a+ bτ

)
= (−1)a+be−2πibz−πib2τθ1

(
τ
∣∣z) (C.7)

θ3

(
τ
∣∣z + a+ bτ

)
= e−2πibz−πib2τθ3

(
τ
∣∣z) (C.8)

Useful integral formula for poles associated with a chiral multiplet and a twisted chiral

multiplet are

1

2πi

Q−1∑
a,b=0

∮
u=

1

Q
(−rz+a+bτ)

du
θ1(τ |(r−1)z+Qu)

θ1(τ |rz+Qu)
f(u) =

θ1(τ |−z)
2πη(q)3

1

Q

Q−1∑
a,b=0

ybf
(

1

Q
(−rz+a+bτ)

)
.

1

2πi

Q−1∑
a,b=0

∮
u=

1

Q
(rz+a+bτ)

du
θ1(τ |(1−r)z+Qu)

θ1(τ |−rz+Qu)
f(u) =−θ1(τ |−z)

2πη(q)3
1

Q

Q−1∑
a,b=0

y−bf
(

1

Q
(rz+a+bτ)

)
.

(C.9)

where f(u) is analytic at u = rz+a+bτ
Q .

D Superconformal index

In this section we would like to compute the superconformal index for O±(1) and O±(2),

SO(2) theories (including free and Landau-Ginzburg theories). We also compute (c, c)

ring elements and check their matching between dual theories. To obtain the chiral ring

elements we need the superconformal index, which imposes the NS boundary condition for

fermions [4]. This can be obtained from the elliptic genus using the spectral flow. Thus

the main object to discuss in this section is the superconformal index.

D.1 O(1) gauge theories

The superconformal index of a free chiral multiplet is given by

IΦ(q, y, a) = ∆ (q, y, a) =
∞∏
i=1

(
1− ay−1qi−

1
2

)(
1− a−1yqi−

1
2

)
(1− aqi−1) (1− a−1qi)

=
θ3

(
τ
∣∣− z + ξ − 1

2

)
θ3

(
τ
∣∣ξ − 1+τ

2

)
(D.1)

where q = e2πiτ , y = e2πiz, a = e2πiξ [4]. The superconformal index of a chiral multiplet

with a left-moving R-charge r is IΦr(q, y, a) = ∆(q, y, a(q
1
2 y)r). We shall sometimes simply

write ∆ (a).

Let’s compute the superconformal index for O±(1) and SO(1) (free) theory A. It is

given by

IA,SO(1),N (q, y, a) = IO(1),N
(00) (D.2)

IA,O+(1),N (q, y, a) =
1

2

(
IO(1),N

(00) + IO(1),N
(10) + (−1)NIO(1),N

(01) + IO(1),N
(11)

)
(D.3)

IA,O−(1),N (q, y, a) =
1

2

(
IO(1),N

(00) + IO(1),N
(10) + (−1)N+1IO(1),N

(01) + IO(1),N
(11)

)
(D.4)
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where

IO(1),N
(kl) (q, y, a) =

(
q

1
4 y−

1
2

)Nl N∏
α=1

∆((−1)kq
1
2
laα) (D.5)

The phase factors in front of the (01) component come from a choice of two orbifolds where

O+(1) (resp. O−(1)) theory is a standard Z2 (resp. non-standard Z2(−1)Fs) orbifold for

even N . For odd N , the role of O+(1) and O−(1) are reversed. The effects of (−1)Fs on

RR and NSNS sectors are [13]

(−1)Fs =

{
1 in untwisted NSNS and twisted RR

−1 in twisted NSNS and untwisted RR.
(D.6)

The superconformal indices are consistent with a complex mass deformation where a mas-

sive chiral field contribute to the index given by

IO(1),1
(kl),massive(q, y, a) = (q

1
4 y−

1
2 )l∆(q, y, (−1)kq

1
2
l(q

1
2 y)

1
2 ) =

{
1 for (kl) = (00), (10), (11)

−1 for (kl) = (01).

(D.7)

The O±(1) and SO(1) (Landau-Ginzburg) theory B have the superconformal index

IB,SO(1),N (q, y, a) = ĨO(1),N
(00) (D.8)

IB,O+(1),N (q, y, a) =
1

2

(
ĨO(1),N

(00) + ĨO(1),N
(10) + (−1)N ĨO(1),N

(01) + ĨO(1),N
(11)

)
(D.9)

IB,O−(1),N (q, y, a) =
1

2

(
ĨO(1),N

(00) + ĨO(1),N
(10) + (−1)N+1ĨO(1),N

(01) + ĨO(1),N
(11)

)
(D.10)

where

ĨO(1),N
(kl) (q, y, a) = IM,N (q, y, a)IO(1),N

(kl) (q, y, a−1(q
1
2 y)

1
2 ) (D.11)

IM,N is the contribution of N(N+1)
2 singlets Mαβ ,

IM,N (q, y, a) =

N∏
α=1

N∏
β=α

∆ (q, y, aαaα) (D.12)

We would like to check the operator matching for the dualities. We focus on (c, c) ring

elements whose left-moving energy and R-charge satisfy h = j
2 . They can be obtained by

P (x, a) = lim
t→0
I(qt, yt−

1
2 , a) (D.13)

where the right-hand side is a function of x = q
1
2 y and a, which means only states satisfying

h = j
2 survive in the limit. For theories A, chiral ring contributions are

PA,SO(1),N (q, y, a) = P
O(1),N
(00) (D.14)

PA,O+(1),N (q, y, a) =
1

2

(
P
O(1),N
(00) + P

O(1),N
(10) + (−1)NP

O(1),N
(01) + P

O(1),N
(11)

)
(D.15)

PA,O−(1),N (q, y, a) =
1

2

(
P
O(1),N
(00) + P

O(1),N
(10) + (−1)N+1P

O(1),N
(01) + P

O(1),N
(11)

)
(D.16)
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where

P
O(1),N
(00) =

N∏
α=1

1− a−1
α x

1− aα
, P

O(1),N
(10) =

N∏
α=1

1 + a−1
α x

1 + aα
(D.17)

P
O(1),N
(01) = (−1)Nx

N
2

N∏
α=1

a−1
α , P

O(1),N
(11) = x

N
2

N∏
α=1

a−1
α . (D.18)

For theories B, chiral ring contributions are

PB,SO(1),N (q, y, a) = P̃
O(1),N
(00) (D.19)

PB,O+(1),N (q, y, a) =
1

2

(
P̃
O(1),N
(00) + P̃

O(1),N
(10) + (−1)N P̃

O(1),N
(01) + P̃

O(1),N
(11)

)
(D.20)

PB,O−(1),N (q, y, a) =
1

2

(
P̃
O(1),N
(00) + P̃

O(1),N
(10) + (−1)N+1P̃

O(1),N
(01) + P̃

O(1),N
(11)

)
(D.21)

where

P̃
O(1),N
(kl) (x, aα) = PM,N × PO(1),N

(kl) (x, a−1
α x

1
2 ), (D.22)

PM,N =

N∏
α=1

N∏
β=α

1− a−1
α a−1

β x

1− aαaβ
(D.23)

and PM,N is the contribution of the singlets Mαβ .

We have checked the simplest dualities

IA, SO(1),1 = IB,O+(1),1 (D.24)

IA,O+(1),1 = IB, SO(1),1 (D.25)

IA,O−(1),1 = IB,O−(1),1 (D.26)

and in terms of contributions of four components,

IO(1),1
(00) =

1

2

(
ĨO(1),1

(00) + ĨO(1),1
(10) − ĨO(1),1

(01) + ĨO(1),1
(11)

)
(D.27)

ĨO(1),1
(00) =

1

2

(
IO(1),1

(00) + IO(1),1
(10) − IO(1),1

(01) + IO(1),1
(11)

)
(D.28)

IO(1),1
(00) + IO(1),1

(10) + IO(1),1
(01) + IO(1),1

(11) = ĨO(1),1
(00) + ĨO(1),1

(10) + ĨO(1),1
(01) + ĨO(1),1

(11) (D.29)

For dualities between O−(1)/O−(1) theories we also have checked that the untwisted (resp.

twisted) NSNS sector of the O−(1) theory A is the same as the untwisted (resp. twisted)

NSNS sector of the O−(1) theory B as derived in [13]. This is also true for O−(k)/O−(N −
k + 1) duality in general. Thus the four components of the superconformal index of dual

theories are related as
IO(1),1

(00)

IO(1),1
(10)

IO(1),1
(01)

IO(1),1
(11)

 =
1

2


1 1 −1 1

1 1 1 −1

−1 1 1 1

1 −1 1 1



ĨO(1),1

(00)

ĨO(1),1
(10)

ĨO(1),1
(01)

ĨO(1),1
(11)

 (D.30)
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Let’s consider SO(1) theory A (free theory) with N = 1 and its dual description O+(1)

theory B. The (c, c) ring contribution of SO(1) theory A is given by

PA,SO(1),1(q, y, a) = P
O(1),1
(00) =

1− a−1x

1− a
(D.31)

The chiral ring of the SO(1) theory A is parameterized by free scalar field Q whose contri-

bution is 1
1−a . −a−1x is the contribution of a left-moving fermion ψ̄Q. In the O+(1) theory

B, the untwisted NSNS sector has contributions

1

2

(
P̃
O(1),1
(00) + P̃

O(1),1
(10)

)
=

1− x
1− a2

, (D.32)

with identifications 1
1−a2 →M and −x→ qψ̄q. The twisted NSNS sector has contributions

1

2

(
−P̃O(1),1

(01) + P̃
O(1),1
(11)

)
=

1− a−2x

1− a2
× a , (D.33)

where 1
1−a2 → M , −a−2x → ψ̄M , a → ψ̄q where ψ̄q is a zero mode of the fermion in the

twisted NSNS sector. Twisted ψ̄q operator in the twisted NSNS sector is anti-invariant

under the standard Z2 but it is invariant under non-standard Z2(−1)Fs . Operator map is

Q2n ↔Mn, Q2n−1 ↔Mn−1ψ̄q, ψQ ↔ ψ̄M ψ̄q (D.34)

Note that the operator Q corresponds to the twist operator ψ̄q in the dual theory.

Let’s consider (c, c) ring for the O+(1) gauge theory A with N = 1 and its dual, SO(1)

(LG) theory B. SO(1) theory B is a theory of two chiral multiplet with a superpotential

W = Mq2 so we have classical relations

Mq = q2 = 0 . (D.35)

(c, c) ring contribution is given by

P̃
O(1),1
(00) =

1− a−2x

1− a2
× 1− ax

1
2

1− a−1x
1
2

=
1− x
1− a2

+ a−1x
1
2 , (D.36)

where 1
1−a2 → M , 1

1−a−1x
1
2
→ q, −a−2x → ψ̄M , −ax

1
2 → ψ̄q in the first equality. On the

right-hand side of the second equality, the remaining elements are 1
1−a2 →M , −x→ qψ̄q,

a−1x
1
2 → q. Thus the contribution of Mq and q2 are canceled out with ψ̄q and ψ̄M

respectively. The O+(1) gauge theory A with N = 1 is a non-standard Z2 orbifold. The

untwisted NSNS sector has the contribution from M = QQ, which is

1

2

(
P
O(1),1
(00) + P

O(1),1
(10)

)
=

1− x
1− a2

(D.37)

where 1
1−a2 → Q2, −x → Qψ̄Q. The twisted NSNS sector has the contribution from the

zero mode of the fermion ψ̄ which is bosonic,

1

2

(
−PO(1),1

(01) + P
O(1),1
(11)

)
= a−1x

1
2 (D.38)
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so we have identification between the twist operator ψ̄Q of the O+(1) theory A and q of

the SO(1) theory B.

Now let’s consider the O−(1) theory A with N = 1, which is a standard Z2 orbifold,

and its dual description, the O−(1) theory B with N = 1. For O−(k)/O−(N − k + 1)

dualities, the untwisted (resp. the twisted) NSNS sector of theory A is mapped to that of

theory B. Furthermore, the untwisted NSNS sector of O−(k) theory is the same as that of

O+(k) theory because (−1)Fs operator has no effect on the untwisted NSNS sector. Thus

we have seen the untwisted NSNS sectors of the theories in (D.32) and (D.37), which are

the same. The twisted NSNS sector does not have (c, c) ring elements.

D.2 O(2) gauge theories

The superconformal index of O(2) gauge theories is computed by summing over all flat

connections. We already identified seven components of the moduli space of the flat con-

nection in the computation of the elliptic genus. Each contribution of components to the

elliptic genus and the superconformal index has the same form because both of them have

the same pole structure. However, relative phase factors are different, which are related to

the action of (−1)Fs operator, the mod 2 theta angle and zero point energy and R-charge.

Let us first write down the superconformal index and explain about the phase factors.

The superconformal index of the theory A is given by

IA,SO(2),N (q, y, a) = IO(2),N
(00) (D.39)

IA,O+(2),N (q, y, a) =
1

2

(
IO(2),N

(00) + IO(2),N
(10) + (−1)N+1IO(2),N

(01) + IO(2),N
(11)

)
(D.40)

IA,O−(2),N (q, y, a) =
1

2

(
IO(2),N

(00) + IO(2),N
(10) + (−1)NIO(2),N

(01) + IO(2),N
(11)

)
(D.41)

where

IO(2),N
(00) =

N∑
α=1

 N∏
β=1,β 6=α

∆
(
a−1
α aβ

) N∏
γ=1

∆(aαaγ)

 (D.42)

IO(2),N
(10) = ∆

(
−q

1
2 y
)(( N∏

α=1

∆(aα)∆(−aα)

)
+(−1)N+1

(
N∏
α=1

∆
(
q−

1
2aα

)
∆
(
−q

1
2aα

)))
(D.43)

IO(2),N
(01) =

(
y−

1
2 q

1
4

)N−1
∆
(
q−

1
2 (q

1
2 y)
)(( N∏

α=1

∆(aα)∆
(
q

1
2aα

))
+(−1)N+1

(
N∏
α=1

∆(−aα)∆
(
−q

1
2aα

)))
(D.44)

IO(2),N
(11) =

(
y−

1
2 q

1
4

)N−1
∆
(
−q−

1
2 (q

1
2 y)
)(( N∏

α=1

∆(aα)∆
(
−q

1
2aα

))
+(−1)N+1

(
N∏
α=1

∆(−aα)∆
(
q

1
2aα

)))
.

(D.45)

The sign factors (−1)N+1 and (−1)N in front of IO(2),N
(01) are the choice of (−1)Fs action on

the twisted NSNS sector. (−1)N+1 factors inside of IO(2),N
(kl) come from the mod 2 theta

angle and are determined by introducing a massive doublet with a complex mass and de-

manding that the theory is a regular theory. In the twisted sector ((01), (11) contributions)
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we have additional factor
(
y−

1
2 q

1
4

)N−1
which shift zero point energy and R-charge. This

factor is compatible with matching of operators between dual theories.

The superconformal index of the O±(2) and SO(2) theory B can be written as

IB,SO(2),N (q, y, a) = ĨO(2),N
(00) (D.46)

IB,O+(2),N (q, y, a) =
1

2

(
ĨO(2),N

(00) + ĨO(2),N
(10) + (−1)N+1ĨO(2),N

(01) + ĨO(2),N
(11)

)
(D.47)

IB,O−(2),N (q, y, a) =
1

2

(
ĨO(2),N

(00) + ĨO(2),N
(10) + (−1)N ĨO(2),N

(01) + ĨO(2),N
(11)

)
(D.48)

where

ĨO(2),N
(kl) (q, y, a) = IM,N (q, y, a)IO(2),N

(kl) (q, y, a−1(q
1
2 y)

1
2 ) (D.49)

We have checked agreements of superconformal indices for the dualities, O±(2) and

SO(2) theory A with N = 1, 2, 3. When the theory A has one flavor N = 1 it is dual to a

free theory. We have

IM,1 = IO(2),1
(00) = IO(2),1

(10) = IO(2),1
(01) = IO(2),1

(11) =
1

1−a2

 ∞∏
i=1

(
1−a2y−1qi−

1
2

)(
1−a−2yqi−

1
2

)
(1−a2qi)(1−a−2qi)


(D.50)

Therefore the SO(2) and O−(2) theory A with N = 1 is dual to the free theory of a meson

M and the O+(2) theory A with N = 1 is dual to double copies of the free theory. For

N = 2, 3 we have following relation,
IO(2),N

(00)

IO(2),N
(10)

(−1)N+1IO(2),N
(01)

IO(2),N
(11)

 =
1

2


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1



ĨO(N−1),N

(00)

ĨO(N−1),N
(10)

ĨO(N−1),N
(01)

ĨO(N−1),N
(11)

 , (D.51)

which shows agreement of superconformal index for the dualities. We expect this relation

persists for the dualities with any N .

We would like to identify contributions of chiral primary operators in the superconfor-

mal index. We obtain (c, c) ring elements from the superconformal index,

P
O(2),N
(00) =

N∑
α=1

 N∏
β=1,β 6=α

1− aαa−1
β x

1− a−1
α aβ

 N∏
γ=1

1− a−1
α a−1

γ x

1− aαaγ

 (D.52)

P
O(2),N
(10) =

2

1 + x

((
N∏
α=1

1− a−1
α x

1− aα
1 + a−1

α x

1 + aα

)
− xN

N∏
α=1

a−2
α

)
(D.53)

P
O(2),N
(01) = (−1)Nx

N−1
2

((
N∏
α=1

1− a−1
α x

1− aα
a−1
α

)
−

(
N∏
α=1

1 + a−1
α x

1 + aα
a−1
α

))
(D.54)

P
O(2),N
(11) = x

N−1
2

((
N∏
α=1

1− a−1
α x

1− aα
a−1
α

)
−

(
N∏
α=1

1 + a−1
α x

1 + aα
a−1
α

))
. (D.55)
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First example is SO(2) theory A and O+(1) theory B with N = 2. SO(2) theory A has

(c, c) ring generators, three mesons and one baryon,

Mαβ = (QαQβ), b12 = [Q1Q2] (D.56)

where (· · · ) and [· · · ] are symmetric and anti-symmetric in indices respectively. The (c, c)

ring generators are subject to one relation

J2 : b212 = det(Mαβ) (D.57)

where the notation follows [13]. Thus all operators bn12, n ≥ 2 are not independent opera-

tors. The superconformal index of the theory is given by

IA,SO(2),N (q, y, a) =
1 + a1a2

(1− a2
1)(1− a1a2)(1− a2

2)
+O(q

1
2 ) (D.58)

where a1a2 in the numerator corresponds to b12 and the three factors in the denominator

correspond to three mesons. The superconformal index of the O+(1) theory B can be seen

from (D.20). Contributions from the untwisted and the twisted NSNS sectors are

1

2

(
P̃
O(1),2
(00) +P̃

O(1),2
(10)

)
=

1

2

 2∏
α=1

2∏
β=α

1−a−1
α a−1

β x

1−aαaβ

( 2∏
α=1

1−aαx
1
2

1−a−1
α x

1
2

+

2∏
α=1

1+aαx
1
2

1+a−1
α x

1
2

)

=
1

(1−a2
1)(1−a1a2)(1−a2

2)
+O(q

1
2 ) (D.59)

1

2

(
(−1)2P̃

O(1),2
(01) +P̃

O(1),2
(11)

)
=

 2∏
α=1

2∏
β=α

1−a−1
α a−1

β x

1−aαaβ

 2∏
α=1

aα

=
1

(1−a2
1)(1−a1a2)(1−a2

2)
×a1a2+O(q

1
2 ) (D.60)

where 1
(1−a21)(1−a1a2)(1−a22)

comes from singlets Mαβ . The twisted sector has contribution

a1a2 which comes from zero modes of fermions in the twisted NSNS sector, ψ̄q1ψ̄q2 so we

have (ψ̄q1ψ̄q2)2 = 0. Therefore, we confirm the identification that the baryon operator in

the SO(2) gauge theory A corresponds to the twist operator in the O+(1) theory B.

Let’s consider the O+(1) theory A with N = 2 and the SO(2) theory B with N = 2.

In the untwisted sector of the O+(1) theory the (c, c) ring is generated by three mesons,

M11, M12, M22 (D.61)

and they are subject to a relation, det(Mαβ) = 0 and explicitly

(M12)2 = M11M22 . (D.62)

Thus (M12)2 operator and its higher order product are not independent operators. The

superconformal index of the untwisted sector has the form of

1

2

(
P
O(1),2
(00) + P

O(1),2
(10)

)
=

1

2

(
N∏
α=1

1− a−1
α x

1− aα
+

N∏
α=1

1 + a−1
α x

1 + aα

)
(D.63)

=
1 + a1a2

(1− a2
1)(1− a2

2)
+O(q1) (D.64)
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where a1a2 → M12 and 1
(1−a2α)

→ Mαα. The O+(1) theory also have (c, c) ring elements

from the twisted sector.

1

2

(
(−1)2P

O(1),2
(01) + P

O(1),2
(11)

)
= a−1

1 a−1
2 x , (D.65)

which comes from twist operator ψ̄Q1ψ̄Q2 . In the SO(2) theory B the relations in the (c, c)

ring of theory A are not visible in the classical theory but appear in the infra-red limit

of the quantum theory. (D.62) can be seen as integrating out (q1q2) operator [13]. The

superconformal index of the SO(2) theory B is given by

ISO(2),2 =
1

(1−a2
1)(1−a1a2)(1−a2

2)
×

(
(1−a1a2)(1−a2

1)

1− a1
a2

+
(1−a1a2)(1−a2

2)

1− a2
a1

)
+O(q

1
2 )

(D.66)

one can see the leading order is the same as 1+a1a2
(1−a21)(1−a22)

. One can also see that the baryon

operator [q1q2] contributes a−1
1 a−1

2 x to the superconformal index and corresponds to the

twist operator of the O+(1) theory A.

E Analytic proof of the equality of the elliptic genus of several dual pairs

E.1 Jacobi theta functions

In this appendix, we prove the equality of the elliptic genus of dual pairs analytically for sim-

ple cases. We need some addition rules between the Jacobi theta functions. We use the no-

tation θi(z) ≡ θi(τ |z) for i = 1, 2, 3, 4 for simplicity. The relation between θi(z) is given by

θ1(z + 1/2) = θ2(z) (E.1)

θ1(z + τ/2) = iq−1/8y−1/2θ4(z) (E.2)

θ1(z + 1/2 + τ/2) = q−1/8y−1/2θ3(z) (E.3)

The addition rules are as follows.

θ1(y ± z)θ2(y ∓ z)θ3θ4 = θ1(y)θ2(y)θ3(z)θ4(z)± θ3(y)θ4(y)θ1(z)θ2(z) (E.4)

θ1(y ± z)θ3(y ∓ z)θ2θ4 = θ1(y)θ3(y)θ2(z)θ4(z)± θ2(y)θ4(y)θ1(z)θ3(z) (E.5)

θ1(y ± z)θ4(y ∓ z)θ2θ3 = θ1(y)θ4(y)θ2(z)θ3(z)± θ2(y)θ3(y)θ1(z)θ4(z) (E.6)

θ2(y ± z)θ3(y ∓ z)θ2θ3 = θ2(y)θ3(y)θ2(z)θ3(z)∓ θ1(y)θ4(y)θ1(z)θ4(z) (E.7)

θ2(y ± z)θ4(y ∓ z)θ2θ4 = θ2(y)θ4(y)θ2(z)θ4(z)∓ θ1(y)θ3(y)θ1(z)θ3(z) (E.8)

θ3(y ± z)θ4(y ∓ z)θ3θ4 = θ3(y)θ4(y)θ3(z)θ4(z)∓ θ1(y)θ2(y)θ1(z)θ2(z) (E.9)

Where θi ≡ θi(0). From the eq. (E.4), with y = z, we get

θ1(2z)θ2θ3θ4 = 2θ1(z)θ2(z)θ3(z)θ4(z). (E.10)
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Also, the periodicity of the Jacobi theta functions is given by

θ1(z + a+ bτ) = (−1)a+by−bq−
b2

2 θ1(z) (E.11)

θ2(z + a+ bτ) = (−1)ay−bq−
b2

2 θ2(z) (E.12)

θ3(z + a+ bτ) = y−bq−
b2

2 θ3(z) (E.13)

θ4(z + a+ bτ) = (−1)by−bq−
b2

2 θ4(z), (E.14)

where y = e2πiz. From the fact that θ1(a+ bτ) = 0 for a, b ∈ Z, we can deduce that

θ2(1/2) = θ3(1/2 + τ/2) = θ4(τ/2) = 0. (E.15)

Also, the other relations between the Jacobi theta functions are

θ2

(
z +

1

2

)
= −θ1(z)

θ2

(
z +

τ

2

)
= q−

1
8 y−

1
2 θ3(z)

θ2

(
z +

1 + τ

2

)
= −iq−

1
8 y−

1
2 θ4(z)

θ3

(
z +

1

2

)
= θ4(z)

θ3

(
z +

τ

2

)
= q−

1
8 y−

1
2 θ2(z)

θ3

(
z +

1 + τ

2

)
= iq−

1
8 y−

1
2 θ1(z)

θ4

(
z +

1

2

)
= θ3(z)

θ4

(
z +

τ

2

)
= iq−

1
8 y−

1
2 θ1(z)

θ4

(
z +

1 + τ

2

)
= q−

1
8 y−

1
2 θ2(z). (E.16)

For small z with (a, b, i) = (0, 0, 1), (1, 0, 2), (0, 1, 4), (1, 1, 3), we have

θi

(
z +

a+ bτ

2

)
∼ z1. (E.17)

E.2 Elliptic genus of O(1), O(2) theories

We start by writing down the elliptic genus of the O(1), O(2) gauge groups with N fun-

damentals and the mesonic variables ZM,N . The elliptic genus of the SO(1),O±(1) gauge
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theory with N fundamentals is

ZA,SO(1),N =
N∏
α=1

θ1(ξα − z)

θ1(ξα)
(E.18)

ZA,O+(1),N =
1

2

(
(−1)N

N∏
α=1

θ1(ξα− z)

θ1(ξα)
+

N∏
α=1

θ2(ξα− z)

θ2(ξα)
+

N∏
α=1

θ3(ξα− z)

θ3(ξα)
+

N∏
α=1

θ4(ξα− z)

θ4(ξα)

)
(E.19)

ZA,O−(1),N =
1

2

(
(−1)N+1

N∏
α=1

θ1(ξα− z)

θ1(ξα)
+

N∏
α=1

θ2(ξα− z)

θ2(ξα)
+

N∏
α=1

θ3(ξα− z)

θ3(ξα)
+

N∏
α=1

θ4(ξα− z)

θ4(ξα)

)
.

(E.20)

The elliptic genus of the SO(2),O±(2) gauge theory with N fundamentals is

ZA,SO(2),N = Z
O(2),N
(00) (E.21)

ZA,O+(2),N =
1

2

(
Z
O(2),N
(00) + (−1)N+1(Z

O(2),N
(01) + Z

O(2),N
(10) + Z

O(2),N
(11) )

)
(E.22)

ZA,O−(2),N =
1

2

(
Z
O(2),N
(00) + (−1)N (Z

O(2),N
(01) + Z

O(2),N
(10) + Z

O(2),N
(11) )

)
(E.23)

where

Z
O(2),N
(00) =

N∑
β=1

( ∏
α 6=β

θ1(ξα − ξβ − z)

θ1(ξα − ξβ)

)(∏
α=1

θ1(ξα + ξβ − z)

θ1(ξα + ξβ)

)
(E.24)

Z
O(2),N
(01) =

1

2

θ4(0)

θ4(z)

(
N∏
α=1

θ1(ξα−z)

θ1(ξα)

θ4(ξα−z)

θ4(ξα)
+(−1)N+1

N∏
α=1

θ2(ξα−z)

θ2(ξα)

θ3(ξα−z)

θ3(ξα)

)
(E.25)

Z
O(2),N
(10) =

1

2

θ2(0)

θ2(z)

(
N∏
α=1

θ1(ξα−z)

θ1(ξα)

θ2(ξα−z)

θ2(ξα)
+(−1)N+1

N∏
α=1

θ3(ξα−z)

θ3(ξα)

θ4(ξα−z)

θ4(ξα)

)
(E.26)

Z
O(2),N
(11) =

1

2

θ3(0)

θ3(z)

(
N∏
α=1

θ1(ξα−z)

θ1(ξα)

θ3(ξα−z)

θ3(ξα)
+(−1)N+1

N∏
α=1

θ2(ξα−z)

θ2(ξα)

θ4(ξα−z)

θ4(ξα)

)
. (E.27)

Finally the elliptic genus of N(N + 1)/2 mesonic variables is

ZM,N =
N∏
α=1

N∏
β=α

θ1(ξα + ξβ − z)

θ1(ξα + ξβ)
. (E.28)

E.3 Dual pairs of consideration

In this section, we enumerate dual pairs we are interested in. Before writing them, let

us define some notations. We denote the elliptic genus of the gauge group G with N

fundamentals of the A theory as

ZA,G,N ≡ ZA,G,N (τ, z, ξ) (E.29)
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and the elliptic genus of N(N + 1)/2 mesonic variables is denoted by

ZM,N ≡ ZM,N (τ, z, ξ). (E.30)

Also, we denote the elliptic genus of substitution ξ → −ξ + z
2 multiplied by ZM,N , which

becomes the dual B theory, using tilde notation as

Z̃A,G,N ≡ ZA,G,N
(
τ, z,−ξ +

z

2

)
× ZM,N

= ZB,G,N . (E.31)

It is easy to see that the elliptic genus of the dual of the dual theory is that of the original

theory.

Z̃B,G,N =
˜̃
Z
A,G,N

= ZA,G,N
(
τ, z,−

(
−ξ +

z

2

)
+
z

2

)
× ZM,N

(
τ, z,−ξ +

z

2

)
× ZM,N

= ZA,G,N (τ, z, ξ)

= ZA,G,N (E.32)

where we use

ZM,N
(
τ, z,−ξ +

z

2

)
=

N∏
α=1

N∏
β=α

θ1 (−ξα − ξβ)

θ1(−ξα − ξβ + z)

=
N∏
α=1

N∏
β=α

θ1(ξα + ξβ)

θ1 (ξα + ξβ − z)

= (ZM,N )−1. (E.33)

If we have a dual pair between two different gauge groups G1 in the A theory and G2 in the

B theory, we must have the same elliptic genus. Using the above notations we should have

ZA,G1,N = ZB,G2,N . (E.34)

Also, if we check the eq. (E.34), the equality of the elliptic genus of G2 in the A theory

and G1 in the B theory automatically follows since

ZA,G2,N = Z̃B,G2,N

= Z̃A,G1,N

= ZB,G1,N (E.35)

where we use the eq. (E.32) in the first line and the eq. (E.34) in the second line. Now, we

list the possible dual pairs that we have to check analytically

1. O(1), 1 ←→ O(1), 1

ZA,O+(1),1 = ZB,SO(1),1 (E.36)

ZA,O−(1),1 = ZB,O−(1),1 (E.37)
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2. O(2), 1 ←→ O(0), 1

ZA,O+(2),1 = 2ZM,1 (E.38)

ZA,SO(2),1 = ZM,1 (E.39)

ZA,O−(2),1 = −ZM,1 (E.40)

3. O(2), 2 ←→ O(1), 2

ZA,O+(2),2 = ZB,SO(1),2 (E.41)

ZA,SO(2),2 = ZB,O+(1),2 (E.42)

ZA,O−(2),2 = ZB,O−(1),2. (E.43)

Later we will also consider

4. O(3), 2 ←→ O(0), 2

ZA,SO(3),2 = Z
O(3),2
(00) = ZM,2 (E.44)

ZA,O+(3),2 = 2ZM,2 (E.45)

ZA,O−(3),2 = ZM,2. (E.46)

5. O(4), 3 ←→ O(0), 3

ZA,SO(4),3 = Z
O(4),3
(00) = ZM,3 (E.47)

ZA,O+(4),3 = 2ZM,3 (E.48)

ZA,O−(4),3 = −ZM,3. (E.49)

E.4 One fundamental cases

E.4.1 SO(1),O±(1) theories with 1 fundamental

From the elliptic genus expressions and the relations of eq. (E.1)-eq. (E.3), we have

ZA,SO(1),1 =
θ1(ξ − z)

θ1(ξ)
(E.50)

ZA,O+(1),1 =
1

2

(
− θ1(ξ − z)

θ1(ξ)
+
θ2(ξ − z)

θ2(ξ)
+
θ3(ξ − z)

θ3(ξ)
+
θ4(ξ − z)

θ4(ξ)

)
(E.51)

ZA,O−(1),1 =
1

2

(
θ1(ξ − z)

θ1(ξ)
+
θ2(ξ − z)

θ2(ξ)
+
θ3(ξ − z)

θ3(ξ)
+
θ4(ξ − z)

θ4(ξ)

)
. (E.52)
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We can simplify them as

ZA,O+(1),1 =
{θ1(ξ)θ2(ξ−z)−θ1(ξ−z)θ2(ξ)}θ3(ξ)θ4(ξ)+θ1(ξ)θ2(ξ){θ3(ξ−z)θ4(ξ)+θ3(ξ)θ4(ξ−z)}

2θ1(ξ)θ2(ξ)θ3(ξ)θ4(ξ)

=
θ1( z

2
)θ2( z

2
)θ3(ξ− z

2
)θ4(ξ− z

2
)θ3(ξ)θ4(ξ)+θ3( z

2
)θ4( z

2
)θ3(ξ− z

2
)θ4(ξ− z

2
)θ1(ξ)θ2(ξ)

θ1(ξ)θ2(ξ)θ3(ξ)θ4(ξ)θ3(0)θ4(0)

=
θ3(ξ− z

2
)θ4(ξ− z

2
)

θ1(ξ)θ2(ξ)θ3(ξ)θ4(ξ)θ3(0)θ4(0)

(
θ1

(
z

2

)
θ2

(
z

2

)
θ3(ξ)θ4(ξ)+θ1(ξ)θ2(ξ)θ3

(
z

2

)
θ4

(
z

2

))
=
θ1(ξ+ z

2
)θ2(ξ− z

2
)θ3(ξ− z

2
)θ4(ξ− z

2
)

θ1(ξ)θ2(ξ)θ3(ξ)θ4(ξ)

=
θ1(ξ+ z

2
)

θ1(ξ− z
2
)

θ1(ξ− z
2
)θ2(ξ− z

2
)θ3(ξ− z

2
)θ4(ξ− z

2
)

θ1(ξ)θ2(ξ)θ3(ξ)θ4(ξ)

=
θ1(ξ+ z

2
)

θ1(ξ− z
2
)

θ1(2ξ−z)
θ1(2ξ)

. (E.53)

At the first line, we rewrite eq. (E.51) to have a common denominator. At the second

and third line, we use the addition rules of eq. (E.4), eq. (E.9). At the last line, we use

eq. (E.10). The duality between ZA,SO(1),1 can be checked by changing the holonomy at

ZA,O+(1),1 as ξ → −ξ + z
2 and multiplying ZM,1 = θ1(2ξ−z)

θ1(2ξ) .

ZB,O+(1),1 = ZA,O+(1),1
(
ξ → −ξ +

z

2

)
× ZM,1

=
θ1(−ξ + z)

θ1(−ξ)
θ1(−2ξ)

θ1(−2ξ + z)
× θ1(2ξ − z)

θ1(2ξ)

=
θ1(ξ − z)

θ1(ξ)

θ1(2ξ)

θ1(2ξ − z)

θ1(2ξ − z)

θ1(2ξ)

=
θ1(ξ − z)

θ1(ξ)
= ZA,SO(1),1. (E.54)

For ZO−(1),1, we have

ZA,O−(1),1 =
{θ1(ξ)θ2(ξ−z)+θ1(ξ−z)θ2(ξ)}θ3(ξ)θ4(ξ)+θ1(ξ)θ2(ξ){θ3(ξ−z)θ4(ξ)+θ3(ξ)θ4(ξ−z)}

2θ1(ξ)θ2(ξ)θ3(ξ)θ4(ξ)

=
θ3( z

2
)θ4( z

2
)

θ1(ξ)θ2(ξ)θ3(ξ)θ4(ξ)θ3(0)θ4(0)

×
(
θ1

(
ξ− z

2

)
θ2

(
ξ− z

2

)
θ3(ξ)θ4(ξ)+θ1(ξ)θ2(ξ)θ3

(
ξ− z

2

)
θ4

(
ξ− z

2

))
=
θ1(2ξ− z

2
)θ2( z

2
)θ3( z

2
)θ4( z

2
)

θ1(ξ)θ2(ξ)θ3(ξ)θ4(ξ)

=
θ1(2ξ− z

2
)

θ1( z
2
)

θ1( z
2
)θ2( z

2
)θ3( z

2
)θ4( z

2
)

θ1(ξ)θ2(ξ)θ3(ξ)θ4(ξ)

=
θ1(2ξ− z

2
)

θ1(2ξ)

θ1(z)

θ1( z
2
)
. (E.55)

At the first line, we rewrite eq. (E.51) to have a common denominator. At the second line,

we use the addition rules of eq. (E.4), eq. (E.9). At the last line, we use eq. (E.10). From
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this we can obtain

ZB,O−(1),1 = ZA,O−(1),1
(
ξ → −ξ +

z

2

)
× ZM,1

=
θ1(−2ξ + z

2)

θ1(−2ξ + z)

θ1(z)

θ1( z2)
× θ1(2ξ − z)

θ1(2ξ)

=
θ1(2ξ − z

2)

θ1(2ξ − z)

θ1(z)

θ1( z2)

θ1(2ξ − z)

θ1(2ξ)

=
θ1(2ξ − z

2)

θ1(2ξ)

θ1(z)

θ1( z2)
= ZA,O−(1),1. (E.56)

We also check the following identities appearing in the main text

Z
O(1),1
(00) + Z

O(1),1
(10) = Z̃

O(1),1
(01) + Z̃

O(1),1
(11) (E.57)

Z
O(1),1
(01) + Z

O(1),1
(11) = Z̃

O(1),1
(00) + Z̃

O(1),1
(10) (E.58)

Z
O(1),1
(01) − ZO(1),1

(11) = Z̃
O(1),1
(11) − Z̃O(1),1

(01) . (E.59)

Actually, eq. (E.57) and eq. (E.58) are equivalent since eq. (E.58) is obtained from eq. (E.57)

by taking the duality transformation, which adds the tilde in both sides and
˜̃
Z = Z for

involved expressions. So, we only need to check eq. (E.57) and eq. (E.59).

Z
O(1),1
(00) + Z

O(1),1
(10) =

θ1(ξ − z)

θ1(ξ)
+
θ2(ξ − z)

θ2(ξ)

=
θ1(ξ−z)θ2(ξ)θ3(ξ)θ4(ξ) + θ1(ξ)θ2(ξ−z)θ3(ξ)θ4(ξ)

θ1(ξ)θ2(ξ)θ3(ξ)θ4(ξ)

=
{θ1(ξ−z)θ2(ξ) + θ1(ξ)θ2(ξ−z)}θ3θ4

θ3(ξ)θ4(ξ)
θ3θ4

θ1(ξ)θ2(ξ)θ3(ξ)θ4(ξ)

= 2
θ1(ξ−z2)θ2(ξ−z2)θ3(ξ)θ4(ξ)θ3( z2)θ4( z2)

θ1(ξ)θ2(ξ)θ3(ξ)θ4(ξ)θ3θ4

=
θ1(ξ−z2)θ2(ξ−z2){θ3(ξ+z

2)θ4(ξ−z2) + θ3(ξ−z2)θ4(ξ+z
2)}θ3θ4

θ1(ξ)θ2(ξ)θ3(ξ)θ4(ξ)θ3θ4

=
θ1(ξ−z2)θ2(ξ−z2)θ3(ξ−z2)θ4(ξ−z2)

θ1(ξ)θ2(ξ)θ3(ξ)θ4(ξ)

(
θ3(ξ+z

2)

θ3(ξ−z2)
+
θ4(ξ+z

2)

θ4(ξ−z2)

)

=
θ1(2ξ − z)

θ1(2ξ)

(
θ3(ξ+z

2)

θ3(ξ−z2)
+
θ4(ξ+z

2)

θ4(ξ−z2)

)
= Z̃

O(1),1
(01) + Z̃

O(1),1
(11) . (E.60)
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Similarly,

Z
O(1),1
(01) −Z

O(1),1
(11) =

θ4(ξ−z)

θ4(ξ)
− θ3(ξ−z)

θ3(ξ)

=
θ3(ξ)θ4(ξ−z)−θ3(ξ−z)θ4(ξ)

θ3(ξ)θ4(ξ)

=
−2

θ3θ4

θ1(ξ)θ2(ξ)θ1( z2)θ2( z2)

θ1(ξ)θ2(ξ)θ3(ξ)θ4(ξ)
θ1

(
ξ− z

2

)
θ2

(
ξ− z

2

)
=
−2

θ3θ4

θ1

(
ξ− z

2

)
θ2

(
ξ− z

2

)
θ1(ξ)θ2(ξ)θ3(ξ)θ4(ξ)

θ3θ4

2

(
θ3

(
ξ− z

2

)
θ4

(
ξ+

z

2

)
−θ3

(
ξ+

z

2

)
θ4

(
ξ− z

2

))
=
θ1(ξ− z

2)θ2(ξ− z
2)θ3(ξ− z

2)θ4(ξ− z
2)

θ1(ξ)θ2(ξ)θ3(ξ)θ4(ξ)

(
θ3(ξ+ z

2)

θ3(ξ− z
2)
−
θ4(ξ+ z

2)

θ4(ξ− z
2)

)

=
θ1(2ξ−z)

θ1(2ξ)

(
θ3(ξ+ z

2)

θ3(ξ− z
2)
−
θ4(ξ+ z

2)

θ4(ξ− z
2)

)
= Z̃

O(1),1
(11) −Z̃

O(1),1
(01) . (E.61)

E.4.2 SO(2),O±(2) theories with 1 fundamental

Let us show the case of one fundamental with SO(2),O±(2) gauge theories. The elliptic

genus expressions of the SO(2),O±(2) theories with 1 fundamental are given by

Z
O(2),1
(10) =

1

2

θ2(0)

θ2(z)

(
θ1(ξ−z)θ2(ξ−z)

θ1(ξ)θ2(ξ)
+
θ3(ξ−z)θ4(ξ−z)

θ3(ξ)θ4(ξ)

)
, (E.62)

Z
O(2),1
(01) =

1

2

θ4(0)

θ4(z)

(
θ1(ξ−z)θ4(ξ−z)

θ1(ξ)θ4(ξ)
+
θ2(ξ−z)θ3(ξ−z)

θ2(ξ)θ3(ξ)

)
, (E.63)

Z
O(2),1
(11) =

1

2

θ3(0)

θ3(z)

(
θ1(ξ−z)θ3(ξ−z)

θ1(ξ)θ3(ξ)
+
θ2(ξ−z)θ4(ξ−z)

θ2(ξ)θ4(ξ)

)
. (E.64)

Using the theta functions addition rules, we can get

Z
O(2),1
(00) =

θ1(2ξ − z)

θ1(2ξ)
(E.65)

Z
O(2),1
(10) =

1

2

θ2(0)

θ2(z)

(
θ1(ξ−z)θ2(ξ−z)θ3(ξ)θ4(ξ) + θ1(ξ)θ2(ξ)θ3(ξ−z)θ4(ξ−z)

θ1(ξ)θ2(ξ)θ3(ξ)θ4(ξ)

)

=
1

2

θ2(0)

θ2(z)

θ1(2ξ − z)θ2(−z)θ3(0)θ4(0)

θ1(ξ)θ2(ξ)θ3(ξ)θ4(ξ)

=
θ1(2ξ − z)

θ1(2ξ)
(E.66)

Z
O(2),1
(01) =

1

2

θ4(0)

θ4(z)

(
θ1(ξ−z)θ4(ξ−z)θ2(ξ)θ3(ξ) + θ1(ξ)θ4(ξ)θ2(ξ−z)θ3(ξ−z)

θ1(ξ)θ2(ξ)θ3(ξ)θ4(ξ)

)

=
1

2

θ4(0)

θ4(z)

θ1(2ξ − z)θ4(−z)θ2(0)θ3(0)

θ1(ξ)θ2(ξ)θ3(ξ)θ4(ξ)

=
θ1(2ξ − z)

θ1(2ξ)
(E.67)
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Z
O(2),1
(11) =

1

2

θ3(0)

θ3(z)

(
θ1(ξ−z)θ3(ξ−z)θ2(ξ)θ4(ξ) + θ1(ξ)θ3(ξ)θ2(ξ−z)θ4(ξ−z)

θ1(ξ)θ2(ξ)θ3(ξ)θ4(ξ)

)

=
1

2

θ3(0)

θ3(z)

θ1(2ξ − z)θ3(−z)θ2(0)θ4(0)

θ1(ξ)θ2(ξ)θ3(ξ)θ4(ξ)

=
θ1(2ξ − z)

θ1(2ξ)
. (E.68)

We use eq. (E.10) at each of the last line. Hence, we have,

Z
O(2),1
(00) = Z

O(2),1
(01) = Z

O(2),1
(10) = Z

O(2),1
(11) =

θ1(2ξ − z)

θ1(2ξ)
= ZM,1 (E.69)

and with eq. (E.21)-eq. (E.23) we get

ZA,SO(2),1 = ZM,1 (E.70)

ZA,O+(2),1 = 2ZM,1 (E.71)

ZA,O−(2),1 = −ZM,1 (E.72)

as desired.

E.5 SO(2),O±(2) theories with 2 fundamentals

E.5.1 Duality between O+(2), 2 ↔ SO(1), 2

We consider the duality between the O+(2) gauge theory with 2 fundamentals and the

SO(1) gauge theory with 2 fundamentals. We should have the equality of the elliptic genus

ZA,SO(1),2 = ZB,O+(2),2. (E.73)

Once we prove this we can automatically have

ZA,O+(2),2 = ZB,SO(1),2. (E.74)

It turns out that it’s more convenient to prove the eq. (E.73). The elliptic genus is given by

ZA,SO(1),2 =

2∏
α=1

θ1(ξα − z)

θ1(ξα)
(E.75)

and

ZA,O+(2),2 =
1

2

(
Z
O(2),2
(00) − (Z

O(2),2
(01) + Z

O(2),2
(10) + Z

O(2),2
(11) )

)
(E.76)
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where

Z
O(2),2
(00) =

(
θ1(ξ2−ξ1−z)

θ1(ξ2−ξ1)

θ1(2ξ1−z)

θ1(2ξ1)
+
θ1(ξ1−ξ2−z)

θ1(ξ1−ξ2)

θ1(2ξ2−z)

θ1(2ξ2)

)
θ1(ξ1+ξ2−z)

θ1(ξ1+ξ2)
(E.77)

Z
O(2),2
(01) =

1

2

θ4(0)

θ4(z)

(
2∏

α=1

θ1(ξα−z)

θ1(ξα)

θ4(ξα−z)

θ4(ξα)
−

2∏
α=1

θ2(ξα−z)

θ2(ξα)

θ3(ξα−z)

θ3(ξα)

)
(E.78)

Z
O(2),2
(10) =

1

2

θ2(0)

θ2(z)

(
2∏

α=1

θ1(ξα−z)

θ1(ξα)

θ2(ξα−z)

θ2(ξα)
−

2∏
α=1

θ3(ξα−z)

θ3(ξα)

θ4(ξα−z)

θ4(ξα)

)
(E.79)

Z
O(2),2
(11) =

1

2

θ3(0)

θ3(z)

(
2∏

α=1

θ1(ξα−z)

θ1(ξα)

θ3(ξα−z)

θ3(ξα)
−

2∏
α=1

θ2(ξα−z)

θ2(ξα)

θ4(ξα−z)

θ4(ξα)

)
. (E.80)

We first simplify ZA,O+(2),2 using the Jacobi theta function addition rules. Consider first

Z
O(2),2
(01) . The ξ1 part of the first term can be written as

θ1(ξ1−z)

θ1(ξ1)

θ4(ξ1−z)

θ4(ξ1)
=
θ1(ξ1−z)θ4(ξ1−z)θ2(ξ1)θ3(ξ1)

θ1(ξ1)θ4(ξ1)θ2(ξ1)θ3(ξ1)

=
θ2θ3

2 (θ1(2ξ1−z)θ4(z)− θ1(z)θ4(2ξ1−z))
1
2θ1(2ξ1)θ2θ3θ4

=
θ1(2ξ1−z)θ4(z)

θ1(2ξ1)θ4
− θ1(z)θ4(2ξ1−z)

θ1(2ξ1)θ4
(E.81)

and the ξ1 part of the second term can be written as

θ2(ξ1−z)

θ2(ξ1)

θ3(ξ1−z)

θ3(ξ1)
=
θ2(ξ1−z)θ3(ξ1−z)θ1(ξ1)θ4(ξ1)

θ2(ξ1)θ3(ξ1)θ1(ξ1)θ4(ξ1)

=
θ1(2ξ1−z)θ4(z)

θ1(2ξ1)θ4
+
θ1(z)θ4(2ξ1−z)

θ1(2ξ1)θ4
. (E.82)

Combining these results, we get

Z
O(2),2
(01) =

1

2

θ1(2ξ1−z)

θ1(2ξ1)

(
∆1∆4 −∆2∆3

)
−1

2

θ1(z)θ4(2ξ1−z)

θ1(2ξ1)θ4(z)

(
∆1∆4 + ∆2∆3

)
, (E.83)

where ∆i ≡ θi(ξ2−z)
θi(ξ2) . Also we can evaluate

∆1∆4+∆2∆3 =
θ1(ξ2−z)θ4(ξ2−z)θ2(ξ2)θ3(ξ2)+θ2(ξ2−z)θ3(ξ2−z)θ1(ξ2)θ4(ξ2)

θ1(ξ2)θ2(ξ2)θ3(ξ2)θ4(ξ2)

=
θ2θ3θ1(ξ2 − z + ξ2)θ4(ξ2 − z − ξ2)

1
2θ1(2ξ2)θ2θ3θ4

= 2
θ1(2ξ2 − z)θ4(z)

θ1(2ξ2)θ4
(E.84)

and similarly

∆1∆4−∆2∆3 = −2
θ1(z)θ4(2ξ2 − z)

θ1(2ξ2)θ4
(E.85)
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so that

Z
O(2),2
(01) = −θ1(2ξ1−z)

θ1(2ξ1)

θ1(z)θ4(2ξ2−z)

θ1(2ξ2)θ4
− θ1(z)θ4(2ξ1−z)

θ1(2ξ1)θ4(z)

θ1(2ξ2−z)θ4(z)

θ1(2ξ2)θ4

= − θ1(z)

θ1(2ξ1)θ2(2ξ2)θ4

(
θ1(2ξ1−z)θ4(2ξ2−z) + θ1(2ξ2−z)θ4(2ξ1−z)

)
= −2

θ1(z)θ1(ξ1+ξ2−z)θ4(ξ1+ξ2−z)θ2(ξ1−ξ2)θ3(ξ1−ξ2)

θ1(2ξ1)θ1(2ξ2)θ2θ3θ4
. (E.86)

We can follow similar procedures for the Z
O(2),2
(10) and Z

O(2),2
(11) . The results are given by

Z
O(2),2
(10) = −2

θ1(z)θ1(ξ1+ξ2−z)θ2(ξ1+ξ2−z)θ3(ξ1−ξ2)θ4(ξ1−ξ2)

θ1(2ξ1)θ1(2ξ2)θ2θ3θ4
. (E.87)

Z
O(2),2
(11) = −2

θ1(z)θ1(ξ1+ξ2−z)θ3(ξ1+ξ2−z)θ2(ξ1−ξ2)θ4(ξ1−ξ2)

θ1(2ξ1)θ1(2ξ2)θ2θ3θ4
. (E.88)

Now consider Z
O(2),2
(01) + Z

O(2),2
(10) + Z

O(2),2
(11) ≡ ZO(2),2.

ZO(2),2 = − θ1(ξ1+ξ2−z)θ1(z)

θ1(2ξ1)θ1(2ξ2)θ2θ3θ4

(
2θ2(ξ1+ξ2−z)θ3(ξ1−ξ2)θ4(ξ1−ξ2)

+ 2θ3(ξ1+ξ2−z)θ2(ξ1−ξ2)θ4(ξ1−ξ2) + 2θ4(ξ1+ξ2−z)θ2(ξ1−ξ2)θ3(ξ1−ξ2)
)

= − θ1(ξ1+ξ2−z)θ1(z)

θ1(2ξ1)θ1(2ξ2)θ2θ3θ4

(
θ2(ξ1−ξ2)

(
θ4(ξ1+ξ2−z)θ3(ξ1−ξ2) + θ3(ξ1+ξ2−z)θ4(ξ1−ξ2)

)
+ θ3(ξ1−ξ2)

(
θ4(ξ1+ξ2−z)θ2(ξ1−ξ2) + θ2(ξ1+ξ2−z)θ4(ξ1−ξ2)

)
+ θ4(ξ1−ξ2)

(
θ2(ξ1+ξ2−z)θ3(ξ1−ξ2) + θ3(ξ1+ξ2−z)θ2(ξ1−ξ2)

))

= − 2θ1(ξ1+ξ2−z)θ1(z)

θ1(2ξ1)θ1(2ξ2)θ2θ3θ4

(
θ2(ξ1−ξ2)

θ3θ4
θ3

(
ξ1−

z

2

)
θ4

(
ξ1−

z

2

)
θ3

(
ξ2−

z

2

)
θ4

(
ξ2−

z

2

)
+
θ3(ξ1−ξ2)

θ2θ4
θ2

(
ξ1−

z

2

)
θ4

(
ξ1−

z

2

)
θ2

(
ξ2−

z

2

)
θ4

(
ξ2−

z

2

)
+
θ4(ξ1−ξ2)

θ2θ3
θ2

(
ξ1−

z

2

)
θ3

(
ξ1−

z

2

)
θ2

(
ξ2−

z

2

)
θ3

(
ξ2−

z

2

))
(E.89)

So we get

ZA,O+(2),2 =
1

2

(
Z
O(2),2
(00) − ZO(2),2

)
=

1

2

(
θ1(ξ2−ξ1−z)
θ1(ξ2−ξ1)

θ1(2ξ1−z)
θ1(2ξ1)

+
θ1(ξ1−ξ2−z)
θ1(ξ1−ξ2)

θ1(2ξ2−z)
θ1(2ξ2)

)
θ1(ξ1+ξ2−z)
θ1(ξ1+ξ2)

+
θ1(z)θ1(ξ1+ξ2−z)
θ1(2ξ1)θ1(2ξ2)

×
(
θ2(ξ1−ξ2)

θ2

θ3(ξ1−z2 )θ4(ξ1−z2 )θ3(ξ2−z2 )θ4(ξ2−z2 )

θ3θ4θ3θ4
+ (2↔ 3) + (2↔ 4)

)
. (E.90)
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We should change the holonomies as ξ → −ξ + z
2 and multiply ZM,2 to compare with the

dual theory ZA,SO(1),2

ZB,O+(2),2 = Z̃A,O+(2),2

=
1

2

(
θ1(ξ2−ξ1−z)

θ1(ξ2−ξ1)

θ1(2ξ1−z)

θ1(2ξ1)
+
θ1(ξ1−ξ2−z)

θ1(ξ1−ξ2)

θ1(2ξ2−z)

θ1(2ξ2)

)
− θ1(z)θ1(ξ1+ξ2−z)

θ1(2ξ1)θ1(2ξ2)

×

[
θ2(ξ1−ξ2)

θ2

θ3(ξ1)θ4(ξ1)θ3(ξ2)θ4(ξ2)

θ3θ4θ3θ4
+ (2↔ 3) + (2↔ 4)

]
. (E.91)

We can have further simplifications. Let’s consider the square bracket [· · · ],

[· · · ] =
θ1(ξ1−ξ2)

θ1(ξ1−ξ2)
[· · · ]

=
1

2θ1(ξ1−ξ2)

[(
θ1(ξ1−ξ2)θ2(ξ1−ξ2)θ3(ξ1)θ4(ξ1)

θ2θ3θ4

θ3(ξ2)θ4(ξ2)

θ3θ4

+
θ1(ξ1−ξ2)θ3(ξ1−ξ2)θ2(ξ1)θ4(ξ1)

θ2θ3θ4

θ2(ξ2)θ4(ξ2)

θ2θ4

+
θ1(ξ1−ξ2)θ4(ξ1−ξ2)θ2(ξ1)θ3(ξ1)

θ2θ3θ4

θ2(ξ2)θ3(ξ2)

θ2θ3

)
− (ξ1 ↔ ξ2)

]
. (E.92)

Using the relations below,

θ1(ξ1−ξ2)θ2(ξ1−ξ2)θ3(ξ1)θ4(ξ1) =
θ3θ4

2

(
θ1(2ξ1−ξ2)θ2(ξ2)−θ1(ξ2)θ2(2ξ1−ξ2)

)
θ1(ξ1−ξ2)θ3(ξ1−ξ2)θ2(ξ1)θ4(ξ1) =

θ2θ4

2

(
θ1(2ξ1−ξ2)θ3(ξ2)−θ1(ξ2)θ3(2ξ1−ξ2)

)
θ1(ξ1−ξ2)θ4(ξ1−ξ2)θ2(ξ1)θ3(ξ1) =

θ2θ3

2

(
θ1(2ξ1−ξ2)θ4(ξ2)−θ1(ξ2)θ4(2ξ1−ξ2)

)
(E.93)

we get

[· · · ] =
1

8θ1(ξ1−ξ2)

[(
3
θ1(2ξ1−ξ2)

θ1(ξ2)
− θ2(2ξ1−ξ2)

θ2(ξ2)
− θ3(2ξ1−ξ2)

θ3(ξ2)
− θ4(2ξ1−ξ2)

θ4(ξ2)

)
θ1(2ξ2) (E.94)

+

(
θ2(2ξ2−ξ1)

θ2(ξ1)
+
θ3(2ξ2−ξ1)

θ3(ξ1)
+
θ4(2ξ2−ξ1)

θ4(ξ1)
−3

θ1(2ξ2−ξ1)

θ1(ξ1)

)
θ1(2ξ1)

]

=
θ1(2ξ2)θ1(2ξ1−ξ2)

2θ1(ξ2)θ1(ξ1−ξ2)
− θ1(2ξ2)

4θ1(ξ1−ξ2)

1

2

(
θ1(2ξ1−ξ2)

θ1(ξ2)
+
θ2(2ξ1−ξ2)

θ2(ξ2)
+
θ3(2ξ1−ξ2)

θ3(ξ2)
+
θ4(2ξ1−ξ2)

θ4(ξ2)

)

+
θ1(2ξ1)θ1(2ξ2−ξ1)

2θ1(ξ1)θ1(ξ2−ξ1)
− θ1(2ξ1)

4θ1(ξ2−ξ1)

1

2

(
θ1(2ξ2−ξ1)

θ1(ξ1)
+
θ2(2ξ2−ξ1)

θ2(ξ1)
+
θ3(2ξ2−ξ1)

θ3(ξ1)
+
θ4(2ξ2−ξ1)

θ4(ξ1)

)
.

Using eq. (E.55) for ξ = ξ2(ξ1), z = 2ξ2 − 2ξ1(2ξ1 − 2ξ2) we can simplify the expressions

in the two brackets as

1

2

(
θ1(2ξ1−ξ2)

θ1(ξ2)
+
θ2(2ξ1−ξ2)

θ2(ξ2)
+
θ3(2ξ1−ξ2)

θ3(ξ2)
+
θ4(2ξ1−ξ2)

θ4(ξ2)

)
=
θ1(ξ1+ξ2)θ1(2ξ2−2ξ1)

θ1(2ξ2)θ1(ξ2−ξ1)

1

2

(
θ1(2ξ2−ξ1)

θ1(ξ1)
+
θ2(2ξ2−ξ1)

θ2(ξ1)
+
θ3(2ξ2−ξ1)

θ3(ξ1)
+
θ4(2ξ2−ξ1)

θ4(ξ1)

)
=
θ1(ξ1+ξ2)θ1(2ξ1−2ξ2)

θ1(2ξ1)θ1(ξ1−ξ2)

(E.95)
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so that

[· · · ] =
1

2

θ1(2ξ2)θ1(2ξ1 − ξ2)

θ1(ξ2)θ1(ξ1 − ξ2)
− 1

4

θ1(2ξ2)

θ1(ξ1 − ξ2)

θ1(ξ1 + ξ2)θ1(2ξ2 − 2ξ1)

θ1(2ξ2)θ1(ξ2 − ξ1)

+
1

2

θ1(2ξ1)θ1(2ξ2 − ξ1)

θ1(ξ1)θ1(ξ2 − ξ1)
− 1

4

θ1(2ξ1)

θ1(ξ2 − ξ1)

θ1(ξ1 + ξ2)θ1(2ξ1 − 2ξ2)

θ1(2ξ1)θ1(ξ1 − ξ2)

=
1

2

θ1(2ξ2)θ1(2ξ1 − ξ2)

θ1(ξ2)θ1(ξ1 − ξ2)
− 1

4

θ1(ξ1 + ξ2)θ1(2ξ1 − 2ξ2)

{θ1(ξ1 − ξ2)}2

+
1

2

θ1(2ξ1)θ1(2ξ2 − ξ1)

θ1(ξ1)θ1(ξ2 − ξ1)
+

1

4

θ1(ξ1 + ξ2)θ1(2ξ1 − 2ξ2)

{θ1(ξ1 − ξ2)}2

=
1

2

θ1(2ξ2)θ1(2ξ1 − ξ2)

θ1(ξ2)θ1(ξ1 − ξ2)
+

1

2

θ1(2ξ1)θ1(2ξ2 − ξ1)

θ1(ξ1)θ1(ξ2 − ξ1)
. (E.96)

Thus we finally get

ZB,O+(2),2 =
1

2

θ1(ξ2−ξ1−z)θ1(2ξ1−z)

θ1(ξ2−ξ1)θ1(2ξ1)
+

1

2

θ1(ξ1+ξ2−z)θ1(2ξ1−ξ2)θ1(z)

θ1(ξ2−ξ1)θ1(2ξ1)θ1(ξ2)

+
1

2

θ1(ξ1−ξ2−z)θ1(2ξ2−z)

θ1(ξ1−ξ2)θ1(2ξ2)
+

1

2

θ1(ξ1+ξ2−z)θ1(2ξ2−ξ1)θ1(z)

θ1(ξ1−ξ2)θ1(2ξ2)θ1(ξ1)
. (E.97)

Now we show the equality of ZA,SO(1),2 = ZB,O+(2),2 using the fact that doubly periodic

entire function is a constant.3 Consider Q defined as

Q≡ Z
B,O+(2),2

ZA,SO(1),2

=
1

2

[
θ1(ξ2−ξ1−z)θ1(2ξ1−z)θ1(ξ1)θ1(ξ2)

θ1(ξ2−ξ1)θ1(2ξ1)θ1(ξ1−z)θ1(ξ2−z)
+
θ1(ξ1−ξ2−z)θ1(2ξ2−z)θ1(ξ1)θ1(ξ2)

θ1(ξ1−ξ2)θ1(2ξ2)θ1(ξ1−z)θ1(ξ2−z)

+
θ1(ξ1+ξ2−z)θ1(2ξ1−ξ2)θ1(z)θ1(ξ1)

θ1(ξ2−ξ1)θ1(2ξ1)θ1(ξ1−z)θ1(ξ2−z)
+
θ1(ξ1+ξ2−z)θ1(2ξ2−ξ1)θ1(z)θ1(ξ2)

θ1(ξ1−ξ2)θ1(2ξ2)θ1(ξ1−z)θ1(ξ2−z)

]
. (E.98)

If we think Q as a function of z for fixed ξ1 and ξ2, we can easily check that Q is invariant

under the changes z → z + 1 and z → z + τ which means Q is a doubly periodic function

of z. Also we should check that Q has no poles. Since the Jacobi theta functions have no

poles in z, there are only two points where they have the possibility of poles: z = ξ1, ξ2

(we don’t consider the points z = ξα + a+ bτ with a, b nonzero integers since Q is doubly

periodic). Q is symmetric under the change ξ1 ↔ ξ2 so that we just need to check a point

z = ξ1. The fact that ZB,O+(2),2 = 0 at z = ξ1 gives

ZB,O+(2),2 ∼ O((z − ξ1)n) (E.99)

as z → ξ1 for some n ≥ 1. Meanwhile ZA,SO(1),2 becomes zero at z = ξ1 and θ1(ξ1 − z) ∼
O((z − ξ1)1) as z → ξ1 so that

ZA,SO(1),2 ∼ O((z − ξ1)1) (E.100)

3We thank a referee of the previous version of the draft for suggesting this method.
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as z → ξ1. Thus we can deduce that Q = ZB,O+(2),2

ZA,SO(1),2 converges to a finite value and it tells

us that the Q has no pole at z = ξ1. From the fact that doubly periodic entire function is

a constant, we can easily find the constant as

Q = lim
z→0

Q =
1

2
(1 + 1 + 0 + 0) = 1, (E.101)

which implies

ZA,SO(1),2 = ZB,O+(2),2. (E.102)

One might worry that Q can have a pole at ξ1 → ξ2, ξ1 → 0 and ξ2 → 0 where Q seems

to diverge. If we take a limit ξ1 → ξ2, the divergent parts of the first and the second term

of the eq. (E.98) are cancelled by the third and the fourth term respectively so that Q

becomes finite. Also for the limit ξ1 → 0(we don’t consider the ξ2 → 0 case since Q is

symmetric under ξ1 ↔ ξ2), one can easily check that

lim
ξ1→0

Q =
1

2

(
1

2
+ 0 +

(−1)2

2
+ (−1)2

)
= 1. (E.103)

E.5.2 Dualities between O(2), 2 ↔ O(1), 2

We can also check the following equalities

ZA,SO(2),2 = ZB,O+(1),2 (E.104)

ZA,O−(2),2 = ZB,O−(1),2, (E.105)

from which we have the following relations

ZA,O+(1),2 = ZB,SO(2),2 (E.106)

ZA,O−(1),2 = ZB,O−(2),2. (E.107)

We prove these equalities by showing relations below

Z̃
O(2),2
(01) − Z̃O(2),2

(10) = Z
O(1),2
(10) − ZO(1),2

(01) (E.108)

Z̃
O(2),2
(11) − Z̃O(2),2

(10) = Z
O(1),2
(10) − ZO(1),2

(11) (E.109)

Z̃
O(2),2
(01) + Z̃

O(2),2
(11) = Z

O(1),2
(10) − ZO(1),2

(00) . (E.110)

Let’s first show the relation eq. (E.108). From the eq. (E.86) and eq. (E.87),

Z
O(2),2
(01) − ZO(2),2

(10) becomes

Z
O(2),2
(01) −Z

O(2),2
(10)

= 2
θ1(z)θ1(ξ1+ξ2−z)θ3(ξ1−ξ2)

θ1(2ξ1)θ1(2ξ2)θ2θ3θ4

{
θ2(ξ1+ξ2−z)θ4(ξ1−ξ2)−θ2(ξ1−ξ2)θ4(ξ1+ξ2−z)

}
=−4

θ1(z)θ1(ξ1+ξ2−z)θ3(ξ1−ξ2)

θ1(2ξ1)θ1(2ξ2)θ2θ3θ4θ2θ4
θ1

(
ξ1−

z

2

)
θ3

(
ξ1−

z

2

)
θ1

(
ξ2−

z

2

)
θ3

(
ξ2−

z

2

)
(E.111)
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Now changing the holonomies ξi → −ξi + z
2 and multiplying ZM,2, we get

Z̃
O(2),2
(01) −Z̃

O(2),2
(10)

= 4
θ1(z)θ1(ξ1+ξ2−z)θ3(ξ1−ξ2)

θ1(2ξ1)θ1(2ξ2)θ2θ3θ4θ2θ4
θ1(ξ1)θ3(ξ1)θ1(ξ2)θ3(ξ2)

=
θ1(z)θ3θ1(ξ1+ξ2−z)θ3(ξ1−ξ2)

θ1(ξ1)θ2(ξ1)θ3(ξ1)θ4(ξ1)θ1(ξ2)θ2(ξ2)θ3(ξ2)θ4(ξ2)
θ1(ξ1)θ3(ξ1)θ1(ξ2)θ3(ξ2)

=
θ1(z)θ3θ1(ξ1+ξ2−z)θ3(ξ1−ξ2)

θ2(ξ1)θ4(ξ1)θ2(ξ2)θ4(ξ2)

=
2

θ22θ
2
4

1

θ2(ξ1)θ4(ξ1)θ2(ξ2)θ4(ξ2)

×
{
θ1

(
ξ1−

z

2

)
θ3

(
ξ1−

z

2

)
θ1

(
z

2

)
θ3

(
z

2

)
·θ2

(
ξ2−

z

2

)
θ4

(
ξ2−

z

2

)
θ2

(
z

2

)
θ4

(
z

2

)
+θ1

(
ξ2−

z

2

)
θ3

(
ξ2−

z

2

)
θ1

(
z

2

)
θ3

(
z

2

)
·θ2

(
ξ1−

z

2

)
θ4

(
ξ1−

z

2

)
θ2

(
z

2

)
θ4

(
z

2

)}
=
θ2(ξ1−z)θ2(ξ2−z)θ4(ξ1)θ4(ξ2)−θ2(ξ1)θ2(ξ2)θ4(ξ1−z)θ4(ξ2−z)

θ2(ξ1)θ4(ξ1)θ2(ξ2)θ4(ξ2)

=
θ2(ξ1−z)θ2(ξ2−z)

θ2(ξ1)θ2(ξ2)
− θ4(ξ1−z)θ4(ξ2−z)

θ4(ξ1)θ4(ξ2)

=Z
O(1),2
(10) −Z

O(1),2
(01) , (E.112)

which shows the eq. (E.108).

Secondly from the eq. (E.88) and eq. (E.87), Z
O(2),2
(11) − ZO(2),2

(10) becomes

Z
O(2),2
(11) −Z

O(2),2
(10)

= 2
θ1(z)θ1(ξ1+ξ2−z)θ4(ξ1−ξ2)

θ1(2ξ1)θ1(2ξ2)θ2θ3θ4

{
θ2(ξ1+ξ2−z)θ3(ξ1−ξ2)−θ2(ξ1−ξ2)θ3(ξ1+ξ2−z)

}
=−4

θ1(z)θ1(ξ1+ξ2−z)θ4(ξ1−ξ2)

θ1(2ξ1)θ1(2ξ2)θ2θ3θ4θ2θ3
θ1

(
ξ1−

z

2

)
θ4

(
ξ1−

z

2

)
θ1

(
ξ2−

z

2

)
θ4

(
ξ2−

z

2

)
(E.113)

Now changing the holonomies ξi → −ξi + z
2 and multiplying ZM,2, we get

Z̃
O(2),2
(11) −Z̃

O(2),2
(10) = 4

θ1(z)θ1(ξ1+ξ2−z)θ4(ξ1−ξ2)

θ1(2ξ1)θ1(2ξ2)θ2θ3θ4θ2θ3
θ1(ξ1)θ4(ξ1)θ1(ξ2)θ4(ξ2)

=
θ1(z)θ4θ1(ξ1+ξ2−z)θ4(ξ1−ξ2)

θ2(ξ1)θ3(ξ1)θ2(ξ2)θ3(ξ2)

=
2

θ22θ
2
3

1

θ2(ξ1)θ3(ξ1)θ2(ξ2)θ3(ξ2)

×
{
θ1

(
ξ1−

z

2

)
θ4

(
ξ1−

z

2

)
θ1

(
z

2

)
θ4

(
z

2

)
·θ2

(
ξ2−

z

2

)
θ3

(
ξ2−

z

2

)
θ2

(
z

2

)
θ3

(
z

2

)
+θ1

(
ξ2−

z

2

)
θ4

(
ξ2−

z

2

)
θ1

(
z

2

)
θ4

(
z

2

)
·θ2

(
ξ1−

z

2

)
θ3

(
ξ1−

z

2

)
θ2

(
z

2

)
θ3

(
z

2

)}
=
θ2(ξ1−z)θ2(ξ2−z)θ3(ξ1)θ3(ξ2)−θ2(ξ1)θ2(ξ2)θ3(ξ1−z)θ3(ξ2−z)

θ2(ξ1)θ3(ξ1)θ2(ξ2)θ3(ξ2)

=
θ2(ξ1−z)θ2(ξ2−z)

θ2(ξ1)θ2(ξ2)
− θ3(ξ1−z)θ3(ξ2−z)

θ3(ξ1)θ3(ξ2)

=Z
O(1),2
(10) −Z

O(1),2
(11) , (E.114)

which shows the eq. (E.109).
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Finally from the eq. (E.86) and eq. (E.88), Z
O(2),2
(01) + Z

O(2),2
(11) becomes

Z
O(2),2
(01) +Z

O(2),2
(11)

=−2
θ1(z)θ1(ξ1+ξ2−z)θ2(ξ1−ξ2)

θ1(2ξ1)θ1(2ξ2)θ2θ3θ4

{
θ3(ξ1+ξ2−z)θ4(ξ1−ξ2)+θ3(ξ1−ξ2)θ4(ξ1+ξ2−z)

}
=−4

θ1(z)θ1(ξ1+ξ2−z)θ2(ξ1−ξ2)

θ1(2ξ1)θ1(2ξ2)θ2θ3θ4θ3θ4
θ3

(
ξ1−

z

2

)
θ4

(
ξ1−

z

2

)
θ3

(
ξ2−

z

2

)
θ4

(
ξ2−

z

2

)
(E.115)

Now changing the holonomies ξi → −ξi + z
2 and multiplying ZM,2, we get

Z̃
O(2),2
(01) +Z̃

O(2),2
(11) = 4

θ1(z)θ1(ξ1+ξ2−z)θ2(ξ1−ξ2)

θ1(2ξ1)θ1(2ξ2)θ2θ3θ4θ3θ4
θ3(ξ1)θ4(ξ1)θ3(ξ2)θ4(ξ2)

=
θ1(z)θ2θ1(ξ1+ξ2−z)θ2(ξ1−ξ2)

θ1(ξ1)θ2(ξ1)θ1(ξ2)θ2(ξ2)

=
2

θ23θ
2
4

1

θ1(ξ1)θ2(ξ1)θ1(ξ2)θ2(ξ2)

×
{
θ1

(
ξ1−

z

2

)
θ2

(
ξ1−

z

2

)
θ3

(
z

2

)
θ4

(
z

2

)
·θ3

(
ξ2−

z

2

)
θ4

(
ξ2−

z

2

)
θ1

(
z

2

)
θ2

(
z

2

)
+θ1

(
ξ2−

z

2

)
θ2

(
ξ2−

z

2

)
θ3

(
z

2

)
θ4

(
z

2

)
·θ3

(
ξ1−

z

2

)
θ4

(
ξ1−

z

2

)
θ1

(
z

2

)
θ2

(
z

2

)}
=
θ2(ξ1−z)θ2(ξ2−z)θ1(ξ1)θ1(ξ2)−θ2(ξ1)θ2(ξ2)θ1(ξ1−z)θ1(ξ2−z)

θ1(ξ1)θ2(ξ1)θ1(ξ2)θ2(ξ2)

=
θ2(ξ1−z)θ2(ξ2−z)

θ2(ξ1)θ2(ξ2)
− θ1(ξ1−z)θ1(ξ2−z)

θ1(ξ1)θ1(ξ2)

=Z
O(1),2
(10) −Z

O(1),2
(00) , (E.116)

which shows the eq. (E.110).

Thus we have shown the eq. (E.108)-eq. (E.110). By subtracting the eq. (E.109) from

the eq. (E.108), we can get

Z̃
O(2),2
(01) − Z̃O(2),2

(11) = Z
O(1),2
(11) − ZO(1),2

(01) . (E.117)

Also we can use the proof of the last subsection

Z
O(1),2
(00) =

1

2

(
Z̃
O(2),2
(00) − Z̃O(2),2

(01) − Z̃O(2),2
(10) − Z̃O(2),2

(11)

)
. (E.118)

Adding the eq. (E.110) to the eq. (E.117), we can get

Z̃
O(2),2
(11) =

1

2

(
− ZO(1),2

(00) + Z
O(1),2
(10) + Z

O(1),2
(01) − ZO(1),2

(11)

)
. (E.119)

Subtracting the eq. (E.110) from the eq. (E.117), we can get

Z̃
O(2),2
(01) =

1

2

(
− ZO(1),2

(00) + Z
O(1),2
(10) − ZO(1),2

(01) + Z
O(1),2
(11)

)
. (E.120)

Using the eq. (E.120), the eq. (E.108) gives

Z̃
O(2),2
(10) =

1

2

(
− ZO(1),2

(00) − ZO(1),2
(10) + Z

O(1),2
(01) + Z

O(1),2
(11)

)
. (E.121)
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Again using the eq. (E.119)-eq. (E.121), the eq. (E.118) gives

Z̃
O(2),2
(00) =

1

2

(
Z
O(1),2
(00) + Z

O(1),2
(10) + Z

O(1),2
(01) + Z

O(1),2
(11)

)
. (E.122)

So from the eq. (E.119)-eq. (E.122), we get relations given by
Z̃
O(2),2
(00)

Z̃
O(2),2
(10)

Z̃
O(2),2
(01)

Z̃
O(2),2
(11)

 =
1

2


1 1 1 1

−1 −1 1 1

−1 1 −1 1

−1 1 1 −1



Z
O(1),2
(00)

Z
O(1),2
(10)

Z
O(1),2
(01)

Z
O(1),2
(11)

 , (E.123)

from which it follows that
Z
O(2),2
(00)

Z
O(2),2
(10)

Z
O(2),2
(01)

Z
O(2),2
(11)

 =
1

2


1 1 1 1

−1 −1 1 1

−1 1 −1 1

−1 1 1 −1



Z̃
O(1),2
(00)

Z̃
O(1),2
(10)

Z̃
O(1),2
(01)

Z̃
O(1),2
(11)

 , (E.124)

where we use the fact that
˜̃
Z
G,N

(ab) = ZG,N(ab) from the eq. (E.32).

This tells us that

ZA,SO(2),2 = Z
O(2),2
(00)

=
1

2

(
Z̃
O(1),2
(00) + Z̃

O(1),2
(10) + Z̃

O(1),2
(01) + Z̃

O(1),2
(11)

)
= ZB,O+(1),2 (E.125)

and

ZA,O−(2),2 =
1

2

(
Z
O(2),2
(00) + Z

O(2),2
(10) + Z

O(2),2
(01) + Z

O(2),2
(11)

)
=

1

2

(
− Z̃O(1),2

(00) + Z̃
O(1),2
(10) + Z̃

O(1),2
(01) + Z̃

O(1),2
(11)

)
= ZB,O−(1),2. (E.126)

So we check the equalities ZA,SO(2),2 = ZB,O+(1),2 (or equivalently ZA,O+(1),2 = ZB,SO(2),2)

and ZA,O−(2),2 = ZB,O−(1),2 (or equivalently ZA,O−(1),2 = ZB,O−(2),2) analytically.

E.6 SO(3),O±(3) theories with 2 fundamentals

Using the same method as adopted at the subsection E.5.1 one can prove the duality

between SO(3),O±(3) theories with 2 fundamentals and the theory of 3 free mesons. Even

though the length of the computation is long, the argument is straightforward. And the

same method applies to the duality between SO(4),O±(4) theories with 3 fundamentals

and the theory of 6 free mesons.
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In the below we evaluate limz→x θi(z − x + a+bτ
2 )f(z) instead of limz→x(z − x)f(z)

when we evaluate residue of f(z) at z = x since θi(z − x + a+bτ
2 ) has zero at z = x. Also

recall that for small z with (a, b, i) = (0, 0, 1), (1, 0, 2), (0, 1, 4), (1, 1, 3), we have

θi

(
z +

a+ bτ

2

)
∼ z. (E.127)

Using the Jacobi theta function’s relations we can get

Z
O(3),N
(0,0,+) =−1

2

θ1(z)

θ1(2z)

N∏
α=1

θ1(ξα−2z)

θ1(ξα+z)
+

1

2

N∑
α=1

θ1(2ξα−z)
θ1(2ξα)

θ1(ξα)

θ1(ξα+z)

∏
β 6=α

θ1(ξα+ξβ−z)
θ1(ξα+ξβ)

θ1(ξβ−ξα−z)
θ1(ξβ−ξα)

θ1(ξβ−z)
θ1(ξβ)

Z
O(3),N
(1,0,+) =−1

2

θ1(z)

θ1(2z)

N∏
α=1

θ2(ξα−2z)

θ2(ξα+z)
+

1

2

N∑
α=1

θ1(2ξα−z)
θ1(2ξα)

θ2(ξα)

θ2(ξα+z)

∏
β 6=α

θ1(ξα+ξβ−z)
θ1(ξα+ξβ)

θ1(ξβ−ξα−z)
θ1(ξβ−ξα)

θ2(ξβ−z)
θ2(ξβ)

Z
O(3),N
(0,1,+) =−1

2

θ1(z)

θ1(2z)

N∏
α=1

θ4(ξα−2z)

θ4(ξα+z)
+

1

2

N∑
α=1

θ1(2ξα−z)
θ1(2ξα)

θ4(ξα)

θ4(ξα+z)

∏
β 6=α

θ1(ξα+ξβ−z)
θ1(ξα+ξβ)

θ1(ξβ−ξα−z)
θ1(ξβ−ξα)

θ4(ξβ−z)
θ4(ξβ)

Z
O(3),N
(1,1,+) =−1

2

θ1(z)

θ1(2z)

N∏
α=1

θ3(ξα−2z)

θ3(ξα+z)
+

1

2

N∑
α=1

θ1(2ξα−z)
θ1(2ξα)

θ3(ξα)

θ3(ξα+z)

∏
β 6=α

θ1(ξα+ξβ−z)
θ1(ξα+ξβ)

θ1(ξβ−ξα−z)
θ1(ξβ−ξα)

θ3(ξβ−z)
θ3(ξβ)

(E.128)

and

Z
O(3),N
(0,0,−) =

1

2

θ1(z)

θ1(2z)

N∏
α=1

θ1(ξα)

θ1(ξα − z)

θ1(2ξα − 2z)

θ1(2ξα)

Z
O(3),N
(1,0,−) =

1

2

θ1(z)

θ1(2z)

N∏
α=1

θ2(ξα)

θ2(ξα − z)

θ1(2ξα − 2z)

θ1(2ξα)

Z
O(3),N
(0,1,−) =

1

2

θ1(z)

θ1(2z)

N∏
α=1

θ4(ξα)

θ4(ξα − z)

θ1(2ξα − 2z)

θ1(2ξα)

Z
O(3),N
(1,1,−) =

1

2

θ1(z)

θ1(2z)

N∏
α=1

θ3(ξα)

θ3(ξα − z)

θ1(2ξα − 2z)

θ1(2ξα)
(E.129)

so that Z
O(3),N
(kl) = Z

O(3),N
(k,l,+) + (−1)NZ

O(3),N
(k,l,−) can be evaluated. Note that in eq. (E.129),

θ1(2ξα−2z)
θ1(2ξα) can also be written as,

θ1(2ξα − 2z)

θ1(2ξα)
=
θ1(ξα − z)θ2(ξα − z)θ3(ξα − z)θ4(ξα − z)

θ1(ξα)θ2(ξα)θ3(ξα)θ4(ξα)
. (E.130)

The expected elliptic genus matching that we want to check is

ZM,2 = Z
O(3),2
(00) = Z

O(3),2
(10) = Z

O(3),2
(01) = Z

O(3),2
(11)

=
θ1(2ξ1 − z)

θ1(2ξ1)

θ1(ξ1 + ξ2 − z)

θ1(ξ1 + ξ2)

θ1(2ξ2 − z)

θ1(2ξ2)
(E.131)
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where

Z
O(3),2
(00) =

1

2

θ1(z)

θ1(2z)

(
2∏

α=1

θ2(ξα−z)θ3(ξα−z)θ4(ξα−z)

θ2(ξα)θ3(ξα)θ4(ξα)
−

2∏
α=1

θ1(ξα−2z)

θ1(ξα+z)

)

+
1

2

2∑
β 6=α

θ1(2ξα−z)

θ1(2ξα)

θ1(ξα+ξβ−z)

θ1(ξα+ξβ)

θ1(ξβ−ξα−z)

θ1(ξβ−ξα)

θ1(ξα)

θ1(ξα+z)

θ1(ξβ−z)

θ1(ξβ)

Z
O(3),2
(10) =

1

2

θ1(z)

θ1(2z)

(
2∏

α=1

θ1(ξα−z)θ3(ξα−z)θ4(ξα−z)

θ1(ξα)θ3(ξα)θ4(ξα)
−

2∏
α=1

θ2(ξα−2z)

θ2(ξα+z)

)

+
1

2

2∑
β 6=α

θ1(2ξα−z)

θ1(2ξα)

θ1(ξα+ξβ−z)

θ1(ξα+ξβ)

θ1(ξβ−ξα−z)

θ1(ξβ−ξα)

θ2(ξα)

θ2(ξα+z)

θ2(ξβ−z)

θ2(ξβ)

Z
O(3),2
(01) =

1

2

θ1(z)

θ1(2z)

(
2∏

α=1

θ1(ξα−z)θ2(ξα−z)θ3(ξα−z)

θ1(ξα)θ2(ξα)θ3(ξα)
−

2∏
α=1

θ4(ξα−2z)

θ4(ξα+z)

)

+
1

2

2∑
β 6=α

θ1(2ξα−z)

θ1(2ξα)

θ1(ξα+ξβ−z)

θ1(ξα+ξβ)

θ1(ξβ−ξα−z)

θ1(ξβ−ξα)

θ4(ξα)

θ4(ξα+z)

θ4(ξβ−z)

θ4(ξβ)

Z
O(3),2
(11) =

1

2

θ1(z)

θ1(2z)

(
2∏

α=1

θ1(ξα−z)θ2(ξα−z)θ4(ξα−z)

θ1(ξα)θ2(ξα)θ4(ξα)
−

2∏
α=1

θ3(ξα−2z)

θ3(ξα+z)

)

+
1

2

2∑
β 6=α

θ1(2ξα−z)

θ1(2ξα)

θ1(ξα+ξβ−z)

θ1(ξα+ξβ)

θ1(ξβ−ξα−z)

θ1(ξβ−ξα)

θ3(ξα)

θ3(ξα+z)

θ3(ξβ−z)

θ3(ξβ)
(E.132)

E.6.1 Z
O(3),2
(00) = ZM,2

Let’s start with Z
O(3),2
(00) . Consider Q(z) ≡ Z

O(3),2
(00) /ZM,2. We will check that Q(z) is a

doubly periodic function and has no pole. It can be easily checked that Q(z) is a doubly

periodic function using the periodicities of the Jacobi theta functions.

Q(z + 1) = Q(z + τ) = Q(z). (E.133)

We should check that Q has no poles. Since the Jacobi theta functions have no poles in z,

there are 9 points where Q has the possibility of poles z = 2ξ1, 2ξ2, ξ1 + ξ2,−ξ1,−ξ2,
a+bτ

2 ,

where a, b = 0, 1. However, we only check z = 2ξ1, ξ1 + ξ2,−ξ1,
a+bτ

2 since Q is symmetric

under the change ξ1 ↔ ξ2.

1. z = 2ξ1

Since ZM,2 ∼ O((z − 2ξ1)1) as z → 2ξ1, it’s enough to show that Z
O(3),2
(00) (z=2ξ1) = 0

to check Q is not divergent at z = 2ξ1 since Z
O(3),2
(00) admits Laurent expansion at
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z = 2ξ1. From the eq. (E.132),

Z
O(3),2
(00) (z= 2ξ1)

=
1

2

θ1(2ξ1)

θ1(4ξ1)

θ1(ξ2−4ξ1)

θ1(ξ2+2ξ1)
+

1

2

θ1(2ξ1)

θ1(4ξ1)

θ2(ξ2−2ξ1)

θ2(ξ2)

θ3(ξ2−2ξ1)

θ3(ξ2)

θ4(ξ2−2ξ1)

θ4(ξ2)

− 1

2

θ1(2ξ2−2ξ1)

θ1(2ξ2)

θ1(ξ2)

θ1(ξ2+2ξ1)

=
1

2

[
θ1(ξ2−4ξ1)θ2(ξ2)θ3(ξ2)θ4(ξ2)+θ1(ξ2+2ξ1)θ2(ξ2−2ξ1)θ3(ξ2−2ξ1)θ4(ξ2−2ξ1)

θ1(ξ2+2ξ1)θ2(ξ2)θ3(ξ2)θ4(ξ2)

× θ1(2ξ1)

θ1(4ξ1)
− θ1(2ξ2−2ξ1)θ2θ3θ4

2θ1(ξ2+2ξ1)θ2(ξ2)θ3(ξ2)θ4(ξ2)

]
=
[
θ1(ξ2−4ξ1)θ2(ξ2)θ3(ξ2)θ4(ξ2)+θ1(ξ2+2ξ1)θ2(ξ2−2ξ1)θ3(ξ2−2ξ1)θ4(ξ2−2ξ1)

−θ1(2ξ2−2ξ1)θ2(2ξ1)θ3(2ξ1)θ4(2ξ1)
]θ1(2ξ1)

θ1(4ξ1)

/
2θ1(ξ2+2ξ1)θ2(ξ2)θ3(ξ2)θ4(ξ2)

=
1

2

θ1(2ξ1)

θ1(4ξ1)

1

θ1(ξ2+2ξ1)θ2(ξ2)θ3(ξ2)θ4(ξ2)
×[

1

2
θ1(ξ2−2ξ1)θ2(ξ2−2ξ1)

(
θ3(ξ2+2ξ1)θ4(ξ2−2ξ1)+θ3(ξ2−2ξ1)θ4(ξ2+2ξ1)

)
− 1

2

(
θ1(ξ2+2ξ1)θ2(ξ2−2ξ1)−θ1(ξ2−2ξ1)θ2(ξ2+2ξ1)

)
θ3(ξ2−2ξ1)θ4(ξ2−2ξ1)

+θ1(ξ2+2ξ1)θ2(ξ2−2ξ1)θ3(ξ2−2ξ1)θ4(ξ2−2ξ1)

− 1

2

(
θ1(ξ2+2ξ1)θ2(ξ2−2ξ1)+θ1(ξ2−2ξ1)θ2(ξ2+2ξ1)

)
θ3(ξ2−2ξ1)θ4(ξ2−2ξ1)

− 1

2
θ1(ξ2−2ξ1)θ1(ξ2−2ξ1)

(
θ3(ξ2+2ξ1)θ4(ξ2−2ξ1)+θ3(ξ2−2ξ1)θ4(ξ2+2ξ1)

)]
= 0. (E.134)

This shows that Q has no pole at z = 2ξ1.

2. z = ξ1 + ξ2

It’s enough to show that Z
O(3),2
(00) (z=ξ1+ξ2) = 0 to check Q is not divergent at z = ξ1+ξ2

for the same reason as before. Just simple substitution of z = ξ1 + ξ2 at eq. (E.132)

gives Z
O(3),2
(00) (z=ξ1+ξ2) = 0. So, Q has no pole at z = ξ1 + ξ2.

3. z = −ξ1

Since ZM,2 is non-zero at z = −ξ1, we just need to check the residue of Z
O(3),2
(00) at

z = −ξ1 is zero. Since the theta function is linear at small value θ1(z) ∼ z1, the

residue evaluation is equivalent to limz→−ξ1 θ1(ξ1+z)Z
O(3),2
(00) up to some overall factor.

We checked

lim
z→−ξ1

θ1(ξ1+z)Z
O(3),2
(00) = 0. (E.135)
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This shows the residue of Z
O(3),2
(00) at z = −ξ1 is zero so Z

O(3),2
(00) is finite, which means

Q is finite at z = −ξ1.

4. z = a+bτ
2

Since ZM,2 is non-zero at z = a+bτ
2 , we just need to show limz→a+bτ

2
θ1(2z)Z

O(3),2
(00) = 0

as before. We checked

lim
z→a+bτ

2

θ1(2z)Z
O(3),2
(00) = 0 (E.136)

for a, b = 0, 1. This shows the residue of Z
O(3),2
(00) at z = a+bτ

2 is zero, which means Q

is finite at z = a+bτ
2 for a, b = 0, 1.

We checked that Q has no pole so that Q is a doubly periodic entire function of z and

it is independent of z by the theorem. Then, we can evaluate

Q(z) = lim
z→0

Q(z) = 1 (E.137)

which means Z
O(3),2
(00) = ZM,2.

E.6.2 Z
O(3),2
(10) = ZM,2

We do similar works for the case Z
O(3),2
(10) = ZM,2. Define Q as Q(z) ≡ ZO(3),2

(10) /ZM,2. Then

one can easily check that Q(z + 1) = Q(z + τ) = Q(z) using the periodicity of the Jacobi

theta functions which means Q is a doubly periodic function of z. There are 9 points where

Q has the possibility of poles z = 2ξ1, 2ξ2, ξ1 + ξ2,−ξ1 + 1
2 ,−ξ2 + 1

2 ,
a+bτ

2 , where a, b = 0, 1.

However, we only check z = 2ξ1, ξ1 + ξ2,−ξ1 + 1
2 ,

a+bτ
2 since Q is symmetric under the

change ξ1 ↔ ξ2.

1. z = 2ξ1

Since ZM,2 ∼ O((z − 2ξ1)1) as z → 2ξ1, it’s enough to show that Z
O(3),2
(10) (z=2ξ1) = 0

to check Q is not divergent at z = 2ξ1. From the eq. (E.132),

Z
O(3),2
(10) (z= 2ξ1)

=−1

2

θ1(2ξ1)

θ1(4ξ1)

[
θ1(ξ2−2ξ1)θ3(ξ2−2ξ1)θ4(ξ2−2ξ1)

θ1(ξ2)θ3(ξ2)θ4(ξ2)
+
θ2(ξ2−4ξ1)

θ2(ξ2+2ξ1)

]

+
1

2

θ1(2ξ2−2ξ1)

θ1(2ξ2)

θ2(ξ2)

θ2(ξ2+2ξ1)

=
−θ1(2ξ1)

2θ1(4ξ1)θ1(ξ2)θ3(ξ2)θ4(ξ2)θ2(ξ2+2ξ1)

[
θ1(ξ2−2ξ1)θ2(ξ2+2ξ1)θ3(ξ2−2ξ1)θ4(ξ2−2ξ1)

+θ1(ξ2)θ2(ξ2−4ξ1)θ3(ξ2)θ4(ξ2)−θ1(2ξ2−2ξ1)θ2(2ξ1)θ3(2ξ1)θ4(2ξ1)
]

(E.138)
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The last two terms in the square bracket become

1

θ3θ4

{
θ1(ξ2−2ξ1)θ2(ξ2−2ξ1)θ3(2ξ1)θ4(2ξ1)+θ1(2ξ1)θ2(2ξ1)θ3(ξ2−2ξ1)θ4(ξ2−2ξ1)

}
θ3(ξ2)θ4(ξ2)

− 1

θ3θ4

{
θ1(ξ2)θ2(ξ2)θ3(ξ2−2ξ1)θ4(ξ2−2ξ1)+θ1(ξ2−2ξ1)θ2(ξ2−2ξ1)θ3(ξ2)θ4(ξ2)

}
θ3(2ξ1)θ4(2ξ1)

=− 1

θ3θ4

{
θ1(ξ2)θ2(ξ2)θ3(2ξ1)θ4(2ξ1)−θ1(2ξ1)θ2(2ξ1)θ3(ξ2)θ4(ξ2)

}
θ3(ξ2−2ξ1)θ4(ξ2−2ξ1)

=−θ1(ξ2−2ξ1)θ2(ξ2+2ξ1)θ3(ξ2−2ξ1)θ4(ξ2−2ξ1) (E.139)

so that Z
O(3),2
(10) (z = 2ξ1) becomes zero which means Q has no pole at z = 2ξ1.

2. z = ξ1 + ξ2

It’s enough to show that Z
O(3),2
(10) (z=ξ1+ξ2) = 0 to check Q is not divergent at z = ξ1+ξ2.

Just simple substitution of z = ξ1 + ξ2 at eq. (E.132) gives Z
O(3),2
(10) (z=ξ1+ξ2) = 0. So,

Q has no pole at z = ξ1 + ξ2.

3. z = −ξ1 + 1
2

ZM,2 is non-zero at z = −ξ1 + 1
2 . So we checked

lim
z→−ξ1+ 1

2

θ2(ξ1+z)Z
O(3),2
(10) = 0 (E.140)

which means the residue of Z
O(3),2
(10) at z=−ξ1+

1
2 is zero so that Q is finite at z=−ξ1+

1
2 .

4. z = a+bτ
2

Since ZM,2 is non-zero at z = a+bτ
2 , we just need to show limz→a+bτ

2
θ1(2z)Z

O(3),2
(10) = 0.

We checked

lim
z→a+bτ

2

θ1(2z)Z
O(3),2
(10) = 0 (E.141)

for a, b = 0, 1. This shows the residue of Z
O(3),2
(10) at z = a+bτ

2 is zero, which means Q

is finite at z = a+bτ
2 for a, b = 0, 1.

We checked that Q has no pole so that Q is a doubly periodic entire function of z and

it is independent of z by the theorem. Then, we can evaluate

Q(z) = lim
z→0

Q(z) = 1 (E.142)

which means Z
O(3),2
(10) = ZM,2.

E.6.3 Z
O(3),2
(01) = ZM,2

We do similar works for the case Z
O(3),2
(01) = ZM,2. Define Q as Q(z) ≡ ZO(3),2

(01) /ZM,2. Then

one can easily check that Q(z + 1) = Q(z + τ) = Q(z) using the periodicity of the Jacobi

theta functions which means Q is a doubly periodic function of z. There are 9 points where

Q has the possibility of poles z = 2ξ1, 2ξ2, ξ1 + ξ2,−ξ1 + τ
2 ,−ξ2 + τ

2 ,
a+bτ

2 , where a, b = 0, 1.

However, we only check z = 2ξ1, ξ1 + ξ2,−ξ1 + τ
2 ,

a+bτ
2 since Q is symmetric under the

change ξ1 ↔ ξ2.
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1. z = 2ξ1

Since ZM,2 ∼ O((z − 2ξ1)1) as z → 2ξ1, it’s enough to show that Z
O(3),2
(01) (z=2ξ1) = 0

to check Q is not divergent at z = 2ξ1. From the eq. (E.132),

Z
O(3),2
(01) (z= 2ξ1)

=−1

2

θ1(2ξ1)

θ1(4ξ1)

[
θ1(ξ2−2ξ1)θ2(ξ2−2ξ1)θ3(ξ2−2ξ1)

θ1(ξ2)θ2(ξ2)θ3(ξ2)
+
θ4(ξ2−4ξ1)

θ4(ξ2+2ξ1)

]
+

1

2

θ1(2ξ2−2ξ1)

θ1(2ξ2)

θ4(ξ2)

θ4(ξ2+2ξ1)

=
−θ1(2ξ1)

2θ1(4ξ1)θ1(ξ2)θ2(ξ2)θ3(ξ2)θ4(ξ2+2ξ1)

[
θ1(ξ2−2ξ1)θ2(ξ2−2ξ1)θ3(ξ2−2ξ1)θ4(ξ2+2ξ1)

+θ1(ξ2)θ2(ξ2)θ3(ξ2)θ4(ξ2−4ξ1)−θ1(2ξ2−2ξ1)θ2(2ξ1)θ3(2ξ1)θ4(2ξ1)
]

(E.143)

The last two terms in the square bracket become

1

θ3θ4
θ1(ξ2)θ2(ξ2)

{
θ3(ξ2−2ξ1)θ4(ξ2−2ξ1)θ3(2ξ1)θ4(2ξ1)−θ1(2ξ1)θ2(2ξ1)θ1(ξ2−2ξ1)θ2(ξ2−2ξ1)

}
− 1

θ3θ4

{
θ1(ξ2)θ2(ξ2)θ3(ξ2−2ξ1)θ4(ξ2−2ξ1)+θ1(ξ2−2ξ1)θ2(ξ2−2ξ1)θ3(ξ2)θ4(ξ2)

}
θ3(2ξ1)θ4(2ξ1)

=− 1

θ3θ4
θ1(ξ2−2ξ1)θ2(ξ2−2ξ1)

{
θ1(ξ2)θ2(ξ2)θ1(2ξ1)θ2(2ξ1)+θ3(2ξ1)θ4(2ξ1)θ3(ξ2)θ4(ξ2)

}
=−θ1(ξ2−2ξ1)θ2(ξ2−2ξ1)θ3(ξ2−2ξ1)θ4(ξ2+2ξ1) (E.144)

so that Z
O(3),2
(01) (z = 2ξ1) becomes zero which means Q has no pole at z = 2ξ1.

2. z = ξ1 + ξ2

It’s enough to show that Z
O(3),2
(01) (z = ξ1 + ξ2) = 0 to check Q is not divergent at

z = ξ1 + ξ2. Just simple substitution of z = ξ1 + ξ2 at eq. (E.132) gives Z
O(3),2
(01) (z=

ξ1+ξ2) = 0. So, Q has no pole at z = ξ1 + ξ2.

3. z = −ξ1 + τ
2

We checked

lim
z→−ξ1+ τ

2

θ4(ξ1+z)Z
O(3),2
(01) = 0 (E.145)

which means the residue of Z
O(3),2
(01) at z=−ξ1+

τ
2 is zero so that Q is finite at z=−ξ1+

τ
2 .

4. z = a+bτ
2

Since ZM,2 is non-zero at z = a+bτ
2 , we just need to show limz→a+bτ

2
θ1(2z)Z

O(3),2
(01) = 0.

We checked

lim
z→a+bτ

2

θ1(2z)Z
O(3),2
(01) = 0 (E.146)

for a, b = 0, 1. This shows the residue of Z
O(3),2
(01) at z = a+bτ

2 is zero, which means Q

is finite at z = a+bτ
2 for a, b = 0, 1.
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We checked that Q has no pole so that Q is a doubly periodic entire function of z and

it is independent of z by the theorem. Then, we can evaluate

Q(z) = lim
z→0

Q(z) = 1 (E.147)

which means Z
O(3),2
(01) = ZM,2.

E.6.4 Z
O(3),2
(11) = ZM,2

We do similar works for the case Z
O(3),2
(11) = ZM,2. Define Q as Q(z) ≡ ZO(3),2

(11) /ZM,2. Then

one can easily check that Q(z + 1) = Q(z + τ) = Q(z) using the periodicity of the Jacobi

theta functions which means Q is a doubly periodic function of z. There are 9 points

where Q has the possibility of poles z = 2ξ1, 2ξ2, ξ1 + ξ2,−ξ1 + 1+τ
2 ,−ξ2 + 1+τ

2 , a+bτ
2 , where

a, b = 0, 1. However, we only check z = 2ξ1, ξ1 + ξ2,−ξ1 + 1+τ
2 , a+bτ

2 since Q is symmetric

under the change ξ1 ↔ ξ2.

1. z = 2ξ1

Since ZM,2 ∼ O((z − 2ξ1)1) as z → 2ξ1, it’s enough to show that Z
O(3),2
(11) (z=2ξ1) = 0

to check Q is not divergent at z = 2ξ1. From the eq. (E.132),

Z
O(3),2
(11) (z= 2ξ1)

=−1

2

θ1(2ξ1)

θ1(4ξ1)

[
θ1(ξ2−2ξ1)θ2(ξ2−2ξ1)θ4(ξ2−2ξ1)

θ1(ξ2)θ2(ξ2)θ4(ξ2)
+
θ3(ξ2−4ξ1)

θ3(ξ2+2ξ1)

]
+

1

2

θ1(2ξ2−2ξ1)

θ1(2ξ2)

θ3(ξ2)

θ3(ξ2+2ξ1)

=
−θ1(2ξ1)

2θ1(4ξ1)θ1(ξ2)θ2(ξ2)θ4(ξ2)θ3(ξ2+2ξ1)

[
θ1(ξ2−2ξ1)θ2(ξ2−2ξ1)θ3(ξ2+2ξ1)θ4(ξ2−2ξ1)

+θ1(ξ2)θ2(ξ2)θ3(ξ2−4ξ1)θ4(ξ2)−θ1(2ξ2−2ξ1)θ2(2ξ1)θ3(2ξ1)θ4(2ξ1)
]

(E.148)

The last two terms in the square bracket become

1

θ3θ4
θ1(ξ2)θ2(ξ2)

{
θ3(ξ2−2ξ1)θ4(ξ2−2ξ1)θ3(2ξ1)θ4(2ξ1)+θ1(2ξ1)θ2(2ξ1)θ1(ξ2−2ξ1)θ2(ξ2−2ξ1)

}
− 1

θ3θ4

{
θ1(ξ2)θ2(ξ2)θ3(ξ2−2ξ1)θ4(ξ2−2ξ1)+θ1(ξ2−2ξ1)θ2(ξ2−2ξ1)θ3(ξ2)θ4(ξ2)

}
θ3(2ξ1)θ4(2ξ1)

=− 1

θ3θ4
θ1(ξ2−2ξ1)θ2(ξ2−2ξ1)

{
θ3(2ξ1)θ4(2ξ1)θ3(ξ2)θ4(ξ2)−θ1(ξ2)θ2(ξ2)θ1(2ξ1)θ2(2ξ1)

}
=−θ1(ξ2−2ξ1)θ2(ξ2−2ξ1)θ3(ξ2+2ξ1)θ4(ξ2−2ξ1) (E.149)

so that Z
O(3),2
(11) (z = 2ξ1) becomes zero which means Q has no pole at z = 2ξ1.
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2. z = ξ1 + ξ2

It’s enough to show that Z
O(3),2
(11) (z=ξ1+ξ2) = 0 to check Q is not divergent at z = ξ1+ξ2.

Just simple substitution of z = ξ1 + ξ2 at eq. (E.132) gives Z
O(3),2
(11) (z=ξ1+ξ2) = 0. So,

Q has no pole at z = ξ1 + ξ2.

3. z = −ξ1 + 1+τ
2

ZM,2 is non-zero at z = −ξ1 + 1+τ
2 . We checked

lim
z→−ξ1+ 1+τ

2

θ3(ξ1+z)Z
O(3),2
(11) = 0, (E.150)

which means the residue of Z
O(3),2
(11) at z=−ξ1+1+τ

2 is zero so that Q is finite at

z=−ξ1+
1+τ

2 .

4. z = a+bτ
2

Since ZM,2 is non-zero at z = a+bτ
2 , we just need to show limz→a+bτ

2
θ1(2z)Z

O(3),2
(11) = 0.

We checked

lim
z→a+bτ

2

θ1(2z)Z
O(3),2
(11) = 0 (E.151)

for a, b = 0, 1. This shows the residue of Z
O(3),2
(11) at z = a+bτ

2 is zero, which means Q

is finite at z = a+bτ
2 for a, b = 0, 1.

We checked that Q has no pole so that Q is a doubly periodic entire function of z and

it is independent of z by the theorem. Then, we can evaluate

Q(z) = lim
z→0

Q(z) = 1 (E.152)

which means Z
O(3),2
(11) = ZM,2.

To summarize we checked analytically that

Z
O(3),2
(00) = Z

O(3),2
(10) = Z

O(3),2
(01) = Z

O(3),2
(11) = ZM,2 (E.153)

which gives

ZA,SO(3),2 = Z
O(3),2
(00) = ZM,2 (E.154)

ZA,O+(3),2 =
1

2

(
Z
O(3),2
(00) + Z

O(3),2
(10) + Z

O(3),2
(01) + Z

O(3),2
(11)

)
= 2ZM,2 (E.155)

ZA,O−(3),2 =
1

2

(
− ZO(3),2

(00) + Z
O(3),2
(10) + Z

O(3),2
(01) + Z

O(3),2
(11)

)
= ZM,2. (E.156)
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E.7 SO(4),O±(4) theories with 3 fundamentals

Using the Jacobi theta function’s relations we can get

Z
O(4),N
(00)

=
1

4

[
1

2

(
θ1(z)

θ1(2z)

)2{ N∏
α=1

θ1(ξα−2z)

θ1(ξα+z)

θ1(ξα−z)
θ1(ξα)

+
N∏
α=1

θ2(ξα−2z)

θ2(ξα+z)

θ2(ξα−z)
θ2(ξα)

+
N∏
α=1

θ3(ξα−2z)

θ3(ξα+z)

θ3(ξα−z)
θ3(ξα)

+

N∏
α=1

θ4(ξα−2z)

θ4(ξα+z)

θ4(ξα−z)
θ4(ξα)

}
−

N∑
α=1

θ1(2ξα−z)
θ1(2ξα)

θ1(2ξα+z)

θ1(2ξα+2z)

∏
β 6=α

θ1(ξβ−ξα−2z)

θ1(ξβ−ξα)

θ1(ξα+ξβ−z)
θ1(ξα+ξβ+z)

+
N∑
α=1

∑
β 6=α

θ1(2ξα−z)
θ1(2ξα)

θ1(2ξβ−z)
θ1(2ξβ)

θ1(ξα+ξβ−z)
θ1(ξα+ξβ+z)

∏
γ 6=α,β

∏
λ=α,β

θ1(ξγ−ξλ−z)
θ1(ξγ−ξλ)

θ1(ξγ+ξλ−z)
θ1(ξγ+ξλ)

]

+(−1)N+1 1

2

(
θ1(z)

θ1(2z)

)2 N∏
α=1

θ1(2ξα−2z)

θ1(2ξα)
(E.157)

Z
O(4),N
(10)

=
1

4

N∑
α=1

θ1(2ξα−z)
θ1(2ξα)

θ2
θ2(z)

∏
β 6=α

θ1(ξβ−ξα−z)
θ1(ξβ−ξα)

θ1(ξα+ξβ−z)
θ1(ξα+ξβ)

×

(
θ1(ξα)

θ1(ξα+z)

θ2(ξα)

θ2(ξα+z)

∏
β 6=α

θ1(ξβ−z)
θ1(ξβ)

θ2(ξβ−z)
θ2(ξβ)

+(−1)N+1 θ3(ξα)

θ3(ξα+z)

θ4(ξα)

θ4(ξα+z)

∏
β 6=α

θ3(ξβ−z)
θ3(ξβ)

θ4(ξβ−z)
θ4(ξβ)

)

− 1

4

θ1(z)

θ1(2z)

θ2(z)

θ2(2z)
×

(
N∏
α=1

θ1(ξα−2z)

θ1(ξα+z)

θ2(ξα−z)
θ2(ξα)

+(−1)N+1
N∏
α=1

θ3(ξα−2z)

θ3(ξα+z)

θ4(ξα−z)
θ4(ξα)

+
N∏
α=1

θ2(ξα−2z)

θ2(ξα+z)

θ1(ξα−z)
θ1(ξα)

+(−1)N+1
N∏
α=1

θ4(ξα−2z)

θ4(ξα+z)

θ3(ξα−z)
θ3(ξα)

)
(E.158)

Z
O(4),N
(01)

=
1

4

N∑
α=1

θ1(2ξα−z)
θ1(2ξα)

θ4
θ4(z)

∏
β 6=α

θ1(ξβ−ξα−z)
θ1(ξβ−ξα)

θ1(ξα+ξβ−z)
θ1(ξα+ξβ)

×

(
θ1(ξα)

θ1(ξα+z)

θ4(ξα)

θ4(ξα+z)

∏
β 6=α

θ1(ξβ−z)
θ1(ξβ)

θ4(ξβ−z)
θ4(ξβ)

+(−1)N+1 θ2(ξα)

θ2(ξα+z)

θ3(ξα)

θ3(ξα+z)

∏
β 6=α

θ2(ξβ−z)
θ2(ξβ)

θ3(ξβ−z)
θ3(ξβ)

)

− 1

4

θ1(z)

θ1(2z)

θ4(z)

θ4(2z)
×

(
N∏
α=1

θ1(ξα−2z)

θ1(ξα+z)

θ4(ξα−z)
θ4(ξα)

+(−1)N+1
N∏
α=1

θ2(ξα−2z)

θ2(ξα+z)

θ3(ξα−z)
θ3(ξα)

+
N∏
α=1

θ4(ξα−2z)

θ4(ξα+z)

θ1(ξα−z)
θ1(ξα)

+(−1)N+1
N∏
α=1

θ3(ξα−2z)

θ3(ξα+z)

θ2(ξα−z)
θ2(ξα)

)
(E.159)
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Z
O(4),N
(11)

=
1

4

N∑
α=1

θ1(2ξα−z)
θ1(2ξα)

θ3
θ3(z)

∏
β 6=α

θ1(ξβ−ξα−z)
θ1(ξβ−ξα)

θ1(ξα+ξβ−z)
θ1(ξα+ξβ)

×

(
θ1(ξα)

θ1(ξα+z)

θ3(ξα)

θ3(ξα+z)

∏
β 6=α

θ1(ξβ−z)
θ1(ξβ)

θ3(ξβ−z)
θ3(ξβ)

+(−1)N+1 θ2(ξα)

θ2(ξα+z)

θ4(ξα)

θ4(ξα+z)

∏
β 6=α

θ2(ξβ−z)
θ2(ξβ)

θ4(ξβ−z)
θ4(ξβ)

)

− 1

4

θ1(z)

θ1(2z)

θ3(z)

θ3(2z)
×

(
N∏
α=1

θ1(ξα−2z)

θ1(ξα+z)

θ3(ξα−z)
θ3(ξα)

+(−1)N+1
N∏
α=1

θ2(ξα−2z)

θ2(ξα+z)

θ4(ξα−z)
θ4(ξα)

+

N∏
α=1

θ3(ξα−2z)

θ3(ξα+z)

θ1(ξα−z)
θ1(ξα)

+(−1)N+1
N∏
α=1

θ4(ξα−2z)

θ4(ξα+z)

θ2(ξα−z)
θ2(ξα)

)
. (E.160)

E.7.1 Z
O(4),3
(00) = ZM,3

Consider Q(z) ≡ Z
O(4),3
(00) /ZM,3. It can be easily checked that Q(z) is a doubly periodic

function under z → z + 1, z → z + τ . Again, we check that Q(z) has no pole. There could

be potential poles at z = −ξα+ a+bτ
2 , a+bτ

2 ,−ξα−ξβ , ξα+ξβ , 2ξα for α 6= β, a, b = 0, 1. Since

Q(z) is symmetric under ξα ↔ ξβ , we only need to check for z = −ξ1 + a+bτ
2 , a+bτ

2 ,−ξ1 −
ξ2, ξ1 + ξ2, 2ξ1.

1. z = −ξ1 + a+bτ
2

The potential divergence at this point comes from Z
O(4),3
(00) since ZM,3 is nonzero at

this point. So, it’s sufficient to check that the residue of Z
O(4),3
(00) at this point is zero

to show Q(z) has no pole. We checked

lim
z→−ξ1+a+bτ

2

θi(ξ1 + z)Z
O(4),3
(00) = 0 (E.161)

for (a, b, i) = (0, 0, 1), (1, 0, 2), (0, 1, 4), (1, 1, 3) which means the residue of Z
O(4),3
(00) at

z = −ξ1 + a+bτ
2 is zero for a, b = 0, 1 so that Q(z) has no pole at z = −ξ1 + a+bτ

2 .

2. z = a+bτ
2

By the same reason, it’s sufficient to check that the residue of Z
O(4),3
(00) at this point is

zero to show Q(z) has no pole.

lim
z→0

Z
O(4),3
(00) = 1 (E.162)

lim
ε→0

lim
z→ 1

2
+ε
θ1(2z)Z

O(4),3
(00)

=− lim
ε→0

θ2(ε)2

θ1(2ε)

[
1

8

{
3∏

α=1

θ2(ξα−ε)
θ2(ξα+ε)

θ1(ξα−2ε)

θ1(ξα)
+

3∏
α=1

θ1(ξα−ε)
θ1(ξα+ε)

θ2(ξα−2ε)

θ2(ξα)

+

3∏
α=1

θ3(ξα−ε)
θ3(ξα+ε)

θ4(ξα−2ε)

θ4(ξα)
+

3∏
α=1

θ4(ξα−ε)
θ4(ξα+ε)

θ3(ξα−2ε)

θ3(ξα)

}
− 1

2

3∏
α=1

θ1(2ξα−2ε)

θ1(2ξα)

]
= 0 (E.163)
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where we used θi(ξα + ε) ∼ θi(ξα) + εθ′i(ξα) for i = 1, 2, 3, 4 to see the square bracket

is order of O(ε2).

[· · · ] =
1

8

{
4− 4ε

3∑
α=1

4∑
i=1

(
θ′i(ξα)

θi(ξα)

)}
− 1

2

{
1− ε

3∑
α=1

4∑
i=1

(
θ′i(ξα)

θi(ξα)

)}
+O(ε2)

∼ O(ε2). (E.164)

Similarly,

lim
z→ τ

2

θ1(2z)Z
O(4),3
(00)

= lim
ε→0

θ4(ε)2

θ1(2ε)

c

q
5
4

[
1

8

{
3∏

α=1

θ4(ξα−ε)
θ4(ξα+ε)

θ1(ξα−2ε)

θ1(ξα)
+

3∏
α=1

θ3(ξα−ε)
θ3(ξα+ε)

θ2(ξα−2ε)

θ2(ξα)

+
3∏

α=1

θ2(ξα−ε)
θ2(ξα+ε)

θ3(ξα−2ε)

θ3(ξα)
+

3∏
α=1

θ1(ξα−ε)
θ1(ξα+ε)

θ4(ξα−2ε)

θ4(ξα)

}
− 1

2

3∏
α=1

θ1(2ξα−2ε)

θ1(2ξα)

]
= 0 (E.165)

lim
z→ 1+τ

2

θ1(2z)Z
O(4),3
(00)

= lim
ε→0

θ3(ε)2

θ1(2ε)

c

−q
5
4

[
1

8

{
3∏

α=1

θ3(ξα−ε)
θ3(ξα+ε)

θ1(ξα−2ε)

θ1(ξα)
+

3∏
α=1

θ4(ξα−ε)
θ4(ξα+ε)

θ2(ξα−2ε)

θ2(ξα)

+

3∏
α=1

θ1(ξα−ε)
θ1(ξα+ε)

θ3(ξα−2ε)

θ3(ξα)
+

3∏
α=1

θ2(ξα−ε)
θ2(ξα+ε)

θ4(ξα−2ε)

θ4(ξα)

}
− 1

2

3∏
α=1

θ1(2ξα−2ε)

θ1(2ξα)

]
= 0 (E.166)

where c = e4πi(ξ1+ξ2+ξ3−3ε). So, the residue of Z
O(4),3
(00) at z = a+bτ

2 is zero for a, b = 0, 1

which means Q(z) has no pole at z = a+bτ
2 .

3. z = −ξ1 − ξ2

By the same reason, it’s sufficient to check that the residue of Z
O(4),3
(00) at this point is

zero to show Q(z) has no pole. We checked

lim
z→−ξ1−ξ2

θ1(ξ1 + ξ2 + z)Z
O(4),3
(00) = 0. (E.167)

So, the residue of Z
O(4),3
(00) at z = −ξ1 − ξ2 is zero which means Q(z) has no pole at

z = −ξ1 − ξ2.

4. z = ξ1 + ξ2

The divergence at this point comes from 1
ZM,3

and the order of divergence of it is
1

z−ξ1−ξ2 so that we only need to check that Z
O(4),3
(00) |z=ξ1+ξ2 = 0 to show Q(z) has no
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pole at here.

Z
O(4),3
(00) |z=ξ1+ξ2 =

1

8

(
θ1(ξ1+ξ2)

θ1(2ξ1+2ξ2)

)2{
θ1(ξ1+ξ2−ξ3)

θ1(ξ1+ξ2+ξ3)

θ1(2ξ1+2ξ2−ξ3)

θ1(ξ3)
+

4∑
i=2

(θ1↔ θi)

}

+
1

4

θ1(ξ1+ξ2−2ξ3)

θ1(2ξ3)

θ1(ξ1+ξ2+2ξ3)

θ1(2ξ1+2ξ2+2ξ3)
− 1

2

(
θ1(ξ1+ξ2)

θ1(2ξ1+2ξ2)

)2
θ1(2ξ1+2ξ2−2ξ3)

θ1(2ξ3)

=
1

2

(
θ1(ξ1+ξ2)

θ1(2ξ1+2ξ2)

)2
1

(θ2θ3θ4)2
1

θ1(2ξ3)θ1(2ξ1+2ξ2+2ξ3)
×[

θ1(η)θ2(ξ)θ3(ξ)θ4(ξ)·θ1(ξ)θ2(η)θ3(η)θ4(η)

+θ1(ξ)θ2(η)θ3(ξ)θ4(ξ)·θ1(η)θ2(ξ)θ3(η)θ4(η)

+θ1(ξ)θ2(ξ)θ3(η)θ4(ξ)·θ1(η)θ2(η)θ3(ξ)θ4(η)

+θ1(ξ)θ2(ξ)θ3(ξ)θ4(η)·θ1(η)θ2(η)θ3(η)θ4(ξ)
]

− 1

2

(
θ1(ξ1+ξ2)

θ1(2ξ1+2ξ2)

)2
θ1(2ξ1+2ξ2−2ξ3)

θ1(2ξ3)

=
1

2

(
θ1(ξ1+ξ2)

θ1(2ξ1+2ξ2)

)2[
θ1(2ξ)θ1(2η)

θ1(2ξ3)θ1(2ξ1+2ξ2+2ξ3)
− θ1(2ξ1+2ξ2−2ξ3)

θ1(2ξ3)

]
= 0. (E.168)

where we set η ≡ ξ1 + ξ2 − ξ3 and ξ ≡ ξ1 + ξ2 + ξ3. This result shows that Q(z) has

no pole at z = ξ1 + ξ2.

5. z = 2ξ1

The divergence at this point comes from 1
ZM,3

and the order of divergence of it is
1

z−2ξ1
so that we only need to check that Z

O(4),3
(00) |z=2ξ1 = 0 to show Q(z) has no pole.

Z
O(4),3
(00) |z=2ξ1

=
1

8

(
θ1(2ξ1)

θ1(4ξ1)

)2[{
θ1(2ξ1−ξ2)θ1(4ξ1−ξ2)

θ1(2ξ1+ξ2)θ1(ξ2)

θ1(2ξ1−ξ3)θ1(4ξ1−ξ3)

θ1(2ξ1+ξ3)θ1(ξ3)
+

4∑
i=2

(θ1↔ θi)

}

−4
θ1(4ξ1−2ξ2)

θ1(2ξ2)

θ1(4ξ1−2ξ3)

θ1(2ξ3)

]
− 1

4

θ1(2ξ1−ξ2−ξ3)

θ1(2ξ1+ξ2+ξ3)

{
2
θ1(2ξ1−2ξ2)

θ1(2ξ2)

θ1(2ξ1−2ξ3)

θ1(2ξ3)
+

θ1(2ξ1−2ξ2)

θ1(2ξ2)

θ1(2ξ1+2ξ2)

θ1(4ξ1+2ξ2)

θ1(4ξ1+ξ2−ξ3)

θ1(ξ2−ξ3)
− θ1(2ξ1−2ξ3)

θ1(2ξ3)

θ1(2ξ1+2ξ3)

θ1(4ξ1+2ξ3)

θ1(4ξ1−ξ2+ξ3)

θ1(ξ2−ξ3)

}
.

(E.169)

We define a function of 2ξ1 that is doubly periodic by dividing Z
O(4),3
(00) |z=2ξ1 with the

first term in the second curly brackets.

P(00)(2ξ1) ≡ ZO(4),3
(00) |z=2ξ1 ×

θ1(2ξ1+ξ2+ξ3)

θ1(2ξ1−ξ2−ξ3)

θ1(2ξ2)

θ1(2ξ1−2ξ2)

θ1(2ξ3)

θ1(2ξ1−2ξ3)
. (E.170)

– 59 –



J
H
E
P
1
0
(
2
0
1
9
)
0
7
9

We will show P(00) = 0 by checking that it has no pole. The potential pole points

are 2ξ1 = 2ξα, ξ2 + ξ3,−ξα + a+bτ
2 , a+bτ

2 for α = 2, 3 and a, b = 0, 1 and only α = 2

will be checked since P(00) is symmetric under ξ2 ↔ ξ3. We checked

lim
2ξ1→2ξ2

θ1(2ξ1 − 2ξ2)P(00) = 0, (E.171)

where we used the eq. (E.168) with ξ1 → ξ2,

lim
2ξ1→ξ2+ξ3

θ1(2ξ1−ξ2−ξ3)P(00) = 0 (E.172)

lim
2ξ1→−ξ2+a+bτ

2

θi(2ξ1+ξ2)P(00) = 0 (E.173)

lim
2ξ1→a+bτ

2

θ1(4ξ1)P(00) = 0 (E.174)

for (a, b, i) = (0, 0, 1), (1, 0, 2), (0, 1, 4), (1, 1, 3) and a, b = 0, 1. We used eq. (E.163)-

eq. (E.166) with changing z → 2ξ1.

Eq. (E.171)–(E.174) show the residues of P(00)(2ξ1) at the all potential poles are zero

so that P(00)(2ξ1) is a doubly periodic entire function of 2ξ1. So, we have

P(00)(2ξ1) = lim
2ξ1→0

P(00)(2ξ1) = 0. (E.175)

Multiplying θ1(2ξ1+ξ2+ξ3)
θ1(2ξ1−ξ2−ξ3)

θ1(2ξ2)
θ1(2ξ1−2ξ2)

θ1(2ξ3)
θ1(2ξ1−2ξ3) , we have Z

O(4),3
(00) |z=2ξ1 = 0 except for a

point 2ξ1 = −ξ2−ξ3. Since the residue of Z
O(4),3
(00) |z=2ξ1 at 2ξ1 = −ξ2−ξ3 is zero(from

the eq. (E.175)), Z
O(4),3
(00) |z=2ξ1 is continuous at this point. So, we finally have

Z
O(4),3
(00) |z=2ξ1 = 0 (E.176)

for all 2ξ1. This result shows that Q(z) has no pole at z = 2ξ1.

We checked that Q has no pole. So, Q is a doubly periodic entire function of z and it

is independent of z by the theorem. Then, we can easily evaluate

Q(z) = lim
z→0

Q(z) = 1 (E.177)

which means Z
O(4),3
(00) = ZM,3.
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E.7.2 Z
O(4),3
(10) = ZM,3

Consider Q(z) ≡ Z
O(4),3
(10) /ZM,3 which is a doubly periodic function under z → z + 1, z →

z + τ . Again, we check that Q(z) has no pole. There are many potential poles: z =

−ξα + a+bτ
2 , a+bτ

2 , 1
4 + a+bτ

2 , ξα + ξβ , 2ξα for α 6= β, a, b = 0, 1. Since Q(z) is symmetric

under ξα ↔ ξβ , we only need to check for z = −ξ1 + a+bτ
2 , a+bτ

2 , 1
4 + a+bτ

2 , ξ1 + ξ2, 2ξ1.

1. z = −ξ1 + a+bτ
2

The potential divergence at this point comes from Z
O(4),3
(10) and ZM,3 is nonzero at

this point. So, it’s sufficient to check that the residue of Z
O(4),3
(10) at this point iz zero

to show Q(z) has no pole. We checked

lim
z→−ξ1+a+bτ

2

θi(ξ1 + z)Z
O(4),3
(10) = 0 (E.178)

where (a, b, i) = (0, 0, 1), (1, 0, 2), (0, 1, 4), (1, 1, 3). So, the residue of Z
O(4),3
(10) at z =

−ξ1 + a+bτ
2 is zero for a, b = 0, 1 which means Q(z) has no pole at z = −ξ1 + a+bτ

2 .

2. z = a+bτ
2

By the same reason, it’s sufficient to check that the residue of ZM,3
(10) at this point is

zero to show Q(z) has no pole. We checked

lim
z→a+bτ

2

θ1(2z)Z
O(4),3
(10) = 0 (E.179)

for a, b,= 0, 1. So, the residue of Z
O(4),3
(10) at z = a+bτ

2 is zero which means Q(z) has

no pole at z = a+bτ
2 .

3. z = 1
4 + a+bτ

2

By the same reason, it’s sufficient to check that the residue of Z
O(4),3
(10) at this point is

zero to show Q(z) has no pole. We checked

lim
z→ 1

4
+a+bτ

2

θ2(2z)Z
O(4),3
(10) = 0. (E.180)

So, the residue of Z
O(4),3
(10) at z = 1

4 + a+bτ
2 is zero for a, b = 0, 1 which means Q(z) has

no pole at z = 1
4 + a+bτ

2 .

4. z = ξ1 + ξ2

The divergence at this point comes from 1
ZM,3

and the order of divergence of it is
1

z−ξ1−ξ2 so that we only need to check that Z
O(4),3
(10) |z=ξ1+ξ2 = 0 to show Q(z) has
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no pole.

Z
O(4),3
(10) |z=ξ1+ξ2 =

θ1(2ξ3−z)θ1(2ξ3+z)

2θ1(2ξ3)θ1(2ξ3+2z)
− θ1(z)θ2(z)

4θ1(2z)θ2(2z)

(
θ2(ξ3−2z)θ1(ξ3−z)

θ2(ξ3+z)θ1(ξ3)

+
θ1(ξ3−2z)θ2(ξ3−z)

θ1(ξ3+z)θ2(ξ3)
+
θ3(ξ3−2z)θ4(ξ3−z)

θ3(ξ3+z)θ4(ξ3)
+
θ4(ξ3−2z)θ3(ξ3−z)

θ4(ξ3+z)θ3(ξ3)

)

=
θ1(2ξ3−z)θ1(2ξ3+z)

2θ1(2ξ3)θ1(2ξ3+2z)
− θ2(θ3θ4)2

8θ2(2z)
×

θ4(2ξ3+z)θ4(2ξ3−z)θ3(2z)θ3−θ3(2ξ3+z)θ3(2ξ3−z)θ4(2z)θ4

θ1(ξ3+z)θ2(ξ3+z)θ3(ξ3+z)θ4(ξ3+z)θ1(ξ3)θ2(ξ3)θ3(ξ3)θ4(ξ3)

=
θ1(2ξ3−z)θ1(2ξ3+z)

2θ1(2ξ3)θ1(2ξ3+2z)

− θ4(2ξ3+z)θ4(2ξ3−z)θ3(2z)θ3−θ3(2ξ3+z)θ3(2ξ3−z)θ4(2z)θ4

2θ1(2ξ3)θ1(2ξ3+2z)θ2θ2(2z)

=
θ1(2ξ3−z)θ1(2ξ3+z)

2θ1(2ξ3)θ1(2ξ3+2z)
− θ1(2ξ3+z)θ2θ1(2ξ3−z)θ2(2z)

2θ1(2ξ3)θ1(2ξ3+2z)θ2θ2(2z)

= 0. (E.181)

This result shows that Q(z) has no pole at z = ξ1 + ξ2.

5. z = 2ξ1

The divergence at this point comes from 1
ZM,3

and the order of divergence of it is
1

z−2ξ1
so that we only need to check that Z

O(4),3
(10) |z=2ξ1 = 0 to show Q(z) has no pole.

Z
O(4),3
(10) |z=2ξ1 =

1

4

θ1(2ξ2−2ξ1)

θ1(2ξ2)

θ2
θ2(2ξ1)

θ1(ξ3−ξ2−2ξ1)θ1(ξ2+ξ3−2ξ1)

θ1(ξ3−ξ2)θ1(ξ2+ξ3)
×(

− θ1(ξ2)θ2(ξ2)θ1(ξ3−2ξ1)θ2(ξ3−2ξ1)

θ1(ξ2+2ξ1)θ2(ξ2+2ξ1)θ1(ξ3)θ2(ξ3)
+
θ3(ξ2)θ4(ξ2)θ3(ξ3−2ξ1)θ4(ξ3−2ξ1)

θ3(ξ2+2ξ1)θ4(ξ2+2ξ1)θ3(ξ3)θ4(ξ3)

)
+(ξ2↔ ξ3)

− 1

4

θ1(2ξ1)θ2(2ξ1)

θ1(4ξ1)θ2(4ξ1)

(
−

3∏
α=2

θ1(ξα−4ξ1)θ2(ξα−2ξ1)

θ1(ξα+2ξ1)θ2(ξα)
+

3∏
α=2

θ3(ξα−4ξ1)θ4(ξα−2ξ1)

θ3(ξα+2ξ1)θ4(ξα)

−
3∏

α=2

θ2(ξα−4ξ1)θ1(ξα−2ξ1)

θ2(ξα+2ξ1)θ1(ξα)
+

3∏
α=2

θ4(ξα−4ξ1)θ3(ξα−2ξ1)

θ4(ξα+2ξ1)θ3(ξα)

)
. (E.182)

We define a function of 2ξ1 that is doubly periodic by multiplying Z
O(4),3
(10) |z=2ξ1 by

appropriate factor as

P(10)(2ξ1) ≡ ZO(4),3
(10) |z=2ξ1 ×

θ2(ξ2+ξ3+2ξ1)

θ1(2ξ1−ξ2−ξ3)θ1(2ξ1−2ξ2)θ1(2ξ1−2ξ3)
. (E.183)

We will show P(10) = 0 by checking that it has no pole. The potential pole points

are 2ξ1 = ξ2 + ξ3, 2ξα,−ξα + a+bτ
2 , a+bτ

2 , 1
4 + a+bτ

2 for α = 2, 3 and a, b = 0, 1 and only
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α = 2 will be checked since P(10) is symmetric under ξ2 ↔ ξ3. We checked

lim
2ξ1→ξ2+ξ3

θ1(2ξ1−ξ2−ξ3)P(10) = 0 (E.184)

lim
2ξ1→2ξ2

θ1(2ξ1−2ξ2)P(10) = 0, (E.185)

where we used the result of eq. (E.181),

lim
2ξ1→−ξ2+a+bτ

2

θi(2ξ1+ξ2)P(10) = 0 (E.186)

lim
2ξ1→a+bτ

2

θ1(4ξ1)P(10) = 0 (E.187)

lim
2ξ1→ 1

4
+a+bτ

2

θ2(4ξ1)P(10) = 0 (E.188)

for (a, b, i) = (0, 0, 1), (1, 0, 2), (0, 1, 4), (1, 1, 3) and a, b = 0, 1. Those are basically the

same calculations that we did from eq. (E.178) to eq. (E.180). Thus we proved P(10)

is a doubly periodic entire function of 2ξ1.

P(10)(2ξ1) = lim
2ξ1→0

P(10)(2ξ1) = 0. (E.189)

Multiplying θ1(2ξ1−ξ2−ξ3)θ1(2ξ1−2ξ2)θ1(2ξ1−2ξ3)
θ2(2ξ1+ξ2+ξ3) , we have Z

O(4),3
(10) |z=2ξ1 = 0 except for a

point 2ξ1 = 1
2 − ξ2− ξ3. Since the residue of Z

O(4),3
(10) |z=2ξ1 at 2ξ1 = 1

2 − ξ2− ξ3 is zero,

Z
O(4),3
(10) |z=2ξ1 is continuous at this point. So, we finally have

Z
O(4),3
(10) |z=2ξ1 = 0 (E.190)

for all 2ξ1. This result shows that Q(z) has no pole at z = 2ξ1.

We checked that Q has no pole. Since Q is a doubly periodic entire function of z and

it is independent of z by the theorem. Then, we can easily evaluate

Q(z) = lim
z→0

Q(z) = 1 (E.191)

which means Z
O(4),3
(10) = ZM,3.

E.7.3 Z
O(4),3
(01) = ZM,3

Consider Q(z) ≡ Z
O(4),3
(01) /ZM,3 which is a doubly periodic function under z → z + 1, z →

z + τ . Again, we check that Q(z) has no pole. There are many probable poles: z =

−ξα + a+bτ
2 , a+bτ

2 , τ4 + a+bτ
2 , ξα + ξβ , 2ξα for α 6= β, a, b = 0, 1. Since Q(z) is symmetric

under ξα ↔ ξβ , we only need to check for z = −ξ1 + a+bτ
2 , a+bτ

2 , τ4 + a+bτ
2 , ξ1 + ξ2, 2ξ1.
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1. z = −ξ1 + a+bτ
2

The divergence at this point comes from Z
O(4),3
(01) and ZM,3 is nonzero at this point.

So, it’s sufficient to check that the residue of Z
O(4),3
(01) at this point iz zero to show

Q(z) has no pole. We checked

lim
z→−ξ1+a+bτ

2

θi(ξ1 + z)Z
O(4),3
(01) = 0 (E.192)

for (a, b, i) = (0, 0, 1), (1, 0, 2), (0, 1, 4), (1, 1, 3). So the residue of Z
O(4),3
(01) at z =

−ξ1 + a+bτ
2 is zero for a, b = 0, 1 which means Q(z) has no pole at z = −ξ1 + a+bτ

2 .

2. z = a+bτ
2

By the same reason, it’s sufficient to check that the residue of ZM,3
(01) at this point is

zero to show Q(z) has no pole. We checked

lim
z→a+bτ

2

θ1(2z)Z
O(4),3
(01) = 0 (E.193)

for a, b,= 0, 1. So, the residue of Z
O(4),3
(01) at z = a+bτ

2 is zero which means Q(z) has

no pole at z = a+bτ
2 .

3. z = τ
4 + a+bτ

2

By the same reason, it’s sufficient to check that the residue of Z
O(4),3
(01) at this point is

zero to show Q(z) has no pole. We checked

lim
z→ τ

4
+a+bτ

2

θ4(2z)Z
O(4),3
(01) = 0. (E.194)

So the residue of Z
O(4),3
(01) at z = τ

4 + a+bτ
2 is zero for a, b = 0, 1 which means Q(z) has

no pole at z = τ
4 + a+bτ

2 .

4. z = ξ1 + ξ2

The divergence at this point comes from 1
ZM,3

and the order of divergence of it is
1

z−ξ1−ξ2 so that we only need to check that ZO(4),3
(01) |z=ξ1+ξ2 =0 to showQ(z) has no pole.

Z
O(4),3
(01) |z=ξ1+ξ2 =

θ1(2ξ3−z)θ1(2ξ3+z)

2θ1(2ξ3)θ1(2ξ3+2z)
− θ1(z)θ4(z)

4θ1(2z)θ4(2z)

(
θ1(ξ3−2z)θ4(ξ3−z)
θ1(ξ3+z)θ4(ξ3)

+
θ2(ξ3−2z)θ3(ξ3−z)
θ2(ξ3+z)θ3(ξ3)

+
θ4(ξ3−2z)θ1(ξ3−z)
θ4(ξ3+z)θ1(ξ3)

+
θ3(ξ3−2z)θ2(ξ3−z)
θ3(ξ3+z)θ2(ξ3)

)
=
θ1(2ξ3−z)θ1(2ξ3+z)

2θ1(2ξ3)θ1(2ξ3+2z)
− θ1(z)θ4(z)

4θ1(2z)θ4(2z)
×

2θ1(ξ3− z
2
)θ2(ξ3− z

2
)θ3(ξ3− z

2
)θ4(ξ3− z

2
)θ1(2ξ3+z)θ2(z)θ3(z)θ4(2z)

θ1(ξ3+z)θ2(ξ3+z)θ3(ξ3+z)θ4(ξ3+z)θ1(ξ3)θ2(ξ3)θ3(ξ3)θ4(ξ3)

=
θ1(2ξ3−z)θ1(2ξ3+z)

2θ1(2ξ3)θ1(2ξ3+2z)
− θ1(z) · · ·θ4(z)θ1(2ξ3+z)θ1(ξ3− z

2
) · · ·θ4(ξ3− z

2
)

2θ1(2z)θ1(ξ3+z) · · ·θ4(ξ3+z)θ1(ξ3) · · ·θ4(ξ3)

=
θ1(2ξ3−z)θ1(2ξ3+z)

2θ1(2ξ3)θ1(2ξ3+2z)
− θ1(2ξ3+z)θ1(2ξ3−z)

2θ1(2ξ3+2z)θ1(2ξ3)

= 0. (E.195)

This result shows that Q(z) has no pole at z = ξ1 + ξ2.
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5. z = 2ξ1

The divergence at this point comes from 1
ZM,3

and the order of divergence of it is
1

z−2ξ1
so that we only need to check that Z

O(4),3
(01) |z=2ξ1 = 0 to show Q(z) has no pole.

Z
O(4),3
(01) |z=2ξ1 =

1

4

θ1(2ξ2−2ξ1)

θ1(2ξ2)

θ4
θ4(2ξ1)

θ1(ξ3−ξ2−2ξ1)θ1(ξ2+ξ3−2ξ1)

θ1(ξ3−ξ2)θ1(ξ2+ξ3)
×(

− θ1(ξ2)θ4(ξ2)θ1(ξ3−2ξ1)θ4(ξ3−2ξ1)

θ1(ξ2+2ξ1)θ4(ξ2+2ξ1)θ1(ξ3)θ4(ξ3)
+
θ2(ξ2)θ3(ξ2)θ2(ξ3−2ξ1)θ3(ξ3−2ξ1)

θ2(ξ2+2ξ1)θ3(ξ2+2ξ1)θ2(ξ3)θ3(ξ3)

)
+(ξ2↔ ξ3)

− 1

4

θ1(2ξ1)θ4(2ξ1)

θ1(4ξ1)θ4(4ξ1)

(
−

3∏
α=2

θ1(ξα−4ξ1)θ4(ξα−2ξ1)

θ1(ξα+2ξ1)θ4(ξα)
+

3∏
α=2

θ2(ξα−4ξ1)θ3(ξα−2ξ1)

θ2(ξα+2ξ1)θ3(ξα)

−
3∏

α=2

θ4(ξα−4ξ1)θ1(ξα−2ξ1)

θ4(ξα+2ξ1)θ1(ξα)
+

3∏
α=2

θ3(ξα−4ξ1)θ2(ξα−2ξ1)

θ3(ξα+2ξ1)θ2(ξα)

)
. (E.196)

We define a function of 2ξ1 that is doubly periodic by multiplying Z
O(4),3
(01) |z=2ξ1 by

appropriate factor as

P(01)(2ξ1) ≡ ZO(4),3
(01) |z=2ξ1 ×

θ4(ξ2+ξ3+2ξ1)

θ1(2ξ1−ξ2−ξ3)θ1(2ξ1−2ξ2)θ1(2ξ1−2ξ3)
. (E.197)

We will show P(01) = 0 by checking that it has no pole. The potential pole points

are 2ξ1 = ξ2 + ξ3, 2ξα,−ξα + a+bτ
2 , a+bτ

2 , τ4 + a+bτ
2 for α = 2, 3 and a, b = 0, 1 and only

α = 2 will be checked since P(01) is symmetric under ξ2 ↔ ξ3. We checked

lim
2ξ1→ξ2+ξ3

θ1(2ξ1−ξ2−ξ3)P(01) = 0 (E.198)

lim
2ξ1→2ξ2

θ1(2ξ1−2ξ2)P(01) = 0, (E.199)

where we used the result of eq. (E.195),

lim
2ξ1→−ξ2+a+bτ

2

θi(2ξ1+ξ2)P(01) = 0 (E.200)

lim
2ξ1→a+bτ

2

θ1(4ξ1)P(01) = 0 (E.201)

lim
2ξ1→ τ

4
+a+bτ

2

θ4(4ξ1)P(01) = 0 (E.202)

for (a, b, i) = (0, 0, 1), (1, 0, 2), (0, 1, 4), (1, 1, 3) and a, b = 0, 1. Those are basically the

same calculations that we did from eq. (E.192) to eq. (E.194). So we proved P(01) is

a doubly periodic entire function of 2ξ1.

P(01)(2ξ1) = lim
2ξ1→0

P(01)(2ξ1) = 0. (E.203)

Multiplying θ1(2ξ1−ξ2−ξ3)θ1(2ξ1−2ξ2)θ1(2ξ1−2ξ3)
θ4(2ξ1+ξ2+ξ3) , we have Z

O(4),3
(10) |z=2ξ1 = 0 except for a

point 2ξ1 = τ
2 − ξ2− ξ3. Since the residue of Z

O(4),3
(01) |z=2ξ1 at 2ξ1 = τ

2 − ξ2− ξ3 is zero,
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Z
O(4),3
(01) |z=2ξ1 is continuous at this point. So, we finally have

Z
O(4),3
(01) |z=2ξ1 = 0 (E.204)

for all 2ξ1. This result shows that Q(z) has no pole at z = 2ξ1.

We checked that Q has no pole. Hence Q is a doubly periodic entire function of z and

it is independent of z by the theorem. Then we can easily evaluate

Q(z) = lim
z→0

Q(z) = 1 (E.205)

which means Z
O(4),3
(01) = ZM,3.

E.7.4 Z
O(4),3
(11) = ZM,3

Consider Q(z) ≡ Z
O(4),3
(11) /ZM,3 which is a doubly periodic function under z → z + 1, z →

z + τ . Again, we check that Q(z) has no pole. There are potential poles at z = −ξα +
a+bτ

2 , a+bτ
2 , 1+τ

4 + a+bτ
2 , ξα + ξβ , 2ξα for α 6= β, a, b = 0, 1. Since Q(z) is symmetric under

ξα ↔ ξβ , we only need to check for z = −ξ1 + a+bτ
2 , a+bτ

2 , 1+τ
4 + a+bτ

2 , ξ1 + ξ2, 2ξ1.

1. z = −ξ1 + a+bτ
2

The divergence at this point comes from Z
O(4),3
(11) and ZM,3 is nonzero at this point.

So, it’s sufficient to check that the residue of Z
O(4),3
(11) at this point iz zero to show

Q(z) has no pole. We checked

lim
z→−ξ1+a+bτ

2

θi(ξ1 + z)Z
O(4),3
(11) = 0 (E.206)

for (a, b, i) = (0, 0, 1), (1, 0, 2), (0, 1, 4), (1, 1, 3). So the residue of Z
O(4),3
(11) at z =

−ξ1 + a+bτ
2 is zero for a, b = 0, 1 which means Q(z) has no pole at z = −ξ1 + a+bτ

2 .

2. z = a+bτ
2

By the same reason, it’s sufficient to check that the residue of ZM,3
(11) at this point is

zero to show Q(z) has no pole. We checked

lim
z→a+bτ

2

θ1(2z)Z
O(4),3
(11) = 0 (E.207)

for a, b,= 0, 1. So the residue of Z
O(4),3
(11) at z = a+bτ

2 is zero which means Q(z) has

no pole at z = a+bτ
2 .

3. z = 1+τ
4 + a+bτ

2

By the same reason, it’s sufficient to check that the residue of Z
O(4),3
(11) at this point is

zero to show Q(z) has no pole. We checked

lim
z→ 1+τ

4
+a+bτ

2

θ3(2z)Z
O(4),3
(11) = 0. (E.208)

Thus the residue of Z
O(4),3
(11) at z = 1+τ

4 + a+bτ
2 is zero for a, b = 0, 1 which means Q(z)

has no pole at z = 1+τ
4 + a+bτ

2 .
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4. z = ξ1 + ξ2

The divergence at this point comes from 1
ZM,3

and the order of divergence of it is
1

z−ξ1−ξ2 so that we only need to check that Z
O(4),3
(11) |z=ξ1+ξ2 = 0 to show Q(z) has

no pole.

Z
O(4),3
(11) |z=ξ1+ξ2 =

θ1(2ξ3−z)θ1(2ξ3+z)

2θ1(2ξ3)θ1(2ξ3+2z)
− θ1(z)θ3(z)

4θ1(2z)θ3(2z)

(
θ1(ξ3−2z)θ3(ξ3−z)
θ1(ξ3+z)θ3(ξ3)

+
θ2(ξ3−2z)θ4(ξ3−z)
θ2(ξ3+z)θ4(ξ3)

+
θ3(ξ3−2z)θ1(ξ3−z)
θ3(ξ3+z)θ1(ξ3)

+
θ4(ξ3−2z)θ2(ξ3−z)
θ4(ξ3+z)θ2(ξ3)

)
=
θ1(2ξ3−z)θ1(2ξ3+z)

2θ1(2ξ3)θ1(2ξ3+2z)
− θ1(z)θ3(z)

4θ1(2z)θ3(2z)
×

2θ1(ξ3− z
2
)θ2(ξ3− z

2
)θ3(ξ3− z

2
)θ4(ξ3− z

2
)θ1(2ξ3+z)θ2(z)θ4(z)θ3(2z)

θ1(ξ3+z)θ2(ξ3+z)θ3(ξ3+z)θ4(ξ3+z)θ1(ξ3)θ2(ξ3)θ3(ξ3)θ4(ξ3)

=
θ1(2ξ3−z)θ1(2ξ3+z)

2θ1(2ξ3)θ1(2ξ3+2z)
− θ1(z) · · ·θ4(z)θ1(2ξ3+z)θ1(ξ3− z

2
) · · ·θ4(ξ3− z

2
)

2θ1(2z)θ1(ξ3+z) · · ·θ4(ξ3+z)θ1(ξ3) · · ·θ4(ξ3)

=
θ1(2ξ3−z)θ1(2ξ3+z)

2θ1(2ξ3)θ1(2ξ3+2z)
− θ1(2ξ3+z)θ1(2ξ3−z)

2θ1(2ξ3+2z)θ1(2ξ3)

= 0. (E.209)

This result shows that Q(z) has no pole at z = ξ1 + ξ2.

5. z = 2ξ1

The divergence at this point comes from 1
ZM,3

and the order of divergence of it is
1

z−2ξ1
so that we only need to check that Z

O(4),3
(11) |z=2ξ1 = 0 to show Q(z) has no pole.

Z
O(4),3
(11) |z=2ξ1 =

1

4

θ1(2ξ2−2ξ1)

θ1(2ξ2)

θ3
θ3(2ξ1)

θ1(ξ3−ξ2−2ξ1)θ1(ξ2+ξ3−2ξ1)

θ1(ξ3−ξ2)θ1(ξ2+ξ3)
×(

− θ1(ξ2)θ3(ξ2)θ1(ξ3−2ξ1)θ3(ξ3−2ξ1)

θ1(ξ2+2ξ1)θ3(ξ2+2ξ1)θ1(ξ3)θ3(ξ3)
+
θ2(ξ2)θ4(ξ2)θ2(ξ3−2ξ1)θ4(ξ3−2ξ1)

θ2(ξ2+2ξ1)θ4(ξ2+2ξ1)θ2(ξ3)θ4(ξ3)

)
+(ξ2↔ ξ3)

− 1

4

θ1(2ξ1)θ3(2ξ1)

θ1(4ξ1)θ3(4ξ1)

(
−

3∏
α=2

θ1(ξα−4ξ1)θ3(ξα−2ξ1)

θ1(ξα+2ξ1)θ3(ξα)
+

3∏
α=2

θ2(ξα−4ξ1)θ4(ξα−2ξ1)

θ2(ξα+2ξ1)θ4(ξα)

−
3∏

α=2

θ3(ξα−4ξ1)θ1(ξα−2ξ1)

θ1(ξα+2ξ1)θ1(ξα)
+

3∏
α=2

θ4(ξα−4ξ1)θ2(ξα−2ξ1)

θ4(ξα+2ξ1)θ2(ξα)

)
. (E.210)

We define a function of 2ξ1 that is doubly periodic by multiplying Z
O(4),3
(11) |z=2ξ1 by

appropriate factor as

P(11)(2ξ1) ≡ ZO(4),3
(11) |z=2ξ1 ×

θ3(ξ2+ξ3+2ξ1)

θ1(2ξ1−ξ2−ξ3)θ1(2ξ1−2ξ2)θ1(2ξ1−2ξ3)
. (E.211)

We will show P(11) = 0 by checking that it has no pole. The potential pole points

are 2ξ1 = ξ2 + ξ3, 2ξα,−ξα + a+bτ
2 , a+bτ

2 , 1+τ
4 + a+bτ

2 for α = 2, 3 and a, b = 0, 1 and
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only α = 2 will be checked since P(11) is symmetric under ξ2 ↔ ξ3. We checked

lim
2ξ1→ξ2+ξ3

θ1(2ξ1−ξ2−ξ3)P(11) = 0 (E.212)

lim
2ξ1→2ξ2

θ1(2ξ1−2ξ2)P(11) = 0, (E.213)

where we used the result of eq. (E.209),

lim
2ξ1→−ξ2+a+bτ

2

θi(2ξ1+ξ2)P(11) = 0 (E.214)

lim
2ξ1→a+bτ

2

θ1(4ξ1)P(11) = 0 (E.215)

lim
2ξ1→ 1+τ

4
+a+bτ

2

θ3(4ξ1)P(11) = 0 (E.216)

for (a, b, i) = (0, 0, 1), (1, 0, 2), (0, 1, 4), (1, 1, 3) and a, b = 0, 1. Those are basically the

same calculations that we did from eq. (E.206) to eq. (E.208). So, we proved P(11) is

a doubly periodic entire function of 2ξ1.

P(11)(2ξ1) = lim
2ξ1→0

P(11)(2ξ1) = 0. (E.217)

Multiplying θ1(2ξ1−ξ2−ξ3)θ1(2ξ1−2ξ2)θ1(2ξ1−2ξ3)
θ3(2ξ1+ξ2+ξ3) , we have Z

O(4),3
(11) |z=2ξ1 = 0 except for a

point 2ξ1 = 1+τ
2 − ξ2 − ξ3. Since the residue of Z

O(4),3
(11) |z=2ξ1 at 2ξ1 = 1+τ

2 − ξ2 − ξ3

is zero, Z
O(4),3
(11) |z=2ξ1 is continuous at this point. So, we finally have

Z
O(4),3
(11) |z=2ξ1 = 0 (E.218)

for all 2ξ1. This result shows that Q(z) has no pole at z = 2ξ1.

We checked that Q has no pole. Hence Q is a doubly periodic entire function of z and

it is independent of z by the theorem. Then we can easily evaluate

Q(z) = lim
z→0

Q(z) = 1 (E.219)

which means Z
O(4),3
(11) = ZM,3.

Thus we proved analytically

Z
O(4),3
(00) = Z

O(4),3
(10) = Z

O(4),3
(01) = Z

O(4),3
(11) = ZM,3 (E.220)

so that we have

ZA,SO(4),3 = Z
O(4),3
(00) = ZM,3 (E.221)

ZA,O+(4),3 =
1

2

(
Z
O(4),3
(00) + Z

O(4),3
(10) + Z

O(4),3
(01) + Z

O(4),3
(11)

)
= 2ZM,3 (E.222)

ZA,O−(4),3 =
1

2

(
Z
O(4),3
(00) − ZO(4),3

(10) − ZO(4),3
(01) − ZO(4),3

(11)

)
= −ZM,3. (E.223)
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