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1 Introduction

Based on theory to data comparisons produced over the course of the last decades, there is

now a strong body of evidence that the dynamics of the quark-gluon plasma (QGP) created

in ultrarelativistic heavy-ion collisions (URHICs) is well described by relativistic dissipative

hydrodynamics [1–5]. Since the phenomenologically extracted values of the shear viscosity

to entropy density ratio are finite, this implies that at early times after the nuclear pass

through (0.01 − 0.1 . τ . 1 fm/c), the QGP possesses large non-equilibrium corrections,

e.g. large pressure anisotropy in the local rest frame. Because the system experiences large

deviations from local thermal equilibrium, one might expect dissipative hydrodynamics

approaches to fail at early times. In practice, however, one finds that dissipative hydro-

dynamics describes the evolution of the components of the energy-momentum tensor quite

well after a rather short time scale τhydro ∼ 0.5 − 1 fm/c in the center of the overlap re-

gion for a central collision. Since dissipative hydrodynamics frameworks perform well after

τ ∼ τhydro, the system is said to hydrodynamize at this time scale [6]. The time scale for

hydrodynamization has been extracted by comparing numerical solutions of the underlying

microscopic dynamical equations to dissipative hydrodynamics evolution in both the weak

and strong coupling limits [6–10]. From these studies one finds that τhydro ∼ 2/T . At the

highest LHC energies and assuming η/s = 0.2, this translates into τhydro ∼ 0.5 fm/c when

considering the center of the fireball created in a zero impact parameter collision.
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The fact that the system is quickly driven towards dissipative hydrodynamical evolu-

tion can be understood using the concept of the hydrodynamical attractor [11]. In 0+1d

conformal viscous hydrodynamics, one can reduce the two coupled equations for the energy

density and the shear pressure correction to a single ordinary differential equation which,

subject to the correct boundary conditions, provides a universal “attractor” solution for

the scaled shear correction π̄ = πηη/ε as a function of the scaled time w̄ = τ/τeq, for exam-

ple. If one solves the hydrodynamic equations with different initial conditions and plots

the results versus w̄, one finds that the solutions with different initial conditions converge

to the universal attractor solution on a very short time scale (in the sense of small w̄). This

observation is not restricted to second-order viscous hydrodynamics and has been shown to

hold in numerical solutions to Einstein’s equations obtained in the strong coupling limit of

N = 4 supersymmetric Yang-Mills in the large N limit [7–9], QCD effective kinetic theory

simulations [8, 9, 12], third-order viscous hydrodynamics [13], anisotropic hydrodynam-

ics [10], and exact solutions to the Boltzmann equation in relaxation time approximation

(RTA) subject to both Bjorken and Gubser flows [9, 10, 14–18].

Recently, using the exact solution of the RTA Boltzmann equation subject to Bjorken

flow, it was demonstrated that the idea of the non-equilibrium attractor can be extended

beyond the low-order moments of the one-particle distribution function typically considered

in hydrodynamic approaches [17]. In ref. [17] it was demonstrated that the full one-particle

distribution exhibits attractor-like behavior and that higher moments, Mnm of the one-

particle distribution function converge more quickly to their respective attractors, with

the exception being moments with m = 0, which are more sensitive to the squeezed free-

streaming part of the exact solution. For moments with large m and n, ref. [17] showed

that there is a parametrically large separation between the scaled time at which solutions

converge to the non-equilibrium attractor w̄c and the time at which the moment approaches

to within 10% of its equilibrium value w̄therm. Finally, In ref. [17] comparisons were made

between the exact attractor moments and various dissipative hydrodynamics frameworks

including relativistic Navier-Stokes (NS) [19–21], second order viscous hydrodynamics [22–

47], third-order viscous hydrodynamics [48, 49], and anisotropic hydrodynamics [5, 50–72].

It was found that in all cases anisotropic hydrodynamics provided the best approximation

to the exact attractor irregardless of the moment considered.

Importantly, it was shown that, when m or n are large, both the Navier-Stokes and

second order viscous hydrodynamics results for the attractor failed to describe the exact

solution. The fact that a subset of the exact moment solutions converge to something

that is not well-described by traditional viscous hydrodynamics treatments means that

we must refine our terminology a bit: instead of calling the convergence to the attractor

“hydrodynamization”, we should instead call it pseudo-thermalization to emphasize that

the attractor has a non-hydrodynamic nature reflected in the behavior of higher moments

of the one-particle distribution function. In addition, we can associate the loss of memory

of the precise initial conditions used with the pseudo-thermalization of the system. This

is similar to the loss of memory which occurs if a system fully thermalizes, but with the

universal state which emerges after pseudo-thermalization being far from equilibrium.

In this paper, we extend ref. [17] to study the effect of imposing number conserva-

tion on the dynamics and underlying non-equilibrium attractor. In RTA, one can enforce
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number conservation by introducing a fugacity (chemical potential) in both the dynamical

and equilibrium distribution functions [73–76]. Requiring both energy and number con-

servation, one can derive two coupled integral equations which can be solved iteratively in

order to obtain the effective temperature T and fugacity Γ as a function of proper-time.

We demonstrate that for classical statistics, the integral equations can be written solely in

terms of the rescaled variables T̂ = T/T0 and Γ̂ = Γ/Γ0 and the initial momentum space

anisotropy ξ0. As a result, one can construct the exact solution from any initial temper-

ature and fugacity from a trivial scaling of the solution obtained for T̂ and Γ̂. We then

determine the attractor solution to the coupled integral equations numerically by finding

solutions which obey limτ→0 PL/PT → 0. We find that, in general, the resulting attractor

solutions do not reach chemical equilibrium at late times, i.e. limτ→∞ Γ(τ) 6= 1. Despite

the existence of a finite chemical potential at late times, we still observe attractor behavior

in all moments and the full distribution function itself.

The structure of this paper is as follows. In section 2, we briefly review how to rewrite

the 0+1d RTA Boltzmann equation using boost invariant variables. In section 3 we present

the integral equations obeyed by the one-particle distribution function and all moments

of the one-particle distribution function. In section 4, we present our numerical results

and discussion of the results. In section 5, we present our conclusions and an outlook for

the future.

2 Setup

Our starting point is the Boltzmann equation for massless particles

pµ∂µf(x, p) = C[f(x, p)] , (2.1)

in RTA,

C[f ] = −p · u
τeq

(f − feq) . (2.2)

The relaxation time τeq above can depend on proper time, however, since the system is

conformal (massless) it must be proportional to the inverse effective temperature. The

equilibrium distribution function feq may be taken to be a Bose-Einstein, Fermi-Dirac, or

Boltzmann distribution. Here we will assume that feq is given by a Boltzmann distribution

feq(τ, p) = Γ(τ) exp

(
−p · u(τ)

T (τ)

)
. (2.3)

where Γ(τ) = exp(−µeff(τ)/T (τ)) is the effective fugacity with µeff(τ) and T (τ) being the

local effective chemical potential and temperature, respectively.

The effective temperature T and fugacity Γ will be obtained via matching conditions

which demand that the energy and number densities calculated from the dynamical dis-

tribution function f be equal to the energy and number densities determined from the

equilibrium distribution, feq. The quantity uµ represents the four-velocity of the local rest

frame of the matter which herein we assume to be given by the transversally homogenous

and boost invariant Bjoken flow (0+1d).

– 3 –



J
H
E
P
1
0
(
2
0
1
9
)
0
6
9

In equilibrium, for massless particles obeying classical statistics the particle density,

entropy density, energy density, and pressure are

neq =
ΓT 3

π2
, Seq =

4ΓT 3

π2
,

Eeq =
3ΓT 4

π2
, Peq =

ΓT 4

π2
. (2.4)

2.1 Boost-invariant variables

For one-dimensional boost-invariant expansion, all scalar functions of time and space de-

pend only on the longitudinal proper time τ ≡
√
t2 − z2. In addition, the hydrodynamic

flow uµ has the following form uµ =
(
t
τ , 0, 0,

z
τ

)
[77]. One can introduce a space-like vector

that is orthogonal in all frames and corresponds to the z-direction in the local rest frame

of the matter zµ =
(
z
τ , 0, 0,

t
τ

)
. The requirement of boost invariance implies that f(x, p)

can depend only on three variables: τ , w and ~pT [78–81]. The boost-invariant variable w

is defined by

w ≡ tpz − zE , (2.5)

where z is the spatial coordinate, not to be confused with the basis vector zµ. Using w

and ~pT one can define

v ≡ Et− pzz =
√
w2 +

(
m2 + ~p 2

T

)
τ2 . (2.6)

From (2.5) and (2.6) one can easily find the energy and the longitudinal momentum of a

particle

E = p0 =
vt+ wz

τ2
, pz =

wt+ vz

τ2
. (2.7)

The momentum integration measure in phase-space is

dP =
d4p

(2π)4
2πδ

(
p2 −m2

)
2θ(p0) =

dpz
(2π)3p0

d2pT =
dw d2pT
(2π)3v

. (2.8)

In the following we shall consider massless partons, m = 0.

2.2 Boost-invariant form of the kinetic equation

Making use of the boost-invariant variables introduced in the previous subsection, one finds

pµ∂µf = v
τ
∂f
∂τ , p · u = v

τ , and p · z = −w
τ . With this, eq. (2.1) becomes simply [80, 81]

∂f(τ, w, pT )

∂τ
=
feq(τ, w, pT )− f(τ, w, pT )

τeq(τ)
, (2.9)

with the finite chemical potential equilibrium distribution function (2.3) given by

feq(τ, w, pT ) = Γ(τ) exp

−
√
w2 + p2

T τ
2

T (τ)τ

 . (2.10)

Note also that f(τ, w, ~pT ) is an even function of w and depends only on the magnitude of

the transverse momentum ~pT .
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3 Exact solution for the distribution function

The formal solution of the kinetic equation (2.9) is [80, 81]

f(τ, w, pT ) = D(τ, τ0)f0(w, pT ) +

∫ τ

τ0

dτ ′

τeq(τ ′)
D(τ, τ ′) feq(τ ′, w, pT ) , (3.1)

where we have introduced the damping function

D(τ2, τ1) = exp

[
−
∫ τ2

τ1

dτ ′′

τeq(τ ′′)

]
. (3.2)

For τ = τ0 the distribution function f reduces to the initial distribution function, f0. For

the conformal RTA solution we use the relation

τeq(τ) =
5η̄

T (τ)
, (3.3)

where η̄ ≡ η/S is the ratio of the shear viscosity η to entropy density S.

3.1 Initial distribution

Herein, for the initial condition we take the Romatschke-Strickland form [82] with a classical

Boltzmann distribution as the underlying isotropic distribution

f0(w, pT ) = γ0 exp

−
√

(1 + ξ0)w2 + p2
T τ

2
0

Λ0τ0

 = γ0 exp

−
√
w2α−2

0 + p2
T τ

2
0

Λ0τ0

 , (3.4)

where, in the second equality, we have introduced the elliptical anisotropy parameter

α ≡ 1/
√

1 + ξ for convenience. The distribution function above reduces to an isotropic

Boltzmann distribution if the anisotropy parameter α0 = α(τ0) = 1. If α0 = 1, the trans-

verse momentum scale Λ0 is equal to the system’s initial temperature T0 and the initial

microscopic fugacity γ0 is equal to the initial effective fugacity Γ0. In general, one must

use Landau matching of the initial energy and number densities to fix Λ0 and γ0 in terms

of T0 and Γ0. The resulting “matching conditions” are [76]

T =
H(α)

2α
Λ , (3.5)

Γ =
8γα4

H3(α)
, (3.6)

where H(α) ≡ H20(α). The special functions Hnm needed are

Hnm(y) ≡ 2y2m+1

2m+ 1
2F1

(
1

2
+m,

1− n
2

;
3

2
+m; 1− y2

)
. (3.7)

3.2 General moments of the distribution function

In order to solve eq. (3.1), one can take a general moment of both sides using1

Mnm[f ] ≡
∫
dP (p · u)n (p · z)2m f(τ, w, pT ) . (3.8)

1For the boost-invariant case considered herein the exact distribution function is symmetric under p·z →
−p · z. As a result, all moments with odd powers of p · z are zero. We, therefore, only consider moments

with even powers of p · z.
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For n = 2 and m = 0, one obtains the energy density

E =M20 =

∫
dP (p · u)2 f(τ, w, pT ) = T 00

LRF , (3.9)

and, for n = 1 and m = 0, one obtains the number density

n =M10 =

∫
dP (p · u) f(τ, w, pT ) , (3.10)

Using the mass shell constraint, one can always rewrite the transverse momentum squared

in terms of the energy and longitudinal momentum, so that any moment containing p2`
T

can be written as a linear combination of the Mnm moments above. As a result, in the

general case, we need to compute

Mnm[f ] =
1

(2π)3 τn+2m

∫
dw d2pT v

n−1w2m f(τ, w, pT ) (3.11)

3.3 Integral equation obeyed by a general moment

Taking a general moment of eq. (3.1) one obtains

Mnm(τ) = D(τ, τ0)Mnm
0 (τ) +

∫ τ

τ0

dτ ′

τeq(τ ′)
D(τ, τ ′)Mnm

eq (τ, τ ′) , (3.12)

where

Mnm
0 (τ) =

γ0 (n+ 2m+ 1)! Λn+2m+2
0

(2π)2
Hnm

(α0τ0

τ

)
, (3.13)

Mnm
eq (τ, τ ′) =

Γ(τ ′) (n+ 2m+ 1)!Tn+2m+2(τ ′)

(2π)2
Hnm

(
τ ′

τ

)
. (3.14)

One can rewrite the first term, which involves the initial values of the microscopic

parameters γ0 and Λ0, in terms of the initial effective fugacity Γ0 and temperature T0

using eqs. (3.5) and (3.6). Putting the pieces together, our final result for the general

moment equation is

Mnm(τ) =
(n+ 2m+ 1)!

(2π)2

[
D(τ, τ0)αn+2m−2

0 Tn+2m+2
0 Γ0

Hnm
(
α0τ0
τ

)
[H(α0)/2]n+2m−1

+

∫ τ

τ0

dτ ′

τeq(τ ′)
D(τ, τ ′) Γ(τ ′)Tn+2m+2(τ ′)Hnm

(
τ ′

τ

)]
. (3.15)

Final equations. From eq. (3.15) we can obtain two integral equations by evaluating

the n = 1 and m = 0 and n = 2 and m = 0 moments which map to the number density

and energy density, respectively, with the results being

Γ(τ)T 4(τ) = D(τ, τ0)Γ0T
4
0

H
(
α0τ0
τ

)
H(α0)

+

∫ τ

τ0

dτ ′

2τeq(τ ′)
D(τ, τ ′) Γ(τ ′)T 4(τ ′)H

(
τ ′

τ

)
, (3.16)

and

Γ(τ)T 3(τ) =
1

τ

[
D(τ, τ0)Γ0T

3
0 τ0 +

∫ τ

τ0

dτ ′

τeq(τ ′)
D(τ, τ ′) Γ(τ ′)T 3(τ ′)τ ′

]
, (3.17)
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where we used the matching conditions E = Eeq(T,Γ) and n = neq(T,Γ) on the left-

hand-side and the fact that H10(α) = 2α to simplify the second integral equation. Note,

importantly, that one can divide the left- and right-hand sides of eqs. (3.16) and (3.17) by

the initial fugacity Γ0 and rewrite them entirely in terms of Γ̂ ≡ Γ/Γ0. As a result, one

can solve these coupled integral equations with a given value of Γ0, e.g. Γ0 = 1, and then

obtain solutions with different initial fugacity by scaling the result by the initial fugacity.2

4 Results

For our results, we solve eqs. (3.16) and (3.17) numerically to obtain T (τ) and Γ(τ) given

a set of initial values at τ0: T0, Γ0, and α0. For this purpose we wrote a CUDA-based

GPU code which allows one to efficiently solve eqs. (3.16) and (3.17) on very large proper-

time lattices using a logarithmically-spaced grid. For all results presented herein we used

a temporal lattice size of 4096 points and iterated the coupled integral equations until the

effective temperature and fugacity converged to sixteen digits at all proper times. The

code used to produce our results is included in the arXiv bundle for this paper and is also

publicly available for download using the link provided in ref. [83]. Once the solutions for

the effective temperature and fugacity are obtained, one can use eq. (3.15) to obtain the

proper-time dependence of any moment required. One can also use eq. (3.1) to reconstruct

the full one-particle distribution in a grid in momentum-space.

We will present the resulting exact solutions for the scaled moments

Mnm
(τ) ≡ M

nm(τ)

Mnm
eq (τ)

, (4.1)

where

Mnm
eq (τ) =Mnm

eq (τ, τ) =
(n+ 2m+ 1)! Γ(τ)Tn+2m+2(τ)

2π2(2m+ 1)
, (4.2)

are the moments associated with an equilibrium Boltzmann distribution function. The

scaled moments approach one at late times by construction and the rate at which they

approach one provides a quantitative measure of how quickly the system thermalizes. Note

that higher moments are sensitive to higher average momenta where the hydrodynamics

assumption of small gradients could fail.

4.1 Attractor moments

In figure 1, we present sixteen panels containing our numerical results for the scaled mo-

ments Mnm
(τ) with m,n ∈ {0, 1, 2, 3}. In all panels, the horizontal axis of figure 1 is the

scaled proper-time w ≡ τ/τeq = τT/5η̄, the black line is the exact solution for the attractor,

and the various dashed/dotted curves are exact solutions with different values of α0. To ob-

tain the attractor solution, we solved the coupled integral equations (3.16) and (3.17) with

τ0 = 10−3 fm/c, T0 = 1 GeV, α0 = 2.5× 10−2, and Γ0 = 1. To obtain the specific solutions

2A similar scaling can be done with T0, however, in addition to scaling eqs. (3.16) and (3.17) by T 4
0 and

T 3
0 , respectively, one must also make a change of variables in the proper-time integrations by introducing

τ̂ ≡ τT0.

– 7 –
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Figure 1. The scaled moments Mnm
= Mnm(τ)/Mnm

eq (τ) obtained from the exact attractor

solution (solid black line) are compared to a set of exact solutions (various colored dotted and

dashed lines) initialized with varying α0. The horizontal axis is w ≡ τ/τeq = τT/5η̄. Panels show

a grid in n and m.

(dashed/dotted lines), we solved the same coupled integral equations (3.16) and (3.17) with

τ0 = 10−1 fm/c, T0 = 1 GeV, α0 ∈ 0.1 . . . 1.5, and Γ0 = 1. The range of initial anisotropies

considered covers both very oblate and very prolate initial momentum-space anisotropy.

As can be seen from this figure, for generic initial conditions, all moments with m > 0

visually converge to their respective attractors after a short rescaled time w̄ ∼ 2. ForM 10

(scaled number density) and M 20
(scaled energy density), we see that the constraints are

properly enforced, resulting in these moments being equal to their equilibrium values at

all proper times. For moments with m = 0, we see a somewhat slower approach to the

attractor. This is similar to what was found when not enforcing number conservation [17],

however, herein we see smaller deviations from equilibrium. Despite these smaller devia-

tions from equilibrium compared to the prior studies, moments with m = 0 still converge

more slowly than other moments. The slow convergence of moments with m = 0 is related

to the fact that they contain no powers of pz in their integrands and are, therefore, more

sensitive to the free streaming term (first term) in eq. (3.1). Free streaming results in

momentum modes from the initial distribution being squeezed to smaller and smaller |pz|
as a function of proper time (see ref. [17] for details).

– 8 –
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Figure 2. Three panels showing (left) the scaled effective temperature, (middle) the scaled fu-

gacity, and (right) the pressure anisotropy as a function of time for “attractor” initial conditions

τ0 = 10−3 fm/c, T0 = 1 GeV, α0 = 2.5× 10−2, and Γ0 = 1.

Note, however, that although all scaled moments approach one in the large w̄ limit, the

system generically possesses a finite fugacity at late times.3 To demonstrate this, we plot

the effective temperature, effective fugacity, and the pressure anisotropy associated with the

attractor in figure 2. As can be seen from this figure, the scaled temperature evolution (left

panel) obtained using attractor initial conditions shows characteristics of early time free

streaming, for which the temperature scale (average momentum scale) is constant [51, 84–

86], followed by a power law decrease at late time indicative of hydrodynamic evolution.

The attractor’s scaled effective fugacity (middle panel) decreases as a power law at early

times and eventually saturates at late times. Finally, we see that attractor’s pressure

anisotropy is large (highly oblate) at early times with PL � PT and then slowly relaxes

towards isotropy at late times.

4.2 Pseudo-thermalization time

In order to quantitatively assess the convergence of generic exact solutions to the attractor

for each moment, one can compute the scaled time at which all solutions collapse to the

attractor by requiring that max |Mnm
i (wc) −M

nm
attractor(wc)| < δc for i in the entire set

of trial runs. In ref. [17], δc = 10−6 was chosen in order to require that the solutions

were extremely well converged to the attractor. Herein, we will also consider the weaker

convergence criteria of δc = 10−2, which should correspond more closely to the time that

one extracts when visually checking for convergence in figure 1.

In figures 3 and 4 we plot the convergence or pseudo-thermalization time w̄c with

δc = 10−6 and δc = 10−2, respectively. Figure 3 uses the strong convergence criteria of

δc = 10−6 which was the condition used in ref. [17]. The two top panels show w̄c as a

function of m and n and the bottom panel shows the case m = 0 as a function of n. As can

be seen from the top left panel, for m ≥ 2, w̄c is a decreasing function of m and n. From

the top right panel we see that for m = 1 the pseudo-thermalization time increases at large

n, but moments with m > 1 have a pseudo-thermalization which decreases as n increases.

Turning to the bottom panel (m = 0), we see that the n = 1 and n = 2 moments thermalize

“instantly” since these are enforced by conservation laws4 and we see a strong increase in w̄c

3One can adjust the late-time fugacity by changing the initial fugacity Γ0.
4In this case we set w̄c to be the smallest scaled time in the temporal grid.
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Figure 3. The pseudo-thermalization time wc for n,m ∈ {0, · · · , 8} and δc = 10−6. The top left

panel shows wc as a function of m with the lines corresponding to different values of n. The top

right panel shows wc as a function of n with the lines corresponding to different values of m. The

bottom panel shows wc as a function of n for the case m = 0.

as n increases. In the range of n and m shown, the maximum pseudo-thermalization time is

w̄max
c ' 14. This can be compared with the maximum pseudo-thermalization time obtained

without enforcing number conservation (see figure 8 in ref. [17]), which was w̄max
c ' 28.

Turning to figure 4 we see the same three panels but now for the weaker convergence

criterium of δc = 0.01. As can be seen from these figures, one obtains a shorter pseudo-

thermalization time with the weaker convergence criteria, as expected. In addition, the

scaled times extracted for moments with m 6= 0 are in the range of w̄c ∼ 1 − 3. For a

RHIC energy heavy-ion collision with a typical initial central temperature of 500 MeV at

τ0 = 0.1 fm/c this translates into a physical pseudo-thermalization time of τc ∼ 0.5− 3 fm/c

with the precise value depending on the mode considered. We emphasize that the higher n

and m moments converge more quickly and have pseudo-thermalization times on the low

side of this window, while the lower n andmmoments converge more slowly to the attractor.

4.3 Comparison with Navier-Stokes, vHydro, and aHydro

Finally, we compare the exact results for the scaled attractors moments with results ob-

tained from anisotropic hydrodynamics (aHydro) and second-order viscous hydrodynamics

(vHydro). For vHydro, we use the complete second-order viscous hydrodynamics equa-

tions of Denicol, Niemi, Molnar, and Rischke (DNMR) [40, 87]. For aHydro, we use the

moments method introduced originally by Florkowski and Tinti [57]. For both vHydro

– 10 –
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Figure 4. The pseudo-thermalization time wc for n,m ∈ {0, · · · , 8} and δc = 10−2. Panels are the

same as in figure 3.

and aHydro, the attractor is determined from the solution of a one-dimensional ordinary

differential equation subject to the appropriate initial condition. For details concerning

the determination of the attractor for both aHydro and vHydro, we refer to the reader to

ref. [10].

For vHydro, one extracts π̄ = π/ε and, using this, one can reconstruct the solution for

any moment using [17]

Mnm
vHydro(τ) = 1− 3m(n+ 2m+ 2)(n+ 2m+ 3)

4(2m+ 3)
π̄ . (4.3)

One can obtain the Navier-Stokes (NS) result by taking π̄ = 16η̄/(9τT ) in (4.3).

For aHydro, one extracts the anisotropy parameter α(τ) associated with the attractor

solution. Once this is determined one can use eq. (4.4) of ref. [17], modified to take into

account finite fugacity, to obtain a compact expression for any moment

Mnm
aHydro(τ) = (2m+ 1)(2α)n+2m−2 Hnm(α)

[H(α)]n+2m−1
. (4.4)

The aHydro dynamical equations taking into account number conservation can be found

in ref. [76]. In figure 5, I compare the exact attractor (black solid lines) with the aHydro

attractor (red dashed lines), DNMR attractor (blue long dashed lines), and the NS limit

(green dot-dashed lines) for each moment. In all cases shown, aHydro provides a better

approximation to the exact moments than the vHydro or NS frameworks. This is similar

– 11 –
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Figure 5. Scaled moments Mnm
obtained from the exact attractor solution (solid black line)

compared with the aHydro attractor (red dashed lines), DNMR attractor (blue long dashed lines),

and the Navier-Stokes limit for each moment (green dot-dashed lines). Horizontal axis is w̄ ≡ τT/5η̄.

Panels show a grid in n and m.

to what was found in the case where number conservation was not imposed [17]. Finally,

we note that, for aHydro, the moment with the best agreement is the n = 1 and m = 1

moment, for which the two results are virtually indistinguishable. This can be contrasted

with ref. [17] which found that it was the n = 0 and m = 1 moment which was best

described when number conservation was not imposed. It is not clear to us why this would

be the case.

5 Conclusions

In this paper we extended previous studies of the conformal 0+1d kinetic non-equilibrium

attractor in relaxation time approximation by imposing number conservation through the

introduction of a dynamical fugacity (chemical potential). We derived two coupled integral

equations for the effective temperature and fugacity which were then solved numerically

to obtain the exact solution. We demonstrated that the resulting solutions exhibited con-

vergence to a unique non-equilibrium attractor even though the system is out of chemical

equilibrium generically (limτ→∞ Γ(τ) 6= 1). We found that, compared to the case where

number conservation was not imposed, the moments converge to their respective attractors
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more quickly. Overall, however, we found that the behavior in the two cases is qualita-

tively very similar, providing further evidence that the non-equilibrium attractor is ubiq-

uitous. We also compared the resulting attractor moments with predictions of different

hydrodynamic frameworks. We found that anisotropic hydrodynamics provided the best

approximation to the exact results for all moments.

Looking forward, herein we used a RTA collisional kernel and enforced number conser-

vation by introducing a dynamical fugacity. It would be interesting to look at leading-order

scalar field theory, in which case one only has 2↔ 2 collisions and hence a theory which au-

tomatically conserves number. Such comparisons have been made in the context of aHydro

in ref. [76] where the authors studied both number-conserving RTA and scalar collisional

kernels. Therein, it was shown that one could numerically extract the aHydro attractor for

both RTA and scalar kernels, with the two being qualitatively similar. It would be very

interesting to consider the 2 ↔ 2 scalar kinetic theory using Monte-Carlo-based transport

in order to compare with the exact results obtained herein using number-conserving RTA.

It would also be interesting to make comparisons with the attractor extracted from the

effective kinetic theory framework of Kurkela et al., particularly in the case that baryon

number conservation is at play [8, 12, 88, 89].
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