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1 Introduction

The AdS/CFT correspondence is a duality between string theories in d-dimensional Anti-

de-Sitter space and Conformal Field Theories living in d − 1 dimensions [1, 2]. In special

cases, it is possible to investigate the AdS/CFT setup thanks to techniques based on

superymmetry, conformal field theory, and integrability. It is natural to ask whether the

better-understood AdS/CFT instances, which are often the most (super-)symmetric ones,

admit deformations that preserve their solvability. Here we consider the AdS3 superstring,

which is integrable [3, 4] and admits integrable deformations. AdS3 offers a particularly

good setting, providing more control than in other dimensional cases for two main reasons.

Firstly, string theories on AdS3 backgrounds are dual to two-dimensional CFTs which are
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often exactly solvable. Secondly, the background can be supported by a mixture of R-R and

NS-NS fluxes, offering a richer landscape than in the AdS5 case. Moreover, specific points

allow for particularly simple solutions which can be analysed either by integrability [5–11]

(for a review and further references see [12]) or by CFT (Wess-Zumino-Witten model)

techniques [13–15]. AdS3 string theories also naturally emerge when studying black-hole

configurations, such as those arising in the celebrated D1–D5 system (see e.g. [16] for a

review). Consequently, it is of interest to construct new, exactly solvable string backgrounds

as deformations of the AdS3 ones.

In this paper we will focus on one particular type of integrable deformation of the type

II Green-Schwarz superstring known in the literature as η-deformation or inhomogeneous

Yang-Baxter deformation [17, 18]. This generalises the η-deformations of the principal chi-

ral model [19, 20] and the symmetric space sigma model [21]. The shape of the deformation

is governed by an R-matrix solving the non-split modified classical Yang-Baxter equation

on the superisometry algebra of the undeformed background. We will restrict ourselves

to R-matrices of Drinfel’d Jimbo type [22–24], which are defined through their action on

a Cartan-Weyl basis of the superisometry algebra. More precisely, they annihilate the

Cartan elements and multiply by −i (respectively +i) the positive (respectively negative)

roots. Generically, the deformed backgrounds do not solve the supergravity equations of

motion [25, 26]. Rather, they satisfy a set of generalised supergravity equations of motion

that follow from imposing kappa-symmetry or equivalently scale invariance of the model,

but not its Weyl invariance [27, 28]. Progress has been made in trying to give a good string

theory interpretation to these generalised supergravity backgrounds but there are a number

of remaining issues [29–31]. An elegant formula for the target-space supergeometry of the

η-deformed model was derived in [32]. There it was shown that in order to obtain a super-

gravity background the R-matrix has to satisfy the so-called unimodularity condition: the

supertrace of the structure constants built out of the R-bracket should vanish. This was

not the case for the R-matrix chosen in [26]. However, superalgebras admit inequivalent

Dynkin diagrams, and supergravity backgrounds for the η-deformed AdS2 × S2 × T6 and

AdS5 × S5 superstrings were finally presented in [33].

This solved one of the main puzzles in the field of η-deformations, but a number remain,

including the behaviour in the maximal deformation limit and its link to the undeformed

mirror theory [34–36]. Under the deformation the superisometry algebra of the model gets

q-deformed [18, 21, 37], with parameter

q = e−κ/T , κ =
2η

1− η2
, (1.1)

where η is the strengh of the deformation and T is the string tension. A conjecture for

the (centrally extended) psuq(2|2) ⊕ psuq(2|2) invariant S-matrix, which gives a quantum

deformation of the AdS5 × S5 worldsheet S-matrix, has been given in [38]. This S-matrix

admits three interesting limits. First of all, sending κ → 0 gives the S-matrix of the

undeformed light-cone gauge fixed AdS5×S5 theory. But the q → 1 limit can also be reached

in another way, by first rescaling the tension T → κ2T and then sending the deformation

parameter to infinity. In this maximal deformation limit one gets the S-matrix of the mirror
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AdS5 × S5 theory. The q-deformed S-matrix thus interpolates between the S-matrices of

the undeformed theory and its mirror. An interesting feature of the q-deformed S-matrix is

that it is covariant under the mirror transformation: the mirror of the q-deformed S-matrix

with deformation parameters q is again the q-deformed S-matrix with deformation paramter

q′ [39]. This behaviour is referred to as mirror duality. Another interesting case is when

q is pure phase, which, in a particular scaling limit, gives the S-matrix of the Pohlmeyer

reduced theory [40–42]. It is an interesting and open question whether these latter two

limits are also realised at the level of the background, as well as in the light-cone gauge

fixed worldsheet S-matrix. For the Pohlmeyer limit, encouraging results in this direction

have been obtained [33]. However, neither the generalised supergravity background of [26]

nor the supergravity background of [33] reduce to the undeformed mirror theory in the

maximal deformation limit.

To shed more light on this, as yet, unresolved problem we will consider deformations

of the AdS3 × S3 × T4 superstring. The novelty in this case is that the superisometry

algebra has a group-product structure Ĝ×Ĝ and thus allows for a two-parameter integrable

deformation [43]. The latter generalises the bi-Yang-Baxter sigma model of [20, 44] to semi-

symmetric space sigma models. There are now two real deformation parameters ηL and

ηR controlling the strength of the deformation in the left and right Ĝ copy. The limiting

case ηL = ηR = η reduces to the usual one-parameter η-deformation. We extend the

results of [32] to the two-parameter deformation and write down an explicit formula for the

Ramond-Ramond (R-R) fluxes in this more general setting. We then apply these results to

the AdS3 × S3 × T4 superstring and present two supergravity backgrounds corresponding

to two different unimodular Drinfel’d Jimbo R-matrices associated to the fully fermionic

Dynkin diagram

⊗−⊗−⊗ ⊗−⊗−⊗ . (1.2)

The two backgrounds are similar to the ones constructed in [45], where the metric of

the two-parameter deformation of the AdS3 × S3 × T4 superstring was embedded into

type II supergravity in two different ways. The two supergravity backgrounds remain

distinct in the limiting ηL = ηR case. Studying their limits, we will observe that they

have different Pohlmeyer and maximal deformation limits. Interestingly, we find that one

of the background exhibits mirror duality, while the other does not. This may give new

insights into how to recover the mirror background in other cases and construct integrable

supergravity backgrounds for the η-deformed AdS5 × S5 superstring with explicit mirror

duality.

The outline of this paper is as follows. In section 2 we review the construction of

the two-parameter deformation, study its kappa-symmetry and present a closed formula

for the R-R fluxes. We then extract the supergravity backgrounds for the two-parameter

deformation of the AdS3 × S3 × T4 superstring in section 3 and explore their limits. In

particular we will show how mirror duality arises in this context. In section 4 the results are

also compared to backgrounds that are solutions to the generalised supergravity equations

of motion. Finally we end with some conclusions in section 5. Our conventions for gamma

matrices and generators are given in appendix A.
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2 Two-parameter deformation

In this section the two-parameter deformation [43] of the Metsaev-Tseytlin action for su-

percosets with isometry group of the form Ĝ × Ĝ [3] is reviewed. The kappa-symmetry

of the deformed model is studied, the supervielbein are identified and a formula for the

dilaton and R-R fluxes is written down. Examples of interest in the context of AdS string

backgrounds are Ĝ = PSU(1, 1|2) for strings moving in AdS3× S3×T4 and Ĝ = D(2, 1;α)

for strings moving in AdS3× S3× S3× S1, where the parameter α is related to the relative

radii of the two three-spheres.

2.1 The action, equations of motion and kappa-symmetry

Algebraic setting. We shall consider deformations of semi-symmetric space sigma mod-

els on supercosets of the type

Ĝ× Ĝ

F0
, (2.1)

where F0 is the bosonic diagonal subgroup of the product supergroup F̂ = Ĝ×Ĝ. We denote

by ĝ and f̂ = ĝ⊕ ĝ the Lie algebras corresponding to the supergroup Ĝ and F̂ respectively.

The basic Lie superalgebra f̂ admits a Z4 grading consistent with the (anti-)commutation

relations,

f̂ = f(0) + f(1) + f(2) + f(3) , [f(i), f(j)] ⊂ f(i+j mod 4), (2.2)

with the grade zero subalgebra f(0) being the Lie algebra of F0. The subspaces f(0) and f(2)

have even grading, while the subspaces f(1) and f(3) have odd grading. For elements in the

Lie algebra f̂ we use the standard block-diagonal matrix realisation X = diag(XL, XR) ∈ f̂

with XL, XR ∈ ĝ, and define the supertrace STr[X ] = STr[XL] + STr[XR]. Let us also

introduce the projectors P (i) onto the subspaces f(i), as well as PB and PF , which project

onto the even and odd parts of ĝ respectively. The Z4 grading is defined through

P (0)X = X (0) =
1

2

(
PB(XL +XR) 0

0 PB(XL +XR)

)
,

P (1)X = X (1) =
1

2

(
PF (XL + iXR) 0

0 −iPF (XL + iXR)

)
,

P (2)X = X (2) =
1

2

(
PB(XL −XR) 0

0 −PB(XL −XR)

)
,

P (3)X = X (3) =
1

2

(
PF (XL − iXR) 0

0 iPF (XL − iXR)

)
.

(2.3)

The generators TA, A = 1, . . . , dim f̂ of the superisometry algebra f̂ can then be split into

generators Jab of grade 0, Pa of grade 2, as well as supercharges Q1α and Q2α of grades 1

and 3 respectively. Let us also define

KAB = STr[TATB] , (2.4)
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as well as its inverse

KABK̂BC = δCA . (2.5)

Action. The action of the two-parameter deformed semi-symmetric space sigma model

for the group-valued field g ∈ F̂ depends on two real deformation parameters ηL and ηR
and reads

SηL,ηR [g] = −T
∫

d2σ Ξij
− STr[g−1∂ig d−O

−1
− g−1∂jg] . (2.6)

We assume that the fields are in the defining matrix representation. T is the overall coupling

constant playing the role of the effective string tension, d2σ = dτdσ and Ξij
± = (γij±εij)/2,

where γij is the Weyl invariant worldsheet metric with γττ < 0 and εij is the Levi-Civita

symbol with ετσ = 1. The operators d± are defined in terms of the Z4 projectors as

d± = P (2) ∓ η̄

2
(P (1) − P (3)) , η̄ =

√
(1− η2

L)(1− η2
R) , (2.7)

and

O± = 1± diag(κL, κR)Rgd± , κL =
2ηL
η̄

, κR =
2ηR
η̄

. (2.8)

The operator Rg = Ad−1
g RAdg acts on X ∈ f̂ as Rg(X ) = g−1R(gX g−1)g. The R-matrix

R governing the shape of the deformation is antisymmetric with respect to the supertrace

STr[R(X )Y] = − STr[XR(Y)] , X ,Y ∈ f̂ , (2.9)

and solves the non-split modified classical Yang-Baxter equation1

[R(X ),R(Y)} −R([R(X ),Y}+ [X ,R(Y)}) = [X ,Y} , X ,Y ∈ f̂ . (2.10)

It has been conjectured that the symmetry of this model is, at least at the classical

level, given by the asymmetrical q-deformation [43]

UqL(Ĝ)× UqR(Ĝ) , qL = e−κL/T , qR = e−κR/T . (2.11)

It reduces to the one-parameter η-deformation if ηL = ηR = η and to the undeformed

sigma model when the deformation parameters ηL = ηR = 0.

To write down the equations of motion and the kappa symmetry variation it will be

useful to define the deformation parameters

κ± =
1

2
(κL ± κR) (2.12)

as well as the auxiliary operator

R̃ ≡ diag(κL, κR)R = (κ+1 + κ−W )R , (2.13)

where we have introduced W = diag(1,−1). This new operator is still antisymmetric with

respect to the supertrace,

STr[R̃(X )Y] = − STr[XR̃(Y)] . (2.14)

1We use the mixed bracket notation. If the two elements in the bracket are of odd grading then the

bracket is the anti-commutator. Otherwise, it is the commutator.
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Furthermore, the fact that R satisfies the modified classical Yang-Baxter equation implies

a similar equality for R̃ but with the right hand side given by

C̃[X,Y } , C̃ = (κ2
+ + κ2

−)1 + 2κ+κ−W . (2.15)

Equations of motion. Defining the one-forms A± = O−1
± g−1dg with components A±i,

the equations of motion corresponding to the action (2.6) can be written as E = 0, with

E = d−∂i(Ξ−A−)i + d+∂i(Ξ+A+)i + [(Ξ+A+)i, d−(Ξ−A−)i] + [(Ξ−A−)i, d+(Ξ+A+)i] .

(2.16)

The flatness condition for the undeformed currents g−1dg also implies Z = 0, with

Z = ∂i(Ξ+A+)i − ∂i(Ξ−A−)i + [(Ξ−A−)i, (Ξ+A+)i]

+ C̃[d−(Ξ−A−)i, d+(Ξ+A+)i] + R̃g(E) .
(2.17)

Virasoro constraints. These equations of motion are supplemented by the Virasoro

constraints, which are obtained by varying the action with respect to the worldsheet met-

ric. They are equivalent to imposing a vanishing worldsheet stress tensor. To derive the

Virasoro constraints we focus on the part of the action that is proportional to the Weyl-

invariant metric. Its variation gives

δγSηL,ηR [g] = −T
2

∫
d2σ δγij STr[A

(2)
−iA

(2)
−j ] = −T

2

∫
d2σ δγij STr[A

(2)
+iA

(2)
+j ] , (2.18)

from which we deduce the Virasoro constraints

STr[(Ξ−A
(2)
− )i(Ξ−A

(2)
− )j ] = 0 , STr[(Ξ+A

(2)
+ )i(Ξ+A

(2)
+ )j ] = 0 . (2.19)

Kappa-symmetry. In addition to reparametrisation invariance and local right-acting

gauge symmetry g → gh, h ∈ F0, the action (2.6) also has a local right-acting fermionic

kappa symmetry reducing the number of physical fermionic degrees of freedom.

Let us consider an infinitesimal right translation of the field δκg = gε with

ε =
(
W− −

η̄

2
W+R̃g

)
ρ(1) +

(
W− +

η̄

2
W+R̃g

)
ρ(3) ,

W± = 1± 2η̄2κ+κ−W

4(1 + η̄)− η̄2(κ2
+ + κ2

−)
,

(2.20)

where W has been defined under (2.13), and ρ(1) and ρ(3) are yet arbitrary functions on

the string worldsheet. Equivalently, this transformation can be written as

O−1
+ (g−1δκg) = W−(ρ(1) + ρ(3)) . (2.21)

The variation of the action with respect to the field g is then

δgSηL,ηR [g] = T

∫
d2σ STr

[
ρ(1)P3

(
W− +

η̄

2
W+R̃g

)
(E) + ρ(3)P1

(
W− −

η̄

2
W+R̃g

)
(E)
]
.

(2.22)
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To simplify the expression within the supertrace we use the following combination of the

equations of motion and the flatness condition

P1

(
W− −

η̄

2
W+R̃g

)
(E) +

η̄

2
P1W+(Z) = −2η̄[(Ξ+A

(2)
+ )i, (Ξ−A(3)

− )i] ,

P3

(
W− +

η̄

2
W+R̃g

)
(E)− η̄

2
P1W+(Z) = −2η̄[(Ξ−A

(2)
− )i, (Ξ+A(1)

+ )i] ,

(2.23)

where, for convenience, we have defined

A± = W+A± . (2.24)

The variation of the action (2.22) can then be rewritten

δgSηL,ηR [g] = −2η̄T

∫
d2σ STr

[
ρ(1)[(Ξ−A

(2)
− )i, (Ξ+A(1)

+ )i]+ρ(3)P1[(Ξ+A
(2)
+ )i, (Ξ−A(3)

− )i]
]
.

(2.25)

As usual we then make the ansatz

ρ(1) = {i(Ξ+κ(1))j , (Ξ−A
(2)
− )j} , ρ(3) = {i(Ξ−κ(3))j , (Ξ+A

(2)
+ )j} , (2.26)

where κ(1) and κ(3) belong to the grade 1 and grade 3 subspaces respectively. Using the

fact that the τ and σ components of the projections are proportional to each other, for

instance (Ξ+A+)τ ∼ (Ξ+A+)σ, one can show that

STr
[
ρ(1)[(Ξ−A

(2)
− )i, (Ξ+A(1)

+ )i]
]

= STr
[
(Ξ−A

(2)
− )i(Ξ−A

(2)
− )j [(Ξ+A(1)

+ )i, i(Ξ+κ(1))j ]
]
,

STr
[
ρ(3)[(Ξ+A

(2)
+ )i, (Ξ−A(3)

− )i]
]

= STr
[
(Ξ+A

(2)
+ )i(Ξ+A

(2)
+ )j [(Ξ−A(3)

− )i, i(Ξ−κ(3))j ]
]
.

(2.27)

As discussed in [46, 47], the square of an elements of grade 2 yields two terms: one is

proportional to the identity while the other is proportional to the fermionic parity operator,

or hypercharge, ΥF̂ = diag(ΥĜ, ΥĜ), where ΥĜ = diag(1,−1) in the defining representation.

The part proportional to the identity drops out since the supertrace of a commutator

vanishes. Finally, the variation of the action coming from the variation of the field g is

δgSηL,ηR [g] =− T η̄

4

∫
d2σ

(
STr

[
(Ξ−A

(2)
− )i(Ξ−A

(2)
− )j

]
STr

[
ΥF̂[(Ξ+A(1)

+ )i, i(Ξ+κ(1))j ]
]

+ STr
[
(Ξ+A

(2)
+ )i(Ξ+A

(2)
+ )j

]
STr

[
ΥF̂[(Ξ−A(3)

− )i, i(Ξ−κ(3))j ]
])

.

(2.28)

This term can then be compensated by the following change in the metric,

δκγ
ij =

η̄

2
STr

[
ΥF̂[i(Ξ+κ(1))i, (Ξ+A(1)

+ )j ] + ΥF̂[i(Ξ−κ
(3)
− )j , (Ξ−A(3)

− )i]
]
, (2.29)

which shows that the action (2.6) is kappa-symmetric.
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Identification of supervielbein. Let us now bring the kappa-symmetry transforma-

tions (2.21) and (2.29) into their standard Green-Schwarz form. This in turn will allow us

to identify the supervielbein of the deformed theory.

We start by considering the equations of motion in the fermionic sector, which, ac-

cording to (2.25), are

[(Ξ+A
(2)
+ )i, (Ξ−A(3)

− )i] = 0 , [(Ξ−A
(2)
− )i, (Ξ+A(1)

+ )i] = 0 . (2.30)

To compare these expressions with the equations of motion of the undeformed model we

need to find a relation between A
(2)
+ and A

(2)
− = P (2)O−1

− O+A+. Defining M = O−1
− O+

we find, just as for the one-parameter deformation, that P (2)MP (2) implements a Lorentz

transformation on the grade-2 subspace of the superisometry algebra,

P (2)MP (2) = Ad−1
h P (2) = P (2) Ad−1

h , h ∈ F0 . (2.31)

Furthermore,

M = 1− 2P (2) + 2O−1
− P (2) (2.32)

also still holds. Therefore, A
(2)
−i = Ad−1

h A
(2)
+i and the equations of motion (2.30) take

the same form as the equations of motion of the undeformed model if one identifies the

supervielbein as

E(2) = A
(2)
+ , E(1) = ζ AdhA

(1)
+ , E(3) = ζA(3)

− , (2.33)

with normalisation2

ζ =

√
1 + η̄ − η̄2

4 (κ2
+ + κ2

−)
√

2
. (2.34)

In the above E(2) ≡ EaPa is the bosonic supervielbein, and E(1) ≡ E1αQ1α, E(3) ≡ E2αQ2α

are the fermionic supervielbein.

Finally, if one identifies the supervielbein in this way, we can write the kappa trans-

formations (2.21) and (2.29) as3

ιδκE
(2) = 0 , ιδκE

(1) = Ξij
−{iκ̂

(1)
i , E

(2)
j } , ιδκE

(3) = Ξij
+{iκ̂

(3)
i , E

(2)
j } ,

δκγ
ij =

1

2
STr

[
ΥF̂[(Ξ+iκ̂(1))i, (Ξ+E

(1))j ] + ΥF̂[(Ξ−iκ̂(3))i, (Ξ−E
(3))j ]

]
,

κ̂(1) =
η̄

ζ
Adh κ(1) , κ̂(3) =

η̄

ζ
κ(3) .

(2.35)

This shows that the kappa-symmetry variation takes the standard Green-Schwarz form and

that the vielbein have been chosen appropriately.

2We will see later in section 2.2 that it is this normalisation that brings the torsion into its standard

Green-Schwarz form.
3The interior derivative ιδκ is such that, for instance, ιδκO

−1
+ (g−1dg) = O−1

+ (g−1δκg).
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2.2 Extracting the Ramond-Ramond fluxes

In [32] a formula expressing the R-R bispinor in terms of the operators O± appearing in

the η-deformed sigma model has been written down. We would like to extend those results

to the two-parameter deformation. To achieve this, we will follow the same steps as in [32],

generalising when needed. The strategy is as follows. The study of the kappa-symmetry

variation has allowed us to identify the supervielbein. By comparing the superspace torsion

with its usual Green-Schwarz expression, the exterior derivative of the supervielbein can

be linked to the spin connection Ωab, NS-NS three-form Habc, R-R bispinor S1α2β , as well

as the dilatino and gravitino field strength superfields. In contrast to [32], we shall only be

concerned with extracting the R-R fluxes and thus will only need the leading terms in the

expansion in fermions. To leading order the relations take the form4

dEa = − i
2
E1γaE1 − i

2
E2γaE2 − EbΩba ,

dE1α =
1

4
(γabE

2)αΩab − 1

8
Ea(E1γbc)αHabc −

1

8
Ea(E2γaS12)α ,

dE2α =
1

4
(γabE

2)αΩab +
1

8
Ea(E2γbc)αHabc −

1

8
Ea(E1γaS12)α .

(2.36)

We start by calculating the exterior derivative of A+,5

dA+ = −1

2
O−1

+ {A+, A+} −O−1
+ R̃g{A+, d+A+} −O−1

+ R̃g{R̃gd+A+, d+A+}

+
1

2
O−1

+ {R̃gd+A+, R̃gd+A+}

= −1

2
O−1

+ {A+, A+}+
1

2
O−1

+ C̃{d+A+, d+A+} −O−1
+ R̃g{A+, d+A+} ,

(2.37)

where in the last equation we have used the modified classical Yang Baxter equation. We

also introduced the notation {X,Y } = XA ∧ Y B[TA, TB} for one-forms X = XATA and

Y = Y BTB. Similarly, the result for dA− is

dA− = −1

2
O−1
− {A−, A−}+

1

2
O−1
− C̃{d−A−, d−A−}+O−1

− R̃g{A−, d−A−} . (2.38)

To proceed we rewrite these expressions as

dA+ = −1

2
{A+, A+}+

1

2
C̃{d+A+, d+A+} − (O−1

+ − 1)(X+)−O−1
+ R̃g{A

(2)
+ , A

(2)
+ } ,

dA− = −1

2
{A−, A−}+

1

2
C̃{d−A−, d−A−} − (O−1

− − 1)(X−) +O−1
− R̃g{A

(2)
− , A

(2)
− } ,

(2.39)

4We have contracted spinor indices and suppressed the ∧ for readability.
5Some of the following results differ from [32] by a sign. This comes from the fact that in our conventions

the exterior derivative d is acting from the left. We also use a different convention for the components of

n-forms, namely An = 1
n!
Aµ1...µndXµ1 ∧ · · · ∧ dXµn .
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where

X± =
η̄2

2
κ+κ−W{A(1)

± , A
(3)
± } − κ+κ−W{A(2)

± , A
(2)
± }

± 2

η̄

(
1± η̄ − η̄2

4
(κ2

+ + κ2
−)− η̄2

2
κ+κ−W

)
{A(2)
± , A

(3)
± }

+
1

2

(
1± η̄ − η̄2

4
(κ2

+ + κ2
−)

)
{A(1)
± , A

(1)
± }+

1

2

(
1∓ η̄ − η̄2

4
(κ2

+ + κ2
−)

)
{A(3)
± , A

(3)
± }

∓ 2

η̄

(
1∓ η̄ − η̄2

4
(κ2

+ + κ2
−)− η̄2

2
κ+κ−W

)
{A(2)
± , A

(1)
± } .

(2.40)

Assuming that the operators R̃g and O± do not mix the bosonic and fermionic sector

(which is the case to leading order in the expansion), the projection onto P (2) gives

dE(2) = −1

2
{E(1), E(1)} − 1

2
{E(3), E(3)}

− {A(0)
+ , E(2)} − P2O

−1
+ (R̃g − κ+κ−W ){E(2), E(2)} .

(2.41)

We can thus identity the spin connection as

Ωab = −(Ã)ab+
1

2
Ec(2M̃c[a,b]−M̃ab,c) , Ã = (1−κ+κ−W/2)A+ , M̃ = (1+κ+κ−W )M .

(2.42)

Furthermore, we also find that

dE(3) = −{A(0)
+ , E(3)} − 2{P0O

−1
− E(2), E(3)} − κ+κ−W{Ad−1

h E(2), E(3)}

+

(
1 +

2

η̄2
− 1

2
(κ2

+ + κ2
−)

)
Ad−1

h {E
(2), E(1)}

− 2

η̄

(
1 + η̄ − η̄2

4
(κ2

+ + κ2
−)

)
W+O

−1
− W−Ad−1

h {E
(2), E(1)} ,

(2.43)

from which we obtain the NS-NS three-form and R-R bispinor

Habc = 3 ˜̃M[ab,c] ,
˜̃M = M̃ +

1

3
κ+κ−W ,

S1α2β = 8i

[
Adh

(
1 +

1

1− η2
L

+
1

1− η2
R

− 4Õ−1
+

)]1α

1γ

K̂1γ2β ,

(2.44)

where

Õ± = (1 + Ω̃±)−1 , Ω̃± = ± diag

(
ηL

1− η2
L

,
ηR

1− η2
R

)
Rgd± . (2.45)

In the above expression g is a purely bosonic group-valued field. We immediately see that

when ηL = ηR = η this formula reduces to the one of [32].

The bispinor (2.44) should then be compared to the familiar expression

S = −iσ2γ
aFa −

1

3!
σ1γ

abcFabc −
1

2 · 5!
iσ2γ

abcdeFabcde , (2.46)
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valid for a type IIB supergravity background and written in terms of 16×16 chiral gamma

matrices. Comparing the two expressions gives the one-form F1, three-form F3 and five-

form F5. Moreover, for standard supergravity backgrounds the R-R fluxes are

Fn = e−ΦFn , (2.47)

where Φ is the dilaton. In analogy with the one-parameter deformation we postulate that

the latter is given by

e−2Φ = e−2Φ0 sdet(O+) , (2.48)

which will be supported by specific examples. We also define the R-R potentials Cn, defined

though

Fn = dCn−1 +H ∧ Cn−3 . (2.49)

Condition for Weyl invariance. In [32], a condition on the R-matrix for the one-

parameter η-deformation to be a standard supergravity solution was given. This is the

unimodularity property

K̂AB STr[[TA, R(TB)}Z] = 0 , ∀Z ∈ f . (2.50)

For Lie superalgebras of the type that we are considering in this paper, this unimodular-

ity condition is equivalent to the vanishing of the supertrace of the structure constants

associated to the R-bracket [33]

[X ,Y}R = [X ,R(Y)}+ [R(X ),Y} , X ,Y ∈ f , (2.51)

which is the generalisation to superalgebras of the R-bracket [48]. For the two-parameter

deformation it is natural to postulate that if the deformation is governed by a unimodular

R-matrix then the theory will be Weyl invariant and the background will solve the standard

supergravity equations of motion. While our results give arguments in favour of this claim

we will not provide a proof of it.6

3 Supergravity backgrounds for the two-parameter deformation of the

AdS3 × S3 × T4 superstring

In this section we shall focus on the case Ĝ = PSU(1, 1|2) and consider deformations of

the semi-symmetric space sigma model based on the supercoset

PSU(1, 1|2)× PSU(1, 1|2)

SU(1, 1)× SU(2)
. (3.1)

We choose unimodular R-matrices and construct the embedding of the 6-dimensional

backgrounds in 10 dimensions with the remaining compact dimensions given by a four-

torus. This then gives supergravity backgrounds for the two-parameter deformation of the

AdS3 × S3 × T4 superstring.

6Since the one-parameter deformation is a particular case of the two-parameter deformation, the uni-

modularity condition (2.50) is a necessary condition (although see [49, 50]) to have a supergravity solution.

In order to prove that it is also a sufficient condition one would need to calculate the dilatinos χIα and

check that they match the spinor derivatives of the dilaton, ∇IαΦ. This calculation requires going to higher

order in fermions and hence we do not perform it here.
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3.1 Choice of R-matrix

The superisometry algebra of the AdS3 × S3 semi-symmetric space is psu(1, 1|2)L ⊕
psu(1, 1|2)R, with two copies of the psu(1, 1|2) superalgebra that we shall refer to as the

left copy (subscript L) and the right copy (subscript R). We consider deformations gov-

erned by R-matrices of the type R = diag(RL, RR), where RL and RR are Drinfel’d Jimbo

R-matrices satisfying the non-split modified classical Yang-Baxter equation on psu(1, 1|2)L
and psu(1, 1|2)R respectively.

As already discussed in [33], the complexified algebra (p)sl(2|2) admits three inequiv-

alent Dynkin diagrams, # − ⊗ − #, ⊗ − # − ⊗ and ⊗ − ⊗ − ⊗, each of which can be

realised by a different choice of simple roots. The associated R-matrices generically lead to

inequivalent backgrounds. In particular, while R-matrices associated to the fully fermionic

Dynkin diagram ⊗ − ⊗ − ⊗ are unimodular and hence are expected to give rise to su-

pergravity backgrounds, this is not the case for R-matrices associated with the other two

Dynkin diagrams.

Let us recall how to construct the different R-matrices associated with the superal-

gebra psu(1, 1|2). We consider a realisation of the psu(1, 1|2) algebra in terms of 4 × 4

supermatrices. The 2 × 2 upper left block generates the su(1, 1) subalgebra, while the

lower right block generates the su(2) subalgebra. The remaining entries are fermionic; see

appendix A for the conventions we use. The various R-matrices can then be constructed

by considering permutations of 4 elements. Namely, starting from a reference R-matrix R0

associated with the distinguished Dynkin diagram #−⊗−# and whose explicit action on

an element M ∈ psu(1, 1|2) is given by

R0(M)ij = −iεijMij , ε =


0 +1 +1 +1

−1 0 +1 +1

−1 −1 0 +1

−1 −1 −1 0

 , (3.2)

we act with the permutation matrix Pij = δP(i)j to obtain the new R-matrix

RP = Ad−1
P R0 AdP . (3.3)

Of the 24 possible permutations, 8 give rise to unimodular R-matrices. If one further

demands the action on su(1, 1) and su(2) is left invariant (that is to say, the new R-matrix

RP and the reference R-matrix R0 have the same action on the bosonic generators) then

only the permutations that do not exchange the order of {1, 2} and {3, 4} need to be

considered. This leads to the two following unimodular R-matrices

P1 =

(
1 2 3 4

1 3 2 4

)
, RP1(M)ij = −iεijMij , ε =


0 +1 +1 +1

−1 0 −1 +1

−1 +1 0 +1

−1 −1 −1 0

 ,

P2 =

(
1 2 3 4

3 1 4 2

)
, RP2(M)ij = −iεijMij , ε =


0 +1 −1 +1

−1 0 −1 −1

+1 +1 0 +1

−1 +1 −1 0

 .

(3.4)

– 12 –



J
H
E
P
1
0
(
2
0
1
9
)
0
4
9

In the AdS2 × S2 case examined in [33] these two R-matrices were not considered inequiv-

alent, as the backgrounds are related to each other by analytical continuation.

For the AdS3 × S3 case there are two copies of the psu(1, 1|2) superalgebra. We focus

our attention on unimodular R-matrices R = diag(RL, RR) associated to the completely

fermionic Dynkin diagram,

(⊗−⊗−⊗)L (⊗−⊗−⊗)R . (3.5)

The two R-matrices RL and RR do not need to be identical and one can take different sets

of positive and negative roots in the two copies of psu(1, 1|2). We restrict our attention to

R-matrices with the desired action on the bosonic generators and thus RL and RR can be

RP1 or RP2 . This then leads to four different unimodular R-matrices on the psu(1, 1|2)L⊕
psu(1, 1|2)R superisometry algebra of the AdS3 × S3 semi-symmetric space,7

R1 = diag(RP1 ,−RP1) , R2 = diag(RP1 ,−RP2) ,

R3 = diag(RP2 ,−RP1) , R4 = diag(RP2 ,−RP2) .
(3.6)

It transpires that the R-matrices R1 and R4, as well as R2 and R3, give rise to equivalent

backgrounds related by analytic continuations and in the following we shall only consider

the two inequivalent unimodular R-matrices

R1 = diag(RP1 ,−RP1) , R2 = diag(RP1 ,−RP2) . (3.7)

By virtue of their unimodularity we expect the corresponding deformed backgrounds to

solve the supergravity equations of motion for arbitrary deformation parameters ηL and ηR.

3.2 Supergravity backgrounds

In this section we extract the supergravity backgrounds corresponding to the unimodular R-

matricesR1 andR2 by using the formula (2.44) for the R-R fluxes and (2.48) for the dilaton.

We choose the following parametrisation for the gauge-fixed group-valued field g ∈ F̂,

g = diag(gL, gR) ,

gL =

(
exp

[
i
2(t+ψ)σ3

]
exp

[
1
2 arsinh(ρ)σ1

]
0

0 exp
[
i
2(ϕ+φ)σ3

]
exp

[
i
2 arcsin(r)σ1

]) , (3.8)

gR =

(
exp

[
− i

2(t−ψ)σ3

]
exp

[
−1

2 arsinh(ρ)σ1

]
0

0 exp
[
− i

2(ϕ−φ)σ3

]
exp

[
− i

2 arcsin(r)σ1

]) .

7Here by convention we use opposite signs in the left and right sectors. Of course, for the two-parameter

deformation the combination that enters the action is diag(ηLRL, ηRRR) and since ηL and ηR are arbitrary

one can always reabsorb the minus sign by sending ηR → −ηR. Our convention makes it easier to compare

our results with [43], where the bosonic background has been obtained for this choice of R-matrix.

– 13 –



J
H
E
P
1
0
(
2
0
1
9
)
0
4
9

The bosonic background is common to the two choices of R-matrix, with the metric

and closed B-field given by

ds2 =
1

F (ρ)

[
−[1+ρ2][1+κ2

−(1+ρ2)]dt2+
dρ2

1+ρ2
+ρ2[1−κ2

+ρ
2]dψ2+2κ−κ+ρ

2[1+ρ2]dtdψ

]
+

1

F̃ (r)

[
[1−r2][1+κ2

−(1−r2)]dϕ2+
dr2

1−r2
+r2[1+κ2

+r
2]dφ2+2κ−κ+r

2[1−r2]dϕdφ

]
+dxidxi , (3.9)

B =
ρ

F (ρ)
(κ+dt∧dρ+κ−dρ∧dψ)+

r

F̃ (r)
(κ+dϕ∧dr+κ−dr∧dφ) ,

where

F (ρ) = 1 + κ2
−(1 + ρ2)− κ2

+ρ
2 , F̃ (r) = 1 + κ2

−(1− r2) + κ2
+r

2 . (3.10)

The dilaton and R-R sector depend on the choice of R-matrix. The background corre-

sponding to the R-matrix R1 = diag(RP1 ,−RP1) is

e−2Φ = e−2Φ0
F (ρ)F̃ (r)

P (ρ, r)2
, P (ρ, r) = 1− κ2

+(ρ2 − r2 − ρ2r2) + κ2
−(1 + ρ2)(1− r2) ,

(3.11)

C2 = −

√
1 + κ2

+

1 + κ2
−

e−Φ0

P (ρ, r)

[
ρ2dt ∧ dψ + r2dϕ ∧ dφ+ κ2

−(1 + ρ2)r2dt ∧ dφ

− κ2
−ρ

2(1− r2)dψ ∧ dϕ+ κ+κ−(ρ2 − r2 − ρ2r2)dt ∧ dϕ− κ+κ−ρ
2r2dψ ∧ dφ

]
,

C4 = −

√
1 + κ2

+

1 + κ2
−

e−Φ0

P (ρ, r)

[
κ−ρ

2dt ∧ dψ + κ−r
2dϕ ∧ dφ− κ−(1 + ρ2)r2dt ∧ dφ

+ κ−ρ
2(1− r2)dψ ∧ dϕ− κ+(ρ2 − r2 − ρ2r2)dt ∧ dϕ+ κ+ρ

2r2dψ ∧ dφ
]
∧ J2 ,

while the background corresponding to the R-matrix R2 = diag(RP1 ,−RP2) is

e−2Φ = e−2Φ0
F (ρ)F̃ (r)

P (ρ, r)2
, P (ρ, r) = 1−κ2

+ρ
2r2+κ2

−(1+ρ2r2) , (3.12)

C2 = −

√
1+κ2

−
1+κ2

+

e−Φ0

P (ρ, r)

[
(1+ρ2)dt∧dψ−(1−r2)dϕ∧dφ+κ2

+(1+ρ2)r2dt∧dφ

−κ2
+ρ

2(1−r2)dψ∧dϕ+κ+κ−(1+ρ2)(1−r2)dt∧dϕ−κ+κ−(1+ρ2r2)dψ∧dφ
]
,

C4 = −

√
1+κ2

−
1+κ2

+

e−Φ0

P (ρ, r)

[
κ+(1+ρ2)dt∧dψ−κ+(1−r2)dϕ∧dφ−κ+(1+ρ2)r2dt∧dφ

+κ+ρ
2(1−r2)dψ∧dϕ−κ−(1+ρ2)(1−r2)dt∧dϕ+κ−(1+ρ2r2)dψ∧dφ

]
∧J2 .

The Kähler form on the torus is J2 = dx1∧dx2−dx3∧dx4. Due to their gauge symmetries

the expressions for the potentials C2 and C4 are not unique. The form chosen here makes it
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manifest that in the κ± → 0 limit one recovers the undeformed background, with constant

dilaton and a three-form F3 = dC2 proportional to the volume form on AdS3 × S3. Let us

also notice that C2 and C4 only contain even and odd powers of the deformation parameters

κ± respectively. Since the bosonic roots are not simple the R-R fluxes mix the AdS3 and S3

coordinates in a non-trivial way. As expected, these two backgrounds satisfy the standard

supergravity equations of motion.

Relation between the two supergravity backgrounds. It has been observed [43, 45]

that the metric and B-field of the two-parameter deformed model are left invariant under

the formal transformations

ρ→
i
√

1 + κ2
−
√

1 + ρ2√
F (ρ)

, r →

√
1 + κ2

−
√

1− r2√
F (r)

, t↔ ψ , ϕ↔ φ , (3.13)

and

ρ→ i
√

1 + ρ2 , r →
√

1− r2 , t↔ ψ , ϕ↔ φ , κ+ ↔ κ− . (3.14)

While these two transformations involve an analytic continuation in ρ, it is possible to

combine them to find a real transformation

κ+ ↔ κ− , ρ→

√
1 + κ2

−ρ√
1 + κ2

−(1 + ρ2)− κ2
+ρ

2
, r →

√
1 + κ2

−r√
1 + κ2

−(1− r2) + κ2
+r

2
,

(3.15)

where we first interchange κ+ and κ− and then do the redefinition of ρ and r. What

happens to the R-R sector under these transformations is summarised in figure 1. The

backgrounds (3.11) and (3.12), including the dilaton and the R-R fluxes, are invariant under

the map (3.13). However, invariance is broken by the second set of transformations (3.14),

whose effect is to exchange (3.11) and (3.12). Thus, also the real transformations (3.15)

do not leave the supergravity backgrounds invariant but instead map between them.

It is only in the special case κ2
+ = κ2

−, reached when one of the deformation parameters,

either in the left or right sector, is set to zero, i.e. ηL = 0 or ηR = 0, that the background

remains invariant under all three maps. In that case the two backgrounds (3.11) and (3.12)

are equal, with constant dilaton.

Relation to previously studied supergravity backgrounds. In [45], two solutions

to the supergravity equations of motion with bosonic background (3.9) and supported

by a R-R three-form flux have been constructed. Using the same terminology as in the

aforementioned paper we shall refer to these two backgrounds as the a = 0 and a = 1

solutions.8 We then observe that (3.11) and (3.12) are the analogues of the a = 1 and

a = 0 solution of [45] respectively. The dilatons are indeed exactly the same, but we find

slightly different R-R fluxes. This is a consequence of the fact that the authors of [45]

8In [45] the authors started by solving the supergravity equations of motion perturbatively in κ+ and

κ− and then generalized to arbitrary deformation parameter. The constant a parametrizes the different

solutions.
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R1 •κ− = 0 • κ+ = 0

R2 •κ+ = 0 • κ− = 0

Figure 1. The two supergravity backgrounds. The top and bottom lines represent the solu-

tions corresponding to the R-matrices R1 and R2 respectively. At the four end-points, one of

the deformation parameters, κ+ or κ−, is set to zero. The backgrounds are left invariant under

the redefinition (3.13) (blue arrows), while the transformation (3.14) swaps the two solutions (red

arrows).

were seeking solutions of the supergravity equations of motion that are only supported

by a three-form flux, while the deformed backgrounds possess both a three-form and a

five-form flux (or two different three-forms upon dimensional reduction). Accordingly, the

three-form of [45] mixes even and odd powers of the deformation parameters κ±. It is not

clear if one can recover the backgrounds of [45] by performing a sequence of dualities (e.g.

T-dualities on the torus T4), and thus their integrability remains an open question.

3.3 Limits of the supergravity backgrounds

Let us now explore some limits of the supergravity backgrounds of section 3.2. We start

by considering the plane-wave limit corresponding to zooming into the geometry seen by a

particle moving on a light-like geodesic along a great circle of the (deformed) three-sphere.

This limit can be taken for both backgrounds and for arbitrary deformation parameters

κ±. We also study the Pohlmeyer (κ → i) and maximal deformation limit (κ → ∞) of

the two supergravity backgrounds when κ+ = κ and κ− = 0, which corresponds to the

one-parameter η-deformation of the AdS3 × S3 × T4 superstring.

Plane-wave limit. We consider the trajectory parametrised by τ along

t = t(τ) , ρ = 0 , ψ = ψ(τ) , ϕ = ϕ(τ) , r = 0 , φ = φ(τ) . (3.16)

Using the metric of the deformed theory, we find that a relativistic particle moving along

this geodesic has action

S =
1

2

∫
dτe−1

[
−
(

dt

dτ

)2

+

(
dϕ

dτ

)2
]
, (3.17)

where e is the einbein. Clearly t = µτ , ϕ = µτ is a solution of the equations of motion,

where we have introduced a mass scale µ in order to preserve the dimensionality of the
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coordinates. In order to study the geometry near this trajectory we make the transforma-

tions [51, 52]9

t = µx+ +
x−

µL2
, ϕ = µx+ − x−

µL2
, ρ→

ρ
√

1 + κ2
−

L
, r →

r
√

1 + κ2
−

L
. (3.18)

as well as xi → xi/L, T → L2T .

In the limit L→∞ both backgrounds of section 3.2 have the same plane-wave form10

ds2 = −4dx+dx− − µ2(1 + κ2
+)(1 + κ2

−)(ρ2 + r2)(dx+)2

+dρ2 + dr2 + ρ2(dψ + κ+κ−µdx+)2 + r2(dφ+ κ+κ−µdx+)2 + dxidxi , (3.19)

B = ρ(µκ+dx+ ∧ dρ+ κ−dρ ∧ dψ) + r(µκ+dx+ ∧ dr + κ−dr ∧ φ) ,

e−2Φ = e−2Φ0 , C2 = −e−Φ0

√
(1 + κ2

+)(1 + κ2
−)µ(ρ2dx+ ∧ dψ + r2dx+ ∧ dφ) , C4 = 0 .

Discarding the total derivative B-field we observe that in the plane-wave limit, similarly to

the one-parameter deformation of the AdS2× S2×T4 and AdS5× S5 superstrings [33, 53],

the deformation only enters the plane-wave background through a rescaling of the mass

parameter µ.

Pohlmeyer limit. The limit κ+ = κ → i, κ− = 0 is interesting due to its relation to

the Pohlmeyer reduced model of the undeformed AdS3× S3×T4 superstring [54]. To take

into account the fact that the string tension goes to zero in that limit we rescale, or more

precisely twist, the coordinates t and ϕ,

t =
µx+

ε
+
εx−

µ
, ϕ =

µx+

ε
− εx−

µ
, κ = i

√
1− ε2 , (3.20)

and take ε→ 0+. Only (3.11) is finite and real in this limit, giving the pp-wave background

ds2 = −4dx+dx− − µ2

(
ρ2

1 + ρ2
+

r2

1− r2

)
(dx+)2

+
dρ2

(1 + ρ2)2
+

dr2

(1− r2)2
+ ρ2dψ2 + r2dφ2 + dxidxi ,

e−2Φ = e−2Φ0
1

(1 + ρ2)(1− r2)
,

C2 = − µe−Φ0

(1 + ρ2)(1− r2)
(ρ2dx+ ∧ dψ + r2dx+ ∧ dφ) , C4 = 0 .

(3.21)

We have not included the B-field, which is a divergent closed two-form with no finite

contribution. This pp-wave background matches the one constructed in [54]. Its light-

cone gauge fixing gives the Pohlmeyer reduced theory for strings moving in undeformed

9The additional factor
√

1 + κ2
− in the rescaling of ρ and r brings the pp-wave metric into its canoni-

cal form.
10One should keep in mind that the string tension is rescaled T → L2T under these transformations, and

that the potentials scale with the tension as Cn ∼ Tn/2, n = 0, 2, 4.
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AdS3 × S3, which was constructed in [55]. The bosonic part of the reduced theory is given

by the sum of the complex sine-Gordon model and its sinh-Gordon counterpart. Taking

the same limit but without twisting the coordinates t and ϕ gives the same expression but

with mass µ = 0.

Maximal deformation limit. Another interesting limit is when the deformation pa-

rameter goes to infinity. More precisely, the maximal deformation limit [35, 56] is given by

first rescaling

t→ t

κ
, ρ→ ρ

κ
, φ→ φ

κ
, r → r

κ
, xi → xi

κ
T → κ2T , (3.22)

and then taking the limit κ→∞. In this limit the metric and B-field become

ds2 =
1

1− ρ2
(−dt2 + dρ2) + ρ2dψ2 +

1

1 + r2
(dϕ2 + dr2) + r2dφ2 + dxidxi ,

B =
ρ

1− ρ2
dt ∧ dρ+

r

1 + r2
dϕ ∧ dr .

(3.23)

The two supergravity backgrounds are both finite but remain different in this limit. The

maximal deformation limit of (3.11) is

e−2Φ = e−2Φ0
(1− ρ2)(1 + r2)

(1− ρ2 + r2)2
, C2 = − e−Φ0

1− ρ2 + r2
(ρ2dt ∧ dψ + r2dϕ ∧ dφ) ,

C4 =
e−Φ0

1− ρ2 + r2
((ρ2 − r2)dt ∧ dϕ− ρ2r2dψ ∧ dφ) .

(3.24)

while the maximal deformation limit of (3.12) is

e−2Φ = e−2Φ0(1− ρ2)(1 + r2) , C2 = e−Φ0(ρ2dψ ∧ dϕ− r2dt ∧ dφ) , C4 = 0 .

(3.25)

Further swapping

r ↔ ρ , ψ ↔ φ , (3.26)

in (3.23) and (3.25) gives the mirror model of the undeformed AdS3 × S3 × T4 super-

string [36],

ds2 =
1

1− r2
(−dt2 + dr2) + r2dφ2 +

1

1 + ρ2
(dϕ2 + dρ2) + ρ2dψ2 + dxidxi ,

B =
r

1− r2
dt ∧ dr +

ρ

1 + ρ2
dϕ ∧ dρ , e−2Φ = e−2Φ0(1− r2)(1 + ρ2) ,

C2 = −e−Φ0(r2dϕ ∧ dφ+ ρ2dt ∧ dψ) , C4 = 0 .

(3.27)

On the other hand, this is not the case for the other background (3.24).

Conclusions. Investigating limits of the two supergravity solutions for κ+ = κ, κ− = 0,

which corresponds to the one-parameter η-deformation of the AdS3× S3×T4 superstring,

we found that the background (3.11) has the expected Pohlmeyer limit, while the maximal

deformation limit of the background (3.12) corresponds to the undeformed AdS3×S3×T4

mirror theory. We will now show that more is true: the background (3.12) actually exhibits

mirror duality.
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3.4 Mirror model and mirror duality

The mirror model of the light-cone gauge-fixed string introduced in [34] plays an important

role in the Thermodynamic Bethe Ansatz approach and the calculation of finite-size correc-

tions in the context of integrable models [57]. It is constructed out of the original theory by

performing a double Wick rotation in the worldsheet coordinates, τ → iσ, σ → iτ . While

this transformation does not affect Lorentz-invariant theories (up to a parity reflection),

this is no longer the case for a non-relativistic theory, whose mirror describes a new model.

This is in particular true for the worldsheet theory of an AdS superstring upon light-cone

gauge fixing, whose mirror defines a new two-dimensional quantum field theory. It is the

thermodynamics of this new QFT that plays a central role in solving the spectral problem

of AdS/CFT using integrability. In addition to being a useful tool, one may wonder if

there exists a more physical interpretation of this mirror model. This question was inves-

tigated in [35, 36], where it was shown that the latter can be seen as the light-cone gauge

theory of a free string on a different, mirror, background. Furthermore, for the η-deformed

AdSn × Sn × T10−2n superstring, n = 2, 3, 5, it was observed that at the bosonic level the

mirror background can also be reached directly from the original background by a field

and parameter redefinition [35]. This is the concept of mirror duality. In this section we

construct the mirror background of (3.12) and show that the mirror duality also extends

to the full background, including the dilaton and the R-R fluxes.

Mirror model. We start by constructing the mirror model of the background (3.12), first

discussing the metric. If we denote the two light cone directions by t and ϕ and assume

that there is no cross term Gtϕ = 0 in the metric, then the mirror metric is obtained by

interchanging Gtt and 1/Gϕϕ.11 For the particular example of the deformed AdS3×S3×T4

superstring with κ+ = κ, κ− = 0, the mirror metric is

ds2 = −1 + κ2r2

1− r2
dt2 +

dρ2

(1− κ2ρ2)(1 + ρ2)
+ ρ2dψ2

+
1− κ2ρ2

1 + ρ2
dϕ2 +

dr2

(1 + κ2r2)(1− r2)
+ r2dφ2 + dxidxi .

(3.28)

In principle the B-field also transforms but since it is a closed two-form we will drop it alto-

gether. The mirror fluxes (tilded quantities) are related to the original fluxes through [36]

F̃a1...an = inFa1...an , (3.29)

where a1 . . . an are flat indices and we choose the labelling of the transverse space to be

common to the theory and its mirror. In order to disentangle the contributions from the

dilaton and the R-R fluxes we solve the supergravity equations of motion. Applying this

transformation rule to the background (3.12) with κ+ = κ, κ− = 0 yields the following

11Alternatively, this can be seen as doing a T-duality in t and ϕ and then exchanging the two coordinates.

This point of view has the advantage that the transformation of the dilaton under T-duality is known.
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potentials of the mirror model

e−2Φ = e−2Φ0
(1− r2)(1 + ρ2)

P (ρ, r)2
, P (ρ, r) = 1− κ2ρ2r2 ,

C2 =
e−Φ0

√
1 + κ2P (ρ, r)

(
κ2r2(1 + ρ2)dt ∧ dφ− κ2ρ2(1− r2)dψ ∧ dϕ

− (1− r2)dϕ ∧ dφ+ (1 + ρ2)dt ∧ dψ
)

C4 = − κe−Φ0

√
1 + κ2P (ρ, r)

(
r2(1 + ρ2)dt ∧ dφ− ρ2(1− r2)dψ ∧ dϕ

+ (1− r2)dϕ ∧ dφ− (1 + ρ2)dt ∧ dψ
)
∧ J2 .

(3.30)

One immediately sees that the limit κ→ 0 gives the mirror model of undeformed AdS3 ×
S3 × T4, as expected.

Mirror duality. Now that we have constructed the mirror model, we can prove that the

mirror duality extends to the full background if one stays within the realm of deformations

generated by the R-matrix R2. Starting from the supergravity background (3.12) with

κ+ = κ, κ− = 0, and rescaling

t→ t

κ
, ρ→ ρ

κ
, ϕ→ ϕ

κ
, r → r

κ
, (3.31)

together with xi → xi/κ in the torus directions, defining κ̂ = 1/κ and then interchanging

the coordinates

ρ↔ r , ψ ↔ φ , (3.32)

indeed gives the mirror background defined through (3.28) and (3.30), up to identifying κ̂

and κ.12

4 Examples of generalised supergravity backgrounds for the two-param-

eter deformation of the AdS3 × S3 × T4 superstring

For completeness and to make the link with the literature, let us also extract the fluxes

corresponding to deformations governed by non-unimodular R-matrices. For the psu(1, 1|2)

superalgebra, R-matrices associated to the Dynkin diagrams #−⊗−# or ⊗−#−⊗ are non-

unimodular. Thus, for the AdS3×S3×T4 superstrings, deformations based on R-matrices

corresponding to the following Dynkin diagrams

#−⊗−# #−⊗−#

⊗−#−⊗ ⊗−#−⊗
#−⊗−# ⊗−#−⊗
#−⊗−# ⊗−⊗−⊗
⊗−#−⊗ ⊗−⊗−⊗

(4.1)

are expected to lead to generalised supergravity backgrounds. In the first two cases the

psu(1, 1|2) Dynkin diagram is the same in both copies of the algebras, while in the remaining

three cases the Dynkin diagrams are different in the two copies.

12We also exploit the gauge symmetries of the potentials C2 and C4 to match the expressions.
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4.1 Dynkin diagram ( −⊗− )2

We start by considering R-matrices associated to the Dynkin diagram

#−⊗−# #−⊗−# . (4.2)

In other words, when constructing R = (RL, RR), both RL and RR are R-matrices asso-

ciated to the distinguished Dynkin diagram # − ⊗− # of psu(1, 1|2). As before, we keep

the same action on the su(1, 1) and su(2) algebras and hence we are left with two such

R-matrices, namely R0 given in (3.2) and

R′0(M)ij = −iεijMij , ε =


0 +1 −1 −1

−1 0 −1 −1

+1 +1 0 +1

+1 +1 −1 0

 . (4.3)

We can then define the two following R-matrices governing the deformation of the AdS3×S3

supercoset,

R0 = diag(R0,−R0) , R′0 = diag(R0,−R′0) . (4.4)

To extract the fluxes we use the same parametrisation (3.8). The background corresponding

to the R-matrix R0 = (R0,−R0) is then13

F1 = N F̂1 ,

F3 = N

(
F̂3 +

2κ−
1− κ2

−
F̂1 ∧ J2

)
,

F5 = N

(
(1 + ?)F̂1 ∧ J2 ∧ J2 +

2κ−
1− κ2

−
F̂3 ∧ J2

)
,

N = 2

√
1 + κ2

+

1 + κ2
−

1− κ2
−√

F (ρ)F̃ (r)
,

(4.6)

were we introduced the auxiliary one-form and three-form

F̂1 = κ−
[
(1 + ρ2)dt+ (1− r2)dϕ

]
+ κ+

[
−ρ2dψ + r2dφ

]
,

F̂3 =
1

F (ρ)

[
ρ dt ∧ dρ ∧ dψ − κ2

+ρr
2 dt ∧ dρ ∧ dφ− κ2

−ρ(1− r2) dρ ∧ dψ ∧ dϕ

− κ+κ−ρ(1− r2) dt ∧ dρ ∧ dϕ− κ+κ−ρr
2 dρ ∧ dψ ∧ dφ

]
+

1

F̃ (r)

[
r dϕ ∧ dr ∧ dφ+ κ2

+ρ
2r dψ ∧ dϕ ∧ dr − κ2

−(1 + ρ2)r dt ∧ dr ∧ dφ

− κ+κ−(1 + ρ2)r dt ∧ dϕ ∧ dr + κ+κ−ρ
2r dψ ∧ dr ∧ dφ

]
.

(4.7)

13In our conventions the Hodge star ? acts on a n-form An = 1
n!
Aµ1...µndXµ1 ∧ · · · ∧ dXµn as

(?An)µ1...µd−n =
1

n!

√
−Gεµ1...µd−nν1...νnA

ν1...νn , (4.5)

where G is the determinant of the metric. The self-duality condition for the five-form reads F5 = ?F5.
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Setting κ− = 0 and changing the sign of κ+ gives the ABF-type background of [27], ob-

tained by starting from a supergravity solution with a dilaton linear in some isometries and

formally dualising the metric and the fluxes in those isometries. The resulting background

solves the generalised supergravity equations of motion [27, 28]. These equations depend

on a vector X, which can be split into a background Killing vector I, and a remaining part

Z. The standard supergravity equations of motion correspond to I = 0 and Z = dΦ. The

full background (4.6) satisfies the generalised supergravity equations of motion with

I = 2κ+(1 + κ2
−)

(
1 + ρ2

F (ρ)
dt+

1− r2

F̃ (r)
dϕ

)
+ 2κ−(1 + κ2

+)

(
− ρ2

F (ρ)
dψ +

r2

F̃ (r)
dφ

)
,

Z = d

(
1

2
logF (ρ) +

1

2
log F̃ (r)

)
.

(4.8)

While the auxiliary one-form F̂1 and three-form F̂3 are both invariant under the trans-

formations (3.14), this is not the case of the background (4.6), since the deformations

parameters κ± do not appear on an equal footing in the fluxes. Similarly to what we

observed for the two supergravity solutions in section 3, we find that applying the transfor-

mations (3.14) to (4.6) yields a new background, which actually corresponds to choosing

the R-matrix R′0 = (R0,−R′0). It is also a generalised supergravity solution and has fluxes

F1 = N F̂1 ,

F3 = N

(
F̂3 +

2κ+

1− κ2
+

F̂1 ∧ J2

)
,

F5 = N

(
(1 + ?)F̂1 ∧ J2 ∧ J2 +

2κ+

1− κ2
+

F̂3 ∧ J2

)
,

N = 2

√
1 + κ2

−
1 + κ2

+

1− κ2
+√

F (ρ)F̃ (r)
.

(4.9)

On the other hand, contrary to the supergravity case, the transformations (3.13) do not

leave the backgrounds invariant. Rather, they give two new generalised supergravity so-

lutions. It is not clear if these correspond to deformations based on Drinfel’d Jimbo R-

matrices.

Relating the two backgrounds by TsT transformations. Interestingly, one can

also go from one background to the other by doing TsT transformations on the torus that

depend on the deformation parameters. This is a new feature that was not true for the

supergravity backgrounds in section 3. Indeed, these had different dilatons and since a

TsT transformation on the torus does not affect the dilaton, it cannot be sufficient to go

from one background to the other.

Starting from (4.6) and dualising along one torus direction, say x1, and then doing a

metric and B-field preserving SO(2) rotation

x1 = cos θy1 − sin θy2 , x2 = sin θy1 + cos θy2 , θ = arcsin
κ−√

1 + κ2
−

,
(4.10)
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and finally T-dualising in the new coordinate y1 gives the intermediate background14

F1 = N F̂1 , F3 = N F̂3 , F5 = N(1 + ?)F̂1 ∧ J2 ∧ J2 ,

N = 2

√
(1 + κ2

−)(1 + κ2
+)√

F (ρ)F̃ (r)
.

(4.11)

The κ− = 0 point of (4.6) is rotated by θ = 0 and is thus unaffected by this TsT trans-

formation. Indeed, (4.11) coincides with (4.6) for κ− = 0. Starting from the intermediate

background (4.11) and doing the same steps, but now with rotation angle

θ = arcsin
κ+√

1 + κ2
+

,
(4.12)

we arrive at the background (4.9) associated to the second R-matrix R′0 = (R0,−R′0). This

second TsT now leaves the κ+ = 0 point of (4.11) invariant and indeed (4.11) and (4.9)

coincide when κ+ = 0. The intermediary background (4.11) thus interpolates between the

κ− = 0 point of (4.6) and the κ+ = 0 point of (4.9).

4.2 Dynkin diagram (⊗− −⊗)2

Let us now consider R-matrices associated with the Dynkin diagram

⊗−#−⊗ ⊗−#−⊗ , (4.13)

so when constructing R = (RL, RR), both RL and RR are R-matrices associated to the

Dynkin diagram ⊗ − # − ⊗ of psu(1, 1|2). Again, we fix the action on the su(1, 1) and

su(2) algebras to be the same as for the reference R-matrix R0 and hence we are left with

two such R-matrices, namely

P3 =

(
1 2 3 4

1 3 4 2

)
, RP3(M)ij = −iεijMij , ε =


0 +1 +1 +1

−1 0 −1 −1

−1 +1 0 +1

−1 +1 −1 0

 ,

P4 =

(
1 2 3 4

3 1 2 4

)
, RP4(M)ij = −iεijMij , ε =


0 +1 −1 +1

−1 0 −1 +1

+1 +1 0 +1

−1 −1 −1 0

 .

(4.14)

For RP1 the central bosonic node corresponds to an element of su(2), while for RP2 the

central bosonic node corresponds to an element of su(1, 1). Constructing the backgrounds

corresponding to the two choices

R3 = diag(RP3 ,−RP3) , R4 = diag(RP3 ,−RP4) , (4.15)

14For notational convenience we identify the x and y coordinates. In particular the Kähler form on the

torus is J2 = dy1 ∧ dy2 − dx3 ∧ dx4 = dx1 ∧ dx2 − dx3 ∧ dx4.
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for the first R-matrix R3 we find that the R-R fluxes are the same as (4.11) up to a change

of sign in t and ψ and thus is also a generalised supergravity background. Furthermore,

it is invariant under the transformations (3.14). It is not, however, invariant under the

redefinitions of (3.13), which generate a new generalised supergravity solution. The latter

is nothing else than the background associated to the R-matrix R4.

Figure 2 is a diagrammatic representation of the relations between the various gener-

alised supergravity backgrounds that we have constructed.

Comparison with the literature. A proposal for the background of the two-parameter

deformed AdS3×S3×T4 superstring has been derived in [58] by using a descent procedure

involving the Page forms. It solves the generalised supergravity equations of motion and,

up to signs, agrees with (4.11). We thus conclude that the background of [58] corresponds

to the choice (4.13).

4.3 Limits

The generalised supergravity backgrounds associated to the Dynkin diagrams (4.2)

and (4.13) are all related to the background (4.11), either via field redefinitions and/or

T-dualities on the torus (see figure 2). Therefore we shall only discuss limits of the back-

ground (4.11) here. First of all, implementing the transformations (3.18) and taking the

limit L → ∞ we find the same pp-wave background as for the two supergravity solu-

tions. Second, the Pohlmeyer limit (3.20) is identical to (3.21). Therefore in these two

limits the generalised supergravity background actually becomes a standard supergrav-

ity background. On the other hand, it remains a generalised supergravity background in

the maximal deformation limit and in particular does not match the mirror model. This

behaviour is reminiscent of the η-deformed AdS2 × S2 × T6 superstring [33].

4.4 Different Dynkin diagrams in the two copies

Let us finish this section by commenting on deformations constructed out of R-matrices as-

sociated to different Dynkin diagrams in the two copies of the psu(1, 1|2) superalgebra. We

take R = diag(RL, RR) with RL associated to the Dynkin diagram DL and RR associated

to the Dynkin diagram DR.

When the deformation parameter in the right copy is set to zero, ηR = 0 or equivalently

κ+ = κ− then the choice of R-matrix in the right copy is not relevant since it is multiplied

by ηR = 0 in the action. Therefore at κ+ = κ− all R-matrices of the form R = diag(RL,−)

(the symbol − denoting any R-matrix) will give rise to the same background. On the other

hand, when the deformation parameter in the left copy ηL = 0, or equivalently κ+ = −κ−,

then it is the choice of R-matrix in the left copy that does not play any role. Hence at

κ+ = −κ− all R-matrices of the form R = diag(−, RR) give the same background.

Let us illustrate this for the R-matrices associated to the Dynkin diagram

#−⊗−# ⊗−#−⊗ . (4.16)

The corresponding background will interpolate between the point κ+ = κ− of (4.6) or (4.9)

(depending on the specific choice of Cartan-Weyl basis in the left copy of the algebra) and
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R0

R ′0

R3R4

•κ− = 0

•κ+ = 0

•κ− = 0

•κ+ = 0

TsT depending on κ−

TsT depending on κ+

TsT depending on κ−

TsT depending on κ+

•
κ+ = 0

•
κ− = 0

•
κ+ = 0

•
κ− = 0

Figure 2. A window into the space of generalised supergravity backgrounds for the two-parameter

deformation of the AdS3 × S3 × T4 superstring. The two vertical lines in the middle represent the

two backgrounds based on R-matrices associated to the Dynkin diagram (⊗−#−⊗)2, namely R3

and R4. The top right and bottom right tilted lines correspond to the two backgrounds based on

R-matrices associated to the Dynkin diagram (#−⊗−#)2, namely R0 and R′0. The transforma-

tion (3.13) (respectively (3.14)) is represented by the blue (respectively red) arrow. (3.14) leaves

the two backgrounds corresponding to R3 and R4 invariant and swaps the two backgrounds cor-

responding to R0 and R′0. The transformation (3.13) swaps the backgrounds corresponding to R3

and R4 but does not leave the backgrounds associated to R0 or R′0 invariant. Rather it generates

new generalised supergravity backgrounds (the two tilted lines on the left). It is not clear if these

also correspond to particular Drinfel’d Jimbo R-matrices. Of course, since they are obtained from

the R0 and R′0 backgrounds by a field redefinition they are also related to the R4 background by

TsT transformations on the torus.

the point κ+ = −κ− of (4.11) or (4.11) followed by the field redefinition (3.13) (depending

on the specific choice of Cartan-Weyl basis in the right copy of the algebra).

Also R-matrices associated to the Dynkin diagrams

#−⊗−# ⊗−⊗−⊗ (4.17)

or

⊗−#−⊗ ⊗−⊗−⊗ (4.18)

are of this type. The novelty here is that the R-matrix is non-unimodular in one copy of the

psu(1, 1|2) superalgra, but unimodular in the other copy. Let us focus on the first Dynkin

diagram (4.17), the analysis being similar for the other choice. At the point κ+ = κ−,

depending on the specific choice of Cartan-Weyl basis in the left copy of the algebra,

the background will then coincide either with (4.6) or (4.9). In particular, it will still be a

generalised supergravity background. On the other hand, when κ+ = −κ−, the background
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will then become the supergravity solution (3.11) or (3.12). This provides an example of a

two-parameter integrable deformation that interpolates between a generalised supergravity

and a standard supergravity solution.

5 Conclusions

In this paper we proposed an explicit formula for the R-R fluxes of the two-parameter

deformation of the Metsaev-Tseytlin action for supercosets with isometry group of the

form Ĝ× Ĝ. We then applied this result to the AdS3×S3×T4 superstring and constructed

two supergravity backgrounds analogous to the a = 0 and a = 1 solutions of [45]. The

two solutions correspond to two different choices of Drinfel’d Jimbo R-matrices satisfying

the non-split modified classical Yang-Baxter equation on the psu(1, 1|2)L ⊕ psu(1, 1|2)R
superisometry algebra. The two R-matrices both correspond to the fully fermionic Dynkin

diagram

⊗−⊗−⊗ ⊗−⊗−⊗ , (5.1)

and satisfy the unimodularity property of [32]. They differ, however, in the specific choice

of Cartan-Weyl basis used in the two copies of the psu(1, 1|2) superalgebra.

The two solutions have the same metric and B-field, but different dilatons and three-

form and five-form R-R fluxes. This provides further new examples of different embeddings

of a given bosonic background into supergravity. The two solutions are related by a complex

field redefinition and swapping of the deformation parameters. It would be interesting

to understand if they can also be related by a set of target space dualities, for instance

fermionic T-dualities. Such a transformation should modify the dilaton but leave the metric

invariant.

Let us stress that the existence of two supergravity backgrounds is not particular to

the two-parameter deformation — this property is still present after setting ηL = ηR, which

corresponds to the usual one-parameter η-deformed AdS3× S3×T4 superstring. Studying

limits of the two η-deformed AdS3×S3×T4 supergravity backgrounds we found that they

have different Pohlmeyer and maximal deformation limits. Taking the Pohlmeyer limit

of one of the solutions gives a pp-wave supergravity background whose light-cone gauge-

fixing gives the Pohlmeyer reduced theory of the AdS3×S3×T4 superstring. On the other

hand, the other background is not finite in that limit. For the maximal deformation limit,

both backgrounds are finite but only the latter solution gives the mirror AdS3 × S3 × T4

background. Motivated by this observation we constructed its mirror theory and showed

that the mirror duality previously observed in [35] also extends to the full supergravity

background in that case.

Another interesting limit of the supergravity backgrounds is the type of homoge-

neous limit considered in [59, 60]. By taking particular singular boosts of the η-deformed

backgrounds one can construct homogeneous Yang-Baxter deformations [61], based on R-

matrices solving the classical Yang-Baxter equation. This boosting procedure has recently

been applied to find new homogeneous R-matrices involving odd generators and construct

unimodular jordanian R-matrices for psu(2, 2|4) [60]. It would be interesting to explore
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this type of limit for the two inhomogeneous R-matrices and associated supergravity back-

ground considered in this paper.

To complete our study we also explicitly constructed generalised supergravity back-

grounds associated to the Dynkin diagrams

#−⊗−# #−⊗−# , (5.2)

and

⊗−#−⊗ ⊗−#−⊗ . (5.3)

The various generalised supergravity backgrounds are all related by (complex) field redefi-

nitions and/or T-dualities on the torus. Moreover, we were able to make the link with the

results of [58] obtained by a descent procedure involving the page forms, which appear to

correspond to the choice (5.3). It remains to be understood why this is the case.

Can these results be used to answer some of the questions raised in the context of

η-deformations of other-dimensional spaces? In the AdS2 × S2 × T6 case, a family of

supergravity solutions with parameter a interpolating between 0 and 1 has been constructed

in [45]. The background at a = 0 has explicit mirror duality. However, in [33] only

one supergravity background of the η-deformed AdS2 × S2 × T6 superstring was found,

matching the a = 1 solution. It remains unclear how the other solutions a ∈ [0, 1) can

be generated and if there exists an R-matrix giving rise to the interpolating background,

within or outside the realm of Drinfel’d Jimbo R-matrices. To gain more insight it might

be interesting to study consistent truncations of the different AdS3× S3×T4 backgrounds

down to 4 dimensions. For the η-deformed AdS5 × S5 superstring, finding a supergravity

background with explicit mirror duality remains an important open question.

Furthermore, the fact that the perturbative worldsheet S-matrix obtained in [26] for

the AdS5×S5 superstring does not match the expansion of the exact light-cone gauge fixed

S-matrix of [38] when including fermions remains a puzzling problem. Focussing on AdS3

one could calculate the light-cone gauge fixed S-matrices describing scattering above BMN

strings [51] for the two supergravity solutions and compare them to each other. Deformed

R-matrices have been constructed in [43] but the overall dressing phases obeying unitary,

braiding unitary and crossing symmetry remains to be found.

The presence of a naked singularity for some value of ρ due to the non-compactness

of the original AdS space is also a long standing problem in the context of η-deformations.

While this singularity cannot be avoided for AdS2 and AdS5, the case of AdS3 is special

and offers the intriguing possibility of obtaining a smooth deformation. Indeed, when one

of the deformation parameters vanishes, either ηL = 0 or ηR = 0, then the curvature

singularity disappears. The metric becomes the one of a warped AdS3 and squashed S3

metric, together with the flat T4 metric. Moreover, half of the supersymmetries of the

original theory are preserved. The two supergravity backgrounds (3.11) and (3.12) coincide,

with constant dilaton. Backgrounds containing warped AdS3 or squashed S3 geometries

are related to AdS3×S3 via T-duality [62]. It would be interesting to analyse what happens

upon including fermions.

Another direction concerns the relation of the two-parameter deformation to other

known integrable deformations. Indeed, the η-deformation is a Poisson-Lie symmetric
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model [63, 64] and it has been conjectured in [65] that its Poisson-Lie dual in the full su-

perisometry algebra is related via analytic continuation to the λ model of [66]. The latter

is yet another instance of an integrable q-deformation, but with |q| = 1. In contrast to the

η-deformation, the λ-deformation always defines a critical string theory [32]. Embeddings

of the λ-deformed AdS3× S3 metric into supergravity have been proposed in [67] and [68].

It is an interesting open question to find the Poisson-Lie duals of the two-parameter defor-

mations considered in this paper and compare them to the multi-parameter λ-deformation

constructed in [69].

Last but not least, for supercosets with superisometry algebra g ⊕ g a Wess-Zumino-

Witten term can be added to the action, corresponding to the introduction of NS-NS

flux [4]. Combining the WZW term with the two-parameter deformation, one can construct

an integrable three-parameter deformation of the semi-symmetric space sigma model [70].

It would be interesting to obtain a closed formula for the NS-NS and R-R fluxes and see if

unimodular R-matrices also give rise to Weyl-invariant theories in this more general setting.

Starting from the undeformed pure NS-NS background and requiring that the deformation

does not turn on R-R fluxes, one could then investigate the possibility of finding marginal

deformations of the WZW point (see [50] for related work in the context of homogeneous

Yang-Baxter deformations). This is particularly interesting because these new pure NS-NS

backgrounds could then be analysed with integrability and CFT techniques, which have

recently been used to investigate the dual CFTs of AdS3 superstrings with pure NS-NS

fluxes [71–74]. This would then open the door to the exciting possibility of finding CFT

duals of the η-deformed theories.
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A Conventions

A.1 Gamma matrices

Pauli matrices. The gamma matrices are constructed out of the 2 × 2 Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.1)
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Gamma matrices. We choose the following basis for the ten 32×32 dimensional gamma

matrices,

Γ 0 = −iσ1 ⊗ 1⊗ 1⊗ σ3 ⊗ 1 , Γ 1 = σ1 ⊗ σ3 ⊗ σ2 ⊗ σ2 ⊗ 1 ,

Γ 2 = σ1 ⊗ 1⊗ 1⊗ σ1 ⊗ 1 , Γ 3 = −σ2 ⊗ 1⊗ 1⊗ 1⊗ σ3 ,

Γ 4 = σ2 ⊗ 1⊗ σ2 ⊗ 1⊗ σ2 , Γ 5 = σ2 ⊗ 1⊗ 1⊗ 1⊗ σ1 ,

Γ 6 = σ1 ⊗ σ2 ⊗ 1⊗ σ2 ⊗ 1 , Γ 7 = σ1 ⊗ σ1 ⊗ σ2 ⊗ σ2 ⊗ 1

Γ 8 = σ2 ⊗ σ2 ⊗ σ1 ⊗ 1⊗ σ2 , Γ 9 = σ2 ⊗ σ2 ⊗ σ3 ⊗ 1⊗ σ2 .

(A.2)

They satisfy the Clifford algebra {Γ a, Γ b} = 2ηab with

Γ 11 = Γ 0Γ 1 · · ·Γ 9 = σ3 ⊗ 116 , C = iσ2 ⊗ 116 , (CΓ a)t = CΓ a . (A.3)

The ten 16× 16 chiral blocks γa are then identified using

Γ a =

(
0 (γa)αβ

(γa)αβ 0

)
. (A.4)

and satisfy γaαβ(γb)βγ + γbαβ(γa)βγ = 2ηabδγα. The projector

Proj =
1

2
(116 + γ6789) = diag(1, 0)⊗ 18 , (A.5)

projects onto a 8-dimensional spinor subspace and thus can be used to effectively make

these matrices 8× 8 with spinor index α = 1, . . . , 8. In particular, we have

ProjγaProj→ γ̄a , a = 0, . . . , 5 ,

ProjγaProj→ 0 , a = 6, 7, 8, 9 ,
(A.6)

where the arrow represents the projection onto 8 × 8 matrices.

A.2 Generators of psu(1, 1|2)

The real form su(1, 1|2) is given by those elements of the complexified superalgebra sl(2|2;C)

satisfying

M †H +HM = 0 , H =

(
σ3 0

0 12

)
. (A.7)

The superalgebra su(1, 1|2) contains the 1-dimensional ideal u(1) generated by i14. The

quotient of su(1, 1|2) over this u(1) subalgebra defines the superalgebra psu(1, 1|2).

Bosonic generators. Our choice for the three su(1, 1) generators is

L1 =
1

2

(
σ1 0

0 0

)
, L2 =

1

2

(
σ2 0

0 0

)
, L3 =

1

2

(
iσ3 0

0 0

)
, (A.8)

and for the three su(2) generators is

J1 =
1

2

(
0 0

0 iσ1

)
, J2 =

1

2

(
0 0

0 −iσ2

)
, J3 =

1

2

(
0 0

0 iσ3

)
. (A.9)
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Fermionic generators. The psu(1, 1|2) superalgebra also contains eight fermionic gen-

erators QIα̌α̂, where I = 1, 2, α̌ = 1, 2 is the su(1, 1) spinor index and α̂ = 1, 2 is the su(2)

spinor index. We choose them to be

Q1α̌α̂ =
1√
2
i(α̌−α̂)

(
0 Nα̌α̂

iσ3(Nα̌α̂)tσ3 0

)
,

Q2α̌α̂ =
1√
2
i(α̌−α̂)

(
0 iNα̌α̂

σ3(Nα̌α̂)tσ3 0

)
.

(A.10)

The indices I, α̌ and α̂ can be gathered into a single index, α = 1, . . . , 8, and we define the

generators Qα as

Q1 = Q111 , Q2 = Q112 , Q3 = Q121 , Q4 = Q122 ,

Q5 = Q211 , Q6 = Q212 , Q7 = Q221 , Q8 = Q222 .
(A.11)

While these generators themselves do not satisfy the reality condition (A.7), elements of

the Grassmann envelope θαQα will do so if one imposes suitable reality conditions on the

fermions θα.

A.3 Two copies of psu(1, 1|2)

For elements in the Lie algebra psu(1, 1|2)L ⊕ psu(1, 1|2)R we use the standard block-

diagonal matrix realisation X = diag(XL, XR) with XL ∈ psu(1, 1|2)L and XR ∈
psu(1, 1|2)R. Furthermore, the generators are chosen so that they belong to a specific

Z4 grading as defined in (2.3). The elements of grade 0 generate the su(1, 1) ⊕ su(2)

subalgebra and are

J01 = diag(L2, L2) , J02 = − diag(L1, L1) , J12 = − diag(L3, L3) ,

J34 = diag(J2, J2) , J35 = − diag(J1, J1) , J45 = diag(J3, J3) .
(A.12)

The ones of grade 2 are given by

P0 = diag(L3,−L3) , P1 = diag(L1,−L1) , P2 = diag(L2,−L2) ,

P3 = diag(J3,−J3) , P4 = diag(J1,−J1) , P5 = diag(J2,−J2) .
(A.13)

Finally, the fermionic generators of grade 1 are denoted by Q1α, while the ones of grade 3

are denotes by Q2α. They are defined through

Q1α = diag(Qα,−iQα) , Q2α = diag(Qα, iQα) . (A.14)

Our choice of generators matches the conventions of [32], in particular we have the anti-

commutation relations

{Q1α,Q1β} = {Q2α,Q2β} = iγ̄aαβPa . (A.15)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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