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1 Introduction

Supersymmetry is a leading candidate for physics beyond the Standard Model. These the-

ories enjoy a holomorphic structure that greatly constraints their infrared (IR) dynamics,

which is particularly helpful when they become strongly coupled. However, we still do not

know whether nature will make use of supersymmetry or some other class of theories at

energies above the TeV scale. Given the set of the renormalizable and ultraviolet (UV)

complete gauge theories, it would be very desirable to have a systematic study of important

subsets of these theories and their strong dynamics. For this reason, any technique that

can shed light on the strong dynamics beyond supersymmetry is greatly appreciated.

A powerful tool that provides a handle on understanding gauge theories beyond per-

turbation theory is ’t Hooft anomalies [1]. Given a global symmetry G, we may try to gauge

it by turning on a background field of G. The obstruction to gauging G is called a ’t Hooft

anomaly. The anomaly is a renormalization group invariant, and therefore, it encodes in-

formation about the theory at all scales. The matching of ’t Hooft anomalies in the IR put

sever constraints on the possible realizations of its global symmetries. Recently, it has been

realized that in addition to the anomalies of the 0-form symmetries, which act on local fields,

one may turn on background gauge fields of higher-form symmetries [2]. The obstruction

to gauging these symmetries, hence higher-form ’t Hooft anomalies [3], work as additional

constraints on the possible realizations of the IR dynamics, see [4–21] for recent advances.

Another approach that has gained momentum over the past decade is to compactify a

strongly coupled theory on a circle S1L. We say that the theory lives on R
3×S

1
L. If we take

the circle size to be small enough, much smaller than the inverse strong-coupling scale, add

deformations, and/or give fermions twisted boundary conditions on S
1
L, then the theory en-

ters its weakly coupled regime and becomes amenable to semi-classical analysis. Now, one

can use analytical tools to study the vacuum and sort out the IR dynamics. The twisted

boundary conditions turn the thermal partition function into a graded-state sum and lead
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to a cancelation among the excited states, retaining mainly the ground state of the system.

In other words, the graded partition function quantum distills the ground state [22]. The

caveat, however, is that there is a possibility that the theory exhibits a phase transition on

the way of compactification from R
4 to R

3 × S
1
L. How to prevent the phase transition and

allow for an adiabatic continuity as we change the circle size is still an open question. Nev-

ertheless, this procedure is invaluable to making a few aspects of strongly coupled theories

manifest in a weakly coupled regime. This includes, but not limited to, studies of the con-

finement mechanism, chiral symmetry breaking, string spectrum, entanglement entropy,

and many other phenomena, see [23–34] for a non-comprehnsive list of applications.

There has been only a few studies, see [20, 22, 35–37], that attempted to combine both

methods, ’t Hooft anomalies and compactification, to maximize our learning about strongly

coupled theories. The purpose of this work is to further examine the interplay between

both methods and use them to shed light on gauge theories endowed with fermions in

the self-conjugate representations. These are real representations of the gauge group, and

hence, they are free from gauge anomalies for any number of fermions. Given a gauge group

SU(N), a representation is said to be self-conjugate if it satisfies1 (a1, a2, . . . , aN−2, aN−1) =

(aN−1, aN−2, . . . , a2, a1), i.e., is equal to its conjugate representation. Famous examples in-

clude the adjoint representation and the N -index antisymmetric representation of SU(2N).

In this paper we study SU(6) Yang-Mills theory with fermions in the adjoint and 3-

index antisymmetric mixed-representation. The reason for studying this theory is multifold.

First, both representations can be used in model building beyond the Standard Model. For

example, a relatively large number of fermions in both representations can push the theory

towards its conformal/near-conformal window, which can have applications that address

the dynamical electroweak symmetry breaking, see e.g. [39]. Second, the fermion bilinear in

the 3-index antisymmetric representation vanishes identically. The absence of a mass term

puts this theory on equal footing with chiral gauge theories. The latter have attracted a lot

of attention because their IR dynamics can be richer than vector-like theories, see [40] for

a review and [41, 42] for recent progress. Studying SU(6) Yang-Mills theory with fermions

in the 3-index antisymmetric representation, in turn, may enlighten us about the vacuum

structure in their cousins, chiral gauge theories. Last but not least, there is a general

consensus that one needs to learn from many examples before a complete picture of the

adiabatic continuity on the circle can emerge. The fact that the theory under study has a

plethora of ’t Hooft anomalies, both 0- and 1-form anomalies, makes it a rich playground

to examine the connection between the spectrum on R
3×S

1
L and on R

4 and check for signs

of adiabatic continuity in the decompactification limit.

The theory on R
3×S

1
L will be solved via semi-classical techniques. In the absence of ad-

joint fermions we find that the discrete chiral symmetry is broken, the vacuum is 3-fold de-

generate, the IR spectrum is fully gapped, and the theory confines the fundamental electric

probes. Adding adjoints does not change the vacuum degeneracy or the confinement of the

electric charges. However, it introduces massless excitations to the theory: one bosonic and

1Here, we are using the Dynkin indices to label the irreducible representations. See appendices A-E

of [38] for the group theory convention and normalization used in this work.
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one fermionic degree of freedom.2 The latter transforms in the fundamental representation

of the flavor group of the adjoint fermions. The observation that adding adjoint fermions

does not alter the number of the ground states is ultimately tied to a mixed ’t Hooft anomaly

between the 1-form Z
(1)
3 center and the 0-form discrete chiral symmetries, as was argued

before in [43]. The saturation of this anomaly in the IR demands a breaking pattern of the

discrete symmetries that yields 3 degenerate ground states. Continuous chiral symmetries,

however, are intact on the small circle, thanks to the weak coupling nature of the theory.

The story on R
4 is more involved and it takes different twists depending on the number

of flavors in both representations. A large number of fermions will push the theory inside its

conformal window: the theory flows to a fixed point in the IR. The situation here resembles

QCD(adj) with a large number of adjoint flavors. Definitely, because the dimension of

the 3-index antisymmetric representation is smaller than the dimension of the adjoint

representation, one can make a room inside the conformal window for a larger number

of fermions in the former representation. For a smaller number of fermions, the theory

has to break its continuous chiral symmetries.3 Otherwise, massless composite fermions

will populate the vacuum. The idea is that there are various non-trivial 0-form ’t Hooft

anomalies in the UV that have to be matched in the IR by massless excitations: Goldstone

bosons or composite fermions.4 Which of the two options will be realized is a dynamics

question that ultimately can only be answered in an experimental (lattice) setup. In

both situations, the Z
(1)
3 center symmetry is intact and the Wilson loops obey the area

law. In addition, matching the 1-form/0-form mixed ’t Hooft anomaly requires the 3-fold

degeneracy of the ground state, exactly as in the theory on circle, or that there is an IR

topological quantum field theory (TQFT) that matches the anomaly. In this work we

address all these issues and give a detailed description of the different scenarios.

If the theory on R
4 flows to a conformal field theory (CFT), then strictly speaking its

spectrum is different from the one on R
3 × S

1
L. However, if the mass gap on R

3 × S
1
L is

a decreasing function of the circle size L and always stays lighter than the W-bosons for

all values of L, then the theory is under control for all values of 0 < L < ∞. We find no

evidence that this is the case for any number of adjoint or 3-index antisymmetric flavors.5

With the aid of the 2-loop β-function, we employ ’t Hooft anomaly matching conditions

to give a strong evidence that Yang-Mills theory with a single fermion in the 3-index anti-

symmetric representation is adiabatically continuous on R
3 × S

1
L for all values of L, i.e., it

does not experience a phase transition as we change the circle size. We also show that a the-

ory with 2 or more fermions in the 3-index antisymmetric representation has to experience

a phase transition in the decompactification limit. There is also evidence that theories with

2Though, a single adjoint fermion acquires a mass from the monopole operators. See the bulk of the

paper for details.
3It is instructive to mention that the absence of a mass term for the 3-index antisymmetric fermions

does not imply the absence of condensates. Indeed, the theory can still break its chiral symmetry via

higher-order operators.
4Matching by a conformal field theory is the third, trivial, possibility.
5It is important to emphasize that our approach in determining the conformal window is different from

the works [44, 45], where the main idea was to employ the mass gap for gauge fluctuations as an invariant

characterization of conformality versus confinement.
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a single adjoint and a single 3-index antisymmetric fermions do not experience a phase tran-

sition in the decompactification limit. Adding more adjoint fermions to the story makes it

more complicated and no strong conclusions can be reached. However, the need for a large

number of composite fermions in the IR to match all the anomalies suggest that the theory

might need to break its continuous symmetries, otherwise the theory should flow to a CFT.

This paper is organized as follows. In section 2 we formulate our theory, enumerate

its 1-form and 0-form symmetries, and use the 2-loop β-function to speculate about its IR

phases on R
4. In section 3 we compactify the theory on a small circle and study it using

the semi-classical techniques: we analyze the monopoles, their fermion zero modes, and

topological molecules. We show that the proliferation of the topological molecules give rise

to a mass gap: the theory confines the electric charges. We also study the IR spectrum and

vacuum of the theory for various number of adjoint and 3-index antisymmetric fermions

and show that the latter is always 3-fold degenerate. In section 4 we use both the 1-form

and 0-form ’t Hooft anomalies to put constraints on the IR spectrum on R
4 for various

number of fermions, and show that strong conclusions can be reached in some cases. We

conclude our work with a brief outlook in section 5.

2 Theory and formulation

We consider SU(N = 6) Yang-Mills theory with fermions in the adjoint (G) and 3-index

antisymmetric (R) representations. We denote the adjoint fermions by χ, while fermions

in R are denoted by λ. The Lagrangian of the theory reads

L = −
1

2g2
trF

[
FMNFMN

]
+ itrF

[
χ̄pσ̄

M∂Mχp
]
+ itrF

[
λ̄qσ̄

M∂Mλq
]
, (2.1)

where M,N = 0, 1, 2, 3 are the spacetime indices and p, q are the flavor indices: p =

1, 2, . . . , nG, q = 1, 2, . . . , nR. Throughout this work we use the normalization trF
[
T aT b

]
=

δab, where {T a} are the Lie-algebra generators. This amounts to normalizing the simple

and affine roots6 as αa · αa = 2 for all a = 0, 2, . . . , 5. We will also use the latin letters

i, j, k, . . . , etc. ∈ {1, 2, . . . , N} to denote the color indices of SU(6). In particular, the

3-index antisymmetric fermion is denoted by λi1i2i3 , where the antisymmetrization of the

indices is implicitly understood. Also, the adjoint fermion has the index structure χj
i .

Since both G and R are self-conjugate (real) representations, the theory does not suffer

from gauge anomalies for all values of nG and nR.

Symmetries. To further study this theory, we need to find its 0- and 1-form global sym-

metries that survive the quantum corrections. We can directly read the 1-form symmetry

by compactifying the theory on a circle and examining the quantum generated effective

6There are N − 1 simple roots in SU(N) group: αa, a = 1, 2, . . . , N − 1, while the affine roots α0 is

given by

α0 = −

N−1
∑

a=1

αa . (2.2)
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potential. Doing so, we will also be ready to use the same potential to study the theory

on a small circle using semi-classical techniques.7

To this end, we compactify one of the spacial directions on a circle S1L of circumference

L and give both sets of fermions periodic boundary conditions. The compactification results

in a tower of massive Kaluza-Klein excitations of both the gauge field and fermions. Upon

integrating out this tower, a potential of the holonomy, the gauge field component along

the compact direction, is generated. Let us take the circle along the x3-direction. Also, we

can always take the holonomy along the Cartan generators in the color space.8 We define

the dimenstionless holonomy Φ as Φ ≡ LA3, where the boldface letters denote quantities

in the Cartan directions.9 Then, the potential V (Φ) is given by (see [38] for details):

V (Φ) =
2

π2L3

∞∑

p=1

Re {nRtrR [Ωp] + (nG − 1)trG [Ωp]}

p4
, (2.3)

where Ω ≡ eiΦ·H is the Polyakov’s loops that wraps S1L and H are the Cartan generators.

One can further simplify this expression using the Frobenius formula [38, 46, 47], which

gives the G and R traces in terms of the fundamental trace:

trG [Ωp] = |trF [Ωp] |2 − 1 ,

trR [Ωp] = −
1

2
trF [Ωp] trF

[
Ω2p

]
+

1

3
trF

[
Ω3p

]
+

1

6
(trF [Ωp])3 . (2.4)

From (2.4) one can immediately see that V (Φ) is invariant under the Z3 discrete symmetry

transformation Ω → ei
2πk
3 Ω, where k = 0, 1, 2. Therefore, we conclude that the theory in

hand has a 1-form Z
(1)
3 center symmetry.

As a side note, the reader should refrain from trusting (2.3) for all values of L. As we

will see in section 3, this expression is reliable only in the regime LΛ ≪ 1, where Λ is the

strong coupling scale of the theory. So far, the form of V (Φ) was solely used to read the

center symmetry of the theory in a lucid way.

In addition to the 1-form Z
(1)
3 symmetry, the theory enjoys a plethora of 0-form sym-

metries. The full classical symmetry of the theory is SU(nG)× SU(nR)× UG(1)× UR(1).

However, only a subgroup of UG(1)×UR(1) is good on the quantum level. In order to deter-

mine the symmetries that survive the quantum corrections, we examine the ’t Hooft vertex

of a BelavinPolyakov-Schwarz-Tyupkin (BPST) instanton under the symmetry transfor-

mations. Schematically, the ’t Hooft vertex is given by10

I = e−SI (χχ)
nGT (G)

2 (λλ)
nRT (R)

2 , (2.5)

where SI = 8π2

g2
is the BPST instanton action and T (R) = 6, T (G) = 12 are the trace op-

erators. We take the fermions to transform as χ → χeiα , λ → λeiβ , under both UG(1) and

7In section 4 we give a shortcut method to directly read the center symmetry of a general theory with

fermions in mixed representations.
8This can be achieved via a global SU(6) transformation.
9The Cartan space of SU(N) has dimension N − 1.

10The factors (χχ)
nGT (G)

2 and (λλ)
nRT (R)

2 are the fermion zero modes that dress the BPST instanton.
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UR(1), respectively. Then, we find that the BPST vertex is invariant under the subgroup

UG−R(1) ⊂ UG(1)× UR(1), which acts as

χ → einRαχ , λ → e−i2nGαλ . (2.6)

Upon further inspection, one can show that the vertex is also invariant under the two

independent discrete symmetry transformations:

χ → eiγ1χ , λ → eiγ2λ , (2.7)

where

γ1 =
2πk1
12nG

, k1 = 1, 2, . . . , 12nG , γ2 =
2πk2
6nR

k2 = 1, 2, . . . , 6nR . (2.8)

Therefore, the theory is invariant under the additional discrete groups
(
Z
G
12nG

⊂ UG(1)
)

×
(
Z
R
6nR

⊂ UR(1)
)
, which work on G and R. Collecting everything and modding out the

redundant groups, we find that the full symmetry of the theory is

SU(nG)× Z
G
12nG

ZnG

×
SU(nR)× Z

R
6nR

ZnR

× UG−R(1)× Z
(1)
3 . (2.9)

Our next task is to examine the realization of the symmetries in the IR. To this end, we

first need to study the β-function, which encodes important information about the theory.

The 2-loop β-function and IR phase structure. The phase structure of the theory

on R
4 can be partially envisaged by studying the fate of the various symmetries under the

renormalization group flow of the coupling constant. The two-loop β function of the theory

is given by [39, 48]

β(g) = −β0
g3

(4π)2
− β1

g5

(4π)4
,

β0 =
11

6
C2(G)−

1

3
T (G)nG −

1

3
T (R)nR ,

β1 =
34

12
C2
2 (G)−

5

6
nGC2(G)T (G)−

nG

2
C2(G)T (G)

−
5

6
nRC2(G)T (R)−

nR

2
C2(R)T (R) , (2.10)

where C2(R) = 21
2 , C2(G) = 12 are the Casimir operators. The condition that the theory

remains asymptotically free, i.e., β0 > 0, is given by11

nG +
C2(R)d(R)

420
nR <

11

2
, (2.11)

where d(R) = 20, d(G) = 35 are the dimensions of the representations. In table 1 we list

the numbers of adjoint nG and 3-index antisymmetric nR fermions that render the theory

asymptotically free. The theory develops fixed points (a two-loop effect) for a certain range

of nG and nR. The coupling constant at the fixed point is given by

α∗ ≡
g2∗
4π

= −4π
β0
β1

= −
4π (22− 4nG − 2nR)

408− 192nG − 183
2 nR

(2.12)

and its value for different number of adjoint and R flavors is listed in table 1.

11We made use of the identity T (R)d(G) = C2(R)d(R).
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nG nR α∗ n∗
R

Semi-classics without DTD?

0 [0, 10] nR ∈ [5, 10] → α∗ ∈ [3.04, 0.05] 5 for nR = {0}

1 [0, 8] nR ∈ [3, 8] → α∗ ∈ [2.60, 0.05] 6.42 for nR = {0}

2 [0, 6] nR ∈ [1, 6] → α∗ ∈ [2.23, 0.05] 4.38 for nR = {0}

3 [0, 4] nR ∈ [0, 4] → α∗ ∈ [0.75, 0.05] 2.34 for nR = {1}

4 [0, 2] nR ∈ [0, 2] → α∗ ∈ [0.21, 0.05] 0.31 for nR = {1, 2}

5 {0} nR = {0} → α∗ = 0.05 for nR = {0}

Table 1. For a given number of adjoint flavors nG (the first column) we list the number of R

flavors nR (the second column) that guarantee that the theory stays asymptotically free. We also

list the number of R flavors that allow the theory to have a fixed point (third column) and give

the value range of the corresponding coupling constant α∗ ≡ g2
∗

4π
at the fixed point. In the fourth

column we list the critical number of R fermions, above which the theory flows to a fixed point

in the IR. For a later convenience, in the last column we list the number of R flavors that allow

the theory to enter the semi-classical regime upon compactifying on a small circle without adding

a double-trace deformation (DTD).

Our task now is to determine the phase of the theory deep in the IR: whether it is

confining (with or without chiral symmetry breaking) or inside the conformal window. For

simplicity, we first assume that nR = 0. Then, one needs to compare α∗ to the value of the

coupling constant that triggers chiral symmetry breaking αc, which for adjoint fermions is

given by

αc =
2π

3C2(G)
. (2.13)

This is the value of the coupling constant (in the ladder approximation, see [49]) for which

the anomalous dimension of the adjoint quark mass operator becomes unity. As we flow

from high to low energies, the coupling constant keeps growing as long as β0 > 0. If

we reach αc before hitting a fixed point, then chiral symmetry is broken and the adjoint

fermions become massive and decouple, leaving behind the anti-screening effect of the

gauge fields. The theory confines deep in the IR. If, however, α∗ > αc, then the theory

avoids the triggering point and continues flowing to a conformal point. A third scenario is

that the theory confines without chiral symmetry breaking. In this case, the theory has to

have massless composite fermions that match various ’t Hooft anomalies, see [37, 50–53]

for recent developments.

One cannot directly apply the above logic to fermions in the 3-index antisymmet-

ric representation since the fermion bilinear in this representation vanishes identically:

ǫi1i2i3j1j2j3 ×ǫαβλ
α i1i2i3λβ j1j2j3 = 0. Thus, R fermions will always contribute to the β-

function (via the vacuum polarization graphs) as we flow from UV to IR. Nonetheless, one

may still probe the breaking of chiral symmetry via higher-dimensional operators, see, e.g.,

eqs. (4.5) and (4.8). Then, a theory with nR fermions (and no adjoints) will either flow to a

strongly coupled confining regime (with or without symmetry breaking), if the β-function

does not develop a fixed point, or to a CFT otherwise. Indeed, if the fixed point happens

at a coupling const α∗ & 1, then no robust conclusions can be reached.

– 7 –
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The story becomes more interesting when we have both adjoint and R fermions. Let

us assume that as we flow from high to low scale we hit α∗ before αc = π
18 . Then, the

theory flows to a CFT deep in the IR.12 The condition α∗ > αc implies that there is a

lower bound on nR for the theory to be inside the conformal window:

nR > n∗
R =

2 (1992− 480nG)

471
, fornG ≥ 1 . (2.14)

Using the two-loop β-function we find α ∼= αc
∼= 0.175 at the critical value of n∗

R
, irrespec-

tive of the number of adjoint fermions. The smallness of the coupling constant indicates

that it is very plausible that the theory will flow to a fixed point when the number of

R fermions is bigger than n∗
R
. For values of nR < n∗

R
we encounter αc before α∗ and

both the global UG−R(1) and adjoint chiral symmetries break. At energies below αc the

adjoints decouple leaving behind the gauge fields and R fermions to decide the fate of the

β-function. For nG ≥ 2 and nR < n∗
R
, we always find that at energy scales below αc the

theory flows to a regime with no fixed point deep in the IR: the theory confines with or

without breaking its symmetries.13

The above discussion was a general view on the phase structure of the theory on R
4.

In the next two sections we closely examine the self-conjugate QCD: first by analyzing the

theory on R
3×S

1
L and then by examining the various ’t Hooft anomaly matching conditions.

Using this analysis, we will be able to draw more concrete conclusions about the possible IR

spectrum of the theory on R
4 and whether or not this spectrum is adiabatically connected

to the theory on the circle.

3 Compactifying on S
1

L
: the semi-classical analysis, (non)perturbative

spectrum, and mass gap

In this section we carry out a systematic study of the theory14 on R
3 × S

1
L. Our starting

point is the potential (2.3) to determine whether it is minimized inside the affine Weyl

chamber15 of Φ. If this is the case, then the Kaluza-Klein excitations are heavy (the

12We assume that a chiral phase transition for the R fermions does not set in before hitting α∗. If we

apply (2.13) naively by replacing C2(G) with C2(R), we find that this is always the case. Of course, one

cannot trust (2.13) for fermions in the 3-index antisymmetric representation since the fermion bilinear is

zero. Finding the condition under which chiral phase transition breaks (via higher order operators) in this

case is an interesting project that is left for the future.
13Yet, a more intricate scenario happens in the case of a single adjoint. In this case we have n∗

R = 6.42.

If we take nR < 5, then the theory does not develop a fixed point below αc: it will presumably confine deep

in the IR with or without breaking of the remaining symmetries. If we take nR = {5, 6}, however, then

at energy scales below αc the theory develops a fixed point at α∗ = {3.04, 0.891}. This is puzzling and we

expect that the 2-loop β-function might not be robust for such conclusion.
14See [54] for a similar story on R

3 × S
1
L for a supersymmetric theory without a bilinear mass term.

15The affine Weyl chamber is the region of physically inequivalent values of Φ. For SU(N), this region is

a polyhedron in N − 1 dimensional space defined by the inequalities

αa ·Φ > 0 for all a = 1, 2, 3, . . . , N − 1 and −α0 ·Φ < 2π . (3.1)

The interior of this region (not including the boundary) is the smallest region in the Φ-space with no

massless W -bosons (including their Kaluza-Klein excitations), see [38, 55] for more details.
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masses are 2nπ
6L and n = 1, 2, . . . .) and the 4-dimensional coupling constant g ceases to

run at scale ∼ 1
L
. Thus, by taking L to be small enough such that LΛ ≪ 1, where Λ is

the strong scale, we can guarantee that our theory is weakly coupled and amenable to the

semi-classical analysis. A detailed study of the potential V (Φ) was carried out in [38] and

it was concluded that the potential is minimized inside the affine Weyl chamber for the

following number of G and R flavors:

(nG, nR) = (3, 1) , (4, 1) , (4, 2) . (3.2)

Thus, a small value of nG is not enough to compete against the gauge and R fermion

fluctuations, which push the minimum to the boundary of the affine Weyl Chamber, see

Footnote 15. Also, higher values of nG will push the theory outside its asymptotic freedom

window. For the values of nG and nR quoted in (3.2), it was shown in [38] that the global

minimum of V (Φ) is a center-symmetric point:

Φ0 =
2π

6
ρ , (3.3)

where ρ is the Weyl vector given by ρ =
∑5

a=1ωa and ωa, a = 1, 2, . . . , 5 are the funda-

mental weights.

For small values of L we can dimensionally reduce the theory from 4 to 3 dimensions. At

the center symmetric point the gauge group SU(6) spontaneously breaks into the maximal

abelian subgroup U(1)5. Then, it can be shown that the adjoint fermions in the Cartan

directions, χ, are neutral under U(1)5 and stay massless, while the λ fermion components

that are charged under U(1)5 are massive,16 preventing the theory from flowing to a strongly

coupled point in the IR, see [38] for details. Further, we can use the 3-D abelian duality

Fµν ∼ ǫµνα∂ασ, where σ is a compact scalar (the dual photon), to write the perturbative

3-D effective Lagrangian:

L3−D,pert = (∂µσ)
2 + iχ̄pσ̄

µ∂µχ
p , (3.4)

where µ = 0, 1, 2. This concludes the perturbative analysis of the theory on R
3 × S

1
L.

Double-trace deformation. As we discussed above, one needs at least 3 adjoint

fermions in order for the global minimum of V (Φ) to lie inside the affine Weyl cham-

ber. This was necessary for the breaking of SU(N) to its maximal abelian subgroup, and

hence, being able to use semi-classical analytical techniques to analyze the theory. For

a lower number of nG, however, one can still obtain the desired breaking by adding a

double-trace deformation to the original Lagrangian (2.1). This takes the form

∆LDTD =
1

L3

∑

n=1

an|trF [Ωn] |2 , (3.5)

with sufficiently positive coefficients an that guarantee that V (Φ) will attain a global

minimum at the center-symmetric point Φ0. Repeating the arguments of the previous

paragraph, we arrive to the same effective 3-D Lagrangian given by (3.4).

16It is important to emphasize that here we are referring to the 3-D mass term. It results from the dimen-

sional reduction of the kinetic term from 4- to 3-D, and hence, it is nonvanishing, unlike the 4-D mass term.
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The index theorem and monopole operators. In addition to the perturbative spec-

trum, the theory admits nonperturbative saddles in the form of monopole instantons. The

number of the fermion zero modes in the background of these monopoles is given by the

index theorem [56–58]. Let the action17 of a fundamental monopole18 charged under αa,

a = 0, 1, . . . , 5, be Sm, where Sm = 8π2

6g2
at the center-symmetric point Φ0. Then, there are

2 adjoint fermion zero modes in the background of each fundamental monopole. The situa-

tion in the case of R fermions is more involved. For a later convenience, we give the number

of fermion zero modes, nf , in the background of a monopole with a general action S = nSm:

for n ∈ 2Z , nf = n for all monopoles with charges α0,1,2,3,4,5 ,

for n ∈ 2Z+ 1 , nf = n− 1 for monopoles with charges α0,2,4 ,

nf = n+ 1 for monopoles with charges α1,3,5 . (3.6)

The index theorem dictates the form of the monopole operators. The schematic form of

the fundamental-monopole operators reads (here we assume nG > 0 and nR > 1 leaving

the special cases nG = 0 and nR = 1 for separate sections):

M0 = e−Smeiα0·σ (χχ)nG , M1 = e−Smeiα1·σ (χχ)nG (λλ)nR ,

M2 = e−Smeiα2·σ (χχ)nG , M3 = e−Smeiα3·σ (χχ)nG (λλ)nR ,

M4 = e−Smeiα4·σ (χχ)nG , M5 = e−Smeiα5·σ (χχ)nG (λλ)nR . (3.7)

The anti-monopole operator Ma can be obtained by the assignment αa → −αa, χ → χ̄,

and λ → λ̄.

The monopole operators are also invariant under the 0-form symmetries in (2.9). The

invariance under SU(nG) and SU(nR) is evident. The invariance under the abelian group

Z
G
12nG

×Z
R
6nR

×UG−R(1) forces the dual photon σ to transform under these symmetries. In

other words, the abelian symmetry action on fermions is intertwined with shift symmetries

acting on σ.

Now, we comment on the fate of the 1-form center symmetry Z
(1)
3 in 3-D. Upon di-

mensional reduction from 4- to 3-D, the 1-form center symmetry that wraps S
1
L becomes

a 0-form Z
(0)
3 center symmetry from the point of view of observers in 3-D. The actions of

this symmetry on σ is given by σ → Pσ, where P is a Z3 cyclic permutation operator,

see [61]. Therefore, Z
(0)
3 permutes the operators {M0,M2,M4}. Similarly, it permutes the

operators {M1,M3,M5}. In other words, Z
(0)
3 preserves the structure of the fermion zero

modes in the monopole background. A summary of the abelian symmetries, the charges of

the fermions, and the action of the symmetries on the dual photon is provided in table 2.

Bions and the mass gap in the general case nG > 0 and nR > 1. The monopole

instantons cannot give rise to a mass gap since they are dressed with fermion zero modes.

17Since we are working at the center-symmetric point Φ0, all the fundamental monopoles have the same

action irrespective of their charges.
18A SU(N) BPST instanton with a unit topological charge is made of N fundamental monopole instan-

tons, each contributes a fraction 1
N

of the topological charge. See [59, 60] for details.
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Symmetry χ λ Action on σ

UG−R(1) nRα −2nGα σ → σ + nGnRα (ω1 − ω2 + ω3 − ω4 + ω5)

Z
R
6nR

0 1 σ → σ − 4π
6 (ω1 + ω3 + ω5)

Z
G
12nG

1 0 σ → σ − 2π
6 ρ

Z
(0)
3 0 0 σ → Pσ

Table 2. A summary of the abelian symmetries, the fermion charges, and the action of the

symmetries on the dual photon.

Nonetheless, complex molecules made of two monopoles can form, proliferate in the vac-

uum, and generate a mass gap. This can happen if the fermion zero modes are soaked

up inside the molecules. Such structures were first identified in [62] and were dubbed the

magentic bions. The bions in the theory at hand are:

B1 = M0M2 = f1(g)e
−2Smei(α0−α2)·σ , B4 = M1M3 = f2(g)e

−2Smei(α1−α3)·σ ,

B2 = M2M4 = f1(g)e
−2Smei(α2−α4)·σ , B5 = M3M5 = f2(g)e

−2Smei(α3−α5)·σ ,

B3 = M4M0 = f1(g)e
−2Smei(α4−α0)·σ , B6 = M5M1 = f2(g)e

−2Smei(α5−α1)·σ , (3.8)

where f1(g) and f2(g) are prefactors that will not play a significant role in our analysis.19

Notice that the action of the 0-form center symmetry Z
(0)
3 on the bions is B1 → B3 → B5

and B2 → B4 → B6, and hence, it preserves the form of f1(g) and f2(g). In addition, all

the bions are invariant under the symmetries in (2.9).

The effect of the bions can be taken into account in the partition function by summing

over their paths. Now, recalling the perturbative 3-D effective Lagrangian (3.4) and adding

the contribution from the monopoles and bions we finally obtain (working at a center-

symmetric point, with or without a double-trace deformation):

L3−D,total = (∂µσ)
2 + V (σ) + iχ̄pσ̄

µ∂µχ
p +

6∑

i=1

(
Mi +Mi

)
, (3.10)

where

L2V (σ) =
6∑

i=1

(
Bi + Bi

)
(3.11)

= −e−2Smf1(g) {cos [(α0 −α2) · σ] + cos [(α2 −α4) · σ] + cos [(α4 −α0) · σ]}

−e−2Smf2(g) {cos [(α1 −α3) · σ] + cos [(α3 −α5) · σ] + cos [(α5 −α1) · σ]} .

In the next sections we examine the vacuum of the theory for various numbers of

fermions in the adjoint and 3-index antisymmetric representations.

19The functional form of f1(g) and f2(g) can be determined by counting the number of the moduli and

the fermion zero modes in the background of bions. Following the analysis in [60] we find:

f1(g) =
1

g8−8nG

, f2(g) =
1

g8−8(nG+nR)
. (3.9)
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Vacuum structure in the general case nG > 0 and nR > 1. First, we need to

determine the fundamental domain of the dual photon. We recall that the gauge group

SU(6) is the covering group, and therefore, the smallest allowed electric probes are valued

in the weight lattice. The monodromy
∮

C
dσ is proportional to the electric charge (flux)

enclosed by C. Then, it immediately follows that the fundamental domain of the dual

photon is σ ≡ σ + 2πωa for all a = 1, 2, . . . , 5.

In order to find the global minima of the potential (3.11) we assume that the solution

is valued in the weight lattice, i.e., we write

σ0 =
5∑

a=1

Caωa , (3.12)

for arbitrary coefficients Ca to be determined momentarily. Furthermore, we express the

roots and weights in the R
N basis.20 Then, it is a simple exercise to show that the global

minima of V (σ) in the fundamental domain are given by

σ0(k) = −

(

C2 +
2πk

3

)

(ω1 + ω3 + ω5) + C2 (ω2 + ω4) , (3.13)

for k = 0, 1, 2 and C2 ∈ R. This solution represents 3 flat valleys separated by hills. The

integer k = 0, 1, 2 labels the valleys, while C2 parametrizes the flat direction along the

valley. The fact that there is a single modulus C2 is consistent with the existence of a

single global UG−R(1) symmetry.

The dual photon masses are given by

M2
photon =

1

2

[
∂2V (σ)

∂σi∂σj

]

σ0(k)

(3.14)

=
3

2L2
e−2Smdiag (f1 + f2 + f, f1 + f2 + f, f1 + f2 − f, f1 + f2 − f, 0) ,

where f ≡
√

f2
1 − f1f2 + f2

2 . As expected, there is a single massless photon, which is in

accord with the existence of a single UG−R(1) global symmetry.

As we discussed above, the adjoint fermion components along the Cartan subspace are

massless in the perturbative sector. These transform in the fundamental representation of

SU(nG). Adding the monopoles does not change this picture, except for the special case

nG = 1. Here, the monopole operators generate a fermion mass term when evaluated in

the ground state:
〈

6∑

i=1

Mi + M̄i

〉

(σ0) =
3

L
e−Sm

[
eiC2χχ+ h.c.

]
. (3.15)

Therefore, a theory with a single adjoint fermion has only a single bosonic (photon) massless

excitation deep in the IR. One can think of the massless photon in this case as the Goldstone

boson that results from breaking UG−R(1) chiral symmetry; this breaking generates a mass

term for the adjoint fermion.21

20Recall that the dimension of the Cartan subspace of SU(N) is N − 1, which is also the number of the

dual photons. In the R
N basis we add one extra dimension, and hence, one spurious degree of freedom. In

order to eliminate the unphysical mode, we impose the condition
∑N

i=1 σi = 0. See [55] for details.
21We would like to thank Erich Poppitz for emphasizing this point.
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The special case nG = 0 and nR > 1. The absence of adjoint fermions means that

the single classical UR(1) symmetry becomes anomalous on the quantum level. Then, the

global symmetry of the theory is

SU(nR)× Z
R
6nR

ZnR

× Z
(1)
3 . (3.16)

The absence of adjoint fermions demands that we add a double trace deformation to bring

the theory to its semi-classical regime. In this special case the monopoles charged under

α0,α2,α3 do not carry fermion zero modes. These monopoles proliferate in the vacuum

and participate in the generation of the mass gap. Then, the dual photon potential receives

contributions from both the monopoles M0,M2,M4 and the bions B4,B5,B5. The total

potential reads:

L2V (σ) = −f3(g)e
−Sm (cos (σ ·α0) + cos (σ ·α2) + cos (σ ·α4)) (3.17)

−f4(g)e
−2Sm (cos (σ · (α1 −α3)) + cos (σ · (α3 −α5)) + cos (σ · (α5 −α1))) .

The global minima of this potential inside the fundamental domain of σ are

σ0(k) =
2πk

3
(ω1 + ω3 + ω5) , (3.18)

for k = 0, 1, 2. The photon masses are given by (neglecting the prefactors f3, f4 and using

the fact e−2Sm ≪ e−Sm):

M2
photon

∼=
1

L2
e−Smdiag

(

1, 1 +
3

4
e−Sm , 1 +

3

4
e−Sm ,

9

4
e−Sm ,

9

4
e−Sm

)

. (3.19)

We immediately see that all the photons are massive, which sounds with the fact that the

special case at hand does not enjoy a global U(1) symmetry. However, not all of these

masses are of the same order; 2 out of the 5 photons have exponentially small masses com-

pared to the rest. This can be understood easily from the structure of the potential (3.17).

The first term (the monopole contribution) gives mass to 3 photons leaving 2 flat direc-

tions. The latter get lifted by the second term in (3.17), which is the next-to-leading order

contribution to the mass gap (the bion contribution). We conclude that this theory is fully

gapped in the IR.

The special case nG = 0 and nR = 1. Here, the global symmetry is simply Z
R
6 ×Z

(1)
3 .

Again, the monopoles charged under α0,α2,α3 do not carry fermion zero modes and

generate masses to 3 of out of the 5 photons. However, unlike the previous cases, the

monopole operators M1,M2,M3 vanish identically because of the vanishing of the fermion

bilinear λλ. More specifically, because λ is in the 3-index antisymmetric representation we

have

ǫi1i2i3i4i5i6ǫαβλ
α i1i2i3λβ i4i5i6 = 0 , (3.20)

where i1, i2, . . . , i6 are the color indices of the 3-index anti-symmetric representation and

α, β are the indices of the Lorentz group. The vanishing of the fermion bilinear is attributed
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to having two Levi-Civita tensors along with the Grassmannian nature of fermions. Using

the result (3.6) from the index theorem, we realize that the first nonvanishing monopole

operator has 3 times the action of a fundamental monopole S = 3Sm, which carries 4

fermion zero modes. These are the monopoles charged under α1,α3,α5. These higher-

order monopoles form higher-order bions of the form M
(3)
1 M

(3)
3 ∼ e−6Smeiσ(α1−α3), etc.

Taking the contribution from all the saddles we arrive to the total potential:

L2V (σ) = −f5(g)e
−Sm (cos (σ ·α0) + cos (σ ·α2) + cos (σ ·α4)) (3.21)

−f6(g)e
−6Sm (cos (σ · (α1 −α3)) + cos (σ · (α3 −α5)) + cos (σ · (α5 −α1))) .

This potential has global minima given by (3.18), where all the photons acquire masses:

M2
photon

∼=
1

L2
e−Smdiag

(

1, 1 +
3

4
e−5Sm , 1 +

3

4
e−5Sm ,

9

4
e−5Sm ,

9

4
e−5Sm

)

. (3.22)

Again, this theory is fully gapped in the IR.

The special case nG > 0 and nR = 1. The global symmetry of the theory is

SU(nG)× Z
G
12nG

ZnG

× Z
R
6 × UG−R(1)× Z

(1)
3 . (3.23)

The mass gap receives contribution from the bions made of the fundamental monopoles

charged under α0,α2,α4 and bions made of the third-order monopoles charged under

α1,α3,α5. The total potential reads

L2V (σ) = −e−2Smf7(g){cos [(α0−α2) ·σ]+cos [(α2−α4) ·σ]+cos [(α4−α0) ·σ]} (3.24)

−e−6Smf8(g){cos [(α1−α3) ·σ]+cos [(α3−α5) ·σ]+cos [(α5−α1) ·σ]} .

The global minima of this potential are given by (3.13), which also reflects the invariance

of the solutions under UG−R(1) global symmetry. Now, one of the 5 photons remains

massless, while 2 photons acquire a mass ∼ e−Sm/L and the remaining 2 photons acquire

a mass ∼ e−3Sm/L.

The IR particle spectrum on R
3 × S

1

L
: a summary. We end this section by sum-

marizing the spectrum of the theory deep in the IR. The theory on R
3 × S

1
L lives at a

center-symmetric point, i.e., the potential V (Φ) has a global minimum at Φ0 =
2π
6 ρ. This

can be achieved either by adding adjoint fermions, nG ≥ 3, or by supplementing the theory

with a double-trace deformation. In all cases we found that the theory admits 3 degen-

erate ground states within the fundamental domain of the dual photon. This implies the

following breaking pattern of the discrete symmetries:

Z
R
6nR

→ Z2nR
, Z

G
12nG

→ Z4nG . (3.25)

As we show in the next section, this degeneracy and symmetry breaking pattern is the

consequence of a mixed ’t Hooft anomaly between the 0-form discrete symmetries and the

1-form Z
(1)
3 center symmetry. In the absence of adjoint fermions the spectrum is fully
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nR

nG
=0 > 0

=1 ⋄ 3 photons with mass ∼ 1
L
e−Sm/2 ⋄ 2 photons with mass ∼ 1

L
e−Sm ,

and 2 photons with mass ∼ 1
L
e−3Sm 2 photons with mass ∼ 1

L
e−3Sm , and 1 massless photon

⋄ vacua: σ0(k)=
2πk
3

(ω1+ω3+ω5) ⋄ single massless SU(nG) fermion

except when nG =1, then the fermion gets a mass ∼ 1
L
e−Sm

⋄ vacua: σ0(k)=−
(

C2+
2πk
3

)

(ω1+ω3+ω5)+C2 (ω2+ω4)

> 1 ⋄ 3 photons with mass ∼ 1
L
e−Sm/2 ⋄ 4 photons with mass ∼ 1

L
e−Sm and 1 massless photon

and 2 photons with mass ∼ 1
L
e−Sm ⋄ single massless SU(nG) fermion

⋄ vacua: σ0(k)=
2πk
3

(ω1+ω3+ω5) except when nG =1, then the fermion gets a mass ∼ 1
L
e−Sm

⋄ vacua: σ0(k)=−
(

C2+
2πk
3

)

(ω1+ω3+ω5)+C2 (ω2+ω4)

Table 3. A summary of the different cases on R
3 × S

1

L.

gapped in the IR. Adding adjoint fermions endows the theory with a UG−R(1) global

symmetry. As a result, one of the photons, σ, stays massless. The components of the

adjoint fermions along the Cartan subspace are also massless, except when nG = 1. In this

case the single adjoint fermion acquires a mass via the monopole operators. Thus, the IR

spectrum of the theory with adjoints (and at least 1 fermion in R) is summarized as:

LIR = (∂µσ)
2 + ǫ

nG∑

p=1

χ̄p∂µσ̄
µχp , (3.26)

where ǫ = 0 only and only if nG = 1 and 1 otherwise. In all cases, with or without

adjoints, the 1-form Z
(1)
3 center symmetry remains intact: the theory develops a mass gap

and confines the fundamental charges. These cases are also summarized in table 3 .

The breaking of the discrete chiral symmetries lead to domain walls that interpolate

between the degenerate vacua. We expect that the strings between fundamental static

quarks are composed of two domain walls, as was shown in [23] for QCD(adj).

4 ’t Hooft anomalies, the IR spectrum on R
4, and adiabatic continuity

The 1-form/0-form mixed anomaly. ’t Hooft anomalies are obstructions to gauging

global symmetries. They provide a unique handle to study the nonperturbative aspects of

a theory and put sever constraints on its IR spectrum.

In this section we compute ’t Hooft anomalies and use them to track the theory as

we decompactify S
1
L. Of particular importance is the recently discovered mixed anomaly

between the 0-form discrete chiral symmetries and 1-form Z
(1)
3 center symmetry [3]. One

way to see this anomaly in the UV is to gauge the center symmetry by turning on ’t Hooft

twists [15, 16, 63]. In order to demonstaret how this works, we start by a warm up exercise

and confirm that the theory is indeed invariant under the discrete symmetries in (2.9).

Under global UG(1) and UR(1) rotations the fermions and measure transform as

χ → eiαGχ , λ → eiαRλ =⇒ [Dχ][Dλ] → ei(nGαGT (G)+nRαRT (R))QT [Dχ][Dλ] ,
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where QT = 1
16π2

∫

M4 trF

[

FMN F̃MN

]

is the topological charge. Thus, we find that the

measure is invariant under the following transformations:

αR = −
2nGαG

nR

=⇒ UG−R(1) ,

αG =
2π

12nG
, αR = 0 =⇒ Z

G
12nG

, αR =
2π

6nR

, αG = 0 =⇒ Z
R
6nR

.

Now we gauge the 1-form symmetry: we compactify R
4 on a 4-torus T

4 and then turn

on ’t Hooft twists. We need to take large enough T
4 (the cycles should be larger than

Λ−1) in order to avoid phase transitions. Then, one can show that the topological charge is

fractional on T
4: QT = k

3 , for k = 0, 1, 2. Finally, under a discrete symmetry transformation

(ZG
12nG

or ZR
6nR

) the measure transforms as

[Dχ][Dλ] → ei
2πk
3 [Dχ][Dλ] . (4.1)

The phase ei
2π
3 captures the 0-form/1-form mixed anomaly. The general lore is that this

mixed anomaly can be saturated in the IR by (1) massless excitations (as in the UV), (2)

degenerate ground states, (3) topological quantum field theory (TQFT). The saturation of

the anomaly by 3 degenerate ground states is manifest on R
3× S

1, as we explicitly showed

in the previous section.

As an exercise in group theory, we can also generalize the above construction to a

SU(N) gauge theory with fermions in several mixed representations, given that the theory

is anomaly free and UV complete. We consider n1 flavors of left-handed Weyl fermions

in representation R1 and n-ality N1, n2 fermions in representation R2 and n-ality N2,

etc. The center symmetry of the theory is Zp ⊆ ZN . Since the n-ality of a representation

cannot change by adding gluon fields (they carry 0 n-ality), we expect that the center

symmetry will depend only on the n-ality of a representation. Indeed, one can show that

the maximum subgroup of the 1-form center symmetry under which the theory with mixed

representations is invariant is Z
(1)
p with [64]

p = gcd (N,N1,N2, . . .) , (4.2)

and gcd stands for the greatest common divisor. This theory enjoys a set of global discrete

chiral symmetries Zn1T (R1) × Zn1T (R2) × . . ., etc. Now, we gauge Z
(1)
p by turning on

’t Hooft twists to find that under a discrete rotation the partition function receives an

overall phase (assuming that the minimum fractional topological charger is 1
p
):

λRi → eiαiλRi =⇒ [DλRi ] → e
i 2πk

p [DλRi ] , (4.3)

where k = 0, 2, . . . , p− 1 for each representation, implying an anomaly between the 1-form

center symmetry and the corresponding 0-form discrete chiral symmetry. The anomaly

can be matched by a CFT. Alternatively, it can be matched by a p-degenerate ground

state given that niT (Ri)
p

is an integer22 ≥ 2 for all representations. In this case the discrete

22Since there is a good Z2 symmetry for any Lorentz invariant theory, the discrete chiral symmetry cannot

break to unity.
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symmetries break as

ZniT (Ri) → ZniT (Ri)

p

, (4.4)

for i = 1, 2, . . .. One can trivially check that (4.2) and (4.3) give the special result (4.1)

and the correct symmetry breaking pattern (3.25).

Now if we take one of the T4 cycles to be smaller than Λ a phase transition may occur.

Nevertheless, the construction we adopted, ’t Hooft twists, to find the 1-form/0-form mixed

anomaly still holds. This is why the anomaly can be used both in the small- and large-

circle limits to put constraints on the theory.

In addition to the 1-form ’t Hooft anomaly, the theory admits various 0-form (tra-

ditional) ’t Hooft anomalies. In the next sections we study these anomalies for various

numbers of adjoint and 3-index antisymmetric fermions, examine their saturation in the

IR, and draw conclusions about the adiabatic continuity (if it exists) between theories

defined on R
3 × S

1
L and R

4.

The IR spectrum for nG = 0 and nR = 1. In this case we have a single 0-form ’t

Hooft anomaly between the global ZR
6 symmetry and a gravitational background G, i.e.,

[
Z
R
6

]
[G]2 anomaly. Taking the charge of λ to be 1 (mod 6) under Z

R
6 , we find that the

coefficient of
[
Z
R
6

]
[G]2 anomaly in the UV is 1× d(R), where d(R) = 20 is the dimension

of the 3-index antisymmetric representation.

One option to match a 0-form ’t Hooft anomaly in the IR is to invoke composite

massless fermions. However, a theory with a single fermion in the R representation does

not admit color-singlet spin-12 operators. To prove this statement we first notice that

building a spin-12 operator requires an odd number 2k+1, k ∈ Z, of fermions, each carries

three indices λi1i2i3 . In total we have 3(2k + 1) indices. Next, in order to form a color-

singlet operator we need to contract the indices with m Levi-Civita tensors ǫi1i2...i6 , each

carries 6 indices. Contracting all the indices means that we have to satisfy the relation

3(2k + 1) = 6m, which does not have a solution for any integers k,m. Next, we may want

to build the composite fermions using λi1i2i3 and the glue field F j
iMN , which is valued in

the adjoint representation and carries two color indices. We try to achieve this by using

2k + 1 fermions and ℓ gluon fields. The indices can be contracted using m Levi-Civita

tensors and n Kronecker deltas δji . Now, absorbing all the indices to form a color-singlet

means that we need to satisfy the relation 3(2k + 1) + 2ℓ = 6m + 2n, which again does

not have a solution for any integers k, ℓ,m, n. We conclude that our theory does not admit

composite color-singlet fermionic operators.

The second option to match the anomaly is that the theory flows to a conformal point

in the IR. However, this scenario is very implausible given the low dimensionality of R,

d(R) = 20. For example, a theory with a single adjoint fermion (super Yang-Mills), which

has dimension d(G) = 35, lies well outside the conformal window, see, e.g., the lattice study

in [65]. Therefore, it is very unlikely that a theory with a lower-dimensional fermion would

flow to a conformal point. This conclusion is also supported by the 2-loop β-function, which

does not develop a fixed point in the case of a single fermion in the 3-index antisymmetric

representation.
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This leaves us with the last option: the discrete symmetry Z
R
6 has to break spon-

taneously in order for the
[
Z
R
6

]
[G]2 anomaly to be saturated. The natural question,

then, is how does one detect the Z
R
6 breaking? As we noted above, the fermion bilinear

ǫi1i2...i6ǫαβλ
α i1i2i3 ×λβ i4i5i6 vanishes identically. The next-to-leading operator (dimension

5) is23

O1 = ǫi4i3j1i2i5i6ǫγβλ
α i1i4i3F j1

i1 MN

(
σMN

)γ

α
λβ i2i5i6 . (4.5)

This operator is charged under Z
R
6 and can be used to detect the breaking Z

R
6 → Z2.

The unbroken Z2 discrete symmetry is the (−1)F fermion number, which cannot be fur-

ther broken in a Lorentz invariant theory. This leaves us with 3 degenerate ground

states, which is also compatible with the required number of ground states that match

the mixed 1-form/0-form ’t Hooft anomaly. The four-fermion (dimension-6) operator

ǫαβǫα′β′ǫIJǫI′J ′λα Iλα′ Jλβ I′λβ′ J ′

, where I, J are short-hand notations for I ≡ i1i2i3, can

also be used to detect the breaking Z
R
6 → Z2, since it carries 4 charges under ZR

6 .

The absence of massless excitations and the breaking pattern Z
R
6 → Z2 in both R

3×S
1
L

and R
4 is a strong indication that the theory does not exhibit a phase transition as we

decompactify S
1
L, i.e., there is an adiabatic continuity from the small- to large- circle limits.

It is also instructive to track the mass gap as a function of the compactification radius.

Using (3.22) and expressing the mass gap in terms of the strong scale (with the aid of the

one-loop β-function) we find:

MG1(L) ∼ Λ (ΛL)
β0
4
−1 , MG2(L) ∼ Λ (ΛL)

3β0
2

−1 , (4.6)

where β0 = 20 for nG = 0, nR = 1. Therefore, the mass gap is a monotonically increasing

function of L such that at L & Λ−1 the theory enters its strongly coupled regime: the theory

continues to confine the electric charges on R
4. However, we expect a smooth transition

from weak to strong coupling.

The IR spectrum for nG = 0 and nR > 1. The global symmetry in this case is

SU(nR)× Z
R
6nR

ZnR

× Z
(1)
3 (4.7)

and there are a few 0-form anomalies that have to be matched between the UV and IR.

We start by computing the anomalies in the UV. As before, we take the charge of λ to be

1 under Z
R
6nR

. The anomaly
[
Z
R
6nR

]
[G]2 gives nR × d(R) = 20nR. Also we can compute

the anomaly [Z6nR
] [SU(nR)]

2 by examining the number of the fermion zero modes in

the background of a SU(nR) BPST instanton, which amounts to gauging SU(nR). This

gives 1 × d(R) = 20, where 1 is the number of the fundamental Weyl zero modes in the

background of the instanton (remember that λ transforms as a fundamental in SU(nR)).

In addition, we have the anomaly [SU(nR)]
3, which is given by the cubic Dynkin index

computed in the fundamental representation. In the UV this gives d(R) = 20.

23Using covariant derivatives between a fermion bilinear does not help, since DMλDMλ = 0 for the exact

same reason the fermion bilinear vanishes.
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As in the nG = 0, nR = 1 case, one cannot build gauge-invariant spin-12 composite

operators: it is impossible to contract the indices of an odd number of λ, each carrying

3 indices, to form a color singlet. Therefore, we expect that the anomalies in the IR will

be matched either by a CFT, if the theory flows to a fixed point [66], or that SU(nR) and

Z
R
6nR

will break spontaneously. The two-loop β-function (also see table 1) reveals that the

theory develops a fixed point at weak coupling, α∗ < 1, in the window 6 ≤ nR ≤ 10. In

particular, we find that α∗ ≪ 1 at the upper end of the window, strongly suggesting that

a theory with a large number of R flavors flows to a CFT.

In order to study the breaking of SU(nR) and Z
R
6nR

, which is expected to occur for

1 < nR ≤ 4, see table 1, we need to build operators that transform nontrivially under the

respective groups. Let us start with the following operator

Oqq′

2 = ǫIJǫαβλ
αIqλβJq′ , (4.8)

which satisfies Oqq′

2 = −Oq′q
2 , where q, q′ are the flavor indices of SU(nR). Hence, O

qq′

2 has

nR(nR − 1)/2 components. A nonvanishing 〈Oqq′

2 〉 implies that nR(nR − 1)/2 out of the

n2
R
−1 generators of SU(nR) are broken (Goldstone bosons), leaving nR(nR+1)/2 unbroken

generators. Thus, the operator Oqq′

2 can be used to examine the breaking of SU(nR) to a

symplectic subgroup [67]. Next, we construct the color- and flavor-singlet operator:

O3 = ǫq1q2...qnR
ǫq′1q′2...q′nR

O
q1q

′

1
2 O

q2q
′

2
2 . . .O

qnR
q′nR

2 . (4.9)

This operator transforms under Z
R
6nR

as O3 → e
i 2π
6nR

(2nR)
O3 = ei

2π
3 O3, and hence, it can

probe the 3 degenerate ground states of the theory.

Finally we comment on the mass gap on R
3×S

1
L and the behavior of the theory in the

decompactification limit. Using (3.19) and the one-loop β-function, we find

MG1 ∼ Λ (ΛL)
9−nR

2 , MG2 ∼ Λ (ΛL)10−nR . (4.10)

Therefore, the mass gap monotonically increases with L, even for the maximum number

of allowed R fermions.24 Contrasting this result with the conformal window depicted in

table 1, we see that for nR ∈ [1, 4] the theory flows to a strongly coupled regime as we

increase the circle size. At values of L & Λ−1 we should stop trusting (4.10): the theory

breaks its continuous chiral symmetry spontaneously (giving rise to Goldstone bosons) to

match its UV 0-form ’t Hooft anomalies. Yet, the theory cannot restore its broken discrete

chiral symmetry, even in the strong coupling regime, since the 1-form ’t Hooft anomaly

has to be matched. Thus, we expect that the theory will have 3-degenerate ground states

for all values of L. Also, the theory confines for all values of L.

On the other hand, when nR ∈ [5, 10], then we expect from the two-loop β function

that the theory might flow to a CFT in the L → ∞ limit. This conclusion is less robust

at the lower corner of this window, thanks to the large coupling constant when nR
∼= 5.

24Since MG2 > MG1 for L > Λ−1, we should always use MG2 to read the behavior of the mass gap in

the decompactification limit. Also, notice that we need the next-to-leading order analysis to decide on the

case nR = 10.
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Anomaly UV IR

[UG−R(1)]3 d(G)Q3
G+d(R)Q3

R =−125
∑

L=1,kG=1,kR=0L[kG,kR] (2kG+1−4kR)3

[UG−R(1)] [G]2 d(G)QG+d(R)QR =−5
∑

L=1,kG=1,kR=0L[kG,kR] (2kG+1−4kR)
[

Z
R

6

]

[G]2 d(R)= 20
∑

L=1,kG=1,kR=0L[kG,kR] (2kR)
[

Z
G
12

]

[G]2 d(G)= 35
∑

L=1,kG=1,kR=0L[kG,kR] (2kG+1)
[

Z
G
12

]

[UG−R(1)]2 d(G)Q2
G =35

∑

L=1,kG=1,kR=0L[kG,kR](2kG+1)(2kG+1−4kR)2

[

Z
R

6

]

[UG−R(1)]2 d(R)Q2
R =80

∑

L=1,kG=1,kR=0L[kG,kR](2kR)(2kG+1−4kR)2

[

Z
G
12

]2
[UG−R(1)] d(G)QG =35

∑

L=1,kG=1,kR=0L[kG,kR](2kG+1)2 (2kG+1−4kR)
[

Z
R

6

]2
[UG−R(1)] d(R)QR =−40

∑

L=1,kG=1,kR=0L[kG,kR](2kR)2 (2kG+1−4kR)
[

Z
G
12

]3
d(G)Q3

G =35
∑

L=1,kG=1,kR=0L[kG,kR] (2kG+1)3

[

Z
R

6

]3
d(R)Q3

R =20
∑

L=1,kG=1,kR=0L[kG,kR] (2kR)3

[

Z
G
12

][

Z
R

6

]2
0

∑

L=1,kG=1,kR=0L[kG,kR] (2kR)2 (2kG+1)
[

Z
R

6

][

Z
G
12

]2
0

∑

L=1,kG=1,kR=0L[kG,kR] (2kR)(2kG+1)2

Table 4. The UV and IR anomalies for nG = 1 and nR = 1. The IR and UV anomalies

have to match, except for [ZN ] [UG−R(1)]
2
, where the anomalies have to match mod N and for

[ZN ] [G]2, where the UV and IR anomalies can differ by mN + m′N/2 and m,m′ are integers.

The last 6 rows list type II anomalies (according to the classification in [68]) [ZN ]
2
[UG−R(1)],

[ZN ]
3
, and [ZN ]

2
[ZM ], where N,M = 6, 12. Here, the UV and IR anomalies can differ by mN

for [ZN ]
2
[UG−R(1)], by mN +m′N3/8 for [ZN ]

3
, and by m gcd(N,M)+m′N2M/8 for [ZN ]

2
[ZM ],

where gcd is the greatest common divisor.

Flowing to a CFT means that the theory has to restore its broken discrete chiral symmetry

in the decompactification limit. In all circumstance, one cannot trust (4.10) for any number

of fermions as long as L & Λ−1, since this expression was derived under the assumption

that the W-boson mass 2π
NL

is much larger than the photon mass ∼ e−Sm/L. This hierarchy

of scales is lost when L & Λ−1 and one can no longer trust the semi-classical analysis. If

the theory flows to a CFT in the decompactification limit, then the mass gap has to turn

from an increasing to a decreasing function of L around L ∼ Λ−1.

We conclude that whether the theory flows to a CFT or breaks its continuous chiral

symmetries, in both cases the spectrum on R
4 is dramatically different from the spectrum

of the theory on R
3 × S

1
L, which is fully gapped. Thus, we expect that the theory will

experience a phase transition on the way from R
3 × S

1
L to R

4.

The IR spectrum for nG = 1 and nR = 1. The global symmetries in this case are:

UG−R(1)× Z
R
6 × Z

G
12 × Z

(1)
3 . (4.11)

The charges of the fermions under U(1)G−R are taken to be QG = 1 and QR = −2, while

the charges under the discrete symmetries are manifest. The 0-form anomalies of this

theory are listed in table 4.

We may attempt to match the 0-form anomalies in the IR using composite fermions.

A set of theses operators that are made of adjoint fermions are:

ǫαγχ
α i
j χγ j

k χβ k
i , F j

iMN

(
σMN

)β

α
χα i
j , F j

kMNF kN
iP

(
σMP

)β

α
χα i
j , etc. (4.12)
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In fact, we can dress any fermion χ with an arbitrary number of gluon operators, and in

principle, this set of operators is unbounded.25 Another set of fermion operators can be

obtained by appending 2 fermions in the 3-index antisymmetric representation to any of

the above operators. Actually, we can append only an even number of λ, otherwise there

is no way of contracting the color indices, as we showed above. For example, we can write

the operators

ǫαρǫγσǫi1i2i3i4i5i6χ
α i
j χγ j

k χβ k
i λρ i1i2i3λσ i4i5i6 ,

ǫγρǫi1i2i3i4i5i6F
k
j MN

(
σMN

)β

α
χγ j
k λα i1i2i3λρ i4i5i6 , etc. . (4.13)

We generalize this construction as follows. Let L(kG, kR) be the number of fermion

operators that have 2kG + 1 insertions of χ and 2kR insertions of λ, where kG, kR ∈ Z
+.

L(kG, kR) can be chosen to be any positive integer by dressing a given number of G and

R fermions with gluon fields. The IR anomalies of these operators are listed in the third

column of table 4.

In principle, there is an infinite number of IR scenarios that can match the anomalies.

An economical choice is given by the union of the following two sets of fermions26

set 1 with L = 1, kG = 2 , kR = 0 : χχχχχ ,

set 2 with L = 2, kG = 1 , kR = 2 : χχχλλλλ , Fχχχλλλλ . (4.14)

However, we expect that the 1-form/0-form anomaly to be matched by a TQFT. It is an

interesting question to investigate the nature of this TQFT along the lines of [70], where

TQFT of QCD with adjoint fermions were constructed.

We could also repeat the same exercise above by building operators of the form

ǫα̇β̇λ̄ijk α̇χ̄
j

lβ̇
λikl β , . . . , etc. . (4.15)

The anomalies can also be saturated in the IR by the breaking of UG−R(1), Z
G
12, and

Z
R
6 . In the following, we examine the operators that probe this breaking. The lowest order

operator, which is charged under UG−R(1), reads:

O4 = ǫαβχ
α i
j χβ j

i . (4.16)

Another operator that transforms under all the symmetries is

O5 = ǫIJǫαβǫγδχ
αj
i χγi

j λβIλδJ . (4.17)

A non-zero vacuum expectation value of O4 or O5 indicates the breaking of UG−R(1).

One can also construct a UG−R(1) invariant operator, which is charged under the various

discrete groups:

O6 = ǫα1α5ǫα2α6ǫα3α4ǫIJχ
α1 i1
i2

χα2 i2
i3

χα3 i3
i4

χα4 i4
i1

λα5Iλα6J . (4.18)

25In fact, a bound on the number of such composites, which can be very large, come from the a-

theorem [69].
26We have also checked that these composites match the 0-form anomalies of the discrete subgroups

Z
G
4 ⊂ Z

G
12 and Z

R

2 ⊂ Z
R

6 .
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This operator transforms as O6 → ei
2π
3 O6 under the discrete groups. A nonvanishing

vacuum expectation values of this operator signals the breaking Z
R
6 → Z2 and Z

G
12 → Z4,

which is also compatible with the 1-form/0-form mixed anomaly.

Now, we discuss the connection to the spectrum on R
3 × S

1
L. We remind the reader

that the vacuum is 3-fold degenerate and there is a single massless excitation in the IR.

This is one of the dual photons, which can be thought of as the Goldstone boson resulting

from the breaking of UG−R(1). The mass gaps of this theory are given by

MG1 ∼ Λ (LΛ)7 , MG2 ∼ Λ (LΛ)−25 . (4.19)

Since MG1 is a monotonically increasing function of L, the semi-classical analysis will

break when L & Λ−1. Then, how does the theory behave in the decompactification limit?

The two-loop β-function does not have a fixed point for nG = 1 and nR = 1, and therefore,

it is less likely that the theory flows to a CFT in the IR. One plausible scenario, which is

adiabatically connected to the theory on R
3×S

1
L, is that UG−R(1) remains broken. In fact,

the operator O4 that gets a vacuum expectation value and signals the breaking of UG−R(1)

on R
4 is the exact same operator that signal the same breaking on R

3 × S
1
L. In addition,

the vacuum on R
4 remains 3-fold degenerate. This hints that theories on R

4 and R
3 × S

1
L

might be continuously connected.

Yet, another scenario is that UG−R(1) is restored in the decompactification limit and

the anomalies in the IR are matched by the operators (4.14) along with a TQFT.

The IR spectrum for the general case nG > 1 and nR ≥ 1. Having more than one

adjoint fermion makes the story more complicated since the number of the anomalies one

needs to match increases dramatically. Here, we consider the simplest case of nG = 2 and

nR = 1. In particular, we would like to answer the question of adiabatic continuity between

R
3 × S

1 and R
4. We recall that the theory on R

3 × S
1 has one scalar and one fermionic

(in the fundamental of SU(nG = 2)) degrees of freedom. The UV theory has [SU(nG)]
3

anomaly (of Witten’s type), and therefore, it has to be matched in the IR on R
4 by an odd

number of fermion operators. The theory also has a [UG−R(1)]
3 anomaly, which gives in the

UV nGQ
3
Gd(G)+Q3

R
d(R) = −90, [UG−R] [G]

2, which gives nGd(G)QG+d(R)QR = 30, and

[UG−R(1)] [SU(nG)]
2, which gives d(G)QG = 35. In addition, there are various anomalies

between the discrete symmetries ZG
12nG

, ZR
6nR

and UG−R(1), SU(nG), and G.

Let us assume that these anomalies can be matched in the IR by a set of composite

fermions. Since these operators are made of an odd number of adjoint fermions, they have

to transform in odd representations of SU(nG = 2): (1), (3), (5), . . . , etc. A set of skeleton

operators (made only of adjoints) is given by

χχχ
︸︷︷︸

(1)

χχχ
︸︷︷︸

(3)

, χχχχχ
︸ ︷︷ ︸

(1)

, χχχχχ
︸ ︷︷ ︸

(3)

, χχχχχ
︸ ︷︷ ︸

(5)

, . . . etc. , (4.20)

where the underbrace is the SU(2) representation they transform in. Each of these operators

can be dressed with mutiple gluon fields and/or fermions in the 3-index antisymmetric

representation. We take L[kG, kR;RG] to denote the number of operators that have 2kG+1

insertions of adjoints, 2kR insertions of R fermions, such that these operators transform in
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(nG, nR) IR symmetry realization Adiabatic continuity to R
3 × S

1
L?

(0, 1) /Z
R

6 X

(0, [1, 4]) /Z
R

6nR
, /SU(nR) ×

(0, [5, 10]) CFT ×

(1, 1) /UG−R(1), /Z
R

6 , /Z
G
12, OR X

composite fermions+TQFT ×

(2, 1) /Z
R

6 , /UG−R(1), /Z
G
24, /SU(nG = 2) ×

Table 5. A summary of the IR symmetry realization of the theory on R
4 for the main cases we

considered in this paper.

the representation RG of SU(nG = 2) (only odd representations appear). Then, a subset

of ’t Hooft anomalies in the IR are given by

[UG−R(1)]
3 =

∑

L=1,kG=1,kR=0,RG=1

dim(RG)L[kG,kR;RG](2kG+1−4kR)
3 ,

[UG−R(1)] [G]
2 =

∑

L=1,kG=1,kR=0,RG=1

dim(RG)L[kG,kR;RG](2kG+1−4kR) ,

[UG−R(1)] [SU(nG)]
2 =

∑

L=1,kG=1,kR=0,RG=1

T (RG)L[kG,kR;RG](2kG+1−4kR) , (4.21)

where T (RG) is the trace operator defined by trRG

[
T aT b

]
= δabT (RG), and {T a} are the

Lie generators of SU(2). We were not able to find a set of composite fermions with a

relatively small L, kG, kR that could match all the anomalies. Also, we could not prove

that (4.21) has no solution. We conclude that if a set of composite fermions can be found,

it must have a nontrivial combination of higher-dimensional operators. This is an exercise

in number theory that we leave for future studies. Otherwise, the anomaly can be matched

either by a CFT (we see from table 1 that this is a possibility, not very robust though) or

that UG−R(1) and SU(nG) will break spontaneously.

As we increase the number of adjoint or 3-index antisymmetric fermions the anomaly

matching conditions become more and more clumsy. We expect that as the number of

fermions increases the theory flows to a CFT, thus matching the anomalies is trivialized.

However, in all cases the semi-classical analysis on the circle will break at scales L & Λ−1

since the mass gap on the circle ∼ Λ(LΛ)10−2nG−nR is a monotonically increasing function

of L for all nG and nR. We also expect a phase transition will occur as we transit from

R
3 × S

1
L to R

4.

5 Outlook

In this paper we carried out an in-depth analysis of QCD with fermions in the adjoint and

the 3-index antisymmetric representations. Our main task was to study the possible dynam-

ical realizations of the UV symmetries. To achieve this task, we used semi-classical analysis
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and ’t Hooft anomaly matching conditions and draw a few possible non-trivial connections

between the spectrum on the circle and on R
4. The main results are summarized in table 5.

Our major conclusions and lessons can be grouped as follows:

1. Yang-Mills theory with a single fermion in the 3-index antisymmetric representation

does not exhibit a phase transition as we dial the circle size L. There is an adiabatic

continuity as L interpolates from small to large sizes. The ground state is 3-fold

degenerate, the theory is gapped, and it confines the electric charges for all values of L.

2. Yang-Mills theory with two or more fermions in the 3-index antisymmetric represen-

tation will exhibit a phase transition as L is dialed across Λ−1. In the small circle

limit the theory is fully gapped, the continuous chiral symmetry is intact, the theory

is in the confined phase, and the ground state is 3-fold degenerate, meaning that

the discrete chiral symmetry is broken. In the large circle limit the theory is still

confining, but otherwise it breaks its continuous chiral symmetry leading to massless

Goldstone bosons in the spectrum. Yet, the ground state is still 3-fold degenerate

and the discrete symmetries are broken. In this regard, one wonders what kind

of boundary conditions one might apply on the small circle in order to avoid a

phase transition in the decompactification limit. One plausible way to meet this

requirement is to force the theory to break its continuous chiral symmetry in the

small circle limit along the lines of [24]. Such a possibility is left for future studies.

3. There is a possible adiabatic continuity when we have a single adjoint fermion and

another fermion in the 3-index antisymmetric representation. In this case there is a

global UG−R(1) symmetry, which remains broken as we dial the circle size. Again,

the ground state is 3-fold degenerate and the theory confines in the IR. Interestingly,

there is also another realization of the IR symmetries on R
4, which is given by the set

of composite fermions (4.14). In this case, the theory retain its UG−R(1) symmetry

intact and matches the 1-form/0-form anomaly via a TQFT. Now, if we compactify

this theory on a circle, give the composite fermions periodic boundary conditions, and

take L smaller that Λ−1 we should expect that the global UG−R(1) will break and a

Goldstone boson, the massless dual photon, will appear. The puzzling thing, though,

is that the massless fermions should also get gapped. This appearance/disappearance

of massless fermionic degrees of freedom in a phase transition is not expected to

happen. Resolving this puzzle calls for further investigation of this case.
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[28] M. Ünsal and L.G. Yaffe, Center-stabilized Yang-Mills theory: confinement and large N

volume independence, Phys. Rev. D 78 (2008) 065035 [arXiv:0803.0344] [INSPIRE].

[29] M.M. Anber, S. Collier, E. Poppitz, S. Strimas-Mackey and B. Teeple, Deconfinement in

N = 1 super Yang-Mills theory on R3 × S1 via dual-Coulomb gas and “affine” XY-model,

JHEP 11 (2013) 142 [arXiv:1310.3522] [INSPIRE].

[30] M.M. Anber, E. Poppitz and B. Teeple, Deconfinement and continuity between thermal and

(super) Yang-Mills theory for all gauge groups, JHEP 09 (2014) 040 [arXiv:1406.1199]

[INSPIRE].
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[55] P.C. Argyres and M. Ünsal, The semi-classical expansion and resurgence in gauge theories:

new perturbative, instanton, bion and renormalon effects, JHEP 08 (2012) 063

[arXiv:1206.1890] [INSPIRE].

[56] M.F. Atiyah and I.M. Singer, The index of elliptic operators: I, Ann. Math. 87 (1968) 484.

[57] T.M.W. Nye and M.A. Singer, An L2 index theorem for Dirac operators on S1 ×R3,

submitted to J. Funct. Anal. (2000) [math.DG/0009144] [INSPIRE].
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