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1 Introduction

Recent development of generalised complex geometry [1, 2] has been intimately related
with our understanding of supersymmetric theories and has provided a natural language for
classifying supersymmetric vacua and revealing the structure of off-shell supersymmetry in
effective theories [3-8]. It is still, however, an open question whether generalised complex
geometry can capture the structure of stringy perturbative corrections to the effective



theories. If so one may hope that the geometric insight might one day translate into
computational tools.

In its most basic formulation, GCG unites the geometric data with the antisymmetric
two form field and puts diffeomorphisms and gerbe gauge transformations on equal foot-
ing [1]. This unified formalism allows a transfer of many results of Riemannian geometry
to the generalised tangent bundle [2]. Notably, a generalised vanishing torsion condition
on a generalised metric-connection yields a notion of a generalised Ricci tensor which fully
captures the physics of the ten-dimensional NS sector — the action and the equations of
motion [9]. Interestingly, and crucially for this work, the part covering only the metric and
two-form field can alternatively be derived by using a version of the Lichnerowicz formula
with closed three-form torsion H, due to Bismut. The standard Lichnerowicz formula [10]
for a Levi-Civita connection states that the difference of the squares of the covariant deriva-
tive and the Dirac operator acts tensorially on a spinor and can serve as a definition of a
scalar curvature R:

(V) = V*V,)e = —iRa (1.1)

Here and throughout the paper V denotes the covariant derivative with respect to the
torsion-free Levi-Civita connection. The Bismut version [11] finds a pair of operators with
torsion such that the difference of their squares is again tensorial

(V)% — (V)ovie = —%Re + %st, (1.2)

where

~ 1
Vile = Vet g Hur'e,

) : (1.3)
Ve = Ve + o Haney"e.

Note that the Dirac operator is no longer the trace of the covariant derivative with torsionful
connection! Also, strictly speaking, the tensor has two parts now — a scalar component
given by a sum of the scalar curvature and H? and a four-form given by the (vanishing)
exterior derivative of H.

Interestingly enough it is the inclusion of the dilaton that requires a truly generalised
treatment. The key here is having a different action of the same operator on a spinor and
a vector-spinor. The above-mentioned pair of operators is then seen as a component of
the same “generalised Levi-Civita connection” D. This pair also appears in the respective
supersymmetry variations of gravitino and dilatino

1 _
(S'lpa = Da€ = vaﬁ -+ gHagéfybCE, (1 4)
_ _ 1 - _ :
0p =" Dae =7"Vae + 5 Hyy"%e = 1" (Dad)e,
and the Lichnerowicz formula yields:
1
() = D*Da)e = =752 = 7" Lupcas, (1.5)



where on the right-hand side we find the bosonic NS action S, and the Bianchi identity
Tobed = ViaHpeq)-

The passage to non-closed torsion H requires an extension of the generalised tan-
gent bundle and the inclusion of gauge fields, eventually leading to a generalised complex
description of heterotic strings. Once one properly extends the notion of covariant deriva-
tive to also cover gaugino variations, the Lichnerowicz theorem yields the ten-dimensional
N = 1 supergravity coupled to supersymmetric YM, and can further accommodate the
heterotic Bianchi identity and the higher derivative terms in the effective action that serve
its supersymmetry completion [12]. Interestingly, a single four-derivative correction to the
Bianchi identity requires an infinity of terms in the supersymmetry variations and hence in
the effective action [13, 14]. Using the simple principle of building quadratic combinations
of first order operators appearing in the supersymmetry variations that act only tensorially,
allows one to compute the O(a’) [15].

It is also possible to fully geometrise both the NS and RR sector, or alternatively
describe M-theory, of the internal d-dimensional space of a generic supersymmetric com-
pactification in the language of exceptional generalised geometry, where the generalised
tangent bundle corresponds to a representation of an exceptional Eq(gy group [16, 17]. The
bosonic action can again be written in the form of a Lichnerowicz equation for generalised
Levi-Civita connections [18, 19]. Schematically

1
D®SD®S€—D®SD®J€:—ZSBE, (1.6)

where ®g, ®; denote projections to the generalised spinor bundles into which, respectively,
the spinor and the gravitino embed, and now Spg is the full bosonic action, with RR fields,
of the dimensionally restricted theory.

At this point one would like to dream that the suitable versions of the Lichnerowicz
formula underlie every supersymmetric theory. Eleven-dimensional supergravity, even at a
classical level, would appear to be the best candidate for undermining such a belief. Indeed
the theory does not have a dilatino, and hence there is no natural Dirac operator other than
the trace of the gravitino variation. Moreover, any Lichnerowicz type formula like (1.5)
built out of operators linear in fields would yield an action that is at most quadratic. From
other side in spite of its simplicity the eleven-dimensional supergravity action contains a
cubic Chern-Simons interaction.

Yet, as we shall see, there is an appropriate generalisation. Indeed, using the Levi-
Civita connection and the four-form flux G' one may find an operator V& such that it yields
a tensorial polyform p (there are no derivatives acting on ¢ on the right-hand side) when
squared:

VOV = —P € (1.7)

Moreover requiring that p has only an 11-form (or scalar) and an 8-form component!
uniquely fixes VaG to be the operator that appears in the gravitino variation 4, = VaGa.

'We are dropping here the five-form which corresponds to the Bianchi identity V,Gpeqey®?e%.



Furthermore, we may observe that up to integration by parts the Mukai pairing
Lp=(1+C,p)=plin—CAnpls, (1.8)

gives the Lagrangian for eleven-dimensional supergravity.

Note that we have used very little here. As far as the generalised geometry construc-
tions go, we seem to just pass to what locally looks like TM @ A?T* M, hence avoiding the
complications of exceptional (and possibly infinite-dimensional) geometries, dual gravitons,
need to stick to linearised equations and so on. Some or all of these issues arising in the
full geometrisation of M-theory and U-duality groups will eventually have to be faced, and
contrasted to the simplicity of (1.8). Instead of doing all this, we shall try to build on this
construction, and modify V& by higher-derivative contributions and verify if the method
of requiring bilinears with tensorial action can reproduce the quantum higher-derivative
corrections to M-theory.

The formula (1.7), where now the corrected operator V¢ will a priori be all order
in derivatives, is what we shall call M-theoretic Lichnerowicz formula. Actually we shall
see that the first modifications from the one-derivative supergravity operator will start at
seven derivatives, and the “minimal” version of the corrected operator can contain only
6] + 1 derivatives (for integer ). When such operator is plugged into (1.8) it will clearly
produce a series of terms in £ with 2 x (3] + 1) derivatives.? The use of the computer
algebra system Cadabra [20, 21] was crucial to verify these computations.

The structure of the paper is as follows. In section 2, we review the eleven-dimensional
supergravity and the first ~ R* quantum corrections. The M-theoretic Lichnerowicz for-
mula is set up in section 3. Section 4 extends the construction to higher derivative terms,
verifying that the first corrections appear at eight-derivative level, and constructing ex-
plicitly two different supersymmetric invariants (each coming with a free coefficient). We
specialise on the case of seven-dimensional internal spaces in section 5. Possible extensions
of our construction are discussed in section 6.

2 Eleven-dimensional supergravity

Let us start by reviewing classical eleven-dimensional supergravity [22], to leading order in
the fermions, following the conventions of [18, 19, 23]. The bosonic fields are the eleven-
dimensional Lorentzian metric g, and a three-form Abelian gauge potential Cg,. and there
is a fermionic gravitino field .

Writing R for the Ricci scalar for the Levi-Civita connection V and G' = dC' for the
four-form field-strength, the bosonic action is given by
1
T 2k2

and taking v to be the Cliff (10, 1;R) gamma matrices, the fermionic action is

Sk /(Ru—;GA*G—éCAGAG), (2.1)

1 — 1 N 3b _aqc
Se = — / N (m“bcvwc + g Caras (7110 4 12702750 g )%)- (2:2)

ZNote that the opposite is not true. An action with 2 x (31 + 1) derivatives does not necessarily restrict
V¢ to have only (61 + 1)-derivative terms.



This leads to the equations of motion for the metric and gauge field

1 1
Rab - T4 Ga010203GbCICQC3 - 7gabG2 = 07
12 12 (2.3)
) .
d*x G+ §G NG =0,
where R, is the Ricci tensor, and the gravitino equation of motion is
1
PPVthe + g (Geroner? ™0 + 1260071 ) 1, = 0. (2.4)
This action is invariant under supersymmetry, with the transformation of the bosons
given by
5gab = 25’7(a¢b)7 (25)
5Oabc = _357[abwc]>
while the supersymmetry variation of the gravitino is
1 .
577/%1 — Ve + ﬁ <7ab1...b4 _ 85ab1,yb2b3b4> Gbl...b457 (2.6)

where ¢ is the supersymmetry parameter.

2.1 Review of higher-derivative terms

In presence of M5 branes, this classical action is not consistent without the inclusion of
certain higher-derivative terms. Indeed, since a single M5 supports a chiral six-dimensional
(2,0) tensor multiplet on the worldvolume, it is anomalous. The anomaly is a descendant of
a particular eight-derivative eight-form polynomial. To cancel this anomaly via the inflow
mechanism, one needs bulk couplings which in absence of M5 sources are invariant under
diffeomorphisms and C-field gauge transformations, but become anomalous in the presence
of the branes. Moreover this anomaly should restrict to the six-dimensional worldvolume.

The anomaly cancelling bulk term is of course only a part of the story, as it is hardly
supersymmetric on its own. From one side it should receive contributions from G-flux.
From other, it requires completion and other (non-anomalous) couplings with the same
number of derivatives. Furthermore, since M-theory is supposed to be the strong cou-
pling limit of type IIA strings, the eleven-dimensional couplings should also be seen in the
decompactification limit of the string theory.

The eight-derivative couplings in string theory have a long history and (without fluxes)
have been computed using string perturbation theory. In ITA there are only tree-level and
one loop terms, while IIB also has D-instanton contributions. The tree level corrections
are the same in both theories and take the form [24, 25]

1
e 1L ~e 2 <t8t8R4 — 4Eg> , (2.7)
and the CP-even sector of the one-loop is given by [26]

1
6_I»CCP—even ~ <t8t8R4 + 4E8> ) (28)



where the top (bottom) sign is for the ITA (IIB) theory. The Eg term can be written using
two totally antisymmetric e-tensors.® In addition, the ITA theory has a CP-odd one-loop
term Lop.odd ~ Ba A [tr R* — %(tr R%)?] [28, 29]. Its lift to eleven dimensions

1
Li1qa ~ C3 N\ |tr R — Z(tr R2)2 , (2.9)

cancels the M5 anomalies via inflow. The one-loop CP-even terms (2.8) also lift, while the
tree-level contribution (2.7) is suppressed [30].*

Our expectation is that the bosonic action of supersymmetric M-theory (just like any
other supersymmetric theory) should be formulated as a kind of Lichnerowicz theorem. As
a first step, we shall verify that this is the case for eleven-dimensional supergravity and
recast the action as a Mukai transformed square of a first-order operator. Unsurprisingly,
the operator in question turns out to be the covariant derivative with G-flux terms included
that appears in the gravitino supersymmetry variation (2.6).

The modifications of this operator with higher-derivative terms included should in
turn yield the supersymmetry variation for the M-theory action with higher-derivative
terms included. Such supersymmetry modifications have been discussed e.g. in [31-33];
seven-derivative corrections were computed explicitly in [34, 35] by reading them off from
the effective action. Unfortunately, these are written in a different basis from ours, and
due to the complicated nature of the terms the direct comparison of two results in not
straightforward. For special cases of seven and eight-dimensions (for manifolds of G2 and
Spin(7) holonomy), simplified transformations have been suggested in [36].

The potential usefulness of the explicit form of the transformations in a convenient
basis for e.g. compactifications makes our computation worthwhile. Our main motivation
has been to test the Lichnerowicz method, and the hypothesis that it should underlie any
supersymmetric theory. We also hope that this will provide a better systematics for still
open questions such as inclusion of fluxes (which is very hard even in string theory, due to
the need to perform higher-point calculations), or higher derivative terms (which in string
theory, for the terms that appear in eleven dimensions, would also correspond to going to
higher string loops). Finally, establishing an M-theoretic Lichnerowicz formula, analogous
to the string theoretic cousins that have a generalised geometric origin, will hopefully lead
to new insights about the geometry of M-theory.

$We follow the R* conventions of [27] and define
tsts R* = tay . -agboy b R 2,5y R*3 5, R*5* 1 Ry

and
_ bl"'bs alag azaq asag arag
FEs = 8! % 6a1--'agR b1b2R b3b4R ° bsbsR b7bg -

Note that for any antisymmetric matrix M, tsM* = 24 (tr M* — i(tr MQ)Q) , and there is a useful relation
between two quantities given by 1 Es = tsts R*+192 tr Rap Rea tr Rac Rpa—T768 tr R R, ¢ . 'R 94" Rygan+
Ricci terms.

4The string I-loop terms surviving in the eleven-dimensional limit are ~ R**1. Note that due to the
relation to anomalies, the one loop term is not renormalised, and the terms with a number of derivative

higher than eight should not contain any top-form couplings of the type (2.9).



3 Lichnerowicz formula for eleven-dimensional supergravity

Let us write the operator that appears in the gravitino variation as

1
§thg = Vae + @ <7ab1...b4 _ 8(5bb1")/b2b3b4> Gbl...b45 _ VaGE. (3.1)
It has long been known (see for example [23]) that there is an “integrability” condition
satisfied by this connection

74 [VE, Ve o (all bosonic eoms)y - €. (3.2)

We can view this as being a consequence of supersymmetry. If we also denote the
M-theory Rarita-Schwinger operator in the gravitino equation of motion,

,yabcvbwc + (Gcl...047ab61...64 + 12Gab01c2,yclcz) wb _ Labwb? (33)

1
96
we observe that it such that L%y, = yabcvbGzpc, and so by applying a supersymmetry
transformation

(bosonic eoms)® - & o 8, (fermionic eoms)® = 6. (LPfy) = 6. (v°V§ 1h.) = veV§ Ve,
(3.4)
which implies (3.2), as was remarked, for instance, in [37]. It was also noted in [37] that if
the equations of motion are solved then L o V¢ = 0. Therefore, when on-shell we have an
exact sequence

Gyt
s¥hreshres Y g (3.5)

Here we write S and T for the spinor and cotangent bundles respectively and have used
L=1L= (VH"oL = 0. As we just saw, the condition L o V& = 0 results from
supersymmetry, while L = LT can be derived from requiring the reality of i Y L1y,
What appears to be less know is that if we write (V&)¢ = $7aL% = AV, ie.
the (left) gamma trace of the M-theory Rarita-Schwinger operator, then it is possible to
recover the bosonic action from a Lichnerowicz-type relation (V¥)2VS%e ~ Lpe. More
exactly, from (3.4) we see that VEVE will be proportional to part of the bosonic equations
of motion ’y“beVbG&:  (trace of Einstein equation+ 8-form gauge equation) which can be
used to reconstruct the bosonic action since Lp ~ (trace of Einstein) vol, +C A (8-form),
up to integration by parts.
Explicitly we have
Vé: 85T ® S,
1
Ve = Ve + 258 (”yabl"'b4 — 85ab1’yb2b3b4> G, ..bs€5
Ve T 98— S,
~ 1
Vo =Vt + —

o (,yabl...b4 - 25ab1,yb2b3b4) Goy...0 Ve



and so V< is the gamma-trace of gravitino equation of motion, i.e. it appears in the action
in the term [(V%)%),. Note also that L = LT = (V%)%y, = v,((VF)")% Then the
Lichnerowicz relation is

1
(VG)aVGg = —*Rf + — 2 4|Gb1 b4Gb1 b4€ 144 (Vbleg b5),yb1.,.b5€
1 11 111
+Zgg(vblel...m)’}/begb‘LE 464‘2Gb1 .Gy bg'}/b1 bs ¢

1 1 b b (3.7)
= 4 R(*l)b1..-b11 - E(G A *G)bl...bu yotte

11

11/1
— =73 <vb1(*G)b2---b8 2 412

Gbl b4Gbr bs),yln...bse’
where in the second equality we used the Bianchi identity for the flux. As expected, we
obtained the trace of Einstein-Maxwell and the C' gauge equation of motion — this relation
is simply a result of applying a supersymmetry transformation to the equation of motion
for the trace of the gravitino.

Now the action

6
1 1 1
:/R*l—6G/\>1<G—3C’/\d*G—60/\G/\G+boundaryterms, (3.8)

/ﬁB—/R*l—;G/\*G—lC/\G/\G,

:/R*l—éG/\*G—;C/\ (d*G—F;G/\G) + boundary terms,

so, defining a polyform p by (@GVGa“) = —%p -€, we have that the bosonic Lagrangian can
be written compactly in terms of the Mukai pairing® L = p|11 — C A pls = (1 +C, p), up
to integration by parts.

3.1 Lichnerowicz method

This relation between the operator appearing in the supersymmetry variation of the grav-
itino and the bosonic action suggests we might be able to use it to build the bosonic sector
of supersymmetric theories, short-cutting the usual Noether method. So let us invert the
logic of the integrability calculations (3.2), and consider a general type of differential op-
erator acting on spinors. We will then promote this Lichnerowicz equation to a necessary
constraint that the operator must satisfy, rather than have it be a consequence of super-
symmetry.

Let us look at what this implies more concretely. We have a metric and a 4-form
flux, and we want to build an operator that maps the supersymmetry parameter to the
gravitino representation. Basic SO(10, 1) representation theory tells us there are two ways
of tensoring a 4-form with a spinor and obtain a vector-spinor (essentially corresponding

to embedding in the gamma-trace or gamma-traceless part of the vector-spinor), so we

5The Mukai pairing is the top-form defined in d-dimensions from two polyforms o and 8 by {(a, 8) =
32, ()T A B, where (a7, = 0l o,



consider the following operators

D:S—-T"®58,
Dae = Ve + k17 MGy, p,e + kada" 420Gy, e,
D:T*®8 = 5,
D%y = YOV uthy + kiy PGy, it + k2g™ 02 MGy, bt

where ki, ko, l~€1 and /;:2 are left as arbitrary constants and note that a priori we may
consider the ‘conjugate’ operator that appears in the fermionic action to also be generic.

Now we impose constraints to obtain a consistent Lichnerowicz-type relation from these
operators. Clearly, if D*D,e is to define a tensor and not a differential operator, we must
have that D? = ’y“bDa. This fixes k1 and ko in terms of k1 and ks.

We thus have that D o D is a linear map S — 9, and so it must be a combination
of p-forms. Then we have the physical requirement that this tensor should contain only
scalars and 3-forms (up to Hodge dualisation, and after imposing the Bianchi identity for
@), corresponding to the degrees of freedom of the trace of the metric and the 3-form gauge
field (this is also clearly a necessary condition for Do D = 0 on-shell). This forces the ratio
between k1 and ko to be fixed, ko = —8k;1. Therefore, from these simple constraints we are
left with just one free coefficient, which can be absorbed in the normalisation of the fluxes.
We recover D = V& and as we have just seen the M-theory Lichnerowicz D®Dge will give
the bosonic action.

4 Higher-derivative terms

We will now try to apply this method to obtain the higher derivative effective action. A
number of simplifications are assumed in what follows: we will discard terms which are
higher order in derivatives than the order we are currently examining; we will ignore fluxes
and Ricci terms, i.e. we will work only with the Riemann tensor which reduces to its Weyl
tensor component; and we will also assume that at the R* level the action does not contain
‘bare’ connections, so we will not consider a term like VRV R? for example.

Even with these simplifications, the form of the possible operators remains substan-
tially less straightforward than in the classical flux case. In particular, in moving to higher
order we should expect the corrections to include derivatives of the supersymmetry pa-
rameter or the gravitino, cf. [13, 34, 35], which means that requiring that the M-theoretic
Lichnerowicz equation defines a tensor is a bit more subtle. In particular, we will find we
must abandon the classical relation D% = 4% D,,.

Consider, for example, a correction term corresponding to some tensor X p.q which
transforms in the representation Xgp.q € [0,2,0,0,0], that is, it has the same symmetry
properties of the Weyl tensor. Note we are using the highest-weight notation of the com-
puter algebra program LiE [38], which we used extensively throughout this work for group



theoretic calculations. We can define the following operators
D:S—=T"®S,
Due = Vae + kl (vaabcd) ’YCde + kQXabcd’YCdvbga

~ (4.1)
D:T"®8— 8,
Dad}a = 'Yab (Vaq;[)b + E/'l (VCXacef) VGfI/Jb + EZXacef’Yefvcwb) )
where k1, ko etc. parametrise higher-order corrections.
Then,
(DDe) =7V, Voe + (b = b = k2 ) (V* Xapea) 79"
— ]{21 (vavaabcd) VCds — (]%2 + ]{22) Xabcd’}/Cdva’vbf-: (4'2)

+ higher order,

so we have that, once we discard the higher order terms, tensoriality requires &y —k1—ky = 0.

Note that it is crucial that the term with two covariant derivatives acting on the spinor is

antisymmetrised on those V, which is a consequence of the symmetry properties of X,pq.°
Solving the coefficient constraint for ki, we are left with

~ 1 1 ~
(DDe) = —{Re+ 5 <2k1 - k:g) R, X apeay e

1/~ 1 /-
+1 (kz + kz) R™AX g — 3 <k‘2 + k‘2) R i X ape gyl e (4.3)

+ higher order.

So, whereas we would like D to be determined by D, we are left with ambiguities.

The choice we will be making from now on is to always take /;:1 =0,k =ky = 1252. This
means that both D%V ,e and vV, Dye are separately tensorial, which can be interpreted
as writing the fermionic action in terms of “supercovariant” objects [34, 35]. We thus have
that D is completely fixed given a D to a certain order, and so, writing explicit spinor
indices, we will consider operators in the form

Doz = Vae® + k3 (0,5%") = Wy (16" + k0,"5")<"), "
D™ = 7% (Vatbe + kO, Viip ™) = 75 (L% + k0.2, P) Vi, '

with © some object that is a function of (powers of) the Riemann curvature.

4.1 R? and R3 couplings in the effective action

It is well known that the first corrections to the eleven-dimensional action begin at R*.
However, as a simple exercise let us check whether we can define operators that through
Lichnerowicz would be compatible with an R? or R? action.

STf the tensor Xapea were, say, fully symmetric, we would have extra constraints in order to ensure
tensoriality. We would also not obtain extra Riemann tensors, instead we would be left with ‘naked’
covariant derivatives.

,10,



Projection of B2 Rep of SO(10,1) Multiplicity
X 0,2,0,0,0] 2
W 2,0,0,0,0] 1
S 0,0,0,0,0] 1
T (0,0,0,1,0] 1

Table 1. Valid embeddings of ®%R in 1.

Counting derivatives, we see that in order to obtain an R? correction to the action,
there is only one type of term we can add to the operators, namely

Dye = Ve + kVP (Rabcd76d5> )

~ (4.5)
D%y = YV by, + k Rapeay “*VPa.

However, it is clear that D®D,e will have a 4-form, ERq, aob, by Razasb b, Y423 e, so satis-
fying the constraint that DDe should contain only scalars and 3-forms forces k = 0. We
conclude no corrections are admissible at this order.

For R? there are more possibilities. By derivative counting we have that the extra
pieces in D must be of the type VR2. So we look at the tensor decomposition of ®?R and
find that the families of terms that can be considered in the operators are the ones listed
in table 1.

Explicitly, these decompositions are given by

1

1
Xalagclcg = §Ra1a251b2R0102b1b2 + §Ra102b1b2RC1a2b1b2

1 1
- §9a2c23a1d1b1b23c1d1b1b2 + @gmagadeldzblbszldzblbz,

1

o B
X(IlllQClCQ - §Ra15101b2Ra25102b2 + 5R61b1a1b2Ra2b1C2b2

(4.6)

1 1
+ 69a2c2Ra1d1b1b2Rc1d1b1b2 - 7120galclga2c2Rd1d2b1b2Rd1d2b1b27

A 1
Walcl - Raldlblbchldlble - ﬁgalclRdlagblbsz1a251b27

S = R asbibs Rarasbibs

Ta1a2a3a4 - Ra1a2b1b2 Ra3a4b1b2 ;

where same-letter free indices are assumed to be antisymmetrised. However, the W and
S do not actually contribute to the Lichnerowicz (they are projected out) so we will not
consider them as they cannot possibly source corrections to the action.

There is now a new potential ambiguity in how to construct the supersymmetry oper-
ators, as there are several different ways of embedding the T term in 01p. We will discuss
this in more detail in the R* section, but some of these can be fixed by consistency condi-
tions from the Lichnerowicz equation, and the rest by requiring that the T embed strictly
into the traceless-vector-spinor in the conjugate operator f), with the trace taken from the
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right so that the operator l~D is now the one that appears in the fermionic coupling of the
gravitino trace [ ¢]ﬂ¢ This will imply that D%, = V%,, as the X" likewise only embed

T
in the traceless part. This also ensures that lD IZ .
We end up with

2
Dye = Ve + Z ZiyiVP (X, 4€)

i=1
R 1 . 1 .
+t< bib2 703 (T hoe€) + ﬁ’ybl"'b“va(Tbl...bﬁ) + ﬁvbl"'b‘lvbl(TabQ...bﬁ) (4.7)
1 . 1 .
+ ?’YabeSb‘lvbl (Tb1...b45) + 874’7ab1mb5vb5 (Tbl...b45))7
and
2
Dawa _ '}’abvawb + Z i,i,ych(zledvbwa
i=1
(5 5
+i ( 1 Db VU + Y Iy (Ve = Vo) (48)

5)
- 84'7ab01 c4Tc1 .C4 a%);

so we have a priori three free coefficients, &1, &2,¢. If we compute D®D,e we find that in
addition to scalars in R3, the Lichnerowicz also contains 4-forms, which must be cancelled.
There are exactly three possible independent R? 4-forms, all of which appear in computa-
tion, and eliminating them forces precisely that all ; = £ = 0. We conclude that no R?
corrections are admissible.

4.2 R* couplings

Finally, we arrive at corrections to the supersymmetry operators that may lead to R*
corrections to the action via the Lichnerowicz procedure. We will need to add VR? terms
to 61, for which there are several possibilities depending on how we build the R? factor,
as listed in table 2

We find these families of terms by decomposing into irreducible representations
the product of three Weyl tensors, i.e. if we denote the Weyl curvature representation
[0,2,0,0,0] by W, we consider the symmetrised cubic tensor product S3W. Then we re-
strict to those which, when combined with a V, and a spinor &, can contain a vector
spinor 01,. In other words, we look for the irreducible representations in the intersection
SBWN(VeS) ®(VeSs). We then verify these projections by explicit construction —
they are given in appendix A.1.

Note that in some cases there are multiple ways of embedding these terms into a
vector spinor. For example, consider the three T, each of which is a 4-form. There are
five inequivalent ways of combining a 4-form together with V, and ¢ to obtain a valid
61be. These roughly correspond to using either a v, a v or a (%) to “soak up” the
indices, and then further distinguishing in the first two whether the overall free index is
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Projection of R®> Rep of SO(10,1) Multiplicity
X [0,2,0,0,0] 8
Wi [2,0,0,0,0] 3
Sl [0,0,0,0,0] 2
Y? [0,1,0,0,2] 2
Vi [1,0,0,0,2] 2
T [0,0,0,1,0] 3
A [0,1,0,1,0] 3
Ut [1,0,1,0,0] 3
L 2,1,0,0,0] 3
M? [2,0,0,1,0] 6

Table 2. Valid embeddings of ®>R in 1. In each case, the index i runs over the corresponding
multiplicity.

symmetrised or antisymmetrised with the index on V,. So a priori, the 7% would appear
to contribute 15 undetermined coefficients to our operators.

There are, however, some constraints from the M-theoretic Lichnerowicz that can be
immediately applied to reduce the number of possibilities. We already established we only
want antisymmetrised products of V appearing in D®D,e, so that they will be converted
into a Riemann tensor. Symmetrised V would lead to ‘bare’ connections in the action and
could even spoil the tensoriality of the Lichnerowicz. This constraint eliminates the last
two terms in the table, L’ and M?, and further reduces the admissible embeddings of some
of the other terms. For instance, the 7% can now each only be embedded in three different
ways, for a total of 9 free coefficients.

Finally, we impose the condition that only the traceless part of the D operator gets
modified which, as mentioned in the previous subsection, is sufficient to ensure that ) =

T
I . It turns out that this is enough to fix these ambiguities of embedding, and the total
number of remaining free coefficients matches precisely the multiplicity of projections of R3.

Now, the representation theory also tells us what type of p-forms to expect in
the Lichnerowicz. Since we have ensured that this expression will be, schematically,
R3[V,V]e = R, we need to look at the p-forms in the symmetric tensor product of
four Weyl curvatures and see how each of the remaining terms in table might contribute
to them. We summarise the result in table 3.

We immediately observe that, as previously remarked, terms of type W' and S* are
projected out in the Lichnerowicz computation, and so their presence (or lack thereof) in the
supersymmetry operator cannot be constrained in this manner. We also see that we need
to have X type terms if we hope to find corrections to the scalars, and Y for corrections to
the 3-form. These are the only objects that may contribute to a corrected action. However,
they will also give rise to 4-forms which cannot be cancelled solely by picking appropriate
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p-form : 01 2 3 4 5
R* multiplicity: |7 0 1 2 17 0
X'® R e - e - e -
Wi® R - - - - - -
S'® R - - - - - -
Yi® R - - - e e -
Vi®R N
T"® R e
Z'® R - - e - e -
U'®R - - e - e -

Table 3. Potential contributions of the terms in table 2 to different p-forms in the M-theoretic
Lichnerowicz.

coeflicients x; and y; for each of them. Instead, we find by explicit computation that we
must, at a minimum, also add terms of type V* and T%, as we will now describe.

4.2.1 Minimal solution

Given these ingredients, we build:

D:S—-T"®S,

Dge =Vae+ Zl‘z’VCdvb lecdg + Z?J '761 Cﬁvb( abey .. 065)
i=1

] | 1
+Zt ( b1b2vb3 ab1b2b3 ) ﬁfybl b4v (Tgl...b4€)+ 1471)1 b4vb1( abs.. b4 )

1 A
+ 2T, 6) +

L obyb
7 4’}/“ e 5vb (Tbl b4 )>

8

2
1 . 1 )
+sz‘<4 b b“Vbs( b1 b€~ Voeaby. 0,€) T 2*57 b1 bsvc( by bsE)
i=1

1 i
+ %Vbllmvb() (Vab1...b55)> N (49)

As mentioned, these combinations ensure that Lichnerowicz will not contain symmetrised
V. In other words, we have that DDe = EH(RA‘)al,,,an'yal"'a"s with no ‘bare’ connections
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left. This should be clear once we look at the conjugate D operator:
D:T*®8 5,

8 2
D =7"Vatp+ D 2 Xipea V' + Y 4ir ™ Ve, e, VU (4.10)
=1 =1

3
5 ; 5 ; 5 ;
> <27‘”C2Tébm2v“¢b o T, (V™ = V) - Mvab01~~~C4Tél...c4vawb)
=1

2
A 1 A
+ Z v; <7ac30405 Vazqm% \vid! wCQ + %,}/bcl...% Vazqm% (vbd)a o Vawb)> )
=1

Note that D“’ya =V as required.
Now we need to fix the coefficients such that only scalars and 3-forms survive. We used
the computer program Cadabra [20, 21| to solve this algebra problem (and also performed

some double-checks on Mathematica). The single possible R* 2-form vanishes identically
and eliminating the 4-forms is solved by:

2
1 = —Y2, x7 = 16y2, to = 4*5(72312 —x5),
4
x2 = 16y, xg = 16y2, l3 = —5(72‘@2 — 5),
1 5 (4.11)
x3 = —2y2, Y=gy 2= g(—24y2 + 5x5),

x4 = —16y2, t1 =0,

x¢ = —4ws, v1 =0,

with o, x5 free. We have therefore found two solutions for our operators at R* such that
the Lichnerowicz contains only scalars and 3-forms (or rather, what results naturally from
the computation are their Hodge-dual 8-forms)

DD,e = (scalar)e + (8-form)g, . 57" %e¢. (4.12)

Note that in the notation of [27, 34, 35], we have a basis for the seven different R*
scalars

R'X1:R44, R‘X2:R45, R'X3:R43,
R- X4 = R417 RX5 = R467 RX6 = A7’ (413)

1 1
R X7 = —Ry — ZR% + A7, R- X8 = —Ryo + ZR46 + A77

where R - X' = R“deXbecd and so the scalar component of the M-theory Lichnerowicz
can be written as (below we write the Hilbert-Einstein term for convenience; other terms
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containing the Ricci tensor or scalar are dropped)

- 1 1
(DaDa{‘:’scalar) =——R+ §$5(R46 - 4A7)

4
1

+ §y2(—16R41 —32R40 — 2R3 — Ryy + 16 Ry5 + 32A7)
1 11

=——R — *7$5(—192R46 + 768A7)

4 2192
- (4.14)

— §Ey2(192R41 + 384Ryo + 24Ry3 + 12Ry4 — 192Ry5 — 384 A7)
1

=—R

4
11 s 1 11 g 01

- —— tst ——-Fg )| ——— tst -F
496«T5<88R 1 8) 412y2(ssR +1 8>7

while the 8-form is:
na 1 1 1 2
(D Da5|8—form)a1...a8 = _Zy2 —ZR -Y'"+R-Y
ai...ag
1 1
= _ZyQ - ZRalalebgRa3a4b1b2RasaaclczRa7a80102 (415)

+ Ralazblcl Ra3a4c162 Ra5a602b2 Rawnggln) ’

SO %GR Y1 = tr R2 A tr R? and %R -Y? = tr R*. We thus recognise the y2 # 0 solution
as corresponding to the invariant (tgtgR* + iEg) and z5 # 0 to (tgtgR* — iEg). To get
the correct eleven-dimensional action we thus need to take x5 = 0 and y» will be fixed by
the normalisation of the higher derivative terms. The existence of this freedom of choice
is maybe not unexpected, as three different superinvariants had already been identified
previously [39]. Comparing with [34, 35] we have, in the notation of that paper, that the
Yo terms give the Ix + %I 7 invariant, while the x5 terms give Ix — %I 7.
In appendix B we discuss other possible solutions to this Lichnerowicz system.

5 Application: seven-dimensional internal spaces

Two out of the three higher-derivative structures allowed by supersymmetry involve a com-
plete antisymmetrisation of eight indices. Hence, for our computation, seven is a sort of
critical dimension, i.e. the highest where only a single structure survives. So, in addition to
the natural desire of learning more about M-theory compactifications on seven-dimensional
internal spaces, assuming the eleven-dimensional space breaks as M1 = My x M7 and fo-
cusing on the M7 component provides a good setting to make further considerations on our
construction.” We then have that the two eleven-dimensional scalars y and x5 will coincide
(tsts R+ iEg) = (tgtsR*— iEg) = tgtg R* when fully restricted to M7, and even though the

TOf course, a calculation on M7 can be considered on its own, with the view of deriving higher-derivative
corrections in seven-dimensional effective theories. We mostly concentrate on supersymmetry on the internal
seven-manifold.
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1o is the correct physical solution in eleven dimensions, in seven dimensions we may just as
well work with the simpler x5 when writing a fully restricted operator D. In terms of SO(7)
representations using the projectors of the cubic powers of R,y in appendix A.2, this is

Dms:vmsmmpqvn(( 5 e 4Xffmpq)) 315x57m Vn<(5'1—232)5)
8 ) B

45
e 379
1MV, ( ni.. ”46)_T60

8 i1 172 73
+ 5257V («4Vﬁp+2wgm+wvm@s)

2
#( = T D) - I (T )

mng...n4

315

367 f o 113
+%,ymn2n3n4vn1(Tnlmn46) %anl nsv ( s n46)>

11

2
’ynl n4v ( ny.. n4€)+475’ynlmn4v”1(T'r§ln2 7146)

4 3
+$5 (45 n1”2vn3 (Tmnlngngg) 315

71 13
_ EV n2n3na 7N (Tgl n4€) + ﬁ,}/mm...ns vn5 (Tsl n4€))
2% (1 ) )
+ §$5 <4 N A (an1n2n3n4n5 Vn5mn1n2n3n45)
1 ni...n5 7P 2 1 ni...ng 2
+ 257 V (V;)n1n2n3n4n5€) + %’7 Vn(i (an1n2n3n4n5 6) ) (51)
where m,n, ... are internal seven-dimensional indices and now V is the Levi-Civita of the

internal manifold and Ry, its (Weyl) curvature.

The full decomposition, keeping dependence on both internal and external contribu-
tions, will be much more involved and we will not perform it here. However, we can try
to capture some aspects by considering a restricted Lichnerowicz formula in the seven-
dimensional space, expanded in order of internal derivatives. As we will soon see, this
seven-dimensional Lichnerowicz formula has corrections starting from three-derivatives on
the operators and will turn out to reveal some interesting new structures. In order to relate
it to its eleven-dimensional counterpart, one needs to think of the coefficients in these oper-

ators as being made of Riemann curvatures in the external (four-dimensional) spacetime.®

5.1 M-theory Lichnerowicz for SO(7)

In performing the M-theory Lichnerowicz in seven dimensions, we may immediately expect
one difference. The eleven-dimensional Lichnerowicz was picking zero- and eight-forms in
the expansion of p. In seven-dimensions, one is instead interested in zero- and four-form
parts and the action, up to integration by parts, is given by:

Lp=plr=CApls=(1+C,p). (52)

8In order to make proper contact with the eleven-dimensional calculation, one should strictly start
with a zero-derivative term Dy,e = Ve + Ayme, corresponding to taking all the R* couplings in the
external four-dimensional space, and which would lead to a constant piece in the internal action D™Dye =
—1(R + 168A%)e. To keep the calculation similar to the eleven-dimensional one, we will ignore this term.
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5.1.1 Three-derivative terms in the operators

In section 4.1 we used a very simple argument to rule out any four-derivative contributions
to the eleven-dimensional action — they would inevitably contribute an unphysical 4-form
to the M-theory Lichnerowicz. However, in seven dimensions a 4-form is Hodge-dual to a
3-form and thus contributes to the flux equation of motion. Therefore, we will allow the
operators
Dye = Ve + kV" (Rpnpgy?e)

D™y = Y™V ¥y + kRinnpg VP IV "y
These operators are not in contradiction with the eleven-dimensional construction — in
fact, they should be expected. Consider the X' term in the solution (4.9). Explicitly
Vexl . = VPRI (RU)2 and one way of decomposing this is as V”Rzgnm(R“C‘)2 —
[AVALY AR
least quartic order in external derivatives.

(5.3)

So consistency with our eleven-dimensional solution implies that k is of at

The seven-dimensional Lichnerowicz now yields
- 1 1 1
DD, = —ZRE + ikRmnqum"pqa — ZkRmnqumpq’ym”mE + higher order. (5.4)

In the effective theory the interpretation is immediate: using (5.2) we obtain the C3A (tr R?)

2 completion. As

term of the theory with 16 supercharges [29] together with its (Riemann)
for the internal supersymmetry, we may already note a major limitation of our approach.
Since we are effectively integrating out the four-dimensional action, we have lost the ability

to distinguish a four-dimensional scalar from a top-form. Indeed it is not hard to see that

X1, ., is not the only source of terms ~ k in (5.3). Such a term may also originate from
YCLl1 azby. bg- From other side, one may already guess that like in the seven-dimensional

effective theory, these will yield internal top-forms quartic in derivatives. We shall return
to these in subsection 5.3.

Before turning to the discussion of contributions with a higher number of derivatives,
we should remark that this interpretation results in an extra physical constraint, which is
important for reducing the number of further terms. As mentioned in section 2.1, Xg is
related to M5/NS5 anomalies and string-theoretically it is one-loop and does not receive
any higher loop contributions. On the other hand, the next set of corrections to the internal
covariant derivatives are, from the eleven-dimensional point of view, reductions of terms
which are (at least) thirteen derivatives, i.e. the types of corrections that may contribute
to R” (and higher) couplings. These come from string two (and higher) loops, and hence
should not affect Xg. This means that there can be no further higher-derivative 4-forms in
seven dimensions, as these would correct Xg when lifted to eleven dimensions. So even if
there exist six- (or higher) derivative four-form modifications to (5.4) consistent with the
Lichnerowicz method, we should not allow such contributions. This in turn implies that
the constant k is exactly of quartic order in external derivatives.

5.1.2 Five-derivative terms

Furthermore, the reasoning we used in section 4.1 to rule out VR? terms in the supersym-
metry operators in eleven dimensions remains valid in seven. These necessarily add 4-forms
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to the Lichnerowicz which we have just argued cannot be allowed. However, we are not done
at this order. Since we have changed the supersymmetry operators at a lower order, we need
to check whether the Lichnerowicz remains consistent at the five-derivative level — or put
in another way, whether the supersymmetry algebra still closes to this order. It does not:

" 1 1 1
D™ Dyne = = Re + Sk Rnnpg R — <k Rypnpg Ry 55)
+ k? Ripppg VIV "V (Rinrsty™'e) -

The last term of the Lichnerowicz does not define a tensor. We must therefore introduce
a new correction piece to our operators, which will precisely cancel this last term

Dye = Ve + kV"™ (Rpnpgy?e)

1
+ 4k26(7mn - 59mn)vp (Anpqr'YqTE) )

_ (5.6)
mem = 'Ymnvmwn + kRmnpq’quvnwm
- 4]{:2Amnpq,7pqvnwm’
with
AT APle = V[mvp(Rn]pqr’yqra), 5.7)

Amn APle = RPIM 7 AT

Note that in seven dimensions, Y™ (5 —5gnp) = 60,". These new terms are not of the form
V R"™ which we had considered thus far, they include higher derivatives of the spinor para-
menter (also seen in, for example, [14]), and clearly do not appear in the eleven-dimensional
solution. Their origin is clear, however, as they come multiplied by k2, a factor which is
of order 8% in external derivatives. In total, we recognise that these new terms are of the
same order as R’ corrections in eleven dimensions. If we had simply restricted ourselves
to reducing the R* solution we would never have found these terms, but they are natural,
indeed crucial, from the point of view of the internal seven-dimensional supersymmetry.

5.1.3 Seven-derivative terms

Of course, moving to the next order once again breaks the Lichnerowicz, and we have
to introduce new corrections, proportional to k%, and which must descend from eleven-
dimensional terms of order R'°. We find

Dye = Ve + kV" (Rpnpgy?e)
1
+ 4]‘726(%% — 59mn)Vyp (A" 47 "€)

1 n T
- 32k36(’}/mp - 55mp)v (Bnpqr’yq 5) ? (58)

mem =" Vtn + kRmnququn¢m
— 4k2 AT APIN by,
+ 32k3 Brrunpg /P,
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with

1
Bmn Pa. _ — plm +5 plm vn]vq A s TS ’
paY"le = G (77 4 5g VIV (Apgrane) (5.9)

B™ Pl = APIM, 7 VAT

This ensures the consistency of the “k family” of corrections up to seven internal derivatives.

At this order we can also return to the VR? terms and clearly we could effectively
just transpose the eleven-dimensional solutions to seven dimensions, performing minimal
adjustments, as they only contain zero-forms (and 8-forms, which now vanish identically)
by construction. As we saw in section 4.2.1 and appendix B, there are several such solu-
tions, corresponding to several unfixed coefficients. A certain combination of these seven-
dimensional solutions will correspond to taking the eleven-dimensional R* action as purely
internal, so their coefficients will be of zeroth order in external derivatives. Others might
correspond to higher-derivative corrections beyond R* in eleven dimensions which factorise
in such a way as to give rise to internal R* terms.

5.2 Solutions with G2 holonomy

We will now make some considerations about the particular case when the seven-
dimensional manifold has G2 holonomy.

The assumption of Go holonomy imposes a large number of simplifications in our
formulae. We will not go through the complete solution, but note, for example, that if we
take the Gg structure to be defined by a spinor €, then when evaluating our supersymmetry
operators all derivatives of € drop out since Ve = 0 by G5 holonomy.

Furthermore, we have that R,y 7P = 0 as well, so the entire “k family” of correc-
tions from the previous subsection vanishes identically. This can be seen either by acting on
the supersymmetry variation by another V or introducing the G invariant 3-form and dual
4-form in terms of the complete basis of seven-dimensional spinors given by {e,7™e} [40]:

Ymn€ = iqunp'}/pga

. (5.10)
YmnpE = 1¢mnp £ — *(z)mnqung'

One finds that for G2 holonomy manifolds the Riemann tensor satisfies R,pq@??" = 0,
which implies that under the 28 — 21 + 7 decomposition of a 2-form, the representation
7 is missing. This can be written equivalently as Rynpg(¥0)™"rs = 2R, spq-

This brings us to the eight-derivative terms. In fact, G3 holonomy also implies that the
tstsR* term vanishes identically [24], so the internal action actually has no corrections at
order R*. The equations of motion are still corrected [36, 41], however, and for an external
flat space they become simply V™V,,Z," = 0, where Z is a function of R? given below.
This is then what a G Lichnerowicz formula should reproduce.

There exists a well-known correction term to the supersymmetry variation for Gs
manifolds. It is usually given in terms of the Ga-invariant 3-form ¢y, as

0m = Ve +1ia(Vy Znp) 9" v,e, (5.11)
with a some real constant and

M1Man1Ny PMIMANING DMSMENSN
Zmn:gemml...mﬁennl...n6R PRI RITSTATIS A RITSTIGTSTG (512)
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Projection of R® Rep of Go  Multiplicity
I [3,0] 2
K [1,1] 1
Wi [2,0] 3
Si 0,0] 2

Table 4. Valid embeddings of ®>R in 1. In each case, the index i runs over the corresponding
multiplicity.

is a correction term [36] which satisfies V""Z,,, = 0 thanks to the Bianchi identity of
Rinpq- Zmn may be written in terms of our SO(7) bases as

. . . 4 . .
Zn = 24(— W +2W2  + W3 )+ ?gmn(Sl —28%). (5.13)

The precise form of this correction was a crucial part of the analysis of [42], which examined
whether the G5 solution remains a valid supersymmetric background to all orders of higher-
derivatives corrections. We will leave for future work a direct comparison of (5.11) with
the reduced x5 solution given in the previous section, but we will remark that just a quick
look at the representation theory shows that it is plausible that the two match. First note
that under a Go decomposition, the number of possible terms that can be admitted in d1)
is quite small, they are listed in table 4.°

We observe that since [0,2] (the representation of the Weyl tensor) is not one of the
admissible terms, it is not possible to obtain R* scalars from Lichnerowicz, which lines up
with our expectation that those terms in the action vanish. Now, focusing on the terms that
appear in the restricted operator (5.1), from the so(7) under g branching rules we have the
decompositions of the X?, [0,2,0] — [0,2]+[1, 1]+[2,0], the V*, [1,1,0] — [1,1]+[2, 0]+[0, 1]
and the T%, [0,0,2] — [2,0]+ [1,0] + [0, 0], though note that the [1,0] and [0, 1] components
drop out as they do not exist in the tensor product of R3. The W* € [2,0,0] — [2,0] do
not decompose, nor do the scalars S%, so in particular Z,, keeps its form. We see that
all the terms in the x5 solution mix together in the [1,1] 4 [2,0] + [0, 0] representations,
and therefore agreement with (5.11) will require the [1,1] to vanish and the [2,0] + [0, 0]
to be precisely Z,,,. A potential issue is that in eleven dimensions we ignored terms such
as the ones of the type W* and S* since they did not contribute to Lichnerowicz (they do
not affect the bosonic action), yet they might be required here in order to obtain a precise
match at the level of the operators.

Finally, we remark that the calculation of [36] which first derived (5.11) relies on
this operator satisfying an integrability condition precisely of the type that first led us
to consider more general Lichnerowicz formulae, so in that sense the problem has already

been solved.

“Note that here we do not require that only the antisymmetric [V, V] appears in the Go Lichnerowicz
formula since by using the covariantly constant spinor (Ve = 0) we do not need to worry about tensoriality.
In fact, as mentioned, the expectation is that the G2 Lichnerowicz will result in the equation of motion
V"V Zy" =0.
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5.3 Comments on compactifications

We shall now comment on the relation between the results of subsection 5.1 and the
general results of section 4. The seven-derivative contributions to the covariant deriva-
tive D, are clearly related, but while for the eleven-dimensional operator these are the
first higher-derivative terms, its seven-dimensional counterpart has also three- and five-
derivative terms. Where do these come from?

Let us start with lowest order, i.e. the three-derivative terms in (5.3). If one thinks of k
not as a numerical coefficient, but a combination quadratic in external (four-dimensional)
Riemann tensors, then one can find factorised terms in (4.9) and (4.10) that can yield (5.3)
upon breaking eleven-dimensional Lorentz invariance.

The yo and x5 families behave rather differently. %:1;5(R46 — 4A7) appearing in (4.14)
does not have any factorised terms and hence its reduction would lead directly to k = 0.
The reducible part of the yo family that yields a non-trivial k£ contribution is —%y2R44.

Let us also observe that if one precipitates and uses (5.10) together with G self-duality
relations for the Riemann curvature, one find that the two terms proportional to & cancel
out in (5.4). In our approach, we keep the zero-form and the four-form separately and add
the latter to the action after completing it to a top-form by wedging with C.

In the reduction on a G9 holonomy manifold X, the relevant part of the eleven-
dimensional action to be integrated over X is given by

1 1 1 1 :
—(RapegRYN? — ZC Atr R2 A tr R? +E4/ ¢ Atr R — —tr R2ui/ whtr R?. (5.14)
2 4 27 4 %

Here Ej is the four-dimensional Euler density which (up to Ricci terms) is the same as
the Riemann tensor squared. In the first term on the right-hand side we have used that
Ry R = %Rmnqurqu(*qb)mm"s = *(¢ A tr R?). Finally w’ € H3(X) and C3 = u; wi,
with i = 1,--+ ,b3(X). We may decompose similarly ¢ = ¢, wé. In fact u; and ¢; form the
scalar sector of b3 chiral superfields of the N = 1 theory in four dimensions. We end up
with a four-derivative contribution to the N = 1 effective theory:

1
LN:l ~ Q4 <2UZE4 +t;tr R2> , (515)

with
ol = / wi Atr R% (5.16)
X

For X = X x S!, where X is a Calabi-Yau threefold, one can recognise the familiar
one-loop R? couplings in N = 2 theories, where now in the internal six-dimensional integral
the w’ are replaced by the forms in the H(\D (X)), and wu; +it; is the complex scalar in the
N = 2 vector multiplets [43].

As mentioned earlier and further elaborated below, the terms in the action with &
factors should not receive corrections from higher-derivative (higher string loop terms) and
hence we do not expect the coupling (5.15) to receive further perturbative corrections. We
may remark that the moduli spaces of Gy compactifications are not factorised and have
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(complex) dimension b3(X) + bo(X).10 It is curious that the higher-derivative couplings
make use of b3(X) topological numbers o and distinguish between the two sectors.

We can turn to the next order — five derivative terms in the operators. Note that
these are designed to cancel non-tensorial terms in (5.5). However, they contain a factor of
k? on top of two Riemann tensors and two V, and so from the eleven-dimensional point of
view are order R”. Hence the additional contributions to the supersymmetry operators are
reductions of the next order terms in eleven dimensions, i.e. 13 derivative terms. Similarly,
at the next order of internal derivatives we have terms ~ k3, and these come from the
reduction of 19 derivative corrections to eleven-dimensional supersymmetry. Note that we
are only probing the fraction of the higher (than seven) derivative terms in supersymmetry
whose purpose is to cancel unwanted non-tensorial contributions from cross-terms of lower-
derivative contributions. By design the action itself stays order ~ R*. Notice, however,
that the seven-dimensional Lichnerowicz method seems to be giving information about
terms that are higher order in the eleven-dimensional sense.

We may finally comment on factorisability properties of higher derivative terms. In [27]
the terms that allowed to factor out a single Ricci scalar were discussed. Here we completely
ignore the Ricci terms, so we cannot further comment on corrections of that type. However,
our seven-dimensional calculation would appear to rule out certain other types of terms
in eleven dimensions. Consider, for example, an order R’ correction to the action that
factorises as R> - Ry4, where R? is some linear combination of the S? given in appendix A.1
and Ry4 was given in (4.13). Upon decomposing to seven dimensions, this would lead to
a term k(R™)3 in the reduced action, with & = Rl = (RuwapR*2P)%. This would be
in contradiction with our Lichnerowicz calculation in section 5.1.3 which disallowed R3
terms in seven dimensions. Thus, we are lead to conclude that corrections of the type R> -
[anything nonzero in 4d] appear to be ruled out in eleven dimensions. On the other hand, a
pure Riemann term like R3- (egeg R*) is possible. Similar considerations also imply that (be-
yond order R*) terms that factorise as R? - [anything nonzero in 4d] are likewise ruled out.

6 Future directions

The effects induced by higher-derivative corrections play an important role in many lower
dimensional theories arising from compactifications. It may be useful, even if more labo-
rious, to work out a full reduction of the eleven-dimensional Lichnerowicz formula, rather
than study a lower dimensional “descendant”, as we did here. An intriguing aspect of
studying the formula on a product of internal and external spaces is that different deriva-
tive orders get mixed on a lower dimensional component, allowing for glimpses into further
corrections to supersymmetry operators. There are still open problems concerning the
eleven-derivative covariant couplings, and we conclude by mentioning two venues of possi-
ble progress.

1OWe discussed here the bz(X) chiral multiplets made of deformations of the metric and the scalar modes
coming from C5. The latter also yields b2(X) vector fields, which make the bosonic part of vector multiplets.
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6.1 Adding fluxes

We began by showing that the classical supersymmetry operators with flux obey a Lich-
nerowicz relation that reproduces the classical action. However, when we moved to the
higher-order corrections we set G = 0 in order to simplify the computation. A clear next
step is to restore those terms and obtain the flux completion of R*.

The issue of computing the full set of G flux contributions to the eight derivative
corrections is a long standing one. Progress has been made in string theory, and it can be
shown that at one loop most of the NS sector contributions are captured by introducing
a connection with torsion w™® — wW“® 4+ H. There are, however, additional ambiguities
associated with lifting to eleven dimensions, and replacing H by G [44].

In the context of the M-theoretic Lichnerowicz method, the computation of the flux
terms should proceed in a straightforward iterative manner. Firstly, promoting the leading
term V, — Vf in the supersymmetry operator D, will immediately break the tensoriality
of D*Dye and will require adjustments to the existing higher-derivative terms — for ex-
ample, all the V, in the correction terms of D, will likewise have to be replaced by Vf.
Additionally, we neglected Ricci terms but now they become proportional to G? by the
equations of motion so they cannot be ignored. Instead, we have that factors of y¢[V&, V?]
and (V9)*V& give the combinations of covariant derivatives that vanish on-shell. Finally,
it will be necessary to impose the constraint that the M-theory Lichnerowicz define just a
scalar and an 8-form. This will require the addition of new terms to the corrected operators
to cancel the other p-forms, which should be easier to do if one proceeds order by order in
powers of the G flux.

Note that at four-derivative order, the couplings in the seven-dimensional theory with
16 supercharges including four-form flux are known without ambiguities [44]. This case

should provide a good test for completing the seven-dimensional Lichnerowicz formula
with G.

6.2 Towards R7

The M-theoretic Lichnerowicz computed from the operators we defined in section 4.2.1
D%Dg,e only results in a scalar and a 3-form up to order R*. If we include the higher
order terms in the computation this will fail, and the form of this failure is clear — if we
schematically write the corrections D = V+VR3 and D = V+ R3V, then the full DD will
include R?VV R?, which will even involve non-tensor terms. These terms are of the same
order as R”, so we are led to conclude that no new corrections will be needed at order R®
or RS, but are necessary at R7. This is consistent with the fact that in the strong coupling
eleven-dimensional limit [45], the only surviving terms will be of order R3*! for loop order I.

In principle, the Lichnerowicz procedure should allow us to deduce what is the form
of these corrections. However, computationally it is significantly more difficult to generate
the necessary tensor products of seven Riemann tensors, and, in addition, it is expected
that at this order there might be terms involving explicit connections V in the action,
further complicating matters. Nevertheless, since we can easily compute the ‘problem’
terms explicitly in the Lichnerowicz equation, it seems hopeful that one can cancel them
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step-by-step by suitable modifications of the D and D operators, just like we did in the
simpler seven-dimensional case in section 5.1.2. As an example, consider just the X! part
of the ys solution for the operators (4.9), i.e.

Doe = Ve — 2 VO(X L av%%e) + ...
= Vae — 12V (R*Rapeay ) + . ..

~ (6.1)
Do = 7""V oty — y2XapeaV VU .
= Vabvawb - y2R2Rabcd’76dvbwa +...
which gives in the M-theory Lichnerowicz
DDye = -+ (y2) R2R%cay““ VOV (R* Roc v/ %) + . .. (6.2)

This term is analogous to the one we found in seven dimensions, and so can be cancelled in
a similar manner. We therefore expect that there will be a correction to the supersymmetry
operators at 13 derivatives given by

D,e = Ve — ygvb(RQRabcd’yCds)
1
4255 (b — 99a) Ve (VPG ARV, B2 o)) + ..
Do = ¥V athy — y2R? Rapeay* V"
— 4(y2)? R RV VIS (R2Vpa) + . ..

(6.3)

Since the effect of this particular correction is to precisely cancel the non-tensorial piece
in (6.2), it does not generate new contributions to the action of order R'.
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A Projectors for R3

A.1 1In eleven dimensions

Here we present bases for projections of tensor products of Weyl tensors into irreducible
representations of SO(10,1). Throughout, same letter indices which are free are assumed
to be antisymmetrised with unit weight (contracted indices have no such assumption). We
will be considering the irreducible representations listed in table 2 which are relevant for
the Lichnerowicz calculation. For convenience, these are reproduced in table 5.
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Projection of R®> Rep of SO(10,1) Multiplicity
X [0,2,0,0,0] 8
Wi 2,0,0,0,0] 3
Sl [0,0,0,0,0] 2
Y? [0,1,0,0,2] 2
Vi [1,0,0,0,2] 2
T [0,0,0,1,0] 3
A [0,1,0,1,0] 3
Ut [1,0,1,0,0] 3

Table 5. Relevant projections of ®3R in eleven dimensions. In each case, the index i runs over the
corresponding multiplicity.

The four-index X terms contain two pairs of antisymmetric indices which are sym-
metric under exchange, and are fully traceless:

1 _
Xa1 asbiby — Ral azb1b2 Rcl cadyda RCI cadyda>

1 1
2 _
Xa1a2b1b2 - §Ra1a2b161Rb202d1d2R0102d1d2 + in1b2a101Ra202d1d2R01C2d1d2

2
+ §ga2b1 Rbgdlaldg Rd1c10261 Rdzclcgel y

2 2
3 _
Xa1a2b1b2 - gRa1a2C1C2Rb1b2d1d2R6102d1d2 - gRalblclcQwaﬂldzR6102d1d2

+ §ga2b1 Rb261d1d2 Rd1d20102R6162a161

- 4759a2b1 Ja1bo Rd1d26162 R61620162 RClCledQ )
4 2

Xa1a2b1b2 = gRalc1b102Ra2d1b2d2R01d102d2 + gRa1C1b102Ra2d1b2d2RC1d202d1

1
+ ﬂRallZQClCQ Rb1b2d1d2 RC162d1d2
2
+ 1789[1251Rb261d1d2Rd1d2€102R0102a161 - §ga2b1RbgdleldzRd161d202R01a10281

1
- 36Oga2blga1b2Rd1d2b3b4Rb3b4clcgRq@dldg + %gagblgalbngleldgegR€1616202R01d162d27

1 1

5 _
Xa1a2b1b2 - gRa1a20102Rblc1d1d2Rb202d1d2 + gRb1b2C162Ra101d1d2Ra202d1d2

2

- gRal bicico sz cididso Raz codido

2
+ §ga2b1 Rbgeldldg Rd1d26162R0162a161

1
- %gale Jaibo Rd1 doeyen Re1 eac]c2 Rc1 codidss
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2 1

6 _
airazbiby — 5R0101b102Ranlcldsz2d102d2 + gRalcﬂnClRa2d101d2Rb2d102d2

1 1

+ ERalazclczRb1d1c1d2Rb2dlcgd2 + ERblbgclcgRa1d1c1d2Ra2dlcgd2
1 2

- T89a2b1 Rb261d1d2RdldQClCQRC1CQ(11€1 + §ga2b1 Rb2d161d2Rd1cld262Rclau:gel
1

+ §ga2b1Rb2d1a1d2Rdlclczel Rdzc10261

1
+ 36oga2blga1b2Rd1d26162R61€QC102R0102d1d2 - %gagblg(llbgRd161d262R81016262R81d162d27

2 1
7
ajazbiby — gRalqb162Ra202d1d2Rb201d1d2 + 7Ralc2blclRa202d1d2Rb2CId1d2

3
1 1
- ER(llaZClCQRblCldldQRbQCledQ - ﬁRbleClcQRa161d1d2Ra202d1d2
2 1
- §ga2b1RbgeldldgRdldgclchclczalel + §ga2b1Rb2d1a1d2Rd1616261 Rdzchel

1
+ %gagbl Gai1by Rd1d261€2 R€1624C102 Rclczd1d27

1
8 _
Xa1a2b1b2 - gRGIU«QClcQRbldlcleRb2d102d2 + gRb1b20102RaldlcldQRa2d102d2

2
- §Ra1b16102 szdlcldg Ra2d162d2

4
+ §ga2b1 Rb2d161d2 Rdlc1d202Rc1a16261
- Z5ga2b1 ga1b2 Rd161d262 R€161€262 Rcldlcgdz .

The two-index W' are symmetric traceless:

1
1
Wa1b1 - Ra1d1€1€2R€1826162R0162b1d1 - ﬁgalblR€162d2b2Rd2b20102Rclc2ele27

1
2
Wa1b1 = R¢1161d162R61€1€202R01b102d1 - ﬁgaﬂn R61a262b2Ra261b202RC16102827
3
Wa1b1 = Ra161b101R6162d1d2R0162d1d2‘
The S* are scalars: .
S = Rayagbyby Bbybacrcr Reiczarass
2
5% = RalblagbgRblclbgchclalczaz'
The eight-index Y? have a pair of antisymmetric indices, another set of six antisym-

metric indices, vanish if any seven indices are antisymmetrised, and are traceless:

1 _
Ya1 ashi...bg — Ra1 azb1b2 Rb3b4d1 d2 Rb5b6d1 d2

8
= 59aibr R\ asbobs Reibady ds Rbsbgdy ds

4
+ BgalblgagbgR61C2b3b4Rd1d2b5b6R6162d1d2 - Bgaﬂnga2b2R6162b3b4RC1b5d1d2RCQb6d1d27
2 _
Y(llagbl...bﬁ - RalclblbzRa262b3b4Rb5b60162
2 4
~ £ 9aiby Re,asbobs Beybydydy Rbsbedids — 5 Jarby Re,dybsby Rasdyerby By dobsbg
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1 2
+ %galblgagbgR61C2b3b4Rd1d2b5b6Rclcgd1d2 - BgalblgGQbQRC162b3b4RC1b5d1d2RCQb6d1d2
2

+ 15 Jarbi Jazb: Ry dybsby Beydycabs Beydaer b -
The six-index V? have a set of five antisymmetric indices, vanish if the six indices are

antisymmetrised, and are traceless:

1 _
Vasbr..bs = Berasbabs Rerbadidy Rosbydada
1 2
- ?gagbchlcglmbl Ry, dobsbs Reicodids + ;gagbchlchm Ry, docrbs Ry daeobas
2 _
V(I2b1...b5 - R01d1b3b4Ra2d261b2Rd1d2b5b1

1 2
- ?ga2b2Rclczb5b1Rd1d201b3Rd1d262b4 - ?gagbng1d2b5b1 Rcld102b3R62d261b4'

The T* are 4-forms:

1

Tb1‘..b4 = RCIClebQRd1d2b3b4R6102d1d27
2

Tbl...b4 = R016251b2Rd1d201b3Rd1d262b4’

3 _
Tbl...b4 - Rd1d2b1b2Rc1d162b3R02d20164'

The six-index Z¢ have a pair of antisymmetric indices, another set of four antisymmetric

indices, vanish if any five indices are antisymmetrised, and are traceless:

1
7Rf11 azdiby R0102d1b2 R01€253b4 + 7Rb251d1a2 R6102d101 R010263b4

Zl
2

ajashy...bs — 9

1 1
+ 79a2b4Ra1clb1b2Rd1d2chl Ry docobs + §ga2b4Rc1ch1b2RclbgdldQRdldgcQal

1
+ S Yasbs Reyicoarbo Beibsdido By docabr »

7
1
2
Za1a2b1...b4 = iRa161d1b1RClClebzRa202b3b4 + iRa1d1C1b1RClClebzRa202b3b4
3 1
- %gaglmRalclblbgRd1d26261Rd1d2(32b3 - 278ga2b4Rc162b1b2Rclb3d1d2Rd1d202a1
1 1
- %QamRclcgaleRclbgdlngdldmbl + ?ga2b4Rclcgb1b2Rcldlbgngdlcgdgal
1
+ §9a2b4RclczaleRcldlbg@Rdlczd2b1,
1
3
Za1a2b1...b4 - iRaldICICZRC102b1b2RU«2dlb3b4 + inldICICQRCchGlb2RG«2d1b3b4
3
- ﬁga2b4Ra1clb1b2RdldQCQCleldQCng - ﬂga2b4Rc1czb1b2Rc1b3d1d2Rd1d202a1
1
- ﬁga2b4RclczalbgRclbgdldszldzczln'
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Projection of B> Rep of SO(7) Multiplicity
X [0,2,0] 7
W 2,0,0] 3
S [0,0,0] 2
Vi [1,1,0] 2
T [0,0,2] 3
A [0,1,2] 3
U [1,0,2] 3
L [2,1,0] 3
M [2,0,2] 6

Table 6. Valid embeddings of ®2R in 7. In each case, the index i runs over the corresponding
multiplicity.

The four-index U? have a set of three antisymmetric indices, vanish if the four indices
are antisymmetrised, and are traceless:

1 _
Ua1b1b2b3 - RalclbleRdleCQCleldQCQbB7
9 1 1
Ua1b1b2b3 = iRclchleR01d1b3d2Rd102d2a1 + iRCICQGfleRcld1b3d2Rdlch2bl7
1 1

3 _
Ua1b1b2b3 - §R0102b1b2Rclb3d1d2Rd1d202a1 + §R0102a1b2Rclb3d1d2Rd1d202bl'

A.2 1In seven dimensions

In principle, the seven-dimensional supersymmetry operator can contain any of the SO(7)
representations listed in table 6. However, we write explicitly only the projections that will
be relevant for a reduction of the x5 solution in eleven dimensions from section 4.2.1.

Indices m,n... run from 1 to 7, and, as before, any free indices with the same
letter are assumed to be antisymmetrised. The metric ¢g is now that of the internal
seven-dimensional space.

We will consider two X terms. They contain two pairs of antisymmetric indices which
are symmetric under exchange, and are fully traceless:

1 1

o5 B
Xm1m2n1n2 = nglmzmpzRnlplqlqun2p2q1qz + 3anzplpzRm1p1q1qum2pztnqz

2
- g Rm1n1p1p2 Rn2p1 q192 Rm2p2q1 q2

+ ggmzm Ruyrig1g0 Barqapipo Bpipamim
1

30 Gmany Gmang Bayqarirs Brirapips Bpipagi gz

. 2
6 _
Xm1m2n1n2 = nglpmlpzRmquplqunzmpzqz + ngIPQHIPI Riaqipiga Bnagipags

1
+ ERmﬂnzplpzRlelpleRn2Q1p2Q2 + ERTMTQPIPQlelelQQRmZQIPQQQ
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1
- EgmzmRn2?’1¢]1!12R41Q2P1P2Rplp2m17"1 + ggmzm Rnyqirig0 Baipraape Bpimapar:

+ 5gm2n1 Rnsqimigo Raiprpars Bazpipar
1 1

+ 1209m2n1gmmzquqzm"zerrzpszplpquqz - 309m2n19m1n2Rq1r1qzr2Rmplrzszplqlpzqz-

The two-index W* are symmetric traceless:

. 1
1 _
Wm1n1 = R, q1q0m2 Bganopips Bpiponiqs — §gm1n1Rq1q2r1r2RnrzplszmpquQv
< o 1
Wm1n1 = Rm,g2q1n0 Raapinops Bpinapagr — §9m1n1RmqurzRnpwzszmqwzqzv

Wilnl = leqzmm qunququpmzqwz-

We have two scalars S*:

Sl = lemznmanmzppoRplpz??hmz7
Sz - Rm1n1m2n2Rn1P1n2p2Rp1m1P2m2'

We also need the six-index V', which have a set of five antisymmetric indices, vanish
if the six indices are antisymmetrised, and are traceless:

-1 -
Vm1n1n2n3n4n5 - RmmmznsRp1n4q1q2Rn5n1q1q2

1

3 Imans Bpyponsni By ganana Bpipagrge + §9m1 na Bpiponsni RBgigoping Bqiqaponas

f/2

mininengnins Rp1 qim3ng R, q2p1M2 RQ1 ga2nsni

2

+ ggrmanpponsm Rq1q2p1n3RQ1QQp2n4 - nganRQIQQnE)nl RPIQIPQHSRPQQQPITM?

and three 4-forms T

Tﬁln2n3n4 = Rp ponina Raigonsna Bpipagiges
T51n2n3n4 = Rp1p2n1n2RQ1Q2p1n3RQ1f12p2n47
Tslngngm = Rgigonins Bpigipons Bpogopina -

The eleven-dimensional terms thus decompose as

8 <1 1 .

5 o5 )
Xm1m2n1n2 = Xm1m2n1n2 - 47597712711 Wm1n2 — ﬁgmﬂhgmlngs 7
¢ 2 i 8 4
6 6 1 ) 5
Kmimaning = Xmimanine + 45 Winina = g5 Wi = 5 Wonina
1 L >
+ TaggImem JmingS' — gizGmam Gming S
- 10 i )
2 2 ) ,
Vm1n1”2”3”4”5 N Vm1n1n2n3n4n5 B igmlann2n3”4n5 + igmlann2n3n4n5a

3 _ 1173
Wiine = Wining
7 _ i
Tn1n2n3n4 - Tn1n2n3n4’ St =5
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B More general solution

In section 4.2.1 we were able to find a “minimal” solution to the M-theory Lichnerowicz,
in the sense that we did not utilise all the possible terms listed in table 5 in the construc-
tion (4.9) of the supersymmetry operator D,. Let us now consider adding the remaining
terms of the table and see if we can find more solutions:

D:S8—T"®S,

1 A ,
Dle= as—l—Zsl S € +sz< Vb W’ )—m%bvc(Wc’bs)—i—vbleVbl(W;er))

+ZZ'761 C4vb( abey .. 045)
=1

3 .
+ Z Ui < b2b3 Vbl ( ab1b2b3 ) + E7b2b3 Vbl (Uglab2b3€)

2 .
- 77@b1b2b3 VC( C’Lblbgbge) +

1 b1babsb. )
105 577 e 4vb4(Uab1bzb3€) ’ (Bl)

21
and
D:T*®8 -5,
D/aw _ Dawa + Zsl,}/abS'L aq/)b + sz,yac i (vc¢b - vb¢0)
| (B.2)
+ Z zi’VCln.&l Z(Zzbcl...04 waa

3
1
+ Z u; < acgUClwlCchva wCQ o 21’}/b010263 Uclzclmc,g (vawb - vbwa)> )

As previously mentioned, the S* and W' terms do not actually contribute to anything
at this level, so their coefficients will be unconstrained. We get that the 2-form in the
M-theory Lichnerowicz vanishes if

1 3 3
= —— — B.
21 vz T og2 5% (B.3)
while eliminating the 4-forms is solved by:
! 16 t !
Tl = —Ys — —U €T = =——u
1 Y2 36 15 7 Y2, 1 31 15
2
r9 = 16y2 + §U1, rg = 16ys9, to = 135 (216:1/2 —3x5 + 2u1)
~ 9 S by = — = (648ys — 9z5 +w1),  (B.A)
xr3 = Y2 18U1, U1 = 4y2 144141, 3= 105 Y2 T T~ Uy), :
5
x4 = —16y2, ug =0, UL = Tl
4 5
T = —4dxs5 + §u17 uz = —uq, Vg = 72( 216y, + 455 — buy),
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such that in total we have, in addition to yo and x5, that uy, 29, 23, w;, s; remain undeter-
mined. The resulting scalars in the Lichnerowicz are

~ 1 1
(DD5)|scalar = _ZR + 75E5(R46 - 4A7)

2
11
— §Ey2(192R41 + 384Ryo + 24Ry3 + 12Ryy — 192Ry5 — 384 A7) (B.5)
11
+ §MU1(_2R43 — Ryq + 8Ry5 + 16A7),
and the 8-form is
(DDe)| L (“trviir )+ L Ry (B.6)
8-form — 4y2 4 4144 1 . .

The coefficients s;, w;, z; do not contribute at all, and so the corresponding terms in the
operators are completely superfluous at this given order and given our simplifications.

We see that the u; freedom corresponds to the remaining invariant mentioned in [34,
35, 39], which here takes the form Iy, + 5;(Ix — 317). Differently from Iy & $Iy we do
not expect this combination to lead to a full N = 2 invariant. However, the emergence of
an N = 1 invariant in an eleven dimensional setting suggests the interesting possibility of
extending the Lichnerowicz method to M-theory on manifolds with boundary, notably on
the Horava-Witten interval.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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