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1 Introduction

Recent development of generalised complex geometry [1, 2] has been intimately related

with our understanding of supersymmetric theories and has provided a natural language for

classifying supersymmetric vacua and revealing the structure of off-shell supersymmetry in

effective theories [3–8]. It is still, however, an open question whether generalised complex

geometry can capture the structure of stringy perturbative corrections to the effective
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theories. If so one may hope that the geometric insight might one day translate into

computational tools.

In its most basic formulation, GCG unites the geometric data with the antisymmetric

two form field and puts diffeomorphisms and gerbe gauge transformations on equal foot-

ing [1]. This unified formalism allows a transfer of many results of Riemannian geometry

to the generalised tangent bundle [2]. Notably, a generalised vanishing torsion condition

on a generalised metric-connection yields a notion of a generalised Ricci tensor which fully

captures the physics of the ten-dimensional NS sector — the action and the equations of

motion [9]. Interestingly, and crucially for this work, the part covering only the metric and

two-form field can alternatively be derived by using a version of the Lichnerowicz formula

with closed three-form torsion H, due to Bismut. The standard Lichnerowicz formula [10]

for a Levi-Civita connection states that the difference of the squares of the covariant deriva-

tive and the Dirac operator acts tensorially on a spinor and can serve as a definition of a

scalar curvature R:

(( /∇)2 −∇a∇a)ε = −1

4
Rε. (1.1)

Here and throughout the paper ∇ denotes the covariant derivative with respect to the

torsion-free Levi-Civita connection. The Bismut version [11] finds a pair of operators with

torsion such that the difference of their squares is again tensorial

( /∇H
)2ε− (∇̃H)a∇̃H

a ε = −1

4
Rε+

1

48
H2ε, (1.2)

where

∇̃H

a ε = ∇ǫ+
1

8
Habcγ

bcε,

/∇H
ε = /∇ε+

1

24
Habcγ

abcε.

(1.3)

Note that the Dirac operator is no longer the trace of the covariant derivative with torsionful

connection! Also, strictly speaking, the tensor has two parts now — a scalar component

given by a sum of the scalar curvature and H2 and a four-form given by the (vanishing)

exterior derivative of H.

Interestingly enough it is the inclusion of the dilaton that requires a truly generalised

treatment. The key here is having a different action of the same operator on a spinor and

a vector-spinor. The above-mentioned pair of operators is then seen as a component of

the same “generalised Levi-Civita connection” D. This pair also appears in the respective

supersymmetry variations of gravitino and dilatino

δψa = Daε = ∇aǫ+
1

8
Hab̄c̄γ

b̄c̄ε,

δρ = γāDāε = γā∇āε+
1

24
Hāb̄c̄γ

āb̄c̄ε− γā(∂āφ)ε,

(1.4)

and the Lichnerowicz formula yields:

(( /D)2 −DaDa)ε = −1

4
Sε− γabcdIabcdε, (1.5)
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where on the right-hand side we find the bosonic NS action S, and the Bianchi identity

Iabcd = ∇[aHbcd].

The passage to non-closed torsion H requires an extension of the generalised tan-

gent bundle and the inclusion of gauge fields, eventually leading to a generalised complex

description of heterotic strings. Once one properly extends the notion of covariant deriva-

tive to also cover gaugino variations, the Lichnerowicz theorem yields the ten-dimensional

N = 1 supergravity coupled to supersymmetric YM, and can further accommodate the

heterotic Bianchi identity and the higher derivative terms in the effective action that serve

its supersymmetry completion [12]. Interestingly, a single four-derivative correction to the

Bianchi identity requires an infinity of terms in the supersymmetry variations and hence in

the effective action [13, 14]. Using the simple principle of building quadratic combinations

of first order operators appearing in the supersymmetry variations that act only tensorially,

allows one to compute the O(α′4) [15].

It is also possible to fully geometrise both the NS and RR sector, or alternatively

describe M-theory, of the internal d-dimensional space of a generic supersymmetric com-

pactification in the language of exceptional generalised geometry, where the generalised

tangent bundle corresponds to a representation of an exceptional Ed(d) group [16, 17]. The

bosonic action can again be written in the form of a Lichnerowicz equation for generalised

Levi-Civita connections [18, 19]. Schematically

D ⊗S D ⊗S ε−D ⊗S D ⊗J ε = −1

4
SBε, (1.6)

where ⊗S ,⊗J denote projections to the generalised spinor bundles into which, respectively,

the spinor and the gravitino embed, and now SB is the full bosonic action, with RR fields,

of the dimensionally restricted theory.

At this point one would like to dream that the suitable versions of the Lichnerowicz

formula underlie every supersymmetric theory. Eleven-dimensional supergravity, even at a

classical level, would appear to be the best candidate for undermining such a belief. Indeed

the theory does not have a dilatino, and hence there is no natural Dirac operator other than

the trace of the gravitino variation. Moreover, any Lichnerowicz type formula like (1.5)

built out of operators linear in fields would yield an action that is at most quadratic. From

other side in spite of its simplicity the eleven-dimensional supergravity action contains a

cubic Chern-Simons interaction.

Yet, as we shall see, there is an appropriate generalisation. Indeed, using the Levi-

Civita connection and the four-form flux G one may find an operator ∇G
a such that it yields

a tensorial polyform ρ (there are no derivatives acting on ε on the right-hand side) when

squared:

γab∇G
a ∇G

b ε = −1

4
ρ · ε. (1.7)

Moreover requiring that ρ has only an 11-form (or scalar) and an 8-form component1

uniquely fixes ∇G
a to be the operator that appears in the gravitino variation δψa = ∇G

a ε.

1We are dropping here the five-form which corresponds to the Bianchi identity ∇aGbcdeγ
abcde.
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Furthermore, we may observe that up to integration by parts the Mukai pairing

LB = 〈1 + C, ρ〉 = ρ|11 − C ∧ ρ|8, (1.8)

gives the Lagrangian for eleven-dimensional supergravity.

Note that we have used very little here. As far as the generalised geometry construc-

tions go, we seem to just pass to what locally looks like TM ⊕Λ2T ∗M , hence avoiding the

complications of exceptional (and possibly infinite-dimensional) geometries, dual gravitons,

need to stick to linearised equations and so on. Some or all of these issues arising in the

full geometrisation of M-theory and U-duality groups will eventually have to be faced, and

contrasted to the simplicity of (1.8). Instead of doing all this, we shall try to build on this

construction, and modify ∇G
a by higher-derivative contributions and verify if the method

of requiring bilinears with tensorial action can reproduce the quantum higher-derivative

corrections to M-theory.

The formula (1.7), where now the corrected operator ∇G
a will a priori be all order

in derivatives, is what we shall call M-theoretic Lichnerowicz formula. Actually we shall

see that the first modifications from the one-derivative supergravity operator will start at

seven derivatives, and the “minimal” version of the corrected operator can contain only

6l + 1 derivatives (for integer l). When such operator is plugged into (1.8) it will clearly

produce a series of terms in LB with 2 × (3l + 1) derivatives.2 The use of the computer

algebra system Cadabra [20, 21] was crucial to verify these computations.

The structure of the paper is as follows. In section 2, we review the eleven-dimensional

supergravity and the first ∼ R4 quantum corrections. The M-theoretic Lichnerowicz for-

mula is set up in section 3. Section 4 extends the construction to higher derivative terms,

verifying that the first corrections appear at eight-derivative level, and constructing ex-

plicitly two different supersymmetric invariants (each coming with a free coefficient). We

specialise on the case of seven-dimensional internal spaces in section 5. Possible extensions

of our construction are discussed in section 6.

2 Eleven-dimensional supergravity

Let us start by reviewing classical eleven-dimensional supergravity [22], to leading order in

the fermions, following the conventions of [18, 19, 23]. The bosonic fields are the eleven-

dimensional Lorentzian metric gab and a three-form Abelian gauge potential Cabc and there

is a fermionic gravitino field ψa.

Writing R for the Ricci scalar for the Levi-Civita connection ∇ and G = dC for the

four-form field-strength, the bosonic action is given by

SB =
1

2κ2

∫
(

R ∗ 1− 1

2
G ∧ ∗G− 1

6
C ∧G ∧G

)

, (2.1)

and taking γa to be the Cliff(10, 1;R) gamma matrices, the fermionic action is

SF =
1

κ2

∫ √−g

(

ψ̄aγ
abc∇bψc +

1

96
Ga1...a4ψ̄b(γ

a1...a4bc + 12γa1a2ga3bga4c)ψc

)

. (2.2)

2Note that the opposite is not true. An action with 2× (3l+ 1) derivatives does not necessarily restrict

∇G
a to have only (6l + 1)-derivative terms.
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This leads to the equations of motion for the metric and gauge field

Rab −
1

12

(

Gac1c2c3Gb
c1c2c3 − 1

12
gabG

2

)

= 0,

d ∗G+
1

2
G ∧G = 0,

(2.3)

where Rab is the Ricci tensor, and the gravitino equation of motion is

γabc∇bψc +
1

96

(

Gc1...c4γ
abc1...c4 + 12Gab

c1c2γ
c1c2

)

ψb = 0. (2.4)

This action is invariant under supersymmetry, with the transformation of the bosons

given by
δgab = 2ε̄γ(aψb),

δCabc = −3ε̄γ[abψc],
(2.5)

while the supersymmetry variation of the gravitino is

δψa = ∇aε+
1

288

(

γa
b1...b4 − 8δa

b1γb2b3b4
)

Gb1...b4ε, (2.6)

where ε is the supersymmetry parameter.

2.1 Review of higher-derivative terms

In presence of M5 branes, this classical action is not consistent without the inclusion of

certain higher-derivative terms. Indeed, since a single M5 supports a chiral six-dimensional

(2, 0) tensor multiplet on the worldvolume, it is anomalous. The anomaly is a descendant of

a particular eight-derivative eight-form polynomial. To cancel this anomaly via the inflow

mechanism, one needs bulk couplings which in absence of M5 sources are invariant under

diffeomorphisms and C-field gauge transformations, but become anomalous in the presence

of the branes. Moreover this anomaly should restrict to the six-dimensional worldvolume.

The anomaly cancelling bulk term is of course only a part of the story, as it is hardly

supersymmetric on its own. From one side it should receive contributions from G-flux.

From other, it requires completion and other (non-anomalous) couplings with the same

number of derivatives. Furthermore, since M-theory is supposed to be the strong cou-

pling limit of type IIA strings, the eleven-dimensional couplings should also be seen in the

decompactification limit of the string theory.

The eight-derivative couplings in string theory have a long history and (without fluxes)

have been computed using string perturbation theory. In IIA there are only tree-level and

one loop terms, while IIB also has D-instanton contributions. The tree level corrections

are the same in both theories and take the form [24, 25]

e−1L ∼ e−2φ

(

t8t8R
4 − 1

4
E8

)

, (2.7)

and the CP-even sector of the one-loop is given by [26]

e−1LCP-even ∼
(

t8t8R
4 ± 1

4
E8

)

, (2.8)
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where the top (bottom) sign is for the IIA (IIB) theory. The E8 term can be written using

two totally antisymmetric ǫ-tensors.3 In addition, the IIA theory has a CP-odd one-loop

term LCP-odd ∼ B2 ∧ [trR4 − 1
4(trR

2)2] [28, 29]. Its lift to eleven dimensions

L11d ∼ C3 ∧
[

trR4 − 1

4
(trR2)2

]

, (2.9)

cancels the M5 anomalies via inflow. The one-loop CP-even terms (2.8) also lift, while the

tree-level contribution (2.7) is suppressed [30].4

Our expectation is that the bosonic action of supersymmetric M-theory (just like any

other supersymmetric theory) should be formulated as a kind of Lichnerowicz theorem. As

a first step, we shall verify that this is the case for eleven-dimensional supergravity and

recast the action as a Mukai transformed square of a first-order operator. Unsurprisingly,

the operator in question turns out to be the covariant derivative with G-flux terms included

that appears in the gravitino supersymmetry variation (2.6).

The modifications of this operator with higher-derivative terms included should in

turn yield the supersymmetry variation for the M-theory action with higher-derivative

terms included. Such supersymmetry modifications have been discussed e.g. in [31–33];

seven-derivative corrections were computed explicitly in [34, 35] by reading them off from

the effective action. Unfortunately, these are written in a different basis from ours, and

due to the complicated nature of the terms the direct comparison of two results in not

straightforward. For special cases of seven and eight-dimensions (for manifolds of G2 and

Spin(7) holonomy), simplified transformations have been suggested in [36].

The potential usefulness of the explicit form of the transformations in a convenient

basis for e.g. compactifications makes our computation worthwhile. Our main motivation

has been to test the Lichnerowicz method, and the hypothesis that it should underlie any

supersymmetric theory. We also hope that this will provide a better systematics for still

open questions such as inclusion of fluxes (which is very hard even in string theory, due to

the need to perform higher-point calculations), or higher derivative terms (which in string

theory, for the terms that appear in eleven dimensions, would also correspond to going to

higher string loops). Finally, establishing an M-theoretic Lichnerowicz formula, analogous

to the string theoretic cousins that have a generalised geometric origin, will hopefully lead

to new insights about the geometry of M-theory.

3We follow the R4 conventions of [27] and define

t8t8R
4 = ta1···a8

tb1···b8R
a1a2

b1b2R
a3a4

b3b4R
a5a6

b5b6R
a7a8

b7b8 ,

and

E8 = 8!× δ
b1···b8
a1···a8

R
a1a2

b1b2R
a3a4

b3b4R
a5a6

b5b6R
a7a8

b7b8 .

Note that for any antisymmetric matrix M , t8M
4 = 24

(

trM4 − 1
4
(trM2)2

)

, and there is a useful relation

between two quantities given by 1
4
E8 = t8t8R

4+192 trRabRcd trRacRbd−768 trRabcdRa
e
c
fRe

g
b
hRfgdh+

Ricci terms.
4The string l-loop terms surviving in the eleven-dimensional limit are ∼ R3l+1. Note that due to the

relation to anomalies, the one loop term is not renormalised, and the terms with a number of derivative

higher than eight should not contain any top-form couplings of the type (2.9).
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3 Lichnerowicz formula for eleven-dimensional supergravity

Let us write the operator that appears in the gravitino variation as

δψa = ∇aε+
1

288

(

γa
b1...b4 − 8δb

b1γb2b3b4
)

Gb1...b4ε = ∇G
a ε. (3.1)

It has long been known (see for example [23]) that there is an “integrability” condition

satisfied by this connection

γa[∇G
a ,∇G

b ]ε ∝ (all bosonic eoms)b · ε. (3.2)

We can view this as being a consequence of supersymmetry. If we also denote the

M-theory Rarita-Schwinger operator in the gravitino equation of motion,

γabc∇bψc +
1

96

(

Gc1...c4γ
abc1...c4 + 12Gab

c1c2γ
c1c2

)

ψb = Labψb, (3.3)

we observe that it such that Labψb = γabc∇G
b ψc, and so by applying a supersymmetry

transformation

(bosonic eoms)a · ε ∝ δε(fermionic eoms)a = δε(L
abψb) = δε(γ

abc∇G
b ψc) = γabc∇G

b ∇G
c ε,

(3.4)

which implies (3.2), as was remarked, for instance, in [37]. It was also noted in [37] that if

the equations of motion are solved then L ◦ ∇G = 0. Therefore, when on-shell we have an

exact sequence

S
∇G

−−→ T ∗ ⊗ S
L−→ T ∗ ⊗ S

(∇G)†−−−−→ S. (3.5)

Here we write S and T ∗ for the spinor and cotangent bundles respectively and have used

L = L† ⇒ (∇G)† ◦ L = 0. As we just saw, the condition L ◦ ∇G = 0 results from

supersymmetry, while L = L† can be derived from requiring the reality of
∫

ψ̄aL
abψb.

What appears to be less know is that if we write (∇̃G)c = 1
9γaL

ac = γbc∇G
b , i.e.

the (left) gamma trace of the M-theory Rarita-Schwinger operator, then it is possible to

recover the bosonic action from a Lichnerowicz-type relation (∇̃G)a∇G
a ε ∼ LBε. More

exactly, from (3.4) we see that ∇̃G∇G will be proportional to part of the bosonic equations

of motion γab∇G
a ∇G

b ε ∝ (trace of Einstein equation+8-form gauge equation) which can be

used to reconstruct the bosonic action since LB ∼ (trace of Einstein) volg +C ∧ (8-form),

up to integration by parts.

Explicitly we have

∇G : S → T ∗ ⊗ S,

∇G
a ε = ∇aε+

1

288

(

γa
b1...b4 − 8δa

b1γb2b3b4
)

Gb1...b4ε,

∇̃G : T ∗ ⊗ S → S,

∇̃G
a ψ

a = γab∇aψb +
1

144

(

γab1...b4 − 2δa
b1γb2b3b4

)

Gb1...b4ψa,

(3.6)
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and so ∇̃G is the gamma-trace of gravitino equation of motion, i.e. it appears in the action

in the term
∫

/̄ψ(∇̃G)aψa. Note also that L = L† ⇒ (∇̃G)aγa = γa((∇̃G)†)a. Then the

Lichnerowicz relation is

(∇̃G)a∇G
a ε = −1

4
Rε+

1

24

1

4!
Gb1...b4G

b1...b4ε− 1

144
(∇b1Gb2...b5)γ

b1...b5ε

+
1

4

1

3

1

3!
(∇b1Gb1...b4)γ

b2b3b4ε− 1

4

1

6

1

4!2
Gb1...b4Gb5...b8γ

b1...b8ε

= −1

4

(

R(∗1)b1...b11 −
1

6
(G ∧ ∗G)b1...b11

)

γb1...b11ε

− 1

4

1

3

(

1

7!
∇b1(∗G)b2...b8 +

1

2

1

4!2
Gb1...b4Gb5...b8

)

γb1...b8ε,

(3.7)

where in the second equality we used the Bianchi identity for the flux. As expected, we

obtained the trace of Einstein-Maxwell and the C gauge equation of motion — this relation

is simply a result of applying a supersymmetry transformation to the equation of motion

for the trace of the gravitino.

Now the action
∫

LB =

∫

R ∗ 1− 1

2
G ∧ ∗G− 1

6
C ∧G ∧G,

=

∫

R ∗ 1− 1

6
G ∧ ∗G− 1

3
C ∧ d ∗G− 1

6
C ∧G ∧G+ boundary terms,

=

∫

R ∗ 1− 1

6
G ∧ ∗G− 1

3
C ∧

(

d ∗G+
1

2
G ∧G

)

+ boundary terms,

(3.8)

so, defining a polyform ρ by (∇̃G∇Gε) = −1
4ρ · ε, we have that the bosonic Lagrangian can

be written compactly in terms of the Mukai pairing5 LB = ρ|11 − C ∧ ρ|8 = 〈1 + C, ρ〉, up
to integration by parts.

3.1 Lichnerowicz method

This relation between the operator appearing in the supersymmetry variation of the grav-

itino and the bosonic action suggests we might be able to use it to build the bosonic sector

of supersymmetric theories, short-cutting the usual Noether method. So let us invert the

logic of the integrability calculations (3.2), and consider a general type of differential op-

erator acting on spinors. We will then promote this Lichnerowicz equation to a necessary

constraint that the operator must satisfy, rather than have it be a consequence of super-

symmetry.

Let us look at what this implies more concretely. We have a metric and a 4-form

flux, and we want to build an operator that maps the supersymmetry parameter to the

gravitino representation. Basic SO(10, 1) representation theory tells us there are two ways

of tensoring a 4-form with a spinor and obtain a vector-spinor (essentially corresponding

to embedding in the gamma-trace or gamma-traceless part of the vector-spinor), so we

5The Mukai pairing is the top-form defined in d-dimensions from two polyforms α and β by 〈α, β〉 =
∑

p
(α(p))T ∧ β(d−p), where (α(p))Ta1...ap

= α
(p)
ap...a1

.

– 8 –
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consider the following operators

D : S → T ∗ ⊗ S,

Daε = ∇aε+ k1γa
b1...b4Gb1...b4ε+ k2δa

b1γb2...b4Gb1...b4ε,

D̃ : T ∗ ⊗ S → S,

D̃aψa = γab∇aψb + k̃1γ
ab1...b4Gb1...b4ψa + k̃2g

ab1γb2...b4Gb1...b4ψa,

(3.9)

where k1, k2, k̃1 and k̃2 are left as arbitrary constants and note that a priori we may

consider the ‘conjugate’ operator that appears in the fermionic action to also be generic.

Now we impose constraints to obtain a consistent Lichnerowicz-type relation from these

operators. Clearly, if D̃aDaε is to define a tensor and not a differential operator, we must

have that D̃b = γabDa. This fixes k̃1 and k̃2 in terms of k1 and k2.

We thus have that D̃ ◦ D is a linear map S → S, and so it must be a combination

of p-forms. Then we have the physical requirement that this tensor should contain only

scalars and 3-forms (up to Hodge dualisation, and after imposing the Bianchi identity for

G), corresponding to the degrees of freedom of the trace of the metric and the 3-form gauge

field (this is also clearly a necessary condition for D̃ ◦D = 0 on-shell). This forces the ratio

between k1 and k2 to be fixed, k2 = −8k1. Therefore, from these simple constraints we are

left with just one free coefficient, which can be absorbed in the normalisation of the fluxes.

We recover D = ∇G and as we have just seen the M-theory Lichnerowicz D̃aDaε will give

the bosonic action.

4 Higher-derivative terms

We will now try to apply this method to obtain the higher derivative effective action. A

number of simplifications are assumed in what follows: we will discard terms which are

higher order in derivatives than the order we are currently examining; we will ignore fluxes

and Ricci terms, i.e. we will work only with the Riemann tensor which reduces to its Weyl

tensor component; and we will also assume that at the R4 level the action does not contain

‘bare’ connections, so we will not consider a term like ∇R∇R2 for example.

Even with these simplifications, the form of the possible operators remains substan-

tially less straightforward than in the classical flux case. In particular, in moving to higher

order we should expect the corrections to include derivatives of the supersymmetry pa-

rameter or the gravitino, cf. [13, 34, 35], which means that requiring that the M-theoretic

Lichnerowicz equation defines a tensor is a bit more subtle. In particular, we will find we

must abandon the classical relation D̃a = γabDa.

Consider, for example, a correction term corresponding to some tensor Xabcd which

transforms in the representation Xabcd ∈ [0, 2, 0, 0, 0], that is, it has the same symmetry

properties of the Weyl tensor. Note we are using the highest-weight notation of the com-

puter algebra program LiE [38], which we used extensively throughout this work for group

– 9 –
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theoretic calculations. We can define the following operators

D : S → T ∗ ⊗ S,

Daε = ∇aε+ k1

(

∇bXabcd

)

γcdε+ k2Xabcdγ
cd∇bε,

D̃ : T ∗ ⊗ S → S,

D̃aψa = γab
(

∇aψb + k̃1 (∇cXacef ) γ
efψb + k̃2Xacefγ

ef∇cψb

)

,

(4.1)

where k1, k2 etc. parametrise higher-order corrections.

Then,

(D̃Dε) = γab∇a∇bε+
(

k1 − k̃1 − k2

)

(∇aXabcd) γ
cd∇bε

− k1

(

∇a∇bXabcd

)

γcdε−
(

k̃2 + k2

)

Xabcdγ
cd∇a∇bε

+ higher order,

(4.2)

so we have that, once we discard the higher order terms, tensoriality requires k1−k̃1−k2 = 0.

Note that it is crucial that the term with two covariant derivatives acting on the spinor is

antisymmetrised on those ∇, which is a consequence of the symmetry properties of Xabcd.
6

Solving the coefficient constraint for k̃1, we are left with

(D̃Dε) = −1

4
Rε+

1

2

(

2k1 − k̃2 − k2

)

Rabe
cXabedγ

cdε

+
1

4

(

k̃2 + k2

)

RabcdXabcdε−
1

8

(

k̃2 + k2

)

Rab
cdXabefγ

cdefε

+ higher order.

(4.3)

So, whereas we would like D̃ to be determined by D, we are left with ambiguities.

The choice we will be making from now on is to always take k̃1 = 0, k1 = k2 = k̃2. This

means that both D̃a∇aε and γab∇aDbε are separately tensorial, which can be interpreted

as writing the fermionic action in terms of “supercovariant” objects [34, 35]. We thus have

that D̃ is completely fixed given a D to a certain order, and so, writing explicit spinor

indices, we will consider operators in the form

Daε
α = ∇aε

α + k∇b

(

Θa
b
β
αεβ

)

= ∇b

(

(

Ia
b
β
α + kΘa

b
β
α
)

εβ
)

,

D̃aψa
α = γacβ

α
(

∇aψc + kΘa
b
γ
β∇bψc

γ
)

= γacβ
α
(

Ia
b
γ
β + kΘa

b
γ
β
)

∇bψc
γ ,

(4.4)

with Θ some object that is a function of (powers of) the Riemann curvature.

4.1 R
2 and R

3 couplings in the effective action

It is well known that the first corrections to the eleven-dimensional action begin at R4.

However, as a simple exercise let us check whether we can define operators that through

Lichnerowicz would be compatible with an R2 or R3 action.

6If the tensor Xabcd were, say, fully symmetric, we would have extra constraints in order to ensure

tensoriality. We would also not obtain extra Riemann tensors, instead we would be left with ‘naked’

covariant derivatives.
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Projection of R2 Rep of SO(10, 1) Multiplicity

X̂i [0,2,0,0,0] 2

Ŵ [2,0,0,0,0] 1

Ŝ [0,0,0,0,0] 1

T̂ [0,0,0,1,0] 1

Table 1. Valid embeddings of ⊗2R in δψ.

Counting derivatives, we see that in order to obtain an R2 correction to the action,

there is only one type of term we can add to the operators, namely

Daε = ∇aε+ k∇b
(

Rabcdγ
cdε

)

,

D̃aψa = γab∇aψb + kRabcdγ
cd∇bψa.

(4.5)

However, it is clear that D̃aDaε will have a 4-form, kRa1a2b1b2Ra3a4b1b2γ
a1a2a3a4ε, so satis-

fying the constraint that D̃Dε should contain only scalars and 3-forms forces k = 0. We

conclude no corrections are admissible at this order.

For R3 there are more possibilities. By derivative counting we have that the extra

pieces in D must be of the type ∇R2. So we look at the tensor decomposition of ⊗2R and

find that the families of terms that can be considered in the operators are the ones listed

in table 1.

Explicitly, these decompositions are given by

X̂1
a1a2c1c2

=
1

2
Ra1a2b1b2Rc1c2b1b2 +

1

2
Ra1c2b1b2Rc1a2b1b2

− 1

3
ga2c2Ra1d1b1b2Rc1d1b1b2 +

1

60
ga1c1ga2c2Rd1d2b1b2Rd1d2b1b2 ,

X̂2
a1a2c1c2

=
1

2
Ra1b1c1b2Ra2b1c2b2 +

1

2
Rc1b1a1b2Ra2b1c2b2

+
1

6
ga2c2Ra1d1b1b2Rc1d1b1b2 −

1

120
ga1c1ga2c2Rd1d2b1b2Rd1d2b1b2 ,

Ŵa1c1 = Ra1d1b1b2Rc1d1b1b2 −
1

11
ga1c1Rd1a2b1b2Rd1a2b1b2 ,

Ŝ = Ra1a2b1b2Ra1a2b1b2 ,

T̂a1a2a3a4 = Ra1a2b1b2Ra3a4b1b2 ,

(4.6)

where same-letter free indices are assumed to be antisymmetrised. However, the Ŵ and

Ŝ do not actually contribute to the Lichnerowicz (they are projected out) so we will not

consider them as they cannot possibly source corrections to the action.

There is now a new potential ambiguity in how to construct the supersymmetry oper-

ators, as there are several different ways of embedding the T̂ term in δψ. We will discuss

this in more detail in the R4 section, but some of these can be fixed by consistency condi-

tions from the Lichnerowicz equation, and the rest by requiring that the T̂ embed strictly

into the traceless-vector-spinor in the conjugate operator D̃, with the trace taken from the
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right so that the operator /̃D is now the one that appears in the fermionic coupling of the

gravitino trace
∫

/̄ψ /̃D/ψ. This will imply that D̃aγa = ∇aγa, as the X̂i likewise only embed

in the traceless part. This also ensures that /̃D = /̃D
†
.

We end up with

Daε = ∇aε+
2

∑

i=1

x̂iγ
cd∇b(X̂i

abcdε)

+ t̂

(

γb1b2∇b3(T̂ab1b2b3ε) +
1

14
γb1...b4∇a(T̂b1...b4ε) +

1

14
γb1...b4∇b1(T̂ab2...b4ε)

+
1

7
γa

b2b3b4∇b1(T̂b1...b4ε) +
1

84
γa

b1...b5∇b5(T̂b1...b4ε)

)

,

(4.7)

and

D̃aψa = γab∇aψb +

2
∑

i=1

x̂iγ
cdX̂i

abcd∇bψa

+ t̂

(

5

2
γc1c2 T̂abc1c2∇aψb +

5

14
γac2c3c4 T̂c1...c4

(

∇aψ
c1 −∇c1ψa

)

− 5

84
γabc1...c4 T̂c1...c4∇aψb

)

,

(4.8)

so we have a priori three free coefficients, x̂1, x̂2, t̂. If we compute D̃aDaε we find that in

addition to scalars in R3, the Lichnerowicz also contains 4-forms, which must be cancelled.

There are exactly three possible independent R3 4-forms, all of which appear in computa-

tion, and eliminating them forces precisely that all x̂i = t̂ = 0. We conclude that no R3

corrections are admissible.

4.2 R
4 couplings

Finally, we arrive at corrections to the supersymmetry operators that may lead to R4

corrections to the action via the Lichnerowicz procedure. We will need to add ∇R3 terms

to δψ, for which there are several possibilities depending on how we build the R3 factor,

as listed in table 2.

We find these families of terms by decomposing into irreducible representations

the product of three Weyl tensors, i.e. if we denote the Weyl curvature representation

[0, 2, 0, 0, 0] by W , we consider the symmetrised cubic tensor product S3W . Then we re-

strict to those which, when combined with a ∇a and a spinor ε, can contain a vector

spinor δψa. In other words, we look for the irreducible representations in the intersection

S3W ∩ (V ⊗ S)∗ ⊗ (V ⊗ S). We then verify these projections by explicit construction —

they are given in appendix A.1.

Note that in some cases there are multiple ways of embedding these terms into a

vector spinor. For example, consider the three T i, each of which is a 4-form. There are

five inequivalent ways of combining a 4-form together with ∇a and ε to obtain a valid

δψa. These roughly correspond to using either a γ(2), a γ(4) or a γ(6) to “soak up” the

indices, and then further distinguishing in the first two whether the overall free index is
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Projection of R3 Rep of SO(10, 1) Multiplicity

Xi [0,2,0,0,0] 8

W i [2,0,0,0,0] 3

Si [0,0,0,0,0] 2

Y i [0,1,0,0,2] 2

V i [1,0,0,0,2] 2

T i [0,0,0,1,0] 3

Zi [0,1,0,1,0] 3

U i [1,0,1,0,0] 3

Li [2,1,0,0,0] 3

M i [2,0,0,1,0] 6

Table 2. Valid embeddings of ⊗3R in δψ. In each case, the index i runs over the corresponding

multiplicity.

symmetrised or antisymmetrised with the index on ∇a. So a priori, the T i would appear

to contribute 15 undetermined coefficients to our operators.

There are, however, some constraints from the M-theoretic Lichnerowicz that can be

immediately applied to reduce the number of possibilities. We already established we only

want antisymmetrised products of ∇ appearing in D̃aDaε, so that they will be converted

into a Riemann tensor. Symmetrised ∇ would lead to ‘bare’ connections in the action and

could even spoil the tensoriality of the Lichnerowicz. This constraint eliminates the last

two terms in the table, Li and M i, and further reduces the admissible embeddings of some

of the other terms. For instance, the T i can now each only be embedded in three different

ways, for a total of 9 free coefficients.

Finally, we impose the condition that only the traceless part of the D̃ operator gets

modified which, as mentioned in the previous subsection, is sufficient to ensure that /̃D =

/̃D
†
. It turns out that this is enough to fix these ambiguities of embedding, and the total

number of remaining free coefficients matches precisely the multiplicity of projections of R3.

Now, the representation theory also tells us what type of p-forms to expect in

the Lichnerowicz. Since we have ensured that this expression will be, schematically,

R3[∇,∇]ε = R4ε, we need to look at the p-forms in the symmetric tensor product of

four Weyl curvatures and see how each of the remaining terms in table might contribute

to them. We summarise the result in table 3.

We immediately observe that, as previously remarked, terms of type W i and Si are

projected out in the Lichnerowicz computation, and so their presence (or lack thereof) in the

supersymmetry operator cannot be constrained in this manner. We also see that we need

to have Xi type terms if we hope to find corrections to the scalars, and Y i for corrections to

the 3-form. These are the only objects that may contribute to a corrected action. However,

they will also give rise to 4-forms which cannot be cancelled solely by picking appropriate
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p-form : 0 1 2 3 4 5

R4 multiplicity: 7 0 1 2 17 0

Xi ⊗R • - • - • -

W i ⊗R - - - - - -

Si ⊗R - - - - - -

Y i ⊗R - - - • • -

V i ⊗R - - - - • -

T i ⊗R - - - - • -

Zi ⊗R - - • - • -

U i ⊗R - - • - • -

Table 3. Potential contributions of the terms in table 2 to different p-forms in the M-theoretic

Lichnerowicz.

coefficients xi and yi for each of them. Instead, we find by explicit computation that we

must, at a minimum, also add terms of type V i and T i, as we will now describe.

4.2.1 Minimal solution

Given these ingredients, we build:

D : S → T ∗ ⊗ S,

Daε = ∇aε+
8

∑

i=1

xiγ
cd∇b(Xi

abcdε) +
2

∑

i=1

yiγ
c1...c6∇b(Y i

abc1...c6
ε)

+

3
∑

i=1

ti

(

γb1b2∇b3(T i
ab1b2b3

ε) +
1

14
γb1...b4∇a(T

i
b1...b4

ε) +
1

14
γb1...b4∇b1(T

i
ab2...b4

ε)

+
1

7
γa

b2b3b4∇b1(T i
b1...b4

ε) +
1

84
γa

b1...b5∇b5(T
i
b1...b4

ε)

)

+
2

∑

i=1

vi

(

1

4
γb1...b4∇b5(V i

ab1...b5
ε− V i

b5ab1...b4
ε) +

1

25
γa

b1...b5∇c(V i
cb1...b5

ε)

+
1

25
γb1...b6∇b6(V

i
ab1...b5

ε)

)

. (4.9)

As mentioned, these combinations ensure that Lichnerowicz will not contain symmetrised

∇. In other words, we have that D̃Dε =
∑

n(R
4)a1...anγ

a1...anε with no ‘bare’ connections
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left. This should be clear once we look at the conjugate D̃ operator:

D̃ : T ∗⊗S→S,

D̃aψa= γab∇aψb+
8

∑

i=1

xiγ
cdXi

abcd∇bψa+
2

∑

i=1

yiγ
c1...c6Y i

abc1...c6
∇bψa (4.10)

+
3

∑

i=1

ti

(

5

2
γc1c2T i

abc1c2
∇aψb+

5

14
γac2c3c4T i

c1...c4

(

∇aψ
c1 −∇c1ψa

)

− 5

84
γabc1...c4T i

c1...c4
∇aψb

)

+
2

∑

i=1

vi

(

γac3c4c5V i
ac1...c5

∇c1ψc2 +
1

25
γbc1...c5V i

ac1...c5

(

∇bψ
a−∇aψb

)

)

.

Note that D̃aγa = /∇ as required.

Now we need to fix the coefficients such that only scalars and 3-forms survive. We used

the computer program Cadabra [20, 21] to solve this algebra problem (and also performed

some double-checks on Mathematica). The single possible R4 2-form vanishes identically

and eliminating the 4-forms is solved by:

x1 = −y2, x7 = 16y2, t2 =
2

45
(72y2 − x5),

x2 = 16y2, x8 = 16y2, t3 = − 4

45
(72y2 − x5),

x3 = −2y2, y1 = −1

4
y2, v2 =

5

8
(−24y2 + 5x5),

x4 = −16y2, t1 = 0,

x6 = −4x5, v1 = 0,

(4.11)

with y2, x5 free. We have therefore found two solutions for our operators at R4 such that

the Lichnerowicz contains only scalars and 3-forms (or rather, what results naturally from

the computation are their Hodge-dual 8-forms)

D̃aDaε = (scalar)ε+ (8-form)a1...a8γ
a1...a8ε. (4.12)

Note that in the notation of [27, 34, 35], we have a basis for the seven different R4

scalars

R ·X1 = R44, R ·X2 = R45, R ·X3 = R43,

R ·X4 = R41, R ·X5 = R46, R ·X6 = A7,

R ·X7 = −R42 −
1

4
R46 +A7, R ·X8 = −R42 +

1

4
R46 +A7,

(4.13)

where R · Xi = RabcdXi
abcd and so the scalar component of the M-theory Lichnerowicz

can be written as (below we write the Hilbert-Einstein term for convenience; other terms
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containing the Ricci tensor or scalar are dropped)

(D̃aDaε|scalar) = −1

4
R+

1

2
x5(R46 − 4A7)

+
1

2
y2(−16R41 − 32R42 − 2R43 −R44 + 16R45 + 32A7)

= −1

4
R− 1

2

1

192
x5(−192R46 + 768A7)

− 1

2

1

12
y2(192R41 + 384R42 + 24R43 + 12R44 − 192R45 − 384A7)

= −1

4
R

− 1

4

1

96
x5

(

t8t8R
4 − 1

4
E8

)

− 1

4

1

12
y2

(

t8t8R
4 +

1

4
E8

)

,

(4.14)

while the 8-form is:

(D̃aDaε|8-form)a1...a8 = −1

4
y2

(

−1

4
R · Y 1 +R · Y 2

)

a1...a8

= −1

4
y2

(

− 1

4
Ra1a2b1b2Ra3a4b1b2Ra5a6c1c2Ra7a8c1c2

+Ra1a2b1c1Ra3a4c1c2Ra5a6c2b2Ra7a8b2b1

)

,

(4.15)

so 1
16R · Y 1 = trR2 ∧ trR2 and 1

16R · Y 2 = trR4. We thus recognise the y2 6= 0 solution

as corresponding to the invariant (t8t8R
4 + 1

4E8) and x5 6= 0 to (t8t8R
4 − 1

4E8). To get

the correct eleven-dimensional action we thus need to take x5 = 0 and y2 will be fixed by

the normalisation of the higher derivative terms. The existence of this freedom of choice

is maybe not unexpected, as three different superinvariants had already been identified

previously [39]. Comparing with [34, 35] we have, in the notation of that paper, that the

y2 terms give the IX + 1
8IZ invariant, while the x5 terms give IX − 1

8IZ .

In appendix B we discuss other possible solutions to this Lichnerowicz system.

5 Application: seven-dimensional internal spaces

Two out of the three higher-derivative structures allowed by supersymmetry involve a com-

plete antisymmetrisation of eight indices. Hence, for our computation, seven is a sort of

critical dimension, i.e. the highest where only a single structure survives. So, in addition to

the natural desire of learning more about M-theory compactifications on seven-dimensional

internal spaces, assuming the eleven-dimensional space breaks as M11 = M4×M7 and fo-

cusing on the M7 component provides a good setting to make further considerations on our

construction.7 We then have that the two eleven-dimensional scalars y2 and x5 will coincide

(t8t8R
4+ 1

4E8) = (t8t8R
4− 1

4E8) = t8t8R
4 when fully restricted toM7, and even though the

7Of course, a calculation on M7 can be considered on its own, with the view of deriving higher-derivative

corrections in seven-dimensional effective theories. We mostly concentrate on supersymmetry on the internal

seven-manifold.
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y2 is the correct physical solution in eleven dimensions, in seven dimensions we may just as

well work with the simpler x5 when writing a fully restricted operator D. In terms of SO(7)

representations using the projectors of the cubic powers of Rmnpq in appendix A.2, this is

Dmε=∇mε+x5γ
pq∇n

(

(X̌5
mnpq−4X̌6

mnpq)ε
)

+
2

315
x5γm

n∇n

(

(Š1−2Š2)ε
)

+
8

45
x5γ

np∇n

(

(−W̌ 1
mp+2W̌ 2

mp+W̌ 3
mp)ε

)

− 8

45
x5γm

n∇p
(

(−W̌ 1
pn+2W̌ 2

pn+W̌ 3
pn)ε

)

+x5

(

− 2

45
γn1n2∇n3(Ť 2

mn1n2n3
ε)− 1

315
γn1...n4∇m(Ť 2

n1...n4
ε)− 379

1260
γn1...n4∇n1(Ť

2
mn2...n4

ε)

+
367

1260
γm

n2n3n4∇n1(Ť 2
n1...n4

ε)− 113

945
γm

n1...n5∇n5(Ť
2
n1...n4

ε)

)

+x5

(

4

45
γn1n2∇n3(Ť 3

mn1n2n3
ε)+

2

315
γn1...n4∇m(Ť 3

n1...n4
ε)+

11

45
γn1...n4∇n1(Ť

3
mn2...n4

ε)

− 71

315
γm

n2n3n4∇n1(Ť 3
n1...n4

ε)+
13

135
γm

n1...n5∇n5(Ť
3
n1...n4

ε)

)

+
25

8
x5

(

1

4
γn1...n4∇n5(V̌ 2

mn1n2n3n4n5
ε− V̌ 2

n5mn1n2n3n4
ε)

+
1

25
γm

n1...n5∇p(V̌ 2
pn1n2n3n4n5

ε)+
1

25
γn1...n6∇n6(V̌

2
mn1n2n3n4n5

ε)

)

, (5.1)

where m,n, . . . are internal seven-dimensional indices and now ∇ is the Levi-Civita of the

internal manifold and Rmnpq its (Weyl) curvature.

The full decomposition, keeping dependence on both internal and external contribu-

tions, will be much more involved and we will not perform it here. However, we can try

to capture some aspects by considering a restricted Lichnerowicz formula in the seven-

dimensional space, expanded in order of internal derivatives. As we will soon see, this

seven-dimensional Lichnerowicz formula has corrections starting from three-derivatives on

the operators and will turn out to reveal some interesting new structures. In order to relate

it to its eleven-dimensional counterpart, one needs to think of the coefficients in these oper-

ators as being made of Riemann curvatures in the external (four-dimensional) spacetime.8

5.1 M-theory Lichnerowicz for SO(7)

In performing the M-theory Lichnerowicz in seven dimensions, we may immediately expect

one difference. The eleven-dimensional Lichnerowicz was picking zero- and eight-forms in

the expansion of ρ. In seven-dimensions, one is instead interested in zero- and four-form

parts and the action, up to integration by parts, is given by:

LB = ρ|7 − C ∧ ρ|4 = 〈1 + C, ρ〉. (5.2)

8In order to make proper contact with the eleven-dimensional calculation, one should strictly start

with a zero-derivative term Dmε = ∇mε + Λγmε, corresponding to taking all the R4 couplings in the

external four-dimensional space, and which would lead to a constant piece in the internal action D̃mDmε =

− 1
4
(R+ 168Λ2)ε. To keep the calculation similar to the eleven-dimensional one, we will ignore this term.
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5.1.1 Three-derivative terms in the operators

In section 4.1 we used a very simple argument to rule out any four-derivative contributions

to the eleven-dimensional action — they would inevitably contribute an unphysical 4-form

to the M-theory Lichnerowicz. However, in seven dimensions a 4-form is Hodge-dual to a

3-form and thus contributes to the flux equation of motion. Therefore, we will allow the

operators
Dmε = ∇mε+ k∇n (Rmnpqγ

pqε) ,

D̃mψm = γmn∇mψn + kRmnpqγ
pq∇nψm.

(5.3)

These operators are not in contradiction with the eleven-dimensional construction — in

fact, they should be expected. Consider the X1 term in the solution (4.9). Explicitly

∇bX1
abcd = ∇bR11d

abcd(R
11d)2 and one way of decomposing this is as ∇nR7d

mnpq(R
4d)2 7→

k∇nR7d
mnpq. So consistency with our eleven-dimensional solution implies that k is of at

least quartic order in external derivatives.

The seven-dimensional Lichnerowicz now yields

D̃mDmε = −1

4
Rε+

1

2
kRmnpqR

mnpqε− 1

4
kRmnpqRrs

pqγmnrsε+ higher order. (5.4)

In the effective theory the interpretation is immediate: using (5.2) we obtain the C3∧(trR2)

term of the theory with 16 supercharges [29] together with its (Riemann)2 completion. As

for the internal supersymmetry, we may already note a major limitation of our approach.

Since we are effectively integrating out the four-dimensional action, we have lost the ability

to distinguish a four-dimensional scalar from a top-form. Indeed it is not hard to see that

X1
abcd is not the only source of terms ∼ k in (5.3). Such a term may also originate from

Y 1
a1a2b1...b6

. From other side, one may already guess that like in the seven-dimensional

effective theory, these will yield internal top-forms quartic in derivatives. We shall return

to these in subsection 5.3.

Before turning to the discussion of contributions with a higher number of derivatives,

we should remark that this interpretation results in an extra physical constraint, which is

important for reducing the number of further terms. As mentioned in section 2.1, X8 is

related to M5/NS5 anomalies and string-theoretically it is one-loop and does not receive

any higher loop contributions. On the other hand, the next set of corrections to the internal

covariant derivatives are, from the eleven-dimensional point of view, reductions of terms

which are (at least) thirteen derivatives, i.e. the types of corrections that may contribute

to R7 (and higher) couplings. These come from string two (and higher) loops, and hence

should not affect X8. This means that there can be no further higher-derivative 4-forms in

seven dimensions, as these would correct X8 when lifted to eleven dimensions. So even if

there exist six- (or higher) derivative four-form modifications to (5.4) consistent with the

Lichnerowicz method, we should not allow such contributions. This in turn implies that

the constant k is exactly of quartic order in external derivatives.

5.1.2 Five-derivative terms

Furthermore, the reasoning we used in section 4.1 to rule out ∇R2 terms in the supersym-

metry operators in eleven dimensions remains valid in seven. These necessarily add 4-forms
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to the Lichnerowicz which we have just argued cannot be allowed. However, we are not done

at this order. Since we have changed the supersymmetry operators at a lower order, we need

to check whether the Lichnerowicz remains consistent at the five-derivative level — or put

in another way, whether the supersymmetry algebra still closes to this order. It does not:

D̃mDmε = −1

4
Rε+

1

2
kRmnpqR

mnpqε− 1

4
kRmnpqRrs

pqγmnrsε

+ k2Rmnpqγ
pq∇n∇r

(

Rmrstγ
stε

)

.
(5.5)

The last term of the Lichnerowicz does not define a tensor. We must therefore introduce

a new correction piece to our operators, which will precisely cancel this last term

Dmε = ∇mε+ k∇n (Rmnpqγ
pqε)

+ 4k2
1

6
(γmn − 5gmn)∇p (A

np
qrγ

qrε) ,

D̃mψm = γmn∇mψn + kRmnpqγ
pq∇nψm

− 4k2Ãmn
pqγ

pq∇nψm,

(5.6)

with

Amn
pqγ

pqε = ∇[m∇p(R
n]p

qrγ
qrε),

Ãmn
pqγ

pqε = Rp[m
qr∇p∇n]γqrε.

(5.7)

Note that in seven dimensions, γmn(γnp−5gnp) = 6δmp . These new terms are not of the form

∇Rn which we had considered thus far, they include higher derivatives of the spinor para-

menter (also seen in, for example, [14]), and clearly do not appear in the eleven-dimensional

solution. Their origin is clear, however, as they come multiplied by k2, a factor which is

of order ∂8 in external derivatives. In total, we recognise that these new terms are of the

same order as R7 corrections in eleven dimensions. If we had simply restricted ourselves

to reducing the R4 solution we would never have found these terms, but they are natural,

indeed crucial, from the point of view of the internal seven-dimensional supersymmetry.

5.1.3 Seven-derivative terms

Of course, moving to the next order once again breaks the Lichnerowicz, and we have

to introduce new corrections, proportional to k3, and which must descend from eleven-

dimensional terms of order R10. We find

Dmε = ∇mε+ k∇n (Rmnpqγ
pqε)

+ 4k2
1

6
(γmn − 5gmn)∇p (A

np
qrγ

qrε)

− 32k3
1

6
(γm

p − 5δm
p)∇n (Bnpqrγ

qrε) ,

D̃mψm = γmn∇mψn + kRmnpqγ
pq∇nψm

− 4k2Ãmn
pqγ

pq∇nψm

+ 32k3B̃mnpqγ
pq∇nψm,

(5.8)
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with

Bmn
pqγ

pqε =
1

6
(γp[m + 5gp[m)∇n]∇q(Apqrsγ

rsε),

B̃mn
pqγ

pqε = Ãp[m
rs∇p∇n]γrsε.

(5.9)

This ensures the consistency of the “k family” of corrections up to seven internal derivatives.

At this order we can also return to the ∇R3 terms and clearly we could effectively

just transpose the eleven-dimensional solutions to seven dimensions, performing minimal

adjustments, as they only contain zero-forms (and 8-forms, which now vanish identically)

by construction. As we saw in section 4.2.1 and appendix B, there are several such solu-

tions, corresponding to several unfixed coefficients. A certain combination of these seven-

dimensional solutions will correspond to taking the eleven-dimensional R4 action as purely

internal, so their coefficients will be of zeroth order in external derivatives. Others might

correspond to higher-derivative corrections beyond R4 in eleven dimensions which factorise

in such a way as to give rise to internal R4 terms.

5.2 Solutions with G2 holonomy

We will now make some considerations about the particular case when the seven-

dimensional manifold has G2 holonomy.

The assumption of G2 holonomy imposes a large number of simplifications in our

formulae. We will not go through the complete solution, but note, for example, that if we

take the G2 structure to be defined by a spinor ε, then when evaluating our supersymmetry

operators all derivatives of ε drop out since ∇ε = 0 by G2 holonomy.

Furthermore, we have that Rmnpqγ
pqε = 0 as well, so the entire “k family” of correc-

tions from the previous subsection vanishes identically. This can be seen either by acting on

the supersymmetry variation by another ∇ or introducing the G2 invariant 3-form and dual

4-form in terms of the complete basis of seven-dimensional spinors given by {ε, γmε} [40]:

γmnε = iφmnpγ
pε,

γmnpε = iφmnp ε− ∗φmnpqγ
qε.

(5.10)

One finds that for G2 holonomy manifolds the Riemann tensor satisfies Rmnpqφ
pqr = 0,

which implies that under the 28 → 21 + 7 decomposition of a 2-form, the representation

7 is missing. This can be written equivalently as Rmnpq(∗φ)mn
rs = 2Rrspq.

This brings us to the eight-derivative terms. In fact, G2 holonomy also implies that the

t8t8R
4 term vanishes identically [24], so the internal action actually has no corrections at

order R4. The equations of motion are still corrected [36, 41], however, and for an external

flat space they become simply ∇m∇mZn
n = 0, where Z is a function of R3 given below.

This is then what a G2 Lichnerowicz formula should reproduce.

There exists a well-known correction term to the supersymmetry variation for G2

manifolds. It is usually given in terms of the G2-invariant 3-form φmnp as

δψm = ∇mε+ iα(∇nZmp)φ
npqγqε, (5.11)

with α some real constant and

Zmn = g ǫmm1...m6ǫnn1...n6R
m1m2n1n2Rm3m4n3n4Rm5m6n5n6 , (5.12)
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Projection of R3 Rep of G2 Multiplicity

İi [3,0] 2

K̇ [1,1] 1

Ẇ i [2,0] 3

Ṡi [0,0] 2

Table 4. Valid embeddings of ⊗3R in δψ. In each case, the index i runs over the corresponding

multiplicity.

is a correction term [36] which satisfies ∇mZmn = 0 thanks to the Bianchi identity of

Rmnpq. Zmn may be written in terms of our SO(7) bases as

Zmn = 24(−W̌ 1
mn + 2W̌ 2

mn + W̌ 3
mn) +

4

7
gmn(Š

1 − 2Š2). (5.13)

The precise form of this correction was a crucial part of the analysis of [42], which examined

whether the G2 solution remains a valid supersymmetric background to all orders of higher-

derivatives corrections. We will leave for future work a direct comparison of (5.11) with

the reduced x5 solution given in the previous section, but we will remark that just a quick

look at the representation theory shows that it is plausible that the two match. First note

that under a G2 decomposition, the number of possible terms that can be admitted in δψ

is quite small, they are listed in table 4.9

We observe that since [0, 2] (the representation of the Weyl tensor) is not one of the

admissible terms, it is not possible to obtain R4 scalars from Lichnerowicz, which lines up

with our expectation that those terms in the action vanish. Now, focusing on the terms that

appear in the restricted operator (5.1), from the so(7) under g2 branching rules we have the

decompositions of the X̌i, [0, 2, 0] → [0, 2]+[1, 1]+[2, 0], the V̌ i, [1, 1, 0] → [1, 1]+[2, 0]+[0, 1]

and the T i, [0, 0, 2] → [2, 0]+ [1, 0]+ [0, 0], though note that the [1, 0] and [0, 1] components

drop out as they do not exist in the tensor product of R3. The W̌ i ∈ [2, 0, 0] → [2, 0] do

not decompose, nor do the scalars Ši, so in particular Zmn keeps its form. We see that

all the terms in the x5 solution mix together in the [1, 1] + [2, 0] + [0, 0] representations,

and therefore agreement with (5.11) will require the [1, 1] to vanish and the [2, 0] + [0, 0]

to be precisely Zmn. A potential issue is that in eleven dimensions we ignored terms such

as the ones of the type W i and Si since they did not contribute to Lichnerowicz (they do

not affect the bosonic action), yet they might be required here in order to obtain a precise

match at the level of the operators.

Finally, we remark that the calculation of [36] which first derived (5.11) relies on

this operator satisfying an integrability condition precisely of the type that first led us

to consider more general Lichnerowicz formulae, so in that sense the problem has already

been solved.
9Note that here we do not require that only the antisymmetric [∇,∇] appears in the G2 Lichnerowicz

formula since by using the covariantly constant spinor (∇ε = 0) we do not need to worry about tensoriality.

In fact, as mentioned, the expectation is that the G2 Lichnerowicz will result in the equation of motion

∇m∇mZn
n = 0.
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5.3 Comments on compactifications

We shall now comment on the relation between the results of subsection 5.1 and the

general results of section 4. The seven-derivative contributions to the covariant deriva-

tive Da are clearly related, but while for the eleven-dimensional operator these are the

first higher-derivative terms, its seven-dimensional counterpart has also three- and five-

derivative terms. Where do these come from?

Let us start with lowest order, i.e. the three-derivative terms in (5.3). If one thinks of k

not as a numerical coefficient, but a combination quadratic in external (four-dimensional)

Riemann tensors, then one can find factorised terms in (4.9) and (4.10) that can yield (5.3)

upon breaking eleven-dimensional Lorentz invariance.

The y2 and x5 families behave rather differently. 1
2x5(R46 − 4A7) appearing in (4.14)

does not have any factorised terms and hence its reduction would lead directly to k = 0.

The reducible part of the y2 family that yields a non-trivial k contribution is −1
2y2R44.

Let us also observe that if one precipitates and uses (5.10) together with G2 self-duality

relations for the Riemann curvature, one find that the two terms proportional to k cancel

out in (5.4). In our approach, we keep the zero-form and the four-form separately and add

the latter to the action after completing it to a top-form by wedging with C.

In the reduction on a G2 holonomy manifold X, the relevant part of the eleven-

dimensional action to be integrated over X is given by

1

2
(RabcdR

abcd)2 − 1

4
C ∧ trR2 ∧ trR2 7→ +

1

2
E4

∫

X

φ ∧ trR2 − 1

4
trR2ui

∫

X

ωi
3 trR

2. (5.14)

Here E4 is the four-dimensional Euler density which (up to Ricci terms) is the same as

the Riemann tensor squared. In the first term on the right-hand side we have used that

RmnpqR
mnpq = 1

2RmnpqRrs
pq(∗φ)mnrs = ∗(φ ∧ trR2). Finally ωi ∈ H3(X) and C3 = ui ω

i
3,

with i = 1, · · · , b3(X). We may decompose similarly φ = ti ω
i
3. In fact ui and ti form the

scalar sector of b3 chiral superfields of the N = 1 theory in four dimensions. We end up

with a four-derivative contribution to the N = 1 effective theory:

LN=1 ∼ αi

(

1

2
uiE4 + ti trR

2

)

, (5.15)

with

αi =

∫

X

ωi
3 ∧ trR2. (5.16)

For X = X̃ × S1, where X̃ is a Calabi-Yau threefold, one can recognise the familiar

one-loop R2 couplings in N = 2 theories, where now in the internal six-dimensional integral

the ωi are replaced by the forms in the H(1,1)(X̃), and ui + i ti is the complex scalar in the

N = 2 vector multiplets [43].

As mentioned earlier and further elaborated below, the terms in the action with k

factors should not receive corrections from higher-derivative (higher string loop terms) and

hence we do not expect the coupling (5.15) to receive further perturbative corrections. We

may remark that the moduli spaces of G2 compactifications are not factorised and have
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(complex) dimension b3(X) + b2(X).10 It is curious that the higher-derivative couplings

make use of b3(X) topological numbers αi and distinguish between the two sectors.

We can turn to the next order — five derivative terms in the operators. Note that

these are designed to cancel non-tensorial terms in (5.5). However, they contain a factor of

k2 on top of two Riemann tensors and two ∇, and so from the eleven-dimensional point of

view are order R7. Hence the additional contributions to the supersymmetry operators are

reductions of the next order terms in eleven dimensions, i.e. 13 derivative terms. Similarly,

at the next order of internal derivatives we have terms ∼ k3, and these come from the

reduction of 19 derivative corrections to eleven-dimensional supersymmetry. Note that we

are only probing the fraction of the higher (than seven) derivative terms in supersymmetry

whose purpose is to cancel unwanted non-tensorial contributions from cross-terms of lower-

derivative contributions. By design the action itself stays order ∼ R4. Notice, however,

that the seven-dimensional Lichnerowicz method seems to be giving information about

terms that are higher order in the eleven-dimensional sense.

We may finally comment on factorisability properties of higher derivative terms. In [27]

the terms that allowed to factor out a single Ricci scalar were discussed. Here we completely

ignore the Ricci terms, so we cannot further comment on corrections of that type. However,

our seven-dimensional calculation would appear to rule out certain other types of terms

in eleven dimensions. Consider, for example, an order R7 correction to the action that

factorises as R3 ·R44, where R
3 is some linear combination of the Si given in appendix A.1

and R44 was given in (4.13). Upon decomposing to seven dimensions, this would lead to

a term k̃(R7d)3 in the reduced action, with k̃ = R4d
44 = (RµνλρR

µνλρ)2. This would be

in contradiction with our Lichnerowicz calculation in section 5.1.3 which disallowed R3

terms in seven dimensions. Thus, we are lead to conclude that corrections of the type R3 ·
[anything nonzero in 4d] appear to be ruled out in eleven dimensions. On the other hand, a

pure Riemann term like R3 ·(ǫ8ǫ8R4) is possible. Similar considerations also imply that (be-

yond order R4) terms that factorise as R2 · [anything nonzero in 4d] are likewise ruled out.

6 Future directions

The effects induced by higher-derivative corrections play an important role in many lower

dimensional theories arising from compactifications. It may be useful, even if more labo-

rious, to work out a full reduction of the eleven-dimensional Lichnerowicz formula, rather

than study a lower dimensional “descendant”, as we did here. An intriguing aspect of

studying the formula on a product of internal and external spaces is that different deriva-

tive orders get mixed on a lower dimensional component, allowing for glimpses into further

corrections to supersymmetry operators. There are still open problems concerning the

eleven-derivative covariant couplings, and we conclude by mentioning two venues of possi-

ble progress.

10We discussed here the b3(X) chiral multiplets made of deformations of the metric and the scalar modes

coming from C3. The latter also yields b2(X) vector fields, which make the bosonic part of vector multiplets.
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6.1 Adding fluxes

We began by showing that the classical supersymmetry operators with flux obey a Lich-

nerowicz relation that reproduces the classical action. However, when we moved to the

higher-order corrections we set G = 0 in order to simplify the computation. A clear next

step is to restore those terms and obtain the flux completion of R4.

The issue of computing the full set of G flux contributions to the eight derivative

corrections is a long standing one. Progress has been made in string theory, and it can be

shown that at one loop most of the NS sector contributions are captured by introducing

a connection with torsion ωLC → ωLC + H. There are, however, additional ambiguities

associated with lifting to eleven dimensions, and replacing H by G [44].

In the context of the M-theoretic Lichnerowicz method, the computation of the flux

terms should proceed in a straightforward iterative manner. Firstly, promoting the leading

term ∇a → ∇G
a in the supersymmetry operator Da will immediately break the tensoriality

of D̃aDaε and will require adjustments to the existing higher-derivative terms — for ex-

ample, all the ∇a in the correction terms of D̃a will likewise have to be replaced by ∇G
a .

Additionally, we neglected Ricci terms but now they become proportional to G2 by the

equations of motion so they cannot be ignored. Instead, we have that factors of γa[∇G
a ,∇G

b ]

and (∇̃G)a∇G
a give the combinations of covariant derivatives that vanish on-shell. Finally,

it will be necessary to impose the constraint that the M-theory Lichnerowicz define just a

scalar and an 8-form. This will require the addition of new terms to the corrected operators

to cancel the other p-forms, which should be easier to do if one proceeds order by order in

powers of the G flux.

Note that at four-derivative order, the couplings in the seven-dimensional theory with

16 supercharges including four-form flux are known without ambiguities [44]. This case

should provide a good test for completing the seven-dimensional Lichnerowicz formula

with G.

6.2 Towards R
7

The M-theoretic Lichnerowicz computed from the operators we defined in section 4.2.1

D̃aDaε only results in a scalar and a 3-form up to order R4. If we include the higher

order terms in the computation this will fail, and the form of this failure is clear — if we

schematically write the corrections D = ∇+∇R3 and D̃ = ∇+R3∇, then the full D̃D will

include R3∇∇R3, which will even involve non-tensor terms. These terms are of the same

order as R7, so we are led to conclude that no new corrections will be needed at order R5

or R6, but are necessary at R7. This is consistent with the fact that in the strong coupling

eleven-dimensional limit [45], the only surviving terms will be of order R3l+1 for loop order l.

In principle, the Lichnerowicz procedure should allow us to deduce what is the form

of these corrections. However, computationally it is significantly more difficult to generate

the necessary tensor products of seven Riemann tensors, and, in addition, it is expected

that at this order there might be terms involving explicit connections ∇ in the action,

further complicating matters. Nevertheless, since we can easily compute the ‘problem’

terms explicitly in the Lichnerowicz equation, it seems hopeful that one can cancel them
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step-by-step by suitable modifications of the D and D̃ operators, just like we did in the

simpler seven-dimensional case in section 5.1.2. As an example, consider just the X1 part

of the y2 solution for the operators (4.9), i.e.

Daε = ∇aε− y2∇b(X1
abcdγ

cdε) + . . .

= ∇aε− y2∇b(R2Rabcdγ
cdε) + . . .

D̃aψa = γab∇aψb − y2X
1
abcdγ

cd∇bψa + . . .

= γab∇aψb − y2R
2Rabcdγ

cd∇bψa + . . .

(6.1)

which gives in the M-theory Lichnerowicz

D̃aDaε = · · ·+ (y2)
2R2Ra

bcdγ
cd∇b∇e(R2Raefgγ

fgε) + . . . (6.2)

This term is analogous to the one we found in seven dimensions, and so can be cancelled in

a similar manner. We therefore expect that there will be a correction to the supersymmetry

operators at 13 derivatives given by

Daε = ∇aε− y2∇b(R2Rabcdγ
cdε)

+ 4(y2)
2 1

10
(γab − 9gab)∇c

(

R2∇[b∇d(R
c]d

efR
2γefε)

)

+ . . .

D̃aψa = γab∇aψb − y2R
2Rabcdγ

cd∇bψa

− 4(y2)
2Rc[a

efR
2∇c∇b]γef (R2∇bψa) + . . .

(6.3)

Since the effect of this particular correction is to precisely cancel the non-tensorial piece

in (6.2), it does not generate new contributions to the action of order R7.

Acknowledgments

We would like to thank K. Becker, D. Robbins, A. Royston, P. Vanhove for useful dis-

cussions. A. C. has been supported by the Laboratoire d’Excellence CARMIN. A. C. also

thanks the Program on the Mathematics of String Theory at Institut Henri Poincaré, Paris
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A Projectors for R
3

A.1 In eleven dimensions

Here we present bases for projections of tensor products of Weyl tensors into irreducible

representations of SO(10, 1). Throughout, same letter indices which are free are assumed

to be antisymmetrised with unit weight (contracted indices have no such assumption). We

will be considering the irreducible representations listed in table 2 which are relevant for

the Lichnerowicz calculation. For convenience, these are reproduced in table 5.
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Projection of R3 Rep of SO(10, 1) Multiplicity

Xi [0,2,0,0,0] 8

W i [2,0,0,0,0] 3

Si [0,0,0,0,0] 2

Y i [0,1,0,0,2] 2

V i [1,0,0,0,2] 2

T i [0,0,0,1,0] 3

Zi [0,1,0,1,0] 3

U i [1,0,1,0,0] 3

Table 5. Relevant projections of ⊗3R in eleven dimensions. In each case, the index i runs over the

corresponding multiplicity.

The four-index Xi terms contain two pairs of antisymmetric indices which are sym-

metric under exchange, and are fully traceless:

X1
a1a2b1b2

= Ra1a2b1b2Rc1c2d1d2Rc1c2d1d2 ,

X2
a1a2b1b2

=
1

2
Ra1a2b1c1Rb2c2d1d2Rc1c2d1d2 +

1

2
Rb1b2a1c1Ra2c2d1d2Rc1c2d1d2

+
2

9
ga2b1Rb2d1a1d2Rd1c1c2e1Rd2c1c2e1 ,

X3
a1a2b1b2

=
2

3
Ra1a2c1c2Rb1b2d1d2Rc1c2d1d2 −

2

3
Ra1b1c1c2Rb2a2d1d2Rc1c2d1d2

+
4

9
ga2b1Rb2e1d1d2Rd1d2c1c2Rc1c2a1e1

− 1

45
ga2b1ga1b2Rd1d2e1e2Re1e2c1c2Rc1c2d1d2 ,

X4
a1a2b1b2

=
2

3
Ra1c1b1c2Ra2d1b2d2Rc1d1c2d2 +

1

3
Ra1c1b1c2Ra2d1b2d2Rc1d2c2d1

+
1

24
Ra1a2c1c2Rb1b2d1d2Rc1c2d1d2

+
1

18
ga2b1Rb2e1d1d2Rd1d2c1c2Rc1c2a1e1 −

2

9
ga2b1Rb2d1e1d2Rd1c1d2c2Rc1a1c2e1

− 1

360
ga2b1ga1b2Rd1d2b3b4Rb3b4c1c2Rc1c2d1d2 +

1

90
ga2b1ga1b2Rd1e1d2e2Re1c1e2c2Rc1d1c2d2 ,

X5
a1a2b1b2

=
1

3
Ra1a2c1c2Rb1c1d1d2Rb2c2d1d2 +

1

3
Rb1b2c1c2Ra1c1d1d2Ra2c2d1d2

− 2

3
Ra1b1c1c2Rb2c1d1d2Ra2c2d1d2

+
2

9
ga2b1Rb2e1d1d2Rd1d2c1c2Rc1c2a1e1

− 1

90
ga2b1ga1b2Rd1d2e1e2Re1e2c1c2Rc1c2d1d2 ,
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X6
a1a2b1b2

=
2

3
Ra1c1b1c2Ra2d1c1d2Rb2d1c2d2 +

1

3
Ra1c2b1c1Ra2d1c1d2Rb2d1c2d2

+
1

12
Ra1a2c1c2Rb1d1c1d2Rb2d1c2d2 +

1

12
Rb1b2c1c2Ra1d1c1d2Ra2d1c2d2

− 1

18
ga2b1Rb2e1d1d2Rd1d2c1c2Rc1c2a1e1 +

2

9
ga2b1Rb2d1e1d2Rd1c1d2c2Rc1a1c2e1

+
1

9
ga2b1Rb2d1a1d2Rd1c1c2e1Rd2c1c2e1

+
1

360
ga2b1ga1b2Rd1d2e1e2Re1e2c1c2Rc1c2d1d2 −

1

90
ga2b1ga1b2Rd1e1d2e2Re1c1e2c2Rc1d1c2d2 ,

X7
a1a2b1b2

=
2

3
Ra1c1b1c2Ra2c2d1d2Rb2c1d1d2 +

1

3
Ra1c2b1c1Ra2c2d1d2Rb2c1d1d2

− 1

12
Ra1a2c1c2Rb1c1d1d2Rb2c2d1d2 −

1

12
Rb1b2c1c2Ra1c1d1d2Ra2c2d1d2

− 2

9
ga2b1Rb2e1d1d2Rd1d2c1c2Rc1c2a1e1 +

1

9
ga2b1Rb2d1a1d2Rd1c1c2e1Rd2c1c2e1

+
1

90
ga2b1ga1b2Rd1d2e1e2Re1e24c1c2Rc1c2d1d2 ,

X8
a1a2b1b2

=
1

3
Ra1a2c1c2Rb1d1c1d2Rb2d1c2d2 +

1

3
Rb1b2c1c2Ra1d1c1d2Ra2d1c2d2

− 2

3
Ra1b1c1c2Rb2d1c1d2Ra2d1c2d2

+
4

9
ga2b1Rb2d1e1d2Rd1c1d2c2Rc1a1c2e1

− 1

45
ga2b1ga1b2Rd1e1d2e2Re1c1e2c2Rc1d1c2d2 .

The two-index W i are symmetric traceless:

W 1
a1b1

= Ra1d1e1e2Re1e2c1c2Rc1c2b1d1 −
1

11
ga1b1Re1e2d2b2Rd2b2c1c2Rc1c2e1e2 ,

W 2
a1b1

= Ra1e1d1e2Re1c1e2c2Rc1b1c2d1 −
1

11
ga1b1Re1a2e2b2Ra2c1b2c2Rc1e1c2e2 ,

W 3
a1b1

= Ra1e1b1c1Re1e2d1d2Rc1e2d1d2 .

The Si are scalars:
S1 = Ra1a2b1b2Rb1b2c1c2Rc1c2a1a2 ,

S2 = Ra1b1a2b2Rb1c1b2c2Rc1a1c2a2 .

The eight-index Y i have a pair of antisymmetric indices, another set of six antisym-

metric indices, vanish if any seven indices are antisymmetrised, and are traceless:

Y 1
a1a2b1...b6

= Ra1a2b1b2Rb3b4d1d2Rb5b6d1d2

− 8

5
ga1b1Rc1a2b2b3Rc1b4d1d2Rb5b6d1d2

+
2

15
ga1b1ga2b2Rc1c2b3b4Rd1d2b5b6Rc1c2d1d2 −

4

15
ga1b1ga2b2Rc1c2b3b4Rc1b5d1d2Rc2b6d1d2 ,

Y 2
a1a2b1...b6

= Ra1c1b1b2Ra2c2b3b4Rb5b6c1c2

− 2

5
ga1b1Rc1a2b2b3Rc1b4d1d2Rb5b6d1d2 −

4

5
ga1b1Rc1d1b3b4Ra2d2c1b2Rd1d2b5b6
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+
1

30
ga1b1ga2b2Rc1c2b3b4Rd1d2b5b6Rc1c2d1d2 −

2

15
ga1b1ga2b2Rc1c2b3b4Rc1b5d1d2Rc2b6d1d2

+
2

15
ga1b1ga2b2Rd1d2b3b4Rc1d1c2b5Rc2d2c1b6 .

The six-index V i have a set of five antisymmetric indices, vanish if the six indices are

antisymmetrised, and are traceless:

V 1
a2b1...b5

= Rc1a2b2b3Rc1b4d1d2Rb5b1d1d2

− 1

7
ga2b2Rc1c2b5b1Rd1d2b3b4Rc1c2d1d2 +

2

7
ga2b2Rc1c2b5b1Rd1d2c1b3Rd1d2c2b4 ,

V 2
a2b1...b5

= Rc1d1b3b4Ra2d2c1b2Rd1d2b5b1

− 1

7
ga2b2Rc1c2b5b1Rd1d2c1b3Rd1d2c2b4 −

2

7
ga2b2Rd1d2b5b1Rc1d1c2b3Rc2d2c1b4 .

The T i are 4-forms:

T 1
b1...b4

= Rc1c2b1b2Rd1d2b3b4Rc1c2d1d2 ,

T 2
b1...b4

= Rc1c2b1b2Rd1d2c1b3Rd1d2c2b4 ,

T 3
b1...b4

= Rd1d2b1b2Rc1d1c2b3Rc2d2c1b4 .

The six-index Zi have a pair of antisymmetric indices, another set of four antisymmetric

indices, vanish if any five indices are antisymmetrised, and are traceless:

Z1
a1a2b1...b4

=
1

2
Ra1a2d1b1Rc1c2d1b2Rc1c2b3b4 +

1

2
Rb2b1d1a2Rc1c2d1a1Rc1c2b3b4

+
1

7
ga2b4Ra1c1b1b2Rd1d2c2c1Rd1d2c2b3 +

1

7
ga2b4Rc1c2b1b2Rc1b3d1d2Rd1d2c2a1

+
1

7
ga2b4Rc1c2a1b2Rc1b3d1d2Rd1d2c2b1 ,

Z2
a1a2b1...b4

=
1

2
Ra1c1d1b1Rc1c2d1b2Ra2c2b3b4 +

1

2
Ra1d1c1b1Rc1c2d1b2Ra2c2b3b4

− 3

28
ga2b4Ra1c1b1b2Rd1d2c2c1Rd1d2c2b3 −

1

28
ga2b4Rc1c2b1b2Rc1b3d1d2Rd1d2c2a1

− 1

28
ga2b4Rc1c2a1b2Rc1b3d1d2Rd1d2c2b1 +

1

7
ga2b4Rc1c2b1b2Rc1d1b3d2Rd1c2d2a1

+
1

7
ga2b4Rc1c2a1b2Rc1d1b3d2Rd1c2d2b1 ,

Z3
a1a2b1...b4

=
1

2
Ra1d1c1c2Rc1c2b1b2Ra2d1b3b4 +

1

2
Rb1d1c1c2Rc1c2a1b2Ra2d1b3b4

− 3

14
ga2b4Ra1c1b1b2Rd1d2c2c1Rd1d2c2b3 −

1

14
ga2b4Rc1c2b1b2Rc1b3d1d2Rd1d2c2a1

− 1

14
ga2b4Rc1c2a1b2Rc1b3d1d2Rd1d2c2b1 .
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Projection of R3 Rep of SO(7) Multiplicity

X̌i [0,2,0] 7

W̌ i [2,0,0] 3

Ši [0,0,0] 2

V̌ i [1,1,0] 2

Ť i [0,0,2] 3

Ži [0,1,2] 3

Ǔ i [1,0,2] 3

Ľi [2,1,0] 3

M̌ i [2,0,2] 6

Table 6. Valid embeddings of ⊗3R in δψ. In each case, the index i runs over the corresponding

multiplicity.

The four-index U i have a set of three antisymmetric indices, vanish if the four indices

are antisymmetrised, and are traceless:

U1
a1b1b2b3

= Ra1c1b1b2Rd1d2c2c1Rd1d2c2b3 ,

U2
a1b1b2b3

=
1

2
Rc1c2b1b2Rc1d1b3d2Rd1c2d2a1 +

1

2
Rc1c2a1b2Rc1d1b3d2Rd1c2d2b1 ,

U3
a1b1b2b3

=
1

2
Rc1c2b1b2Rc1b3d1d2Rd1d2c2a1 +

1

2
Rc1c2a1b2Rc1b3d1d2Rd1d2c2b1 .

A.2 In seven dimensions

In principle, the seven-dimensional supersymmetry operator can contain any of the SO(7)

representations listed in table 6. However, we write explicitly only the projections that will

be relevant for a reduction of the x5 solution in eleven dimensions from section 4.2.1.

Indices m,n . . . run from 1 to 7, and, as before, any free indices with the same

letter are assumed to be antisymmetrised. The metric g is now that of the internal

seven-dimensional space.

We will consider two X̌i terms. They contain two pairs of antisymmetric indices which

are symmetric under exchange, and are fully traceless:

X̌5
m1m2n1n2

=
1

3
Rm1m2p1p2Rn1p1q1q2Rn2p2q1q2 +

1

3
Rn1n2p1p2Rm1p1q1q2Rm2p2q1q2

− 2

3
Rm1n1p1p2Rn2p1q1q2Rm2p2q1q2

+
2

5
gm2n1Rn2r1q1q2Rq1q2p1p2Rp1p2m1r1

− 1

30
gm2n1gm1n2Rq1q2r1r2Rr1r2p1p2Rp1p2q1q2 ,

X̌6
m1m2n1n2

=
2

3
Rm1p1n1p2Rm2q1p1q2Rn2q1p2q2 +

1

3
Rm1p2n1p1Rm2q1p1q2Rn2q1p2q2

+
1

12
Rm1m2p1p2Rn1q1p1q2Rn2q1p2q2 +

1

12
Rn1n2p1p2Rm1q1p1q2Rm2q1p2q2

– 29 –



J
H
E
P
1
0
(
2
0
1
9
)
0
3
6

− 1

10
gm2n1Rn2r1q1q2Rq1q2p1p2Rp1p2m1r1 +

2

5
gm2n1Rn2q1r1q2Rq1p1q2p2Rp1m1p2r1

+
1

5
gm2n1Rn2q1m1q2Rq1p1p2r1Rq2p1p2r1

+
1

120
gm2n1gm1n2Rq1q2r1r2Rr1r2p1p2Rp1p2q1q2 −

1

30
gm2n1gm1n2Rq1r1q2r2Rr1p1r2p2Rp1q1p2q2 .

The two-index W̌ i are symmetric traceless:

W̌ 1
m1n1

= Rm1q1q2n2Rq2n2p1p2Rp1p2n1q1 −
1

7
gm1n1Rq1q2r1r2Rr1r2p1p2Rp1p2q1q2 ,

W̌ 2
m1n1

= Rm1q2q1n2Rq2p1n2p2Rp1n1p2q1 −
1

7
gm1n1Rq1r1q2r2Rr1p1r2p2Rp1q1p2q2 ,

W̌ 3
m1n1

= Rm1q2n1p1Rq2n2q1q2Rp1n2q1q2 .

We have two scalars Ši:

Š1 = Rm1m2n1n2Rn1n2p1p2Rp1p2m1m2 ,

Š2 = Rm1n1m2n2Rn1p1n2p2Rp1m1p2m2 .

We also need the six-index V̌ i, which have a set of five antisymmetric indices, vanish

if the six indices are antisymmetrised, and are traceless:

V̌ 1
m1n1n2n3n4n5

= Rp1m1n2n3Rp1n4q1q2Rn5n1q1q2

− 1

3
gm1n2Rp1p2n5n1Rq1q2n3n4Rp1p2q1q2 +

2

3
gm1n2Rp1p2n5n1Rq1q2p1n3Rq1q2p2n4 ,

V̌ 2
m1n1n2n3n4n5

= Rp1q1n3n4Rm1q2p1n2Rq1q2n5n1

+
1

3
gm1n2Rp1p2n5n1Rq1q2p1n3Rq1q2p2n4 −

2

3
gm1n2Rq1q2n5n1Rp1q1p2n3Rp2q2p1n4 ,

and three 4-forms Ť i:

Ť 1
n1n2n3n4

= Rp1p2n1n2Rq1q2n3n4Rp1p2q1q2 ,

Ť 2
n1n2n3n4

= Rp1p2n1n2Rq1q2p1n3Rq1q2p2n4 ,

Ť 3
n1n2n3n4

= Rq1q2n1n2Rp1q1p2n3Rp2q2p1n4 .

The eleven-dimensional terms thus decompose as

X5
m1m2n1n2

= X̌5
m1m2n1n2

− 8

45
gm2n1W̌

1
m1n2

− 1

315
gm2n1gm1n2Š

1,

X6
m1m2n1n2

= X̌6
m1m2n1n2

+
2

45
W̌ 1

m1n2
− 8

45
W̌ 2

m1n2
− 4

45
W̌ 3

m1n2

+
1

1260
gm2n1gm1n2Š

1 − 1

315
gm2n1gm1n2Š

2,

V 2
m1n1n2n3n4n5

= V̌ 2
m1n1n2n3n4n5

− 10

21
gm1n1 Ť

2
n2n3n4n5

+
8

21
gm1n1 Ť

3
n2n3n4n5

,

W 1
m1n1

= W̌ 1
m1n1

+
4

77
gm1n1Š

1,

W 2
m1n1

= W̌ 2
m1n1

+
4

77
gm1n1Š

2,

W 3
m1n1

= W̌ 3
m1n1

,

T i
n1n2n3n4

= Ť i
n1n2n3n4

, Si = Ši.
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B More general solution

In section 4.2.1 we were able to find a “minimal” solution to the M-theory Lichnerowicz,

in the sense that we did not utilise all the possible terms listed in table 5 in the construc-

tion (4.9) of the supersymmetry operator Da. Let us now consider adding the remaining

terms of the table and see if we can find more solutions:

D′ : S→T ∗⊗S,

D′
aε=Daε+

2
∑

i=1

si∇a(S
iε)+

3
∑

i=1

wi

(

9

10
∇b(W i

abε)−
1

10
γa

b∇c(W i
cbε)+γb1b2∇b1(W

i
ab2

ε)

)

+
3

∑

i=1

ziγ
c1...c4∇b(Zi

abc1...c4
ε)

+

3
∑

i=1

ui

(

− 1

2
γb2b3∇b1(U i

ab1b2b3
ε)+

3

10
γb2b3∇b1(U i

b1ab2b3
ε)

− 2

105
γa

b1b2b3∇c(U i
cb1b2b3

ε)+
1

21
γb1b2b3b4∇b4(U

i
ab1b2b3

ε)

)

, (B.1)

and

D̃′ : T ∗ ⊗ S → S,

D̃′aψa = D̃aψa +
2

∑

i=1

siγ
abSi∇aψb +

3
∑

i=1

wiγ
acW i

ab

(

∇cψ
b −∇bψc

)

+
3

∑

i=1

ziγ
c1...c4Zi

abc1...c4
∇bψa

+
3

∑

i=1

ui

(

γac3U i
ac1c2c3

∇c1ψc2 − 1

21
γbc1c2c3U i

ac1c2c3

(

∇aψb −∇bψ
a
)

)

.

(B.2)

As previously mentioned, the Si and W i terms do not actually contribute to anything

at this level, so their coefficients will be unconstrained. We get that the 2-form in the

M-theory Lichnerowicz vanishes if

z1 = − 1

14
u2 +

3

28
z2 +

3

2
z3, (B.3)

while eliminating the 4-forms is solved by:

x1 = −y2 −
1

36
u1, x7 = 16y2, t1 = − 1

81
u1,

x2 = 16y2 +
2

9
u1, x8 = 16y2, t2 =

2

135
(216y2 − 3x5 + 2u1),

x3 = −2y2 −
1

18
u1, y1 = −1

4
y2 −

1

144
u1, t3 = − 4

405
(648y2 − 9x5 + u1),

x4 = −16y2, u2 = 0, v1 = − 5

36
u1,

x6 = −4x5 +
4

9
u1, u3 = −u1, v2 =

5

72
(−216y2 + 45x5 − 5u1),

(B.4)
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such that in total we have, in addition to y2 and x5, that u1, z2, z3, wi, si remain undeter-

mined. The resulting scalars in the Lichnerowicz are

(D̃Dε)|scalar = −1

4
R+

1

2
x5(R46 − 4A7)

− 1

2

1

12
y2(192R41 + 384R42 + 24R43 + 12R44 − 192R45 − 384A7)

+
1

2

1

144
u1(−2R43 −R44 + 8R45 + 16A7),

(B.5)

and the 8-form is

(D̃Dε)|8-form = −1

4
y2

(

−1

4
R · Y 1 +R · Y 2

)

+
1

4

1

144
u1R · Y 1. (B.6)

The coefficients si, wi, zi do not contribute at all, and so the corresponding terms in the

operators are completely superfluous at this given order and given our simplifications.

We see that the u1 freedom corresponds to the remaining invariant mentioned in [34,

35, 39], which here takes the form IY1 +
1
24(IX − 1

8IZ). Differently from IX ± 1
8IY we do

not expect this combination to lead to a full N = 2 invariant. However, the emergence of

an N = 1 invariant in an eleven dimensional setting suggests the interesting possibility of

extending the Lichnerowicz method to M-theory on manifolds with boundary, notably on

the Horava-Witten interval.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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