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1 Introduction

The fundamental objects of string theory may carry several types of charge. A well-known

example is given by a D5-brane of type IIB theory wrapped on a compact manifold which,

besides a unit of D5-brane charge [1],1 carries -β units of D1-brane charge as well, where β

is the Euler character of the wrapped space divided by 24 [2]. The somewhat unexpected

D1 charge emerges from a quantum correction, which can be read from the three point

function of the RR 2-form with emission of two gravitons. The relevance of this effect can

hardly be overestimated. As originally noted, the shift is necessary for consistency of string

duality and the fact that left-moving ground state energy of heterotic string starts at −1.

Moreover, the shift must be taken into account for the computation of the degeneracy; if

the D5-brane is part of a bound system that can be described as a black hole, the D1-brane

charge it carries is fundamental to match the microscopic degeneracy with the macroscopic

entropy [3]. It is worth emphasizing that the D1 charge is not intrinsic to the D5-brane

itself, but depends on the background on which the brane is located. Other examples of

similar shifts previously noticed in the literature include [4–9].

In this article we are interested in studying similar effects in black hole backgrounds

of the heterotic theory compactified on two distinct spaces: T4 × S1 × Ŝ1 and T4 × S1.

1By Dp-brane charge we mean the electric charge associated to the RR (p+ 1)-form.
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In the first option, we consider a bound state of a fundamental string (F1) wrapping S1

with winding number w and momentum n, N solitonic 5-branes (NS5) wrapping T4 × S1

and a Kaluza-Klein monopole (KK) of charge W associated with the circle Ŝ1. In the

second option, the configuration is identical except for the absence of a KK monopole.

These are respectively known as the four- or three-charge systems. For sufficiently large

n,w,N,W , when gs is small but non-vanishing, the gravitational interaction produces the

collapse of the systems. In this regime these can be described as supersymmetric black

holes with four and five non-compact dimensions in terms of classical supergravity fields to

a good approximation, at least outside the event horizon. These are arguably the simplest

black hole systems that can be considered in string theory. Consequently, they have been

subjected to numerous studies, see [10–13] for a very limited list of references. Using

type II/heterotic string duality, it is possible to compare the microscopic degeneracy of

the system at vanishing string coupling computed in the former theory with the entropy

associated to the horizon of the black hole solution of the latter. Being BPS, the degeneracy

of the system is protected under variations of gs. The precise matching of both quantities

constitutes a major achievement of the theory. While the agreement was first revealed for

the leading order contribution, subsequent works concluded that it extends to all orders

in the α′ expansion, see [3, 8, 14] and references therein. In the black hole description,

α′-corrections arise in the form of higher-curvature terms added to the effective action,

complicating the analysis. Nevertheless, the attractor mechanism [15, 16] was cleverly

exploited to decouple the near-horizon region from the rest of the spacetime and study

some of its properties, including the entropy [5, 17–21].

While very successful for this purpose, the consideration of only near-horizon regions

leaves aside relevant aspects of these systems. In recent years there has been a renewed

interest in exploring this territory [22–25]. The first perturbative corrections beyond the

near-horizon region have been obtained for the three- and four-charge systems. Besides

the particular distortion of the field configuration, which will be subjected to further mod-

ifications order by order in the α′ expansion, these works revealed that the charges (and

mass) associated to some of the constituents of the configuration suffer a shift mediated by

the higher-curvature interactions. The phenomenon has a clear interpretation: the correc-

tions modify the equations of motion order by order, introducing delocalized sources with

a non-Abelian character.2

There are several questions that can be posed here. It is possible to study how these

sources are distributed over space, why the shifts affect only some of the charges, one can

try to attribute some physical interpretation to their values, and so on. But, certainly,

the most interesting question is whether or not it is possible to derive their precise value

when all the α′ corrections have been accounted for. Even though only few terms of

the infinite tower of higher-curvature corrections are explicitly known, we argue here that

quantum gravitational consistency of the theory requires that, in the four-charge system,

the relations

Q0 = N − 2

W
, Qv = W, Q−Q+ = nw

(
1 +

2

NW

)
, (1.1)

2Actually, this line of research was triggered by the study of non-Abelian black holes in theories of

supergravity coupled to Yang-Mills fields [26–30].
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are exact in the α′ expansion. The corresponding relations in the three-charge system are

Q0 = N − 1, Q−Q+ = nw

(
1 +

2

N

)
. (1.2)

Here Q0, Qv, Q− and Q+ are, respectively, the asymptotic charges associated to NS5-

branes, KK monopole, winding and momentum of the F1. While our considerations only

impose a value for the product Q−Q+, it seems likely that duality arguments can be used

to disentangle this expression. The relations (1.1) are already satisfied when the quadratic

corrections in curvature are accounted for, with Q− = w. This suggests that the origin of

the shift in the charges can be found in the introduction of a Chern-Simons term in the field

strength of the Kalb-Ramond 2-form, followed by its corresponding supersymmetrization

in the action. Hence, the shifts at first order in α′ would be invariant under further

corrections. Actually, this is what happens with the corrections to the entropy implied

by Wald’s formula; despite the infinite number of higher-curvature terms expected, the

Chern-Simons term is the sole responsible of the modification of the Bekenstein-Hawking

leading order entropy [31]. Therefore, it is possible to gain very relevant information from

the first set of corrections.

The above relations follow from imposing equality of the microscopic degeneracy, ex-

pressed in terms of the charges, and Wald entropy, which we compute in terms of the

number of fundamental objects. In our analysis, the exact entropy can be obtained due

to the non-renormalization of the near-horizon solution. This seems to be an equivalent

description of the fact that the central charges of the dual CFT can be computed from the

analysis of the anomalies of the theory [32], which are fully described at first order in α′.

Our result is also consistent with non-renormalization arguments for black hole entropy in

the context of four-dimensional supergravity [33].

The structure of the paper goes as follows. In section 2 we briefly review the heterotic

theory with all the relevant corrections of quadratic order in curvature (or first order in α′)

and the perturbative three- and four-charge black hole solutions. In section 3 we compute

the Wald entropy of both systems and obtain the relations for the charges previously

presented. Since the near-horizon geometry of the three-charge system is identical to that

of the four-charge system with unit KK monopole charge, it follows that the expressions

for the Wald entropy in terms of the fundamental objects are identical for both systems

by setting W = 1. In section 4 we make contact with previous works in the literature that

studied the near-horizon regions using lower-dimensional effective actions. We identify why

the inclusion of only a partial subset of corrections, like the Gauss-Bonnet term, is unable

to reproduce the relevant properties of the solution for the three-charge system [34], while

it succeeds for the four-charge system [35]. Section 5 contains some further discussion.

2 α′-corrected heterotic black holes

2.1 The theory

Heterotic string theory is effectively described at low energies as a theory of classical fields

in terms of a double perturbative expansion in α′ and gs. The zeroth-order term in the
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expansion corresponds toN = 1 supergravity, which gives a good description for sufficiently

small values of curvature and string coupling. Here we shall deal with black hole solutions

of sufficiently large horizon, such that the supergravity approximation is valid. Still, we are

interested in performing a precision study of the information that is lost in the truncation

of the subsequent terms in the expansion, and how much of this information can be restored

with the tools we have. We are interested in studying the α′ expansion, keeping ourselves

content with the tree-level effective action.

The effective action of the heterotic superstring at first order in α′ is given by [36]

S =
g2
s

16πG
(10)
N

∫
d10x

√
|g| e−2φ

{
R− 4(∂φ)2 +

1

2 · 3!
H2 − α′

8
R(−)µν

a
bR(−)

µν b
a + . . .

}
.

(2.1)

We have not included Yang-Mills fields in the theory for simplicity.3 Here, R(−)
a
b is the

curvature of the torsionful spin connection defined as ω(−)
a
b = ωab − 1

2Hµ
a
b dx

µ, namely

R(−)
a
b = dω(−)

a
b − ω(−)

a
c ∧ ω(−)

c
b . (2.2)

The field strength H of the Kalb-Ramond 2-form B includes the Chern-Simons term

H = dB +
α′

4
ΩL

(−) , (2.3)

where

ΩL
(−) = dω(−)

a
b ∧ ω(−)

b
a −

2

3
ω(−)

a
b ∧ ω(−)

b
c ∧ ω(−)

c
a . (2.4)

The corresponding Bianchi identity reads

dH =
α′

4
R(−)

a
b ∧R(−)

b
a , (2.5)

while the equations of motion are

Rµν − 2∇µ∂νφ+
1

4
HµρσHν

ρσ − α′

4
R(−)µρ

a
bR(−)ν

ρ b
a = O(α′2) , (2.6)

(∂φ)2 − 1

2
∇2φ− 1

4 · 3!
H2 +

α′

32
R(−)µν

a
bR(−)

µν b
a = O(α′2) , (2.7)

d
(
e−2φ ?H

)
= O(α′2) . (2.8)

The zeroth-order supergravity theory can be recovered from these expressions by setting

α′ = 0. Moreover, any solution to the above equations of motion satisfying R(−)
a
b = 0

is also a solution of the zeroth-order supergravity theory. This is a simple observation

that plays a very important role; for the families of supersymmetric black holes that we

shall consider R(−)
a
b vanishes in the near-horizon limit, while it is non-zero in the exterior

region of the black hole. Therefore, the higher-curvature corrections do not alter the fields

at the horizon, although they introduce modifications in the external region interpolating

to asymptotic infinity.

3Some examples with non-trivial Yang-Mills fields were given in [22–24].
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Notice that the action includes a tower of corrections of all powers in α′ due to the

recursive definition of the Kalb-Ramond field strength. Actually, the term of quadratic

order in curvature at (2.1) was found imposing supersymmetry of the theory at first order

in α′ after including the Chern-Simons term [37]. Further corrections of higher power in

the curvature R(−) of the torsionful spin connection are required to recover supersymmetry

order by order. The quartic effective action of heterotic theory, constructed in [36], was also

obtained using this criterion. On the other hand, additional higher-curvature corrections

unrelated to the supersymmetrization of the Kalb-Ramond kinetic term also appear. Not

much is known about them, although it has been conjectured that it should be possible to

write them in terms of contractions of the curvature R(−) and the metric. We refer to [8]

for a description of this issue.

2.2 Four-charge black hole

A perturbative solution to first order in α′ of the equations (2.5)–(2.8) was found in [23, 24].

The fields are expressed in terms of four functions Z±,0 and V,

ds2 =
2

Z−
du

[
dt− 1

2
Z+du

]
−Z0dσ

2
(4) − d~y

2 ,

e−2φ = g−2
s

Z−
Z0

,

H = dZ−1
− ∧ du ∧ dt+ ?(4)dZ0 , (2.9)

where the Hodge dual in the last equation is associated to the four-dimensional metric

dσ2
(4), which is a Gibbons-Hawking (GH) space:

dσ2
(4) = V−1 (dz + χ)2 + Vd~x2

(3) , dV = ?(3)dχ . (2.10)

It is further assumed that Z±,0 and V only depend on the coordinates ~x(3) that parametrize

E3. Before specifying a precise form for these functions, these expressions describe a field

configuration preserving 4 supercharges whose compactification in the u coordinate yields

a static spacetime.4 A spherically symmetric (in ~x(3)) solution to the equations of motion

is given by

V = 1 +
qv
r
,

Z− = 1 +
q−
r
,

Z0 = 1 +
q0

r
− α′ [F (r; q0) + F (r; qv)] ,

Z+ = 1 +
q+

r
+
α′q+

2qvq0

r2 + r(q0 + q− + qv) + qvq0 + qvq− + q0q−
(r + qv)(r + q0)(r + q−)

, (2.11)

where

F (r; k) :=
(r + qv)(r + 2k) + k2

4qv(r + qv)(r + k)2
. (2.12)

4To describe the most general field configuration with these properties, dσ2
(4) is taken as a generic

hyperKähler space on which Z±,0 vary.
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Again, one can recover the solution to the zeroth-order supergravity theory simply by

setting α′ = 0, obtaining four harmonic functions. The corrections to the harmonic leading

terms are in all cases finite and their absolute value is monotonically decreasing. In the

near-horizon limit, r → 0, when the corrections take their largest absolute value, their

effective contribution is actually zero. The harmonic poles of the zeroth-order solution are

responsible for the existence of this well-known decoupling regime. Therefore, the near-

horizon solution is unaltered by the correction. Another way to understand this important

fact is to study the near-horizon solution in its own, which reads

ds2 =
2r

q−
du
[
dt− q+

2r
du
]
− q0qv

[
dr2

r2
+ dθ2 + sin2 θdϕ2 +

(
dz

qv
+ cos θdϕ

)2
]
− d~y2 ,

e−2φ = g−2
s

q−
q0
,

H =
1

q−
dr ∧ du ∧ dt+ q0 sin θdθ ∧ dz ∧ dϕ . (2.13)

The explicit computation of the curvature of the torsionful spin connection for the near-

horizon solution yields R(−)
a
b = 0. Then, as previously stated, (2.13) remains the same in

the truncation to the supergravity approximation.

The identification of the qi parameters in terms of localized, fundamental objects of

string theory has been performed in [24]. From the preceding discussion, one sees that

such relations can be obtained using the standard techniques on the near-horizon solution

of the simpler supergravity theory. The result is

q+ =
α′2g2

sn

2RzR2
u

, q− =
α′g2

sw

2Rz
, q0 =

α′N

2Rz
, qv =

WRz
2

. (2.14)

The system describes:

• a string wrapping the circle S1 parametrized by u ∈ (0, 2πRu) with winding number

w and momentum n,

• a stack of N solitonic 5-branes (NS5) wrapped on T4 × S1,

• a Kaluza-Klein monopole (KK) of charge W associated with the circle Ŝ1

parametrized by z ∈ (0, 2πRz).

The constituents have four types of charge associated. While w and N behave, respec-

tively, as electric and magnetic localized sources of Kalb-Ramond charge, n and W cor-

respond to momentum carried along the corresponding compact circles. Additionally, the

higher-curvature terms induce self-interactions that behave as delocalized charge sources.

For the system studied, the non-vanishing terms responsible for this effect occur at the

Bianchi identity (2.5) and the uu component of the Einstein equation (2.6), which produce

deviations of the functions Z0,+ from the leading harmonic term. They introduce solitonic

5-brane and string momentum charge densities distributed in the exterior of the black hole

– 6 –
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horizon. The charge contained inside a sphere of radius r∗ is Qi,r∗ ∼ r2∂rZi|r=r∗ . The

total, asymptotic charges are5

Q+ = n+
2n

NW
, Q− = w, Q0 = N − 2

W
, Qv = W. (2.15)

The computation of the ADM mass of the black hole yields

M =
1

Ru

(
n+

2n

NW

)
+
Ru
`2s
w +

Ru
g2
s`

2
s

(
N − 2

W

)
+
R2
zRu
g2
s`

4
s

W . (2.16)

Being supersymmetric and, hence, extremal, the mass of the black hole coincides with the

sum (up to moduli factors) of the four charges associated to the constituents. This computa-

tion reveals that the charge-to-mass ratio of these configurations is not modified by higher-

curvature corrections, a behaviour that has been argued to occur in non-supersymmetric

extremal black holes [38–40].

In first instance, additional higher-curvature corrections will behave as new delocalized

charge sources, modifying the explicit expressions of the functions in (2.11) and, presum-

ably, the asymptotic charges Qi and ADM mass M . However, it was shown in [25] that

the asymptotic solitonic 5-brane charge Q0 is protected under further corrections. In sec-

tion 3 we review this result and obtain exact relations for the rest of the charges in the α′

expansion.

2.3 Three-charge black hole

A simpler black hole solution can be described if the KK monopole is removed from the

previous configuration. The field structure in (2.9) is preserved, while the four-dimensional

hyperKähler manifold is simply R4,

dσ2
(4) = dρ2 + ρ2dΩ2

(3) . (2.17)

This particular case can also be described as a Gibbons-Hawking space with V = Rz/(2r),

introducing a new radial variable r = ρ2/(2Rz). Then, the near-horizon geometry is

identical to that of the four-charge system with W = 1. The complete solution reads

Z− = 1 +
q̃−
ρ2
,

Z0 = 1 +
q̃0

ρ2
− α′ ρ

2 + 2q̃0

(ρ2 + q̃0)2
,

Z+ = 1 +
q̃+

ρ2
+

2α′q̃+

q̃0

ρ2 + q̃0 + q̃−
(ρ2 + q̃0)(ρ2 + q̃−)

, (2.18)

where we introduced q̃i = 2Rzqi for convenience. The near-horizon solution is

ds2 =
2ρ2

q̃−
du

[
dt− q̃+

2ρ2
du

]
− q̃0

[
dρ2

ρ2
+

1

4

(
dθ2 + dψ2 + dϕ2 + 2 cos θdϕdψ

)]
− d~y2 ,

e−2φ = g−2
s

q̃−
q̃0
,

H =
2ρ

q̃−
dρ ∧ du ∧ dt+

q̃0

4
sin θdθ ∧ dψ ∧ dϕ , (2.19)

5We normalize the charges such that they are independent of the moduli.
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with ψ = 2z/Rz. The q̃i parameters are

q̃+ =
α′2g2

sn

R2
u

, q̃− = α′g2
sw , q̃0 = α′N , (2.20)

in agreement with (2.14). The total, asymptotic charges are

Q+ = n+
2n

N
, Q− = w, Q0 = N − 1 . (2.21)

Likewise, the mass of the solution is of the form of (2.16) after taking into consideration

the expressions for the three charges of the solution (2.21).

3 Exact entropy and charges in the α′ expansion

In this section we compute the Wald entropy of these black holes. As already mentioned,

the near-horizon solution is unaltered by the addition of quadratic terms in curvature and,

moreover, it is expected to be invariant under further higher-curvature corrections. More-

over, due to the presence of an AdS factor in the near-horizon geometry, the Wald entropy

remains unmodified beyond first order in α′ [31, 32]. Then, it is possible to compare this

result with α′-exact computations of the degeneracy obtained from microscopic counting.

3.1 Rewriting of the action

The presence of Chern-Simons terms in the Kalb-Ramond field strength H has been recog-

nized to hamper the direct application of Wald’s entropy formula to the action. The reason

is that, even if the theory is invariant under anomalous Lorentz gauge transformations, it

is difficult to express the functional dependence of H on the Riemann curvature tensor

in a manifestly covariant manner. For this reason, following [8, 20] among others, it is

convenient to rewrite the action in a classically equivalent manner in terms of the dual of

this field strength, whose Bianchi identity is not anomalous. Such transformation involves

the addition of total derivative terms which leave the entropy invariant, according to [41],

and can therefore be applied for this purpose.

In first place, we perform a (trivial) dimensional reduction of the action to six dimen-

sions by compactifying on T4 and truncating all the Kaluza-Klein modes. The solutions

we consider are of course consistent with this truncation. We obtain

S =
g2
s

16πG
(6)
N

∫
d6x
√
|g| e−2φ

{
R− 4(∂φ)2 +

1

2 · 3!
H2 − α′

8
R(−)µν

a
bR(−)

µν b
a + . . .

}
,

(3.1)

where G
(6)
N = G

(10)
N /Vol(T4). We now introduce the dual 3-form field strength H̃ = dB̃ as

H̃ ≡ e−2φ ? H, and define the equivalent Lagrangian

S̃ = S +
g2
s

16πG
(6)
N

∫ [
H̃ ∧H − α′

4
H̃ ∧ ΩL

(−)

]
, (3.2)
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in which B̃ is considered a fundamental field, while H is now an auxiliary field. The

equation of motion of B̃ yields

d

(
H − α′

4
ΩL

(−)

)
= 0 , (3.3)

whose general solution is of the form (2.3). On the other hand, the dual Bianchi identity

dH̃ = 0 is equivalent to (2.8). It is straightforward to check that the remaining equations

of motion obtained taking H as an auxiliary field are identical to those derived from the

original action (3.1).

In this form, the modified Lagrangian is manifestly covariant except for the explicit

presence of the Chern-Simons 3-form in the last term of (3.2). The next convenient step is

to decompose the Chern-Simons 3-form into a standard Chern-Simons 3-form constructed

from the Levi-Civita connection and an additional contribution,

ΩL
(−) = ΩL + A , (3.4)

where ΩL is the standard Lorentz Chern-Simons term, defined as in (2.4), but in terms of

the spin connection ωab, and

A =
1

2
d(ωab ∧Hb

a) +
1

4
Ha

b ∧DHb
a −Rab ∧Hb

a +
1

12
Ha

b ∧Hb
c ∧Hc

a , (3.5)

where Ha
b = H a

µ bdx
µ and D is the covariant derivative operator, whose action on Ha

b

is DHa
b = dHa

b + ωac ∧ Hc
b − ωcb ∧ Ha

c. Once plugged in the action, the first term

in the above expression becomes a total derivative, so it does not enter the equations of

motion or the Wald entropy. Once this term is eliminated, the contribution from A is

manifestly covariant.

Finally, the standard Lorentz Chern-Simons term can also be written in a manifestly

covariant form by exploiting the isometries of the spacetimes considered [42]. From (3.12)

one sees that, after compactifying on T4, the six-dimensional spacetime can be described

as the product of two three-dimensional spaces of the form

ds2
(3) = λ2

[
(2)ḡmndx

mdxn −
(
dy + Āmdx

m
)2]

, m, n = 0, 1 , (3.6)

with (x0, x1, y) corresponding to the coordinates (t, r, u) and (θ, ϕ, z), respectively. The

dual 3-form H̃ also factorizes in these two spaces. Hence, the remaining term in the action

splits in two portions

H̃ ∧ ΩL = H̃A ∧ ΩL
B − ΩL

A ∧ H̃B , (3.7)

where the A,B indices refer to the two different three-dimensional spaces. From this point,

we continue the rewriting of the action distinguishing between the two families of solutions

that we consider. For the four-charge family, the periodic coordinates u and z parametrize

paths of finite length. The Lorentz Chern-Simons 3-form of a space of the form (3.6) can
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locally be written as [43]6

ΩL =
ε̄mn

2

[
(2)R̄F̄mn + F̄mpF̄

pqF̄qn − ∂m((2)ω̄n
abF̄ab)

]
dx0 ∧ dx1 ∧ dy , (3.8)

where objects with a bar are associated to the metric (2)ḡmndx
mdxn and F̄ = dĀ.

Once again we observe that, after dropping the last term which contributes as a total

derivative, we are left with a manifestly covariant expression to which we can apply Wald’s

formula. When doing so, the conformal factor in front of the two-dimensional metric must

be taken into account. In particular, the relation between the spacetime and auxiliary

metrics, (2)gmn = (2)ḡmnλ
2, implies

(2)R̄ = (2)Rλ2 − 2∇2 log λ . (3.9)

The treatment of the three-charge family of solutions is a bit simpler. In this case, the three-

dimensional space parametrized by (θ, ϕ, z) is a 3-sphere, with the coordinate z parametriz-

ing paths of infinite length at asymptotic spatial infinity. The Lorentz Chern-Simons form

of a 3-sphere identically vanishes when evaluated from its definition. Hence, the first term

in expression (3.7) is just zero in the three-charge family of solutions. Notice that the

decomposition (3.6) becomes singular asymptotically, and it cannot be used to rewrite this

term of the action.

Therefore, we see that topological properties of the asymptotic space make a difference

in the explicit expression of the manifestly covariant action. This fact plays a very impor-

tant role in the study of these black holes from the near-horizon solution, as described in

section 4.

3.2 Wald entropy

The Wald entropy formula for a (D + 1)-dimensional theory is

S = −2π

∫
Σ
dD−1x

√
|h|Eabcdεabεcd , (3.10)

where Σ is a cross-section of the horizon, h is the determinant of the metric induced on

Σ, εab is the binormal to Σ with normalization εabε
ab = −2 and Eabcd is the equation of

motion one would obtain for the Riemann tensor Rabcd treating it as an independent field

of the theory,

Eabcd =
g2
s

16πG
(D+1)
N

δL
δRabcd

, (3.11)

where L is the Lagrangian of the theory.

When first proposed, Wald’s entropy formula was meant to be evaluated at the bi-

furcation surface of the event horizon [44], so it was only defined for non-extremal black

holes. In subsequent work [45], it was shown that the expression (3.10) can still be used

6Since there are two different three-dimensional spaces, there are two copies of each of the elements λ,
(2)ḡmn, Ām and so on. In order to simplify notation we have avoided the introduction of yet another index

labeling these copies.
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for any cross-section of the horizon Σ, provided the surface gravity is not zero. One way to

understand the origin of this condition is to notice that, in the derivation of the formula,

the null Killing vector that generates the horizon ξµ is normalized to have unit surface

gravity. This Killing vector does not appear explicitly in (3.10), whose position is taken

by the binormal upon the use of EabcdR εabεcd = EabcdR ∇aξb∇cξd. When expressed in the form

of (3.10), Wald’s entropy formula can also be evaluated for extremal black holes.

We can apply this formula to the action of the heterotic theory directly in six dimen-

sions, after performing a trivial compactification on T4. It is convenient to rewrite the

metric as

ds2
(6) = eφ−φ∞

[
(k/k∞)−2/3ds2

(5) − (k/k∞)2

(
du− dt

Z+

)2
]
, (3.12)

where the lower dimensional line elements, the dilaton φ and the Kaluza-Klein scalars k

and ` are

ds2
(5) = (`/`∞)−1 ds2

(4) − (`/`∞)2 (dz + χ)2 ,

ds2
(4) = e2Udt2 − e−2U

(
dr2 + r2dΩ2

(2)

)
,

e2φ = e2φ∞ Z0

Z−
, k = k∞

Z1/2
+

Z1/4
0 Z

1/4
−

, ` = `∞
Z1/6

0 Z1/6
+ Z1/6

−
V1/2

, (3.13)

with eφ∞ = gs and

e−2U =
√
Z0Z+Z−V . (3.14)

For a four-charge configuration, ds2
(4) is the four-dimensional metric in the Einstein

frame, while φ, k and ` provide a parametrization of the three scalars, which are real in

the solution considered. The volume form entering Wald’s formula is

d4x
√
|h| = dθdϕdzdu

√
Z0Z+Z−Vr2 sin θe2(φ−φ∞) . (3.15)

In order to compute the integrand it is convenient to use flat indices. We define the vielbein

e0 = e
φ−φ∞

2

(
k

k∞

)− 1
3
(
`

`∞

)−1/2

eUdt , e1 = e
φ−φ∞

2

(
k

k∞

)− 1
3
(
`

`∞

)−1/2

e−Udr ,

e2 = e
φ−φ∞

2

(
k

k∞

)− 1
3
(
`

`∞

)−1/2

e−Urdθ , e3 = e
φ−φ∞

2

(
k

k∞

)− 1
3
(
`

`∞

)−1/2

e−Ur sin θdϕ ,

e4 = e
φ−φ∞

2

(
k

k∞

)− 1
3 `

`∞
(dz + χ) , e5 = e

φ−φ∞
2

k

k∞

(
du− dt

Z+

)
. (3.16)

In this frame, the non-vanishing components of the binormal are ε01 = −ε10 = 1.

The variation of the Lagrangian with respect to the Riemann tensor contains three

non-vanishing contributions. The first one comes from the Einstein-Hilbert term in (3.1),

which amounts to

Eabcd0 =
e−2(φ−φ∞)

16πG
(6)
N

δR

δRabcd
=
e−2(φ−φ∞)

16πG
(6)
N

ηacηbd , (3.17)
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where ηab is the inverse flat metric. This term is responsible for the Bekenstein-Hawking

entropy S0 = AΣ/4G
(6)
N , which for large black holes gives the leading contribution to the

entropy. The two additional contributions arise from the variation of the Chern-Simons

3-form in the last term of (3.2), each one coming from one of the two factors in the

decomposition (3.4). Notice that the last term in (3.1) gives no contribution to the entropy,

since it is quadratic in the curvature of the torsionful spin connection, which vanishes at

the horizon. Using the rewriting performed in the previous section, in first place we get

Eabcd1 =
e2φ∞

16πG
(6)
N

δ

δRabcd

(
− α′

(3!)24
εefghjkH̃efgAhjk

)
=
e−2(φ−φ∞)

16πG
(6)
N

α′

8
HabfHf

cd . (3.18)

To obtain the last correction to the entropy, we notice that when Eabcd gets contracted

with the binormal, the only relevant values of the flat indices a, . . . , d are 0, 1. Therefore,

the remaining non-vanishing contribution to the entropy comes from the second term in

the decomposition (3.7), and amounts to

Eabcd2 =
e2φ∞

16πG
(6)
N

δ

δRabcd

(
− α′εµνραβγ

(3!)24
√
|g|
H̃µνρΩ

L
αβγ

)
=
e−2(φ−φ∞)

16πG
(6)
N

α′

4
Htruηacηbdλ2F̃tr ,

(3.19)

where t, r, u are curved indices, λ = e
φ−φ∞

2
k
k∞

=
√
Z+

Z− and Ãt = −1/Z+.

Putting everything together, Wald’s entropy is

S =
1

4G
(6)
N

∫
dθdϕdzdu

√
q0q+q−q sin θ

[
1 +

α′

4

(
−H01fHf

01 +Htruλ2F̃tr

)]
. (3.20)

The relevant components of the Kalb-Ramond field strength, in flat and curved indices, are

H015 = −(Z0V)−1/2∂r logZ− , Htru = −(Z0V)−1∂rZ− . (3.21)

Substituting these values in the expression and integrating,

S =
π

G
(4)
N

√
q0q+q−q

(
1 +

α′

2q0q

)
, (3.22)

with the 4-dimensional Newton constant given by

G
(4)
N =

G
(10)
N

(2πRz)(2πRu)(2π`s)4
=

8π6α′4g2
s

(2πRz)(2πRu)(2π`s)4
. (3.23)

Using the relation between the charge parameters qi and the number of fundamental objects

in the system, we finally get

S = 2π
√
nwNW

(
1 +

2

NW

)
. (3.24)

The entropy of the three-charge system is obtained by setting W = 1 in this expression

since, as we previously noted, the near-horizon solution is identical to that of a four-charge

black hole with unit Kaluza-Klein monopole charge.
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3.3 Corrected charges

We have obtained an expression for the Wald entropy of these families of black holes in

terms of the number of fundamental objects of the solution. The result has a clear in-

terpretation: the Chern-Simons term, which is needed for anomaly cancellation, is the

sole responsible of the increase in the entropy with respect to the Bekenstein-Hawking

term. The near-horizon background remains unperturbed under the curvature corrections

of quadratic order, and thus the area of the event horizon is unchanged. This is a conse-

quence of the supersymmetric structure of the theory (and the solutions), which restricts

the functional form of the corrections to objects constructed from the curvature of the

torsionful spin connection (which vanishes for this background) [37].

The Wald entropy can be compared with the microscopic degeneracy of the string

theory system it represents, whose value is known to all orders in the α′ expansion. For

the four-charge solution it is [3]

S = 2π
√
Q−Q+ (Q0Qv + 4) . (3.25)

Here Qi are the charges corresponding to winding (Q−), momentum (Q+), solitonic 5-brane

(Q0) and Kaluza-Klein monopole (Qv). The presumed quantum gravitational consistency

of string theory imposes the equality of both the macroscopic and microscopic entropies.

This can be used to derive exact relations between the charges and the number of funda-

mental objects to all orders in α′.

There are, of course, infinitely many alternative expressions for the charge shifts that

respect the equality between the macroscopic and microscopic entropies. However, there

are a series of arguments that enable us to propose a set of definite relations. We start by

recalling the already known exactness of

Q0 = N − 2

W
, Qv = W. (3.26)

The non-renormalization of the KK monopole charge, Qv = W , follows from the super-

symmetry of the solution; any correction to the V function would make the dσ2 metric no

longer hyperKähler. On the other hand, the exact NS5 charge screening, Q0 = N− 2
W , was

first described in [25]. It can be obtained by integrating the Bianchi identity, whose form is

dictated by the anomaly cancellation mechanism. The shift is produced by a negative NS5

charge density carried by a gravitational SO(4) instanton with instanton number 2/W ,

which is delocalized over the full space. Half of the instanton charge is sourced by the KK

monopole, while the other half by the stack of NS5 branes itself.

Taking this information into account, the microscopic entropy is exactly equal to the

Wald entropy if the shifts in the charges induced by the higher-curvature corrections satisfy

Q+Q− = nw

(
1 +

2

NW

)
. (3.27)

Interestingly, this already occurs at first order in α′, see (2.15). Then, either the additional

higher-curvature corrections do not introduce further charge sources, or they do it in a
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particular way that preserves the product. Considering that the corrections become less

and less relevant order by order and that the F1 charge remains unaltered by the first

correction, simplicity suggests that the expressions

Q+ = n

(
1 +

2

NW

)
, Q− = w , (3.28)

are exact to all orders in α′. While from our analysis we can only assert the validity in

that respect of (3.27), we would find natural that the individual relations (3.28) hold. It

might be possible to check this guess using dualities.

With respect to the three-charge system, the microscopic entropy is [8, 46, 47]

S = 2π
√
Q−Q+ (Q0 + 3) . (3.29)

The application of the previous arguments gives

Q0 = N − 1, Q+Q− = nw

(
1 +

2

N

)
, (3.30)

which again is satisfied already at first order in α′.

4 Lower dimensional, near-horizon effective approaches

The study of heterotic black holes and their higher-curvature corrections has been mainly

approached in the literature using two different strategies. In the first one, developed

around the early 00’s, the target is to find a solution of the form AdS ×X, with X some

compact manifold, characterized by a given set of charges. It is then typically assumed

that such solution describes the near-horizon limit of an extremal black hole with the same

charges, and its properties are subsequently studied.7 Several methods have been developed

to achieve this purpose, which can be applied in the context of different effective theories

of interest. An intriguing result obtained from this line of investigation is that, in some

cases, it is possible to reproduce the microscopic entropy by including only a subset of

the curvature corrections to the action. The Gauss-Bonnet term (GB), which is known to

be one of the corrections to the lower dimensional effective theory [49], probably provides

the most interesting example; the value of the Wald entropy obtained from its inclusion

correctly reproduces the microscopic degeneracy of the four-charge system, while it fails to

do so for the simpler three-charge system.

The second strategy, which has been recently developed, is the one we followed in

previous sections. Starting from a complete black hole solution of the theory of supergrav-

ity, the corrections induced by higher-curvature terms are computed using the standard

perturbative approach. While conceptually simple, the problem is technically involved and

other strategies were usually preferred. On the other hand, the benefit of this effort is that

information about the solution beyond the near-horizon limit becomes available.

At present time there are results that have been obtained using both strategies. It is,

therefore, necessary to compare them and see what can be learned from the analysis. This

is the aim of this section.
7In this period some early work was also performed on the study of higher-curvature corrections to global

solutions, see for instance [48].
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4.1 Compactification of the supergravity theory

From an effective four-dimensional perspective, the fields relevant for the description of

such system are related to the heterotic fields as follows8

gµν = ĝµν −
ĝuµĝuν
ĝuu

− ĝzµĝzν
ĝzz

,

s = e−2φ
√
ĝuuĝzz , t =

√
|ĝuu| , u =

√
|ĝzz| ,

A(1)
µ = − ĝuµ

2ĝuu
, A(2)

µ = − ĝzµ
2ĝzz

, A(3)
µ =

B̃uµ
2

, A(4)
µ =

B̃zµ
2

. (4.1)

Here (µ, ν) ∈ (t, r, θ, ϕ), and we introduced hats to distinguish the higher-dimensional

metric. It is convenient to define A(3,4) in terms of the dual of the Kalb-Ramond 2-form,

as in this manner their field strength is closed, F(3,4) = dA(3,4). Using this identification,

the zeroth-order supergravity theory compactified to four dimensions is

S =
g2
s

16πG
(4)
N

∫
d4x
√
|g| s

{
R− aij∂µφi∂µφj − t2F 2

(1) − u
2F 2

(2) −
u2

s2
F 2

(3) −
t2

s2
F 2

(4)

}
,

(4.2)

where we denote the scalars collectively as φi, with aij some functions of the scalars9 and

F 2
(a) = F(a)µνF

µν
(a).

We are interested in finding solutions to the equations of motion derived from (4.2)

describing the near-horizon region of an extremal black hole. The geometry of these is

known to be of the form AdS2 × S2. The general field configuration consistent with this

isometry and the set of four independent charges we consider in this article is

ds2 = v1

(
r2dt2 − dr2

r2

)
− v2dΩ2

(2) ,

s =us , t =ut , u =uu ,

F
(1)
rt = e1 , F

(2)
θϕ =P2 sin θ , F

(3)
rt = e3 , F

(4)
θϕ =P4 sin θ . (4.3)

For the three-charge system we can take the same configuration for the fields, but it is

necessary to fix P2 = Rz
4 . This is equivalent to the statement that the near-horizon geom-

etry of the three-charge system is identical to that of the four-charge system with unit KK

monopole. The equations of motion in this case imply uu =
2
√
v2

Rz
.10 In this manner, there

are only three independent vectors and two independent scalars, and the cross-section of

the horizon contains a 3-sphere when embedded in the heterotic theory.

The well-known attractor mechanism establishes that the parameters of the solution

are fully determined in terms of the charges carried by the vectors. The magnetic and

8In order to make the comparison with previous literature transparent, the dimensional reduction of this

section uses a different parametrization of the scalars than that of section 3.2.
9In the family of near-horizon solutions that we consider the scalars are constant, so the σ-model will

play no role.
10This substitution should not be made in the function f defined in (4.5), as this would yield incorrect

equations of motion.
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electric charges are defined in the standard manner,11

Pa =
1

4π

∫
S2

dθdϕF
(a)
θϕ , Qa =

1

16π

∫
S2

dθdϕ
δ

δF
(a)
rt

(
√
|g|L) . (4.4)

These integrals can be defined not only for the near-horizon geometry, but for the full

black hole solution. As consequence of the Bianchi identities ∂rF
(a)
θϕ = 0 and the Maxwell

equations ∂r

[
δ

δF
(a)
rt

(
√
|g|L)

]
= 0 of the vectors, the charges are independent of the radius

of the sphere on which they are computed. This implies that, from the four-dimensional

effective perspective, the asymptotic and near-horizon charges of the solution coincide, even

after the inclusion of higher-curvature corrections. As this behaviour is different from the

one displayed by the ten-dimensional fields, one should be very cautious when interpreting

lower-dimensional fields in the string theory language. We will come back to this point

later. For the moment, since we do not have higher-derivative terms yet, this distinction

is unnecessary.

The relations between the parameters of the near-horizon background and the charges

can be determined as follows [50]. One first defines the function

f(v1, v2, ui, ea, Pa) =

∫
S2

dθdϕ
√
|g|L(v1, v2, ui, ea, Pa) , (4.5)

where the ansatz (4.3) is used to evaluate the right hand side. From (4.4) it follows

1

16π

∂f

∂ea
= Qa , (4.6)

which can be used to replace ea by Qa if wanted. The solution is obtained by extremizing

the function f ,
∂f

∂v1
= 0 ,

∂f

∂v2
= 0 ,

∂f

∂ui
= 0 . (4.7)

The black hole entropy is proportional to the Legendre transformation of f evaluated on

the extremum,

S =
g2
s

8G
(4)
N

(16πeaQa − f) |ext. . (4.8)

4.2 Near-horizon solutions

It is straightforward to apply this formalism to the compactified zeroth-order heterotic

theory (4.2). We obtain

ds2 = 4P2Q3

(
r2dt2 − dr2

r2
− dΩ2

(2)

)
,

s =

√
Q1P4

Q3P2
, t =

√
Q1

P4
, u =

√
Q3

P2
,

F
(1)
rt =

√
P2P4Q3

Q1
, F

(2)
θϕ =P2 sin θ , F

(3)
rt =

√
P2P4Q1

Q3
, F

(4)
θϕ =P4 sin θ . (4.9)

11The normalization constants in the definition of charges have been chosen for later convenience.
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We have chosen to scale the time coordinate such that v1 = v2 to allow a straightforward

comparison with previous results in the literature. Using (4.1) it is possible to write the

solution for the heterotic fields,

dŝ2 = 4P2Q3

(
r2dt2 − dr2

r2
− dΩ2

(2)

)
− Q1

P4

(
du− 2

√
P2P4Q3

Q1
rdt

)2

−Q3

P2
(dz + 2P2 cos θdϕ)2 ,

e−2φ =
P4

Q3
,

H = 2

√
P2Q1Q3

P4
dr ∧ du ∧ dt+ 2Q3 sin θdθ ∧ dz ∧ dϕ ,

B̃ = 2

√
P2P4Q1

Q3
rdu ∧ dt− 2P4 cos θdz ∧ dϕ . (4.10)

The expression coincides with the near-horizon limit of our original solutions, after rescaling

the time coordinate t → t
√
q0q+q−qv in (2.13) and dropping the irrelevant d~y2 term from

the metric, with the identifications

Q1 =
q+

2g2
s

, P2 =
qv
2
, Q3 =

q0

2
, P4 =

q−
2g2
s

. (4.11)

It is important to remark that these identifications hold in the zeroth-order solution, but

are modified by the α′-corrections. As we will shortly see, the variables on the left hand

side correspond to the asymptotic charges while those on the right hand side represent the

number of fundamental string theory objects. It is useful to write the four-dimensional

solution in terms of the latter using (2.14),

ds2 =
α′NW

4

(
r2dt2 − dr2

r2
− dΩ2

(2)

)
,

s =
α′

RzRu

√
nw

NW
, t =

√
α′

Ru

√
n

w
, u =

√
α′

Rz

√
N

W
, (4.12)

F
(1)
rt =

Ru
4

√
wNW

n
, F

(2)
θϕ =

Rz
4
W sin θ , F

(3)
rt =

α′

4Ru

√
nwW

N
, F

(4)
θϕ =

α′

4Rz
w sin θ .

Likewise, the black hole entropy computed from (4.8) gives

S0 = 2π
√
nwNW , (4.13)

which agrees with the leading order result we obtained in the previous section.

We have obtained these expressions from the zeroth-order supergravity theory. We

recall that this field configuration describes both the three- and four-charge systems, with

the former being recovered simply by setting W = 1 or P2 = Rz/4. As we have already

stated, the higher-curvature corrections vanish for this background and leave (4.12) invari-

ant. This means that after adding all relevant higher-curvature terms to the action (4.2)

arising from the compactification of (2.1), the form of the function f will change, but it
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will have an extremum at the same point in this parameter space. On the other hand, if

only a subset of the corrections are implemented the corresponding solution, if exists, will

typically take a different expression.

Taking into account this information, it is simple to apply the entropy function for-

malism to the action that includes all relevant four-derivative terms. In order to do so,

it is first necessary to write the action in a manifestly covariant form, see [3], as we did

in section 3.1. After few lines of computation, one can check that (4.12) still gives an

extremum for the corrected function f . On the other hand, the charges carried by the

four-dimensional effective fields as defined in (4.4) are now for the four-charge system (for

simplicity we set Ru = Rz =
√
α′ = 4)

Q1 = n

(
1 +

2

NW

)
, P2 = W , Q3 = N − 2

W
, P4 = w , (4.14)

while for the three-charge system these are

Q1 = n

(
1 +

2

N

)
, Q3 = N − 1 , P4 = w . (4.15)

Hence, we see that the lower-dimensional vector fields carry the asymptotic charges of our

original solution of the heterotic theory. It is certainly remarkable how the shift in the

charges, which is mediated by the higher-curvature corrections, distinguishes between the

four- and three-charge systems, even though their near-horizon background is identical.

This is caused by the explicit difference in the expression of the action in both systems

when written in a manifestly covariant manner, as described in section 3.1. The asymptotic

structure of the systems is responsible for the effect and, therefore, it is determinant for

the analysis of the near-horizon solution.

The Wald entropy is

S = 2π
√
nwNW

(
1 +

2

NW

)
(4.16)

for the the four-charge system, while the expression for the three-charge system is recov-

ered simply setting W = 1. Naturally, the result coincides with (3.24), which provides a

consistency check between the two approaches.

In most of the preceding literature, the expressions for the lower-dimensional fields

and the Wald entropy are customarily given in terms of the charges carried by the vectors.

After a few lines of algebraic computation, we may write for the four-charge α′-corrected
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solution

ds2 = 4(P2Q3 + 2)

(
r2dt2 − dr2

r2
− dΩ2

(2)

)
,

s =

√
P4Q1

P2Q3 + 4
, t =

√
Q1(P2Q3 + 2)

P4(P2Q3 + 4)
, u =

√
Q3

P2

(
1 +

2

P2Q3

)
,

F
(1)
rt =

√
P4(P2Q3 + 4)

Q1
, F

(2)
θϕ =P2 sin θ , (4.17)

F
(3)
rt =P2

√
P4Q1

P2Q3 + 4
, F

(4)
θϕ =P4 sin θ ,

S = 2π
√
P4Q1 (P2Q3 + 4) ,

while for the three-charge system

ds2 = 4(Q3 + 1)

(
r2dt2 − dr2

r2
− dΩ2

(2)

)
,

s =

√
P4Q1

Q3 + 3
, t =

√
Q1(Q3 + 1)

P4(Q3 + 3)
, u =

√
Q3 + 1 , (4.18)

F
(1)
rt =

√
P4(Q3 + 3)

Q1
, F

(2)
θϕ = sin θ , F

(3)
rt =

√
P4Q1

Q3 + 3
, F

(4)
θϕ =P4 sin θ ,

S = 2π
√
P4Q1 (Q3 + 3) .

We find perfect agreement between these expressions and the results of [8, 34], which

consider the same action as we do. As far as they can be compared, these solutions are

identical to those obtained from four-dimensional N = 2 supersymmetric theories with

corrections of quadratic order in curvature in terms of the Weyl tensor [5, 14, 17–19, 51].

4.3 The Gauss-Bonnet correction

A particular higher-derivative correction to the effective tree level heterotic supergravity

theory in four dimensions can be written in terms of the Gauss-Bonnet (GB) density [49],

LGB = 2s
(
RµνρσR

µνρσ − 4RµνR
µν +R2

)
. (4.19)

Even though such term only represents a subset of the relevant corrections at the four-

derivative level, it has been noted in the literature that its inclusion leads to the correct

value of the Wald entropy in some (but not all) cases. Particularly puzzling is the fact

that it seems to give the right answer for the four-charge system, while it fails for the

three-charge system. We shall now reanalyze the problem here and find the origin of this

behaviour.
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Let us begin with the four-charge system. Using the entropy function formalism, it is

possible to obtain the near-horizon solution to the GB modified theory,

ds2 = 4(P2Q3 + 2)

(
r2dt2 − dr2

r2
− dΩ2

(2)

)
,

s =

√
P4Q1

P2Q3 + 4
, t =

√
Q1

P4
, u =

√
Q3

P2
, (4.20)

F
(1)
rt =

√
P4(P2Q3 + 4)

Q1
, F

(2)
θϕ =P2 sin θ , F

(3)
rt =P2

√
P4Q1

P2Q3 + 4
, F

(4)
θϕ =P4 sin θ ,

S = 2π
√
P4Q1 (P2Q3 + 4) .

This solution was first derived in [52]. The action complemented with (4.19) is no longer

supersymmetric. It corresponds to an inconsistent truncation of the bosonic sector of the

heterotic theory presented in section 2.1. Hence, one should be cautious when interpret-

ing (4.20) in string theory language. Having this in mind, it seems reasonable to identify

the charges of both schemes. Direct comparison with (4.17) reveals that the GB term

suffices to capture the corrections to the metric, dilaton, vectors and Wald entropy when

written in terms of the charges, while it fails with the scalars t and u. Using (4.14), which

in this section can be interpreted as a redefinition of the parameters describing the fields,

we get

ds2 = 4NW

(
r2dt2 − dr2

r2
− dΩ2

(2)

)
,

s =

√
nw

NW
, t =

√
n

w

(
1 +

2

NW

)
, u =

√
1

W

(
N − 2

W

)
, (4.21)

F
(1)
rt =

√
wNW

n
, F

(2)
θϕ =W sin θ , F

(3)
rt =

√
nwW

N
, F

(4)
θϕ =w sin θ ,

S = 2π
√
nwNW

(
1 +

2

NW

)
,

which reproduces the results derived from the heterotic theory, except for the expressions

of the scalars t and u. It is useful to write the solution in terms of these variables, as it

facilitates making contact with the zeroth-order solution (4.12) (we still set Ru = Rz =√
α′ = 4 for simplicity here).

We now turn our attention to the three-charge system. In preceding sections, we

described that the corresponding near-horizon solution is obtained setting W = 1 in the

expressions for the fields and using (4.15) for the shift in the charges. In order to obtain

the correct expression for the shift, it was crucial that the higher-curvature corrections

to the action are different from those of the four-charge system, as a consequence of the

asymptotic structure of the solutions. From this, it is obvious that the Gauss-Bonnet term

will not be able to reproduce correctly the properties of the three-charge system. The GB

correction has the same impact on the three- and four-charge systems. This means that

it gives the right value for the Wald entropy in both cases when expressed in terms of the
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number of fundamental objects, but it is unable to produce the two different shifts for the

charges. Since it gives the shift compatible with the four-charge system, when expressed

in terms of the charges the Wald entropy only matches in this case. Therefore, we see that

the relevant aspect to understand the puzzling behaviour of the Gauss-Bonnet correction

relies on its (in)ability to reproduce the right shift in the charges.

In this sense, the GB term is of course not unique nor special. Examples of alter-

native corrections that produce the exact same effect in the field configuration and its

properties are

∆L = 2s (RµνρσR
µνρσ − 4RµνR

µν) , ∆L = −4sRµνR
µν , (4.22)

which correspond to an even lower subset of the corrections than those provided by the

GB density. The reason is that the near-horizon background is very symmetric, so the

non-vanishing components of the Riemann tensor are proportional to the metric. In flat

indices and for a metric of the form (4.3) with v1 = v2,

Rabcd =
1

v1
{−2ηa[cηd]b, 2ηa[cηd]b} , (4.23)

where the two terms correspond to the AdS2 and S2 factors. Hence, any scalar constructed

from contractions of two Riemann tensors evaluated in the near-horizon background equals

h/v2
1, for some number h. Once multiplied by

√
|g|, such correction is topological, in the

sense that it is independent of the metric.

5 Discussion

The fact that an isolated KK monopole of unit charge (i.e. W = 1) carries −1 unit of

NS5-brane charge in heterotic theory has long been known [4]. As originally argued, the

gravitational instanton number acts as a negative source of magnetic charge for the Kalb-

Ramond field strength. This played a crucial role in testing S-duality of heterotic theory

compactified on a torus. Likewise, it is understood that for a collection of unit charged

separated KK monopoles, each of them contributes −1 unit to the NS5 charge [53]. Again,

the value is given by the negative gravitational instanton number. A single KK monopole

of charge W , which is the configuration of interest in four-charge black holes, has grav-

itational instanton number12 1/W and hence contributes negatively to the NS5 charge

by this amount. The fractional value is a direct consequence of the normalization of the

Chern-Simons term entering the field strength. In all the situations mentioned, the shift is

obtained from
1

16π2

∫
R(−)

a
b ∧R(−)

b
a , (5.1)

which corresponds to the integral of the right hand side of the Bianchi identity.

Moreover, the presence of torsion in the spin connection has consequences in this

respect. As described in [23], an additional gravitational instanton is sourced by the stack

of NS5 branes. This implies that the total shift in the NS5 charge is −2/W (or simply

12Fractional instanton numbers are relatively common, see for example [54, 55].
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−1 in the absence of KK monopole). Using this information and the computation of

Wald entropy, we have obtained an exact relation for the product of the total winding and

momentum charges. The analysis suggests that the introduction of the Chern-Simons term

and its supersymmetrization is the sole responsible of the shifts, which would imply that

the relations (2.15) and (2.21) at first order in α′ are actually exact.

It is somewhat surprising that, except for the shift induced by the unit charge KK

monopole, such effects had remained unnoticed until quite recently, since the four-charge

black hole has been largely considered in the literature. The reason seems to be that the

microscopic counting is usually done in the dual Type II description, while macroscopi-

cally the near-horizon approach in lower dimensions works directly in terms of the charges,

as described in section 4. It should be noticed, however, that the distinction between

charges and fundamental objects is crucial in the characterization of a string theory sys-

tem. The interpretation of lower-dimensional effective fields in terms of string theory is,

therefore, rather subtle. A significant example of this is found for the black holes with

Q0 = 0 and NW 6= 0, [25], which were thought to provide a regularization of the singular

horizon of small black holes (that do not contain NS5 nor KK) via higher-curvature cor-

rections [56–58]. As described in [25], this interpretation was based on a misidentification

of the fundamental stringy objects of the solution.

In order to compute the Wald entropy, we have rewritten the action in terms of the

dual of the Kalb-Ramond form, which allows to eliminate the redundancy problem in

the functional dependence of H on the Riemann tensor. In view of the simplicity of the

result, it seems very likely that Wald’s formula can also be successfully applied to the

action written in terms of H, as in (2.1). This was attempted in [22, 24], obtaining a

correction to the Bekenstein-Hawking term that accounts for half of the total value we

obtained in (3.24). In these articles, the correction was interpreted as the first term of an

infinite series expansion of
√

1 + 2
NW for large NW , following what had been done in [20]

after the shift in the NS5 charge is considered. The results presented here show that such

interpretation is not correct, and that it should be possible to obtain the exact result for

the entropy using directly the original form of the action (2.1). Yet another alternative

approach to obtain Wald entropy for the heterotic theory has been recently proposed [59].

It would be interesting to apply this formalism to these solutions.

The extension of the analysis presented here to more general dyonic black hole solutions

is an interesting line of future research. The tools developed in [60] will certainly be useful

for that purpose.
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