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1 Introduction

Just as the predictive computability of any quantum field theory relies on the renormaliza-

tion of divergences and coupling constants, our ability to compute meaningful quantities

using AdS/CFT relies on holographic renormalization. The procedure for the regulariza-

tion and renormalization of ultraviolet (UV), or short distance, divergences in quantum

field theory (QFT) lies at heart of any QFT textbook. The AdS/CFT correspondence is

a strong/weak coupling duality, so it maps these UV divergences of the boundary field

theory into infrared (IR), or infinite volume divergences of the bulk physics. The problem

of the regularization and renormalization of bulk divergences was solved by methods of

holographic renormalization, [1–3].

Holographic renormalization can be applied in any bulk spacetime that is asymp-

totically locally AdS. Thus, using asymptotically AdS domain walls, one can study the

renormalization group (RG) flow away from a deformed CFT, where the energy scale of

the boundary field theory is related to the radial position in the bulk geometry. Since the

boundary value of a bulk scalar field corresponds to the value of the coupling, or source,
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in the UV CFT, it was argued in [4] that the value of the field at a given radial position

should correspond to the value of the coupling at this scale. Furthermore, in [5, 6] the

concept of a holographic beta function was introduced to quantify the running coupling

with respect to the radial rescalings. Using the Hamilton-Jacobi formalism to obtain first

order equations of motion, [7] identified the equations governing radial bulk evolution with

the QFT RG equation.

One can try to identify how field theoretic information about the running coupling

corresponds to the localized behavior of bulk fields. This is a natural question in the

context of Wilsonian RG flow, where changes in the effective action are measured as UV

degrees of freedom are integrated out. The initial proposal [8] and later refinements [9, 10]

for a holographic construction of Wilsonian field theory defined an effective theory in which

UV degrees of freedom are integrated out by performing the bulk path integral in the region

exterior to some radial slice. The value of the Wilsonian coupling at the inverse-energy

scale, L, defined in this way does not necessarily obey bulk equations of motion and so

cannot be identified with the value of the bulk field at a radial position L.

Additionally, in the Wilsonian approach, the value of the bulk field at L is generally

a complicated functional of both the leading near-boundary field behavior, given by the

‘source coefficient,’ and the sub-leading ‘vev coefficient’ which corresponds to the vacuum

expectation value of the dual boundary operator. Hence, the Wilsonian coupling becomes

a non-local function of the CFT source, something rarely observed in QFT. In [11] it

was shown that there exists a special ‘maximum subtraction’ scheme, where a running

coupling, ϕL, obeys bulk equations of motion with L identified as a radial variable, but

such a solution is not necessarily regular in the IR.

In this paper we resolve these issues — that the running coupling should be local and

satisfy bulk equations of motion — by developing a renormalization procedure that cor-

responds to a known, physical, QFT renormalization scheme. This is an extension of the

scheme proposed in [12], where the bulk renormalization procedure corresponds to dimen-

sional regularization in the QFT. The special renormalization scheme found in [11] can

be shown to be related to the dimensional regularization scheme developed here. We will

construct a renormalized coupling constant, ϕL, at a given scale that satisfies the equations

of motion where L is identified with the radial variable. This allows the interpretation that

the running coupling constant, with an on-shell renormalization condition, can be identi-

fied with a bulk source field, ΨL(z), via κΨL(L) = Ld−∆ϕL, where κ is the gravitational

coupling.

This provides a novel understanding of the renormalized coupling constant from the

point of view of bulk physics. If Φ denotes the ‘usual’ bulk field dual to a given conformal

primary operator O and satisfying Dirichlet boundary conditions, then ΨL will obey Neu-

mann conditions, with a vanishing vev coefficient at the boundary. We can think about

ΨL as a bulk field dual to the boundary source, ϕL, in the sense that Φ is dual to O.

Furthermore, we will find that the beta function associated to the dimensionless cou-

pling, gL = Ld−∆ϕL, is proportional to the derivative of the prepotential, W ′, as opposed

to the usual holographic beta function W ′/W [5–7]. This occurs because the beta function

is scheme-dependent, and while in previous work the boundary renormalization scheme was
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unknown, here we can make a more precise entry into the holographic dicitonary. The beta

functions computed using the source renormalization procedure presented here correspond

to QFT beta functions in dimensional regularization.

In addition to added dictionary precision, our methods represent progess in that they

can be applied also to CFTs with irrelevant or marginal deformations. The application of

holographic renormalization to irrelevant deformations is usually regarded as intractable

due to the lack of appropriate boundary conditions. In this paper we will present an

example of a holographic RG flow driven by an irrelevant operator based on [13]. We show

how dimensional methods deal with the asymptotics and uniquely determine source and

vev coefficients in the near-boundary expansion.

Finally, we are able to addresses recent questions raised in the case of a bulk scalar field

dual to a (classically) marginal operator, where a tower of logarithmic divergences in the

near-boundary field expansion spoils AdS boundary conditions. The prime example of this

behavior is [14]. As in perturbative QFT, in order to identify the source, one needs to carry

out a renormalization procedure. This problem was initially analyzed in [15] and further

studies [16–19] contain partial results. More recently, standard holographic methods have

been applied to nearly marginal flows [20, 21]. A physical interpretation of all these results,

however, is still lacking, since their QFT schemes remain obscure. Despite recent efforts

in the general analysis of holographic renormalization schemes in [22, 23], it is difficult to

identify a specific scheme. The identification of both the boundary renormalization scheme

and the running coupling in terms of bulk fields presented here provides a comprehensive

renormalization procedure for the holographic theories deformed by a marginal operator.

2 Holographic set-up

The original application of the AdS/CFT correspondence, and the one we will pursue here,

is to use a weakly coupled gravitational system in an asymptotically AdS spacetime to

define a dual QFT non-perturbatively. The weakly coupled gravitational system can be

described by the Einstein-Hilbert action coupled matter; we will exclusively focus on scalar

matter. Then, the bulk Euclidean action reads

SE =

∫
ddxdr

√
g

(
− R

2κ2
+

1

2
∂µΦ∂µΦ + V (Φ)

)
. (2.1)

where the scalar potential V (Φ) has a regular Taylor expansion around Φ = 0:

V (Φ) = −d(d− 1)

2l2κ2
+

∆(∆− d)

2l2
Φ2 +

∞∑
n=3

λn
nl2κ2

(κΦ)n . (2.2)

The (d + 1)-dimensional gravitational coupling, κ, is related to the reduced Planck mass

by κ−2 = Md−1
Pl . We will often find it useful to work with the dimensionless combinations

κΦ. The scalar mass is given by m2l2 = ∆(∆− d), where ∆ is the conformal weight of the

dual scalar operator in the CFT and l is the AdS radius.

The requirement that the bulk geometry is asymptotically AdS implies that metric

admits the Fefferman-Graham gauge, in Poincareé coordinates this reads

ds2 = dr2 + γijdx
idxj γij = e2r/lγ(0)ij + sub-leading in r →∞ limit . (2.3)
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The equation of motion for the scalar field following from (2.1) is given by the Klein-Gordon

equation, (
∂2
r −K∂r + �γ

)
Φ(r,x)− V ′(Φ(r,x)) = 0 , (2.4)

where K is the trace of the extrinsic curvature of the hypersurface defined with respect

to the unit normal ∂r, and �γ is defined with respect to γij . In an asymptotically AdS

spacetime the extrinsic curvature has the expansion K = −d/l + . . ., where the omitted

terms vanish at the boundary, r →∞. The second order differential equation (2.4) has two

independent solutions whose leading behaviors are proportional to e−(d−∆)r/l and e−∆r/l.

In what follows it will be convenient to use a different coordinate defined as

z = le−r/l , (2.5)

where the conformal boundary now lies at z = 0. The radial or near-boundary expansion

of the scalar field Φ is given by:

κΦ =
(
φ(d−∆)z

d−∆ + . . .
)

+
(
φ(∆)z

∆ + . . .
)
, (2.6)

where the omitted terms are necessarily sub-leading only within each set of parenthesis.

For d/2 < ∆ < d the leading behavior of the scalar field is given by κΦ ∼ φ(d−∆)z
d−∆.

The AdS/CFT correspondence states that there exists a one-to-one map between sin-

gle trace conformal primaries in the boundary CFT (which is the UV fixed point of the

boundary QFT) and bulk fields in the gravity dual. The generating functional of the dual

QFT, W, is given by the bulk on-shell action, W[φ(d−∆)] = −Son-shell[φ(d−∆)]. Where

φ(d−∆), the asymptotic boundary value of the bulk field Φ, is identified as the source of the

corresponding operator, O∆, on the field theory side.

In order to derive QFT correlation functions, we must ensure two conditions are sat-

isfied. First, the asymptotic boundary value problem must be well-posed; this requires

the addition of the Gibbons-Hawking-York boundary term. Second, on-shell bulk action

should be well defined; this requires holographic renormalization to regulate divergences in

the on-shell action, e.g. due to the infinite volume of AdS.

2.1 Traditional holographic renormalization

The standard procedure to extract finite quantities from the divergent supergravity action

is holographic renormalization [1–3]. In this approach one imposes a cut-off surface at

some z = δ > 0 and adds suitable, local, bulk-covariant counterterms supported on this

surface. The counterterms are constructed such that after the solution to the equation of

motion is substituted, a finite δ → 0 limit exists. Including the Gibbons-Hawking-York

boundary term and the first two counterterms, which subtract the volume divergences, the

bulk action (2.1) reads

S = lim
δ→0

[∫
ddx

∫
δ

dz
√
g

(
− R

2κ2
+

1

2
∂µΦ∂µΦ + V (Φ)

)
+

1

κ2

∫
ddx
√
γK

+

∫
ddx
√
γ

(
d− 1

lκ2
+
d−∆

2l
Φ2

)]
, (2.7)
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where γ is the metric induced on the z = δ cut-off surface. With these two counterterms

included, the on-shell action is finite provided the dimensions d and ∆ satisfy1

d

2
< ∆ < min

(
d

2
+ 1,

2d

3

)
and 0 < d < 2 , (2.8)

otherwise, additional counterterms will be required.

As with the first two counterterms in the second line of (2.7), most counterterms are

uniquely fixed. However, in special cases, counterterms introducing scheme-dependence

appear. These terms are related to the emergence of secular terms in near-boundary

expansions, (2.6), which take logarithmic form: log(zµ), where µ, the renormalization

scale, must be introduced on dimensional grounds. We will refer to counterterms that arise

due to secular terms in the near-boundary expansion as secular counterterms, and other

counterterms canonical counterterms. The scheme-dependence of the secular counterterms

arises precisely in the freedom to redefine µ. For convenience, we will often use the inverse

renormalization scale, µ−1 = L. For example, the usual counterterm action will contain

terms such as [24, 25]:

Sct ∝ µ−(d−2∆+2k)

∫
ddx
√
γΦ�kΦ , (2.9)

where k is a non-negative integer. In the special cases ∆ = d/2 + k, the µ dependence

appears to vanish, however coefficients of these terms will include log(zµ), indicating a

secular term proportional to z∆ log(zµ) in the near-boundary expansion (2.6).

2.2 Holographic dimensional renormalization

Here, we will develop an alternate approach to traditional holographic renormalization,

dubbed holographic dimensional renormalization. This method of holographic renormal-

ization was first introduced in [12], and in this work it will be expanded to the case of RG

flows and domain wall spacetimes. This procedure makes use of the observations that (2.8)

defines an open and non-empty subset of the parameter space (d,∆), and the bulk equa-

tions of motion are analytic. These observations allow one to analytically continue d and

∆ as in the familiar QFT dimensional regularization:

d̂ = d+ uε and ∆̂ = ∆ + vε . (2.10)

The constants u and v indicate a direction of the infinitesimal shift in the space of di-

mensions (d,∆) and ε is the regulator.2 After a correlation function is evaluated for a

generic d̂ and ∆̂, one can continue it away from the parameter space (2.8). If the result

is well-defined, it represents the unique correlation function. Analyticity in d and ∆ was

demonstrated in the context of 3-point functions in a CFT in [26] and in the context of

scalar fields in holographic spacetimes in [12].

The use of analytic continuation of spacetime and operator dimension reduces the

number of counterterms needed to renormalize the on-shell action. To begin with, other

1In the case of a flat boundary, γ(0)ij = δij , the restriction on d can be removed.
2In the context of textbook QFT the shift in dimensions is such that in momentum space bare propagators

of fundamental fields retain their canonical form, such as 1/k2 for a massless scalar propagator.

– 5 –



J
H
E
P
1
0
(
2
0
1
9
)
0
2
5

than the first two volume divergence counterterms in (2.7), all canonical counterterms

are absent; naive divergences disappear when the on-shell action is defined for general d̂

and ∆̂. This is natural from the boundary field theory perspective where the z → 0 limit

corresponds to flowing to the CFT at the UV fixed point of the boundary QFT. Classically,

in the CFT there can be no explicit scale dependence, so the only allowable counterterms

are secular, where the scale appears only logarithmically. For example, of the counterterms

in (2.9), only those where ∆̂ = d̂/2 + k + O(ε) will be needed in holographic dimensional

renormalization. Thus, in the ε → 0 limit one recovers the form or an appropriate CFT

counterterm. This one-to-one correspondence between bulk and CFT counterterms is the

first indication that holographic dimensional renormalization corresponds to a known, well-

defined, field theory renormalization scheme.

In this paper we are interested in the analysis of holographic RG flows using holographic

dimensional renormalization. In the context of perturbative QFT, RG flows are induced by

the existence of non-zero beta functions. These in turn, emerge through the renormalization

of coupling constants. For the classically marginal scalar operator O studied most often in

textbook QFT, the original ‘bare’ coupling φ0 is renormalized by the addition of (usually

infinite) counterterms, resulting in a renormalized coupling, ϕL. The general form for such

QFT counterterms is:

Sct =

∫
dd̂x ϕLZ[ϕLL

ε]O , (2.11)

where we use L = µ−1 as the inverse-energy scale. The renormalized source ϕL is im-

plicitly scale-dependent in such a way that the bare source φ0 = ϕLZ[ϕLL
ε] remains

scale-independent. The renormalization factor, Z, depends on the combination gL = ϕLL
ε

which we identify as the renormalized dimensionless coupling. The generating functional

of the renormalized theory - provided no other divergences are present - reads,

W[ϕL] = lim
ε→0
〈exp

(
−
∫

dd̂x ϕLZ[ϕLL
ε]O
)
〉reg , (2.12)

where 〈 · 〉reg denotes the connected correlation function in the regulated theory.

In this way, one can see that the beta function is induced by source redefinition. Since

the bare source, φ0, remains scale-free, we can calculate the beta function, βg, for the

dimensionless coupling gL = LεϕL by noting that the total derivative of φ0(L, gL) with

respect to L vanishes,

βg(gL) = µ
dgL
dµ

= −LdgL
dL

= −εφ0(gL)

(
∂φ0

∂gL

)−1

. (2.13)

We will follow a parallel course in holographic dimensional renormalization, focusing

on source renormalization to cancel divergences and induce a holographic beta function.

In [12] it was shown that source renormalization (accompanied by certain secular coun-

terterms) removes the divergences from correlation functions in holographic theories. In

the holographic set-up, the bare source is identified with the coefficient φ(d−∆) in (2.6).3

3This is strictly only true for the standard, Dirichlet, boundary conditions. We will briefly comment on

mixed boundary conditions arising from multi-trace deformations in section 4.4.
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The process of source renormalization, which will be outlined in-depth in section 3, will

remove additional divergences from the on-shell action. These divergences are related to

the emergence of certain secular logarithmic terms in the near-boundary expansion of the

bulk field. Source redefinition is equivalent to adding counterterms of the form (2.11) and

will analogously lead to a beta function as in (2.13).

3 Dimensional renormalization for marginal operators

We will use source redefinition, following QFT intuition, to renormalize divergences which

arise when a descendent of a source (i.e. one of the omitted terms in the first set of parenthe-

sis in (2.6)) has the same scaling dimension as another scalar field’s source or its descendent.

However, the secular counterterms which arise when a descendent of a source has the same

scaling dimension as a vev term (i.e. φ(∆) or one of its descendants) are still needed in

the counterterm action.4 This latter case is what gives rise to the counterterms containing

sources only. These counterterms are constructed using only bulk fields and boundary

momenta, (i.e. not depending on radial derivatives or canonical momenta,) and will induce

conformal anomalies. An example of such a secular counterterm containing two bulk fields

has the form (2.9) with ∆ = d/2+k. The fact that these secular counterterms remain after

source redefinition should not be surprising since in QFT the emergence of beta functions

does not preclude anomalies.

The process of source redefinition will provide a solution to the longstanding confusion

surrounding the application of holographic renormalization to the case of a marginal de-

formation by an operator with ∆ = d. In this case the expansion (2.6) exhibits an infinite

tower of secular terms:

κΦ = ψ(0) + ψ(1) log z + ψ(2) log2 z + . . . . (3.1)

These terms spoil boundary asymptotics, due to the lack of a z → 0 limit, making the

identification of the source problematic. Applications of the general renormalization meth-

ods of [29] help to make progress in a rigid AdS background [19], but the identification

of the source remains unclear. Furthermore, when coupled to gravity, the AdS boundary

conditions are spoiled by logarithmic terms as well, [14, 16–18, 30].

In the dimensional renormalization approach the secular terms (3.1) emerge in the

ε→ 0 limit of the bulk field expansion (2.6), with dimensions shifted according to (2.10), as

κΦ̂ = φ(wε)z
wε + φ(2wε)z

2wε + φ(3wε)z
3wε + . . . , (3.2)

where we define w = u−v. We also introduce the notation that a ‘hat’ indicates a regulated

quantity, i.e. one that depends on ε. This is precisely the case where source renormalization

removes the need for secular counterterms: an infinite tower of descendants of the source,

φ(wε), all collapse to have the same scaling dimension. Since the equations of motion and

their solutions are analytic in the bulk, this expansion must converge to (3.1) at any bulk

4Additionally, for irrelevant deformations counterterms containing canonical momenta may be neces-

sary [27, 28].
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point when ε → 0. If all coefficients φ(nwε) are finite in such limit, the expansion (3.1)

would contain only a single non-vanishing term, ψ(0). Hence, the emergence of the loga-

rithmic terms in (3.1) requires that the coefficients φ(nwε) are divergent in the ε→ 0 limit.

However, the existence of the limit imposes constraints on these divergences. From the

point of view of the dual QFT these constraints are equivalent to renormalizability, or the

existence of a finite beta function.

One of the main advantages of the dimensional renormalization method is that the

problem of marginal deformations can be tackled directly and will uniquely identify the

renormalized source and the beta function. Particularly this will allow us to make progress

on the long-standing issue of computing correlation functions for the confining gauge the-

ory dual to the Klebanov-Strassler background [14]. This new method for holographic

computations in backgrounds that violate the asymptotic AdS will allow us to advance,

building upon prior work in this direction [15, 31, 32]. This is both complex and subtle

and therefore will be treated in a separate work [33].

We will begin with a presentation of the general procedure for the renormalization of

a scalar source and the resulting beta function. To actualize what may seem a rather ab-

struse general prescription, we will immediately apply it to the simplest possible example:

a scalar on a rigid AdS background. Next, we will demonstrate how the procedure works in

the case of dynamical gravity, making contact with known holographic domain wall results.

This will allow us to identify the scheme corresponding to dimensional regularization on

the gravity side of the correspondence. Then, we present an example to demonstrate that

holographic dimensional renormalization extends to define beta functions to all-orders in

perturbation theory. Finally, we discuss the effect of holographic dimensional renormal-

ization on the computation of correlation functions, again using the simplest example of a

scalar on rigid AdS.

3.1 General procedure

We begin the process of renormalizing the source by solving the equations of motion of the

regulated theory order-by-order in a near-boundary expansion. By ‘regulated theory’ we

mean shifting d and ∆ according to (2.10). For a marginal operator, ∆̂ = d+ vε, one must

solve the Klein-Gordon equation (2.4) with the regulated potential and extrinsic curvature:

V̂ (Φ̂) = − d̂(d̂− 1)

2l2κ2
− ε∆̂

2l2
Φ̂2 +O(Φ̂3), and K̂ = −d̂/l + · · · . (3.3)

Here and henceforth we choose w = u − v = 1 to simplify notation. Note that the choice

of u and v may appear in some scheme-dependent quantities, but by assigning dimensions

to ε and inverse dimensions to u, v, w, one can always restore the w dependence. In the

renormalized theory scheme-dependent terms containing u, v, w may appear in correlation

functions. Similarly to textbook QFT, the scheme-dependence can be absorbed into the

scale-dependence of the correlators, see section 3.5.

From this we find that the near-boundary expansion of the regulated field Φ̂ has the

form (3.2) with all coefficients φ(nε) for n ≥ 2 determined in terms of φ(ε). As anticipated

in the text below (3.2), the higher order terms φ(nε) typically diverge when ε → 0. By

– 8 –
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solving equations of motion order-by-order in the source, φ(ε), near z = 0 one finds the

divergent coefficients, cii, in the following expansion:

κΦ̂ = φ(ε)z
ε + c22φ

2
(ε)z

2ε + c33φ
3
(ε)z

3ε +O(φ4
(ε), z

2) . (3.4)

In order to cure these divergences we will introduce the renormalized source, ϕL, via

a redefinition of the bare source, φ(ε)

φ(ε) = ϕLZ[ϕLL
ε] = ϕL

∞∑
n=0

Znϕ
n
LL

nε , (3.5)

with Z0 = 1. Here, L has been introduced on dimensional grounds and serves the purpose

of the inverse renormalization scale, µ−1. Additionally, the renormalized source ϕL depends

implicitly on scale L in such a way that the bare source φ(ε) remains scale-independent —

in general, a subscript L will indicate dependence on the renormalization scale. We will

choose the coefficients Zn in order to preserve a finite limit in (3.4).

Since the bulk equations of motion for the scalar field are second order, picking specific

boundary conditions and enforcing bulk regularity will induce non-local dependences be-

tween the ‘source coefficient’ φ(d̂−∆̂) and the ‘vev coefficient’ φ(∆̂). The regulated field, Φ̂,

may represent any of these solutions, with arbitrary vev coefficient. The renormalization of

the sources, however, deals with source redefinition only, and hence we drop all terms which

depend on the vev coefficient; in the marginal case this means dropping terms of order zα

where α remains finite in the ε→ 0 limit. In this way we define the regulated source field Ψ̂,

κΨ̂ = κΦ̂
∣∣∣
zO(ε)

=

∞∑
n=1

φ(nε)(φ(ε))z
nε

=

∞∑
n=1

cnn(ε)φn(ε)z
nε , (3.6)

which remains the same regardless of boundary conditions imposed on the physical bulk

field Φ̂.

Inserting (3.5) into (3.6) produces the regulated source field as a function of the renor-

malized source,
κΨ̂L = zε

[
ϕL + Z2L

εϕ2
L + Z3L

2εϕ3
L + . . .

]
+ z2ε

[
+ c22ϕ

2
L + c23L

εϕ3
L + . . .

]
+ z3ε

[
+ c33ϕ

3
L + . . .

]
. . . .

(3.7)

Coefficients cnn remain the same as dictated by the equations of motion (3.4), however

‘cross-terms’ arising from the substitution of (3.5) will generate non-diagonal cij coefficients

at each order in zε. One can easily check that each cij is determined in terms of ci′j′ with

i′ < i and j′ < j. Hence one can choose coefficients Zn such that the sum of terms in each

column is finite when ε→ 0. Simply, one chooses

Zn = −
n∑
j=2

cjn + Z(0)
n , (3.8)
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where Z
(0)
n is an ε-independent constant. The choice of Z

(0)
n corresponds to scheme-

dependence, and we will always choose Z
(0)
n = 0 below. With this prescription for the

Zn, the finite ε → 0 limit of Ψ̂L exists and will be denoted by ΨL. If the theory does not

contain any other sources of divergence, such as anomalies, the finite ε→ 0 limit of the full

bulk field and the on-shell action exists. The near-boundary expansion takes form (3.1)

and an infinite tower of logarithms is present.

By comparison with (2.12) we see that the QFT bare source φ0 is identified with the

regulated source φ(ε). The renormalized source is then ϕL and the Zn factors in (3.5)

are the multiplicative renormalization factors of the dual dimensionally regulated QFT.

This identification constitutes the only instance of a holographic renormalization procedure

where the boundary field theory regularization is known.

While the renormalization procedure is in its essence perturbative, we can provide its

definition to all orders in φ(ε) as follows. First, notice that the source field Ψ̂ in (3.6)

depends on the radial variable and the bare source through the combination zεφ(ε), i.e.,

κΨ̂ = F (zεφ(ε)) for some function F . We define the field Ψ̂L in (3.7), by redefining φ(ε) as

a function of the renormalized source ϕL in such a way that the finite ε → 0 limit exists.

Notice that with all Z
(0)
n = 0 in (3.7) the procedure is equivalent to

κΨ̂ = F (zεφ(ε)), Lεφ(ε) = F−1(ϕLL
ε) = F−1(gL) . (3.9)

Indeed, since Z
(0)
n = 0 in equation (3.8), the coefficients Zn are Taylor coefficients of the

expansion of F−1. In particular

κΨ̂L(z = L) = ϕLL
ε = gL , κΨL(z = L) = gL , (3.10)

where gL = ϕLL
ε is the dimensionless coupling constant.

Finally, we are ready to define the holographic beta function corresponding to dimen-

sional regularization in the boundary field theory. Again, note that φ(ε) does not depend

on z or L and hence the z derivative of κΨ̂ matches the L derivative of gL in (3.9),

βg = −LdgL
dL

= −κzdΨ̂L

dz

∣∣∣∣∣
z=L

. (3.11)

This analysis holds for arbitrary values of ε and will therefore immediately generalize to

the analysis of relevant flows. In the context of marginal deformations considered here,

one can take the ε → 0 limit and the regulated source field Ψ̂L becomes ΨL. Thus, this

procedure shows that κΨL is the running coupling as it satisfies the RG equation (3.11).

Furthermore, with the choice Z
(0)
n = 0 the running coupling satisfies the normalization

condition (3.10), which is the on-shell renormalization scheme. In the on-shell scheme the

value of the source field, ΨL at the inverse energy scale z = L equals the physical coupling

constant gL at this scale.

With the definition (3.10) we can expand the renormalized source field, ΨL, matching

with the expansion (3.1) where each logarithmic term becomes log(z/L). Hence, the leading
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term ψ(0) can be identified with the source, gL at scale L. It is the inclusion of this scale

dependence which leads to non-trivial beta functions.5

By construction, the source field satisfies the bulk equations of motion and does not de-

pend on the vev coefficient, φ(∆̂). These two conditions allow us to identify the dimensional

renormalization scheme as the zero-momentum limit of the ‘maximal subtraction scheme’

of [11]. Unlike the scheme of [11], the redefinition of the source presented here satisfies

the standard QFT expectation that the renormalized source is a local function of the bare

source. This is accomplished by the fact that the source does not depend on the vev and

additionally that it does not depend explicitly on momentum. This indicates that while the

source field ΨL is a solution of the equations of motion, it is not equal to the full solution Φ

which is used to compute correlation functions. Nonetheless, the redifinition of the source

will have an effect of the computation of correlation functions as we will see in section 3.5.

3.2 Example: rigid AdS

In this section we apply the procedure outlined above to the simplest possible case: a

massless scalar field on a rigid AdS background with the dynamics governed by a regular

potential of the form

V (Φ) =
λ3

3l2κ2
(κΦ)3 +

λ4

4l2κ2
(κΦ)4 +O(Φ5) . (3.12)

The regulated potential is

V̂ (Φ̂) = −ε(d+ vε)

2l2
Φ̂2 +

λ̂3

3l2κ2
(κΦ̂)3 +

λ̂4

4l2κ2
(κΦ̂)4 +O(Φ̂5) . (3.13)

In principle, the coefficients λ̂j in the regulated potential can depend on the regulator as

well, λ̂j = λ̂j(ε), in such a way that we recover original coefficients in the ε → 0 limit.

Generally, the sub-leading terms in ε will be subleading in the solution and will therefore

not affect the beta function.6

The Klein-Gordon equation on the rigid AdS is given by (2.4) with K̂ = −d̂/l. Solving

for the first two coefficients in the expansion (3.4), one finds:

c22 = − λ̂3

ε (d+ (v − 2)ε)
, (3.14)

c33 =
λ̂2

3

ε2 (d+ (v − 2)ε)(d+ (v − 3)ε)
− λ̂4

2ε (d+ (v − 3)ε)
. (3.15)

As expected, the coefficients diverge at ε = 0. Using the result (3.10) we recognize that

the renormalized dimensionless source gL = LεϕL is given by (3.4) evaluated at z = L and

dropping all terms with vev (and momentum) dependence:

gL = LεϕL = Lεφ(ε) + c22L
2εφ2

(ε) + c33L
3εφ3

(ε) +O(φ4
(ε)) . (3.16)

5In [30] holographic renormalization is carried out for marginal operators, however this scheme explicitly

fixes the scale such that gL = 1, precluding the calculation of a beta function as in (3.11).
6However, we will see that this is explicitly not the case for certain relevant deformations in section 4.1.
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Then, solving for the Zn is equivalent to inverting the power series for φ(ε),

Lεφ(ε) = gL − c22g
2
L + (2c2

22 − c33)g3
L +O(g4

L) . (3.17)

Now the finite ε→ 0 limit of Ψ̂L (3.7) exists, order by order in gL, and we find

κΨL = lim
ε→0

κΨ̂L = gL −
λ3

d
log

z

L
g2
L

+

(
λ2

3

d2
log2 z

L
+

2λ2
3 − λ4d

2

d3
log

z

L

)
g3
L +O(g4

L) . (3.18)

To calculate the beta function in the dual QFT directly, we can use equation (2.13).

By expanding coefficients cnn in ε and keeping leading terms only we find

βg(gL) = −εgL +
λ3

d
g2
L +

λ4d
2 − 2λ2

3

d3
g3
L +O(g4

L, ε) . (3.19)

Here we see that in the ε→ 0 limit all u, v, w-dependence vanishes from the beta function.

We have also included the customary classical factor −εgL, which obviously vanishes in

the ε → 0 limit. On the other hand, the same result can be obtained from (3.11) directly

using κΨL from (3.18). The finiteness of the beta function in a QFT follows from renor-

malizability of the theory. In the context of holographic theory, this manifests through the

existence of the ε→ 0 limit of the regulated solution Ψ̂L.

3.3 Holographic dimensional renormalization for domain walls

We now come to the physically interesting case of dynamical gravity. In this section we will

apply holographic dimensional renormalization to the system of a marginal scalar coupled

to gravity and governed by the action (2.7) with a regulated potential

V̂ (Φ) = − d̂(d̂− 1)

2l2κ2
− ε∆̂

2l2
Φ̂2 +

∞∑
n=3

λ̂n
nl2κ2

(κΦ̂)n . (3.20)

The near-boundary expansion for the domain wall metric ansatz is

gµνdxµdxν = dr2 + e2Â(r)
[
γ(0)ij +O(e−2r/l)

]
dxidxj . (3.21)

It is well known that in the homogeneous case, where the scalar field and the metric

depend on the radial coordinate only, the system substantially simplifies and the two second

order equations of motion for the scalar field, Φ, and scale factor,

a(r) = eA(r) , (3.22)

can be traded for two first order equations,

∂rΦ = W ′(Φ) ,

∂rA = − κ2

d− 1
W (Φ) ,

(3.23)
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in addition to a non-linear equation for the prepotential: W ,

V =
1

2
(W ′)2 − dκ2

2(d− 1)
W 2 . (3.24)

The addition of dynamical gravity does not present any obstacle; the equations of

motion in the regulated theory can be solved perturbatively in a near-boundary expansion:

κΦ̂(z) = φ(ε)z
ε + c22φ

2
(ε)z

2ε + c33φ
3
(ε)z

3ε + . . . ,

â(z) =
la(0)

z

[
1 + b11φ(ε)z

ε + b22φ
2
(ε)z

2ε + b33φ
3
(ε)z

3ε + . . .
]
.

(3.25)

One finds

c22 = − λ̂3

ε (d+ (v − 2)ε)
,

c33 =
λ̂2

3

ε2 (d+ (v − 2)ε)(d+ (v − 3)ε)
− λ̂4

2ε (d+ (v − 3)ε)
− εd̂

4(d̂− 1)(d+ (v − 3)ε)

b11 = 0, b22 = − 1

4(d̂− 1)
, b33 =

4λ̂3

9ε (d̂− 1)(d+ (v − 2)ε)
.

(3.26)

Comparison with the results for rigid gravity, (3.14) and (3.15), shows that c22 is unaltered,

c33 contains the same expressions plus a correction due to the coupling with gravity. The

terms bii represent their counterparts for the renormalization of the scale factor. The renor-

malization of the scalar source, φ(ε), then proceeds as in the previous section. In particular

one defines the regulated source field Ψ̂ and its analog â = exp Â for the scalar factor.

A crucial step in this process has been the definition of Ψ̂ — particularly removing

the vev terms so that we only work with renormalized sources. This regulated source field,

Ψ̂, is uniquely defined for any dimensions d and ∆ (we assume ∆ > d/2) by the following

conditions:

(1) It solves the (regulated) equations of motion.

(2) It does not depend on boundary coordinates or derivatives with respect to boundary

coordinates apart from the implicit, algebraic dependence through φ(d̂−∆̂)(x).

(3) It has no vev coefficient, φ(∆̂) = 0.

Furthermore, the unregulated source field, Ψ, satisfies the same three conditions in the

ε → 0 limit. The fact that condition (3) holds for the unregulated field, i.e., φ(d) = 0,

follows from the fact that all terms in the near-boundary expansion of the regulated field

Ψ̂ are of the form znε. Hence, there are no terms ε-close to the vev term zd and therefore

the coefficient of zd must remain zero when the ε→ 0 limit is taken.

Conditions (1)–(3) necessarily imply that both regulated and unregulated source fields

represent homogeneous domain wall solutions with vev fixed to zero. Unlike the bulk

field, Φ, dual to the boundary operator O and obeying Dirichlet boundary conditions, the

source field, Ψ, satisfies Neumann conditions at the boundary. Let us stress here that the
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leading source coefficient φ(d−∆) in Φ (we assume ∆ > d/2) remains identified with the bare

UV coupling as dictated by the standard holographic dictionary. Its dependence on the

renormalized source, ϕL, though, is determined by the source field ΨL. In this sense, we can

think of ΨL as a bulk field dual to the boundary source, ϕL, in the sense that Φ is dual to O.

This analysis provides a new understanding of the maximal subtraction scheme defined

in [11]. In our terminology this scheme satisfies conditions (1) and (3) above. Hence, its

zero-momentum limit corresponds to our physical on-shell renormalization scheme. The

fact that the maximal subtraction scheme allows for the source field to depend explicitly on

boundary momentum means that the dependence between the bare coupling φ(d−∆) and

the renormalized coupling ϕL becomes non-local. We do not consider this to be a desirable

feature, since textbook QFT renormalization procedures yield a local dependence.

Let us now analyze the consequences of conditions (1)–(3). Condition (1) states that

the source fields themselves satisfy the equations of motion:

∂rΨ = W ′(Ψ) ,

∂rA = − κ2

d− 1
W (Ψ) .

(3.27)

Given V , (3.24) is a first order differential equation for W and there will be many prepo-

tentials which correspond to a given potential. In [34] it was shown that two continuous

families of prepotentials, W±ξ exist for a given V at a generic point in the parameter space

(d,∆). Assuming ∆ > d/2 these families can be characterized by the following expansions,

W−ξ (Ψ) = −d− 1

lκ2
− d−∆

2l
Ψ2 − . . .− ξ

lκ2

d−∆

d
(κΨ)

d
d−∆ − . . . ,

W+
ξ (Ψ) = −d− 1

lκ2
− ∆

2l
Ψ2 − . . .− ξ

lκ2

∆

d
(κΨ)

d
∆ − . . . ,

(3.28)

where ξ is an integration constant. Upon substituting these expressions to (3.27) one

finds that the only prepotential satisfying condition (3) is W−0 . Hence, this is the unique

prepotential corresponding to the source field associated to the dimensional renormalization

procedure. Notice that this prepotential belongs to the family associated with Neumann

boundary conditions imposed on the source field, [34].

This identification allows us to unambiguously relate the field theoretic beta function

in the dimensional renormalization scheme with the RG flow given by the homogeneous

domain wall solutions. Combining (3.11) with (3.27) we arrive at the result

βg(gL) = κl(W−0 )′(κ−1gL) . (3.29)

With the normalization l = κ = 1 this gives simply βg = (W−0 )′. This matches the results

obtained in the context of holographic cosmology in [35]. Notice, however, that the scheme

dictated by holographic dimensional renormalization differs from the usual identification

of the holographic beta function, βH , in [5–7],

βH(gL) = −d− 1

κ

W ′(κ−1gL)

W (κ−1gL)
. (3.30)
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This difference arises due to the identification of the renormalization scale µ ∼ a = exp(A)

in [5–7] and an identification µ = 1/z in this work. These identifications agree at the

AdS critical points, as they must, however the usual ambiguity along the flow is resolved

with the identification of the source field with the running coupling and its equation of

motion (3.27) with the RG equations.

Futhermore, while we have selected the prepotential W−0 as a necessary consequence

of the dimensional renormalization scheme and source redefinition, one is usually supplied

with a superpotential for domain walls in supergravity. In section 4.1 we will examine the

possibility of taking prepotentials with non-vanishing ξ, and note that the dimensional

renormalization procedure admits the correct superpotential in the case of relevant defor-

mations. Then we will compare our result (3.29) to the ‘holographic beta function.’ The

renormalizability of the QFT and the finiteness of the beta function can now be stated as

the finiteness of the selected prepotential.

3.4 Example: cubic prepotential

It is satisfying to demonstrate this procedure and show that it extends to the definition

of the beta function to all orders in ϕL using the simple solvable example of the cubic

prepotential,

W (Φ) = −d− 1

lκ2
− w3

3lκ2
(κΦ)3 . (3.31)

In the context of relevant deformations the equations of motion (3.23) are usually

interpreted as holographic RG equations [7]. For marginal deformations, however, such an

interpretation is problematic. Indeed, in this case the system can be solved exactly, and

the solution reads

κΨ(z) =
c1

1− c1w3 log z
,

log a(z) = log

(
lc2

z

)
+

c3
1w3

6(d− 1)

log z(c1w3 log z − 2)

(c1w3 log z − 1)2
,

(3.32)

where c1 and c2 are two integration constants. The interpretation of this solution is prob-

lematic as its expansion around z = 0 is neither regular nor asymptotically AdS,

κΨ(z) = c1 + c2
1w3 log z +O(log2 z) ,

a(z) =
lc2

z

(
1− c3

1w3

3(d− 1)
log z +O(log2 z)

)
.

(3.33)

To fortify the interpretation of (3.23) as RG equations in the marginal case, we need

to implement dimensional renormalization, arriving the beta function (3.29). Starting with

the regulated prepotential,

Ŵ (Φ̂) = − d̂− 1

lκ2
− ε

2l
Φ̂2 − ŵ3

3lκ2
(κΦ̂)3 , (3.34)
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one can integrate (3.27) to arrive at regulated solutions that depend on the boundary

coordinates only through the boundary values φ(ε) and a(0):

κΨ̂(z) =
φ(ε)z

ε

1− φ(ε)ŵ3ε−1zε
,

log â(z) = log

(
la(0)

z

)
− ε2

6(d̂− 1)ŵ2
3

[
εŵ3φ(ε)z

ε

(ε− ŵ3φ(ε)zε)2
+ log

(
1−

ŵ3φ(ε)z
ε

ε

)]
.

(3.35)

The near-boundary expansion reads

κΨ̂(z) = φ(ε)z
ε +

ŵ3φ
2
(ε)

ε
z2ε +

ŵ2
3φ

3
(ε)

ε2
z3ε +O(z4ε) ,

â(z) =
la(0)

z

[
1−

φ2
(ε)

4(d̂− 1)
z2ε −

4ŵ3φ
3
(ε)

9ε(d̂− 1)
z3ε +O(z4ε)

]
.

(3.36)

In order to remove divergences in the scalar sector we trade the bare source, φ(ε), for

the renormalized source ϕL via equation (3.10); this gives

ϕL = L−εκΨ̂(L) =
φ(ε)

1− ŵ3ε−1Lεφ(ε)
, φ(ε) =

ϕL
1 + ŵ3ε−1LεϕL

. (3.37)

This cures all the divergences, and the renormalized source field in terms of the dimension-

less coupling, gL = LεϕL, is

κΨ̂L(z) =
(z/L)εgL

1− ŵ3ε−1((z/L)ε − 1)gL
, (3.38)

which after sending ε to zero becomes

κΨL(z) =
gL

1− w3gL log(z/L)
. (3.39)

By comparison with (3.32) we can unambiguously identify c1 = gL=1, the value of the

renormalized coupling at the fixed inverse energy scale L = 1. Equivalently, c1 can be

identified with gL provided that one substitutes z for z/L. It is also important that the

ε→ 0 divergences in the scale factor (3.35) are canceled by the renormalization procedure

as well. The renormalized scale factor reads

log aL(z) = log
la(0)

z
− 1

6(d− 1)

(
gL

1− w3gL log(z/L)

)2

. (3.40)

Finally, using (2.13) the beta function follows from (3.37)

βg(gL) = −εgL − ŵ3g
2
L . (3.41)

Clearly, βg(gL) = lκŴ ′(κ−1gL), in agreement with (3.29).
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3.5 Correlation functions

In previous sections we concentrated on renormalization of the sources. However, the aim

of the renormalization procedure is to make sure that the correlation functions are finite

and divergence-free. The one-point function in the presence of sources is affected by the

renormalization procedure, since now

〈O(x)〉s = lim
ε→0

∫
dd̂u

δŜ

δφ(ε)(u)

δφ(ε)(u)

δϕL(x)

= lim
ε→0

∫
dd̂u

[
〈O(u)〉reg,s,L ×

δφ(ε)(u)

δϕL(x)

]
= − lim

ε→0

2∆̂− d̂
lκ2

∫
dd̂u

[
φ(∆̂)[φ(ε)(ϕL(u))]

δφ(ε)(u)

δϕL(x)

]
. (3.42)

The subscript L on the one-point function 〈O(u)〉reg,s,L indicates that it depends on ϕL
via φ(ε) as indicated explicitly in the following line. As an example, consider 2- and 3-

point functions of a marginal operator O in d = 3 spacetime dimensions on a rigid AdS

background with the cubic potential given by (2.2). We will also work in the regularization

scheme with u = 2 and v = 1, which satisfies the condition u− v = 1.

For the evaluation of the two-point function, one takes a single functional derivative,

with respect to the renormalized source, of the one point function (3.42) (up to an overall

sign.) This gives the 2-point function with sources turned on,

〈O(x)O(y)〉s =
3

lκ2
lim
ε→0

∫
dd̂u

[∫
dd̂v

(
δφ(∆̂)(u)

δφ(ε)(v)

δφ(ε)(u)

δϕL(x)

δφ(ε)(v)

δϕL(y)

)

+ φ(∆̂)(u)
δ2φ(ε)(u)

δϕL(x)δϕL(y)

]
. (3.43)

The dependence between the bare and renormalized source is given in (3.17), with gL =

LεϕL, and hence

δφ(ε)(u)

δϕL(v)
= δ(u− v)

[
1− 2c22L

εϕL(u) +O(ϕ2
L)
]
. (3.44)

For the purposes of the two-point function in the absence of sources, only the leading delta

function survives. Evaluating (3.43) at ϕL = 0 then reduces to finding the free, regulated,

momentum-space bulk-to-boundary propagator, K, where κΦ = K(p, z)φ(ε) + O(λ3), in

AdS (see e.g. [24])

K(z, p) = zεe−pz(1 + pz) . (3.45)

By dimensional grounds, the integral then selects the coefficient of z∆̂ from K, so that in

momentum space

〈〈O(p)O(−p)〉〉 = 3(lκ2)−1K(3+ε) = (lκ2)−1p3 , (3.46)

where the double bracket notation indicated that the overall delta function due to momen-

tum conservation has been dropped.
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Clearly, the two-point function did not depend on the source renormalization, however

the cubic interaction will have a non-trivial effect on the three-point function. In order to

evaluate the three-point function we take another derivative of (3.43) (with another overall

sign.) With sources turned off this gives the three-point function,

〈O(x)O(y)O(z)〉 = − 3

lκ2
lim
ε→0

[
δ2φ(∆̂)(x)

δφ(ε)(y)δφ(ε)(z)
− 2c22L

ε

(
δφ(∆̂)(x)

δφ(ε)(y)
δ(x− z) (3.47)

+
δφ(∆̂)(x)

δφ(ε)(y)
δ(y − z) +

δφ(∆̂)(x)

δφ(ε)(z)
δ(x− y)

)]
= lim

ε→0
[〈O(x)O(y)O(z)〉reg + 2c22L

ε (〈O(x)O(y)〉regδ(x− z)

+〈O(y)O(z)〉regδ(y − x) + 〈O(z)O(x)〉regδ(z − y))] .

The regulated three-point function in momentum space can be evaluated by integrating the

product of three bulk-to-boundary propagators. The resulting triple-K integral is divergent

and using methods of [26] one finds

〈〈O(p1)O(p2)O(p3)〉〉reg = 2λ3

∫ ∞
0

dz z−d̂−1K(z, p1)K(z, p2)K(z, p3)

=
2λ3

3ε
(p3

1 + p3
2 + p3

3) + finite. (3.48)

With the value of c22 in (3.14) and the result for the two-point function (3.46), we see that

the divergence in the regulated three-point function precisely cancels the three contributions

of the two-point function in (3.47). Hence, the renormalized three-point function remains

finite. Note that the renormalized three-point function will contain a scheme-dependent

piece dependent on the renormalization scale as well as the u, v parameters as predicted

in section 3.1. For a more thorough discussion of the three-point function, including some

examples of explicit scheme-dependence, and the analysis of the four-point function, the

interested reader is referred to [12, 36].

4 Holographic RG flows for relevant deformations

The dimensional renormalization method has a straightforward extension to the case of

relevant deformations. For a single relevant scalar operator the renormalization of the

source is unnecessary from the point of view of the UV CFT. In other words, the RG

trajectory is well-parameterized by the value of the CFT source, φ(d−∆), at least in the

neighborhood of the fixed point. In this case

φ(d−∆) = ϕ = gLL
−(d−∆), (4.1)

but the would-be renormalized source, ϕ, does not depend on L. Therefore, the beta

function for the source vanishes, βϕ = 0, and the dimensionless coupling has a classical

beta function, βg = −(d − ∆)gL. A would-be source field ΨL corresponding to (4.1) is

simply κΨL(z) = zd−∆ϕ. Notice that such a source field solves the Klein-Gordon equation
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on empty AdS in the absence of any interactions. However, for a non-trivial RG flow this

field will not satisfy bulk equations of motion.

For this reason, when discussing relevant (and irrelevant) deformations, we find it useful

to carry out the source redefinition introduced in section 3.1. In this way we consistently

work in the on-shell renormalization scheme, where (3.10) is satisfied. The interpretation

of the source field ΨL as the running coupling constant follows and we can identify beta

functions with those calculated using dimensional regularization in the field theory.

When we apply holographic dimensional renormalization to a relevant deformation,

a subtelty emerges. Recall that for marginal deformations, if the conditions (1)–(3) of

section 3.3 hold in the regulated theory, then φ(∆) = 0 after the regulator is removed. It is

well-known that many homogeneous domain wall solutions in supergravity constructions

do not satisfy this condition. For a vev coefficient to appear in the ε → 0 limit, the near-

boundary expansion of the regulated source field, Ψ̂, must contain a term ε-close to the

vev term of order z∆̂. One will find such a term, given by:

φ(∆) = lim
ε→0

φ((n−1)(d̂−∆̂)) , (4.2)

where n is an integer defined by

n =
d

d−∆
, n− 1 =

∆

d−∆
. (4.3)

This will result in a vev coefficent for Ψ provided φ((n−1)(d̂−∆̂)) is finite in the ε → 0

limit. Since φ((n−1)(d̂−∆̂)) is a local function of the source, so is the vev coefficient and

hence the source redefinition remains local. In the remainder of this section we will use the

well-known GPPZ flow [5, 37] as an example to illustrate how dimensional renormalization

works in this case.

4.1 Example: the GPPZ flow

The single scalar flow of [37] involves an operator O of dimension ∆ = 3 in a d = 4

dimensional theory. The bulk supergravity is governed by the superpotential

W = − 3

2lκ2

[
1 + cosh

(√
2

3
κΦ

)]
, (4.4)

from which the potential follows

V = − 3

2l2κ2
cosh2

(
κΦ√

6

)[
3 + cosh

(√
2

3
κΦ

)]
. (4.5)

The domain wall solution for (4.4) reads

κΦ(z) =
√

6 artanh

(
zφ(1)√

6

)
, (4.6)

a2(z) =
1

z2
−
φ2

(1)

6
. (4.7)
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The radial expansion of the scalar field reads

κΦ(z) = φ(1)z +
1

18
φ3

(1)z
3 +O(z5) , (4.8)

and hence exhibits a non-vanishing vev coefficient, φ(3) = φ3
(1)/18.

We want to understand this behavior from the point of view of the source redefinition.

Our starting point is the potential (4.5). We expand the potential to the required order

and substitute regulated fields and couplings,

V̂ = − d̂(d̂− 1)

2l2κ2
+

∆̂(∆̂− d̂)

2l2
Φ̂2 − κ2

6l2
Φ̂4 +

κ2λ̃4ε

4l2
Φ̂4 +O(Φ̂6) . (4.9)

In general, coefficients in the regulated potential can be ε-dependent. In the marginal case,

sub-leading terms in the couplings always lead to sub-leading terms in the solutions to the

equations of motion and are therefore vanising in the ε → 0 limit. Here, this will not be

the case and we keep the sub-leading coupling of order ε, denoted λ̃4.

The equations of motion can be solved by expanding fields in the radial variable. The

regulated solution, with φ(∆̂) = 0 reads

κΨ̂ = φ(1+ε)z
1+ε + ĉ33φ

3
(1+ε)z

3+3ε +O(z4) , (4.10)

where

ĉ33 =
18λ̃4 + (23− v)

36(3− v)
+O(ε) . (4.11)

The use of the regulated theory is crucial in this statement because we can distinguish a

regulated vev term, φ(3+vε)z
3+vε from a term local in the bare source, φ(3+3(u−v)ε)z

3+3(u−v)ε.

Despite the fact that the constant λ̃4 enters the potential at order ε, it does not disappear

from the solution when the regulator is removed. This means that one can obtain a family

of scheme-dependent solutions parameterized by λ̃4. In the regulated theory, all of these

solutions have vanishing vev, however in the ε → 0 limit the vev coefficient will be given

by (4.2). The solution corresponding to the GPPZ solution (4.6) has λ̃4 = −17+v
18 .

Stated in terms of the superpotential, this was observed in [34]; various homogeneous

domain wall solutions parameterized by the value of the vev coefficient φ(3) can be obtained

from choosing different prepotentials W−ξ . Indeed, when n defined in (4.3) is an integer,

all prepotentials in (3.28) exhibit regular Taylor expansions. The regulated prepotential

Ŵ−0 following from the regulated potential (4.9) reads

Ŵ−0 = − d̂− 1

κ2l
− d̂− ∆̂

2l
Φ̂2 − κ2ŵ4

4l
Φ̂4 +O(Φ̂5) , (4.12)

where

ŵ4 =
18λ̃4 + (23− v)

18(3− v)
+O(ε) . (4.13)

Note that for the unregulated prepotential, in the case n is integer, ξ can only be defined

relative to a reference prepotential. However, in the regulated case, we consider prepo-

tentials that do not give rise to a regulated vev coefficient which can be unambiguously

identified as the family Ŵ−0 depending on λ̃4.
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0 1/tanh(1/ 6 ) 2/tanh(1/ 6 )

0

z

Ψ
L

Figure 1. The value of the running coupling ΨL(z) as a function of the inverse energy scale z.

The two lines represent on-shell renormalization schemes with ΨL(L) = 1 with L = 1 (solid line)

and L = 2 (dotted line).

With the understanding that the regulated source only depends locally on the bare

source, there is no obstacle to renormalizing the theory in such a way that the source

field ΨL remains identified with the running coupling. This can be accomplished using

the standard superpotential (4.4). In order to maintain the on-shell renormalization con-

dition (3.10) we redefine the UV source according to (3.9),

gL =
√

6 artanh

(
Lφ(1)√

6

)
, φ(1) =

√
6

L
tanh

(
gL√

6

)
. (4.14)

This gives the running coupling

κΨL(z) =
√

6 artanh

[
z

L
tanh

(
gL√

6

)]
. (4.15)

This expression satisfies the correct normalization conditions,

κΨL(L) = gL , (4.16)

lim
L→0

κΨL(z) =
√

6 artanh

(
zφ(1)√

6

)
. (4.17)

The first equation (4.16), is the on-shell condition stating that the value of the running

coupling at z = L equals gL. The second equation (4.17) demonstrates that in the UV

limit the source field reproduces the dependence on the bare coupling expected from the

solution (4.6); this is obtained by expanding gL = L(φ(1) +O(L)), inserting this into (4.15)

and taking L→ 0.

In figure 1 we present plots of the running coupling, ΨL(z), in (4.15) as a function of the

inverse energy scale, z. The running coupling exhibits a pole at z = (tanh(gL/
√

6))−1. This

reflects the fact that the GPPZ flow is singular in the IR. The position of the singularity can
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Figure 2. Left: beta functions as functions of the dimensionless coupling gL. The solid line

represents the beta function of the dimensional renormalization scheme, (4.18). The dashed line

represents the ‘holographic beta function’ (3.30) and the dotted line the ‘proper beta function’ (4.19)

as defined in [38]. Right: the same three beta functions, but as a function of the inverse-energy

scale z. This is obtained by substituting the solution for the running coupling (4.15) with a generic

initial condition gL = 1 at L = 1 into the beta function.

be adjusted using an integration constant to shift z. Here, this freedom is reflected by fixing

the value of the source at a different renormalization scale L. The pole in the QFT coupling

here is not the same as e.g. the Landau pole which arises when the running coupling causes

perturbation theory to break down. Rather, the beta function is exact to all orders in the

coupling from the QFT perspective, and the diverging coupling reflects the breakdown of

the supergravity approximation as the bulk approaches a curvature singularity.

In figure 2 we show the comparison between the beta function of the dimensionally

regulated theory,

βg(gL) = lκW ′(κ−1gL) = −
√

3

2
sinh

(√
2

3
gL

)
, (4.18)

represented by the solid line, with other proposals for the beta function. The dashed line

represents the ‘holographic beta function,’ (3.30), while the dotted line is the ‘proper beta

function,’ βP , as defined in [38], up to a factor of
√

2,

βP (gL) = βH(gL)

(
− κ2l

d− 1
W (κ−1gL)

)−(d−1)/2

. (4.19)

We have removed a factor of
√

2 from the original definition of [38] in order to match the

universal classical CFT scaling behavior, β ∼ −gL, in the UV. The dimensionally regulated

beta function reflects the divergence of the coupling at the location of the bulk singularity.

We do not find this surprising since the presence of the bulk singularity indicates that

there is no IR CFT within the supergravity approximation. Meanwhile, the ‘proper beta

function’ indicates the presence of an IR CFT at the location of the singularity, and the

holographic beta function gives no indication that it knows about the singularity.
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4.2 Non-perturbative effects emerge

In the previous section we demonstrated how different regularizations of the potential

correspond to different prepotentials which imply domain wall solutions with different

vevs. The vev can be read from the regulated solution using equation (4.2). This, however,

assumes that the local term on its right hand side is finite in the ε → 0 limit. As we

show now, the existence of a finite limit is due to the fact that the quartic term in the

potential (4.9) takes on a special value, −κ2/(6l2) +O(ε).

Consider a general quartic potential (for simplicity we will take λ3 = 0)

V = − 6

l2κ2
− 3

2l2
Φ2 +

λ4

4l2
κ2Φ4 +O(Φ5) , (4.20)

and its regularization

V̂ = − d̂(d̂− 1)

2l2κ2
+

∆̂(∆̂− d̂)

2l2
Φ̂2 +

λ4 + λ̃4ε

4l2
κ2Φ̂4 +O(Φ̂6) , (4.21)

with ∆̂ = 3 + vε and d̂ = 4 + (1 + v)ε. With general λ4 the solution takes form (4.10) with

the divergent coefficient

ĉ33 =
2 + 3λ4

6(3− v)ε
+O(ε0) , (4.22)

and a finite scheme-dependent contribution. The divergence indicates that no ε→ 0 limit

exists and the source redefinition fails. Only when λ4 = −2/3, as in (4.9), does the

limit exist. Equivalently, the prepotential associated to the general potential (4.21) takes

form (4.12) with divergent ŵ4,

ŵ4 =
2 + 3λ4

3(3− v)ε
+

18λ̃4 + (23− v)

18(3− v)
+O(ε) . (4.23)

Hence, for general λ4, one must leave a non-zero ξ̂ in the prepotential (3.28) in order for

the ε→ 0 limit of Ŵ−
ξ̂

to exist. To be specific,

Ŵ−
ξ̂

= − d̂− 1

κ2l
− d̂− ∆̂

2l
Φ̂2 − ŵ4

4lκ2
(κΦ̂)4 − ξ̂

n̂lκ2
(κΦ̂)n̂ +O(Φ̂5) , (4.24)

with ξ̂ = −ŵ4 + ξ̃ + O(ε), where ξ̃ is an arbitrary ε-independent constant and n̂ is given

by (4.3) defined using d̂ and ∆̂. Now the finite ε → 0 limit exists and the prepotential

becomes,

W−ξ = − 3

lκ2
− Φ2

2l
− η

4lκ2
(κΦ)4 log(κΦ)− η̃

4lκ2
(κΦ)4 −O(Φ5) , (4.25)

where η is fixed in terms of the divergence of ŵ4, and η̃ depends on a combination of

subleading terms in (4.23) and (4.24),

η = lim
ε→0

ε(3− v)ŵ4 =
2

3
+ λ4 , η̃ = ξ̃ − 2 + 3λ4

12
. (4.26)

– 23 –



J
H
E
P
1
0
(
2
0
1
9
)
0
2
5

With the prepotential (4.24), however, the corresponding domain wall solution (4.10)

contains a non-vanishing vev-coefficient,

κΦ̂ = φ(1+ε)z
1+ε + ĉ33φ

3
(1+ε)z

3+3ε + φ(3+vε)z
3+vε +O(z4) , (4.27)

whose divergence cancels the divergence of the φ(3+3ε) term

φ(3+vε) = (−ĉ33 +O(ε0))φ
3+vε
1+ε

(1+ε) . (4.28)

When the ε→ 0 limit is taken the solution reads

κΦ = φ(1)z +
1

2

(
η log(zφ(1)) +

(
η̃ − 1

4
η

))
φ3

(1)z
3 +O(z4) . (4.29)

Let us stress that the value of η in (4.26) is physical and scheme-independent in the

sense that it is uniquely determined by the coefficients of the potential. In particular the

result does not depend on the regularization parameters. The value of η̃ in (4.26), however,

is scheme-dependent as it is determined by the specific regularization scheme parameterized

by λ̃4 in (4.21) and ξ̃.

Notice that the general prepotential (4.25) with non-zero η becomes non-analytic at

Φ = 0. Each term of order Φk for k ≥ 4 is accompanied by logj Φ for j ranging from 0 to

k− 3. This suggests an emergence of non-local redefinitions of sources and hence non-local

beta functions. Indeed, assuming the relation (3.29) holds for the prepotential in (4.25),

we obtain a beta function with non-analytic logarithmic terms,

βg(gL) = −gL − g3
L

(
η log gL + η̃ +

η

4

)
+ . . . . (4.30)

Integrating the beta function implies the source redefinition,

Ld−∆φ(d−∆)(gL) = exp

[
−(d−∆)

∫ gL dg′

βg(g′)

]
= gL −

η

2
g3
L log gL +

η − 6η̃

12
g3
L +O(g4

L) .

(4.31)

As we can see the source redefinition is non-perturbative, as the logarithm of the renor-

malized coupling appears. Such a term cannot be seen in perturbation theory around the

CFT fixed point.

Dire consequences of logarithmic terms in the prepotential will be analyzed in the fol-

lowing subsection, but let us point out that, to the best of our knowledge, logarithmic terms

in the prepotential are absent in every holographic model descending from supergravity.

In other words, every potential in a supersymmetric theory will have a tuning to the λn
coupling, analogous to the quartic coupling taking on the value λ4 = −2/3 in the GPPZ

case, such that the prepotential remains logarithm-free.

A conjecture. The fact that this non-analytic, non-perturbative behavior does not occur

in any superpotential derived from any theory of supergravity is somewhat suggestive

— the low energy effective theories dictated by a UV complete quantum gravity are all
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well-behaved QFTs. We take this as circumstantial evidence to suggest a constraint that

any bottom-up holographic model should take into account: in the case that n (4.3) is

integer, the potential must be tuned such that the non-analytic behavior does not arise.

This constraint on the physical couplings in the potential translates into a constraint on

the parameter η; we conjecture that in any consistent holographic model the parameter

η in (4.25) must be set to zero. This constraint precludes a term in the beta function

proportional to gnL log gL.

Exotic RG flows are studied in [39] where beta functions are generally non-analytic,

containing rational powers of the coupling. However, in a specific example, [39] finds that

certain non-analytic behavior leads to a multi-valued potential and therefore precludes a

unitary holographic realization. It would be interesting to study these exotic flows using

the machinery presented here in an attempt to understand or rule out more general non-

analytic behaviors in holographic constructions.

4.3 Zero-momentum limit and the anomaly

The source field Ψ is a zero-momentum solution to the bulk equations of motion. However,

it is not clear that Ψ is the zero-momentum limit of the full bulk solution with the boundary

conditions appropriate for the evaluation of correlation functions. In general, there is no

reason for this to be the case. A zero-momentum limit of Φ must satisfy the homogeneous

domain wall equations of motion, but there is no guarantee that the corresponding prepo-

tential W−ξ has ξ = 0. However, in special cases discussed in section 4.1 and section 4.2

we considered general prepotentials, W−ξ , and hence expression (4.29) represents the most

general zero momentum domain wall solution determined by the prepotential (4.25). In

this section we will consider zero-momentum limits that may exhibit non-analytic behavior

and therefore we will not work with the renormalized source field.

From the point of view of the dual QFT we should be able to use conformal perturba-

tion theory to express the one-point function in the deformed theory in terms of the UV

CFT correlation functions. In momentum space

〈O(p)〉 =

∞∑
k=0

(−1)kφk(d−∆)

k!
lim
pj→0
〈O(p)O(p1) . . .O(pk)〉CFT . (4.32)

Conservation of momentum implies that 〈O(p)〉 is proportional to δ(p) and hence the one-

point function requires evaluation of the total zero-momentum limit p,pj → 0 of all CFT

correlation functions on the right hand side. On dimensional grounds,

〈O(p)O(0) . . .O(0)︸ ︷︷ ︸
k

〉CFT ∼ p(k+1)∆−kd . (4.33)

For a relevant scalar (∆ < d) infinitely many terms become IR divergent, a known issue

necessitating the use of an IR regulator in massless theories. However, in the context of

holography, the existence of the homogeneous domain wall solution implies that the zero-

momentum limit exists and is free of an IR regulator. We can examine how holography
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treats the regulation of IR divergences by taking a zero-momentum limit of the CFT n-

point function. Practically, this can be obtained by taking (minus) n− 1 derivatives of the

1-point function and setting φ(d−∆) = 0.

Consider the example analyzed in the previous section. From (4.29) we find

〈O〉 = − 1

lκ2
φ3

(1)

(
η log g +

(
η̃ − 1

4
η

))
, (4.34)

where g = Lφ(1) is the dimensionless UV coupling. If we consider the GPPZ theory with

η = 0, then 〈O〉 = −φ3
(1)η̃/(lκ

2) and the 4-point in the UV CFT is constant in momentum

space, 〈OOOO〉CFT = 6η̃
lκ2 . In position space this corresponds to an ultralocal expression

containing a product of delta functions. In the case that η 6= 0 one encounters a problem:

after taking 3 functional derivative the diverging logarithm precludes the φ(1) = 0 limit.

To understand this situation, recall that the logarithmic term in (4.29) is non-

perturbative: logarithms of the source, log φ(1), do not arise in perturbation theory. On

the other hand, logarithms of the radial variable, log z, can arise and indicate an anomaly

in the UV CFT n-point function. We can define the anomaly coefficient aUV for general

n (4.3) via the explicit dependence of the generating function on the renormalization scale,

− L ∂

∂L
WCFT =

aUV

lκ2

∫
ddxφn(d−∆) . (4.35)

On the level on the n-point function this means that

− L ∂

∂L
〈O(p)O(p1) . . .O(pn−1)〉CFT = (−1)nn!aUV , (4.36)

where we dropped the overall delta function due to momentum conservation.

If aUV vanishes, then the n-point function is a constant in momentum space, or equiv-

alently, an ultra-local product of (n − 1) Dirac deltas in position space. In particular, it

possesses a zero-momentum limit. If, however, aUV 6= 0, then instead of (4.33) the n-point

function behaves logarithmically, ∼ log p, preventing an unambiguous zero-momentum

limit. From the point of view of the perturbation theory, one would need to introduce

an IR regulator in order to analyze this situation. Here, however, holography grants us

access to the full IR-complete theory and hence the IR divergences are resolved once the

UV theory has been renormalized. The resolution manifests through the non-perturbative

appearance of the coupling in (4.34). This can be regarded as a holographic mechanism

of the concept introduced in [40, 41], where it was shown, in general QFTs, that logarith-

mic IR divergences in correlation functions are regulated by non-perturbative effects that

introduce logarithms of the coupling constant, exactly as we find here.

In the remainder of this section we clarify the intricate UV/IR relation that relates the

emergence of the non-perturbative logarithmic η-term in the prepotential (4.25) with the

existence of the anomaly, aUV, in the UV CFT. We will show that η is in fact proportional

to the anomaly coefficient,

η = −naUV . (4.37)

The value of η is uniquely determined in terms of the potential of the gravitational theory.

On the other hand, the value of the anomaly is determined solely by the UV CFT of the
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dual theory. Since in the previous section we conjectured that η = 0 in any consistent

holographic theory, this conjecture provides the very strong constraint, aUV = 0, on the

UV CFT of the field theory dual.

In order to relate η and aUV notice that by solving the equation of motion (3.27) for

the prepotential (4.24) we find that the regulated solution exhibits the vev in (4.28). For

a general value of n this generalizes to,

φ(∆̂) = − ŵn

2∆̂− d̂
φn̂−1

(d̂−∆̂)
, 〈O〉 =

ŵn
lκ2

φn̂−1

(d̂−∆̂)
. (4.38)

In particular, the bulk field, Φ̂, with the boundary conditions appropriate for the evaluation

of correlation functions must satisfy this relation. The divergence of ŵn propagates to the

regulated n-point function. Although in the previous section we find a finite vev in the

presence of sources, the evaluation of the CFT n-point correlation function will not have a

well-defined zero-momentum limit. Since this divergence is due to a divergence in the vev,

it must be removed via the addition of a local counterterm, just as in standard holographic

renormalization,

Sct =

(
− ŵn
n

+O(ε0)

)
1

lκ2

∫
dd̂x

√
γ(0)φ

n
(d̂−∆̂)

L((n−1)−v)ε . (4.39)

The explicit scale-dependence results in the scale-dependent contribution to the CFT gener-

ating functional. By taking the derivative with respect to the scale of 〈e−Sct〉 and comparing

with (4.35) we find

aUV = − lim
ε→0

ε((n− 1)− v)ŵn
n

= −η
n
, (4.40)

where we used the generalization of (4.26) to any n:

η = lim
ε→0

ε((n− 1)− v)ŵn . (4.41)

A condition for aUV to vanish in any field theory dual to a consistent theory of quantum

gravity represents a strong testable prediction.

The relation between IR divergences, non-perturbative effects, and the UV anomaly

that we have outlined in this section sheds new light on known subtleties in field theory.

For example, there existed a confusing mismatch between one-loop exact beta function and

the NSVZ beta function, [42, 43] for the gauge couplings of supersymmetric SU(N) gauge

theories in 4 dimensions. This mismatch was explained in [44] by careful examination of the

IR issues; it was shown that the difference arises due to the use of the full 1PI coupling in

one case and the Wilsonian coupling in the other. The two couplings differ by the inclusion

of IR effects, involving a logarithmic redefinition reminiscent of (4.31). In the context of this

paper, the coupling ϕL represents the full 1PI coupling as introduced in [34]. Furthermore,

in [45] it is shown that the emergence of such terms is directly related to the existence of

the UV axial anomaly, resonating with (4.36). It would be extremely interesting to see if

the analysis leading to (4.40) can be extended to gauge couplings and other anomalies.
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4.4 Mixed boundary conditions

In this section we would like to briefly mention the extension of the source renormalization

procedure to non-standard boundary conditions. In this case, the renormalized coupling

will depend non-locally on the bare source. For generic values of d and ∆ the choice of

W−ξ for ξ 6= 0 induces a non-local redefinition of the source via (4.38). The new coupling

constant gξL satisfies

gξL = Ψ̂ξ(Lεφ(ε)) = gL + φ(∆)L
∆ + . . . . (4.42)

In the spirit of [34] we can regard this as imposing ‘mixed’ boundary conditions. Such a

redefinition corresponds to a complicated multi-trace deformation. Indeed, the new 1-point

function to the leading order is

〈O(x)〉ξ =
δS

δgξL(x)
=

∫
ddu

δS

δgL(u)

δgL(u)

δgξL(x)

= 〈O(x)〉0 +
L∆

2∆− d

∫
ddu〈O(u)〉0〈O(u)O(x)〉0lκ2 + . . . , (4.43)

where the subscript 0 refers to evaluating correlation functions where the source renor-

malization is local, i.e. ξ = 0. This last term can be regarded as a regulated version of

the integral
∫

ddu〈O2(u)O(x)〉0, a sign of the double-trace deformation. This behavior is

similar to that encountered in the analysis of T T̄ -type deformations, [46, 47], where the

new source is a linear combination of the old source and vev. A careful analysis of this type

of source redefinition, which is unusual from the QFT perspective but of obvious interest

in holographic constructions, is a promising topic for future work.

5 Deformation by an irrelevant operator

Finally, we would like to demonstrate the application of the dimensional renormalization

procedure in the case that an IR CFT is deformed by an irrelevant operator. As an

illustrative example, we will consider the flow in AdS3 between two d = 2 CFTs [13].

The identification of renormalization scheme for this model should provide the precision

necessary to make checks between the gravity side and the recently proposed field theory

dual [48]. Specifically, the expansion of this work to renormalized stress tensor correlation

functions could be used to match c-funcitons computed directly in the CFT.

We begin by examining the superpotential and potential for the truncation of three-

dimensional supergravity to a single active scalar. Restoring factors of κ and the AdS

radius, and using a canonically normalized scalar field, the expressions of [13] become:

W = −13 + 20 cosh(κΦ)− cosh(2κΦ)

32lUV κ2

= − 1

lUV κ2
− Φ2

4lUV
+O(Φ4)

= − 1

lIRκ2
+

3

4lIR
(Φ− Φ∗)

2 +O((Φ− Φ∗)
3) .

(5.1)
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The flow is between the critical points of the potential located at Φ = 0 (UV) and κΦ∗ =

arcosh(5) (IR). The two AdS radia are related via lUV = 2lIR. From the expansion of the

potenial,

V =
(3 + cosh(κΦ))2 (−21− 12 cosh(κΦ) + cosh(2κΦ))

512l2UV κ
2

= − 1

l2UV κ
2
− 3

8lUV
Φ2 +O(Φ4)

= − 1

l2IRκ
2

+
21

8lIR
(Φ− Φ∗)

2 +O((Φ− Φ∗)
3) ,

(5.2)

we see that the UV and IR masses correspond to a deformation in the UV with ∆UV = 3/2

that flows to an IR CFT with an irrelevant deformation, ∆IR = 7/2.

This model represents a very rare case where the domain wall between two regular

fixed points is known analytically. Integrating the equations of motions we find:

(5− cosh(κΦ))(cosh(κΦ) + 1)2

(cosh(κΦ)− 1)3
=

128e3r/lUV

φ6
(1/2)

, e6A(r) =
c2(5− cosh(κΦ))4

(cosh(κΦ) + 1)(cosh(κΦ)− 1)6
,

(5.3)

where one integration constant has been fixed in terms of the UV source, φ(1/2), and the

constant c2 can be absorbed by a shift in r. Expanding around the UV fixed point in

powers of zUV = lUV e−r/lUV , we notice that the situation is the same as the section 4.1;

there appears to be a non-vanishing vev coefficient, φ(3/2),

κΦ = φ(1/2)
√
zUV +

1

48
φ3

(1/2) (zUV )3/2 +O(z
5/2
UV ) . (5.4)

This occurs because the condition (4.3) is satisfied with n = 4. Going through the source

renormalization procedure for a general potential with the expansion (4.21) we find that

the expansion coefficient,

φ(3/2+ε) =
4λ4 + 1

4(3− v)ε
φ3

(1/2) +O(ε0) , (5.5)

has a finite ε → 0 limit due to a cancellation with a special value of the quartic coupling,

λ4 = −1/4. This is the same type of cancellation, which occurs in all supergravity domain

walls, that was noted in section 4.2 and motivates the conjecture at the end of that section.

One can also expand around the IR fixed point in powers of z−1
UV ,

κΦ = arcosh(5)−
√

2

3

512

9φ6
(1/2)

z−3
UV +O(z−6

UV ) . (5.6)

However, this needs to be modified if we want to read off the CFT data as usual from

a near-boundary expansion. First, we should shift the field so that the IR critical point

is the origin of field space: κΦ = κΦ̃ + arcosh(5). Second, we should rescale the radial

coordinate so that the radial expansion is given in terms of the radius of the IR AdS:
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0 cosh-1(5)

0

gUV

β
g U
V

Figure 3. Beta functions for the UV coupling in the Berg-Samtleben flow. The solid line repre-

sents the beta function of the dimensional regularization, the dashed line ‘holographic beta func-

tion’ (3.30), and the dotted line the classical beta function of the UV coupling as advocated in [49].

zIR = e−r/lIR = e−2r/lUV = z2
UV . Finally, we can write the solution in terms of the bare IR

source, φ̃(−3/2). Then, the IR expansion, at r = −∞, is given in terms of z−1
IR by,

κΦ̃ = φ̃(−3/2)z
−3/2
IR +

√
3

2

5

4
φ̃2

(−3/2)z
−3
IR +O(z

−9/2
IR ) . (5.7)

Thus, we see that the flow into the IR fixed point matches the expectations for a deforma-

tion by an irrelevant operator with weight ∆IR = 7/2 and exhibits no vev. Furthermore,

the condition (4.3) is not satisfied for integer n in the IR, so the renormalization procedure

is straightforward and no additional counterterms are needed.

The beta function given by (3.29) is analytic and non-perturbative. The exact ex-

pression given by solving the cubic equation (5.3) is not enlightening, but it is plotted in

figure 3. However, we can expand the beta function around both the UV and IR fixed point:

βgUV(gUV) = lUVκW
′(κ−1gUV) = −1

2
gUV −

g3
UV

48
+O(g5

UV) ,

βgIR(gIR) = lIRκW
′(κ−1gIR) =

3

2
gIR +

15

8

√
3

2
g2

IR +O(g3
IR) .

(5.8)

First, we note that the UV expansion does not agree with the result of [49]; their result

corresponds to taking only the first term in the UV expansion. The reason for this is

that the beta function is scheme-dependent and while the authors carry out traditional

holographic renormalization and arrive at the classical beta function for the bare source,

we have computed the beta function for the renormalized source, corresponding to

dimensional renormalization on the field theory side. Second, we note that this allows us

to define the beta function to all orders in perturbation theory which can also be analyzed

from an IR perspective.
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6 Conclusions

In this paper we have presented the first instance of a bulk holographic renomalization

scheme which corresponds to a know field theory renormalization scheme: dimensional

renormalization. In this scheme we can identify the running coupling as a local function of

the bare source which satisfies the bulk equations of motion in the zero-momentum limit,

or equivalently, the RG equations. Using this identification, the holographic beta function

is given by W ′ as opposed to −(d − 1)W ′/W , as previously proposed. Furthermore, the

prepotential is uniquely determined in the dimensional regularization scheme as the limit

of the specific family of regulated prepotentials, Ŵ−0 , which produce regulated solutions

with vanishing vev-coefficients, φ(∆̂) = 0.

The process of source renormalization in the holographic renormalization scheme pre-

sented here allows us to understand the deformation of CFTs by marginal operators which

spoil asymptotically AdS boundary conditions. Despite the emergence of an infinite tower

of logarithmic terms, we identify the renormalized source uniquely. Additionally, we es-

tablish the relation between the holographic renormalization scheme as the on-shell renor-

malization condition of the dual QFT, for the first time making a direct connection to the

well-known renormalization scheme of the dual QFT. This will be used to better under-

stand the holographic correspondence for marginal deformations such as the confining field

theory dual to the Klebanov-Strassler throat. Furthermore, the process can be extended

to relevant and irrelevant deformations, offering new precision in many known holographic

scenarios.

The study of well-known supergravity domain walls using this technique indicates

that specific tunings in supergravity potentials prevent a non-analytic behavior of the

beta function which we relate to the absence of a conformal anomaly. We conjecture

that this cancellation in necessary and should be engineered into bottom-up holographic

constructions. This conjecture can be related to a statement that the conformal anomaly

should vanish in UV holographic CFTs.
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