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1 Introduction

The definition and usage of multiparticle superfields [1, 2] of supersymmetric Yang-Mills

(SYM) theory [3] has proved to be an essential feature in obtaining compact expressions for

high-multiplicity amplitudes in superstring [4] and field theories [5] using the pure spinor

formalism [6, 7].

In the simplest formulation of multiparticle superfields in the Lorenz gauge, their defini-

tion is given by a straightforward recursion over the particle labels [2]. While this recursive

definition has its own merits and is certainly useful in relating the new expressions for

tree-level amplitudes [8] to the standard Berends-Giele recursions [9], there is an alterna-

tive formulation related by a non-linear gauge transformation whose properties have more

appeal, the BCJ-gauge representation [1]. As will be reviewed in section 2.3, the superfields

in this gauge satisfy generalized Jacobi identities [10] in their particle labels, for example

Am
12 = −Am

21, A
m
123 + Am

231 + Am
312 = 0, and so forth. In this gauge, they constitute the

natural building blocks used in the expressions of local SYM numerators satisfying the

Bern-Carrasco-Johansson numerator identities [11, 12] at tree- [13] and loop-level [14, 15].

As explained in [2], the gauge transformations required to go to the BCJ gauge are

encoded in so-called redefining superfields H[P,Q] to be reviewed below. Until now, the

explicit expressions of these superfields were known only up to multiplicity five [2]. In

section 4.2.1 of this paper this restriction will be lifted when we propose a recursive formula

for H[P,Q], namely

H[P,Q] = (−1)|Q| |P |

|P |+ |Q|

∑

XjY=ṗQ̃

(−1)|Y |H ′
Ỹ ,j,X

− (P ↔ Q) , H[i,j] = 0 , (1.1)

where the auxiliary superfields H ′
A,B,C are defined by

H ′
P,Q,R ≡ HP,Q,R +

[

1

2
H[P,Q](kPQ ·AR) + cyclic(P,Q,R)

]

−

[

∑

XjY =P
δ(Y )=R⊗S

(kX · kj)
[

H[XR,Q]H[jS,R] − (X ↔ j)
]

+ cyclic(P,Q,R)

]

,

HP,Q,R ≡ −
1

4
Am

P An
QF

mn
R +

1

2
(WPγmWQ)A

m
R + cyclic(P,Q,R) .
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As a consequence of the quadratic corrections H2 in these formulas, we will show in sec-

tion 5.3 that the superfields satisfying the generalized Jacobi identities follow from a stan-

dard gauge transformation of SYM theory in its finite form,

A
BCJ
m = UA

L
mU−1 + ∂mUU−1 with U = exp(−H) , (1.2)

whose series representation is given by

A
BCJ
m = A

L
m+[H, ∂m]−[H,AL

m]−
1

2
[H, [H, ∂m]]+

1

2
[H, [H,AL

m]]+
1

3!
[H, [H, [H, ∂m]]]+· · · (1.3)

We note that in [2] only the first three terms of (1.3) were identified.

While in pursuit of finding these formulas we also filled some gaps of the previous

discussions. These mostly concern writing down closed formulas for expressing contact

terms (in a multitude of different situations) where the multiparticle labels are given in

terms of an arbitrary configuration of nested Lie brackets. As will be explained in section 3,

we found a novel recursive description of such terms which is universal and whose backbone

is given by the solution to a purely combinatorial problem. Several equations relevant to

the framework of multiparticle superfields can be written down using this newly found

recursion and we prove several associated results.

Finally, in the appendices we write down some longer examples of applications of

several recursive maps from the main text, among other things.

2 Review

In this section we review some aspects of the construction of 10d supersymmetric Yang-

Mills superfields following the recent discussions of [1, 2] using the framework of pertur-

biners [16, 17]. For the original references on the covariant description of super Yang-Mills

in ten dimensions, see [18, 19]

2.1 Notation and conventions

2.1.1 Ten-dimensional superspace

The ten-dimensional superspace coordinates are denoted {xm, θα}, where m = 0, . . . , 9

are the vector indices and α = 1, . . . , 16 denote the spinor indices of the Lorentz group.

The spinor representation is based on the 16× 16 Pauli matrices γmαβ = γmβα satisfying the

Clifford algebra γ
(m
αβ γ

n)βγ
= 2ηmnδ

γ
α. In this paper the (anti)symmetrization of n indices

does not include a factor of 1
n! .

2.1.2 Multiparticle index notation

In the following discussions we will use a notation based on “words” composed of “letters”

from the alphabet of natural numbers. Capital letters from the Latin alphabet are used

to represent words (e.g. P = 1423) while their composing letters are represented by lower

case letters (e.g. i = 3). The length of a word P is denoted |P | and it is given by the

number of its letters. The reversal of a word P = p1p2 . . . p|P | is P̃ = p|P | . . . p2p1. The

– 2 –
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word notation is also used in place of arbitrary commutators, such as P = [1, 2] ≡ 12− 21;

the context will disambiguate whether a word denotes a sequence of letters or a bracketing

structure. In addition, when the bracketing structure is nested from left to right such as

P = [[[[1, 2], 3], 4], 5] we will often write it as P = 12345. Such structures may be referred

to as (left-to-right) “Dynkin brackets”

The multiparticle momentum for a word with letters (labels) from massless particles

(ki · ki) = 0 and its associated Mandelstam invariant are given by

kmP ≡ kmp1 + · · ·+ kmp|P |
, sP ≡

1

2
(kP · kP ) . (2.1)

For example km123 ≡ km1 + km2 + km3 and s123 = s12 + s13 + s23.

2.2 Non-linear supersymmetric Yang-Mills

To describe ten-dimensional SYM one introduces Lie algebra-valued superfield connections

Aα = Aα(x, θ) and Am = Am(x, θ) and the supercovariant derivatives [18, 19],

∇α ≡ Dα − Aα , ∇m ≡ ∂m − Am , (2.2)

where the superspace derivative Dα ≡ ∂
∂θα

+ 1
2(γ

mθ)α∂m satisfies {Dα, Dβ} = γmαβ∂m. The

constraint
{

∇α,∇β

}

= γmαβ∇m and the associated Bianchi identities imply the following

non-linear equations of motion [18],

{

∇α,∇β

}

= γmαβ∇m ,
{

∇α,W
β
}

=
1

4
(γmn)α

β
Fmn ,

[

∇α,∇m

]

= −(γmW)α ,
[

∇α,F
mn

]

= (W[mγn])α ,
(2.3)

where

Fmn ≡ −
[

∇m,∇n

]

, W
α
m ≡

[

∇m,Wα
]

. (2.4)

These equations are invariant under the gauge transformations of the superpotentials

δΩAα =
[

∇α,Ω
]

, δΩAm =
[

∇m,Ω
]

(2.5)

which in turn induce the gauge transformations of their field-strengths δΩW
α =

[

Ω,Wα
]

,

δΩF
mn =

[

Ω,Fmn
]

, and δΩW
α
m =

[

Ω,Wα
m

]

where Ω ≡ Ω(x, θ) is a Lie algebra-valued gauge

parameter superfield. The equations of motion (2.3) can also be rewritten as

{∇(α,Aβ)} = γmαβAm {∇α,W
β} =

1

4
(γmn) β

α Fmn

[∇α,Am] = [∂m,Aα] + (γmW)α , [∇α,F
mn] = (W[mγn])α .

(2.6)

– 3 –



J
H
E
P
1
0
(
2
0
1
9
)
0
2
2

2.2.1 Non-linear wave equations and Berends-Giele supercurrents

Alternatively, in the Lorenz gauge (defined by the constraint [∂m,Am] = 0), the equations

of motion (2.3) are equivalent to the non-linear wave equations [2],

�Aα =
[

Am, [∂m,Aα]
]

+
[

(γmW)α,Am

]

(2.7)

�Am =
[

Ap, [∂
p,Am]

]

+
[

F
mp,Ap

]

+ γmαβ{W
α,Wβ}

�W
α =

[

Am, [∂m,Wα]
]

+
[

A
m,Wα

m

]

+
1

2

[

Fmn, (γ
mn

W)α
]

�F
mn = [Ap, [∂

p,Fmn]] + [Ap,F
p|mn] + 2[Fmp,Fp

n] + 4{(W[mγn])α,W
α} ,

where �K ≡ [∂m, [∂m,K]] and F
p|mn ≡ [∇p,Fmn].

To solve the wave equations (2.7) we use the perturbiner method of Selivanov [16, 17].

In this approach, one expands the superfields K ∈ {Aα,A
m,Wα,Fmn} as a series with

respect to the generators tij of a Lie algebra summed over all possible non-empty words

P as

K ≡
∑

P

KP t
P , tP ≡ tp1tp2 · · · tp|P | . (2.8)

After plugging these series in (2.7) one learns that the expansion coefficients KP ∈

{AP
α ,A

m
P ,Wα

P ,F
mn
P } turn out to be the Berends-Giele currents,

KP =
1

sP

∑

XY=P

K[X,Y ] , (2.9)

where sP = 1
2k

2
P arises from the � operator acting on plane waves of momentum kmP and

A[P,Q]
α = −

1

2

[

AP
α (k

P · AQ) +AP
m(γmWQ)α − (P ↔ Q)

]

, (2.10)

A[P,Q]
m = −

1

2

[

AP
m(kP · AQ) +AP

nF
Q
mn − (WPγmWQ)− (P ↔ Q)

]

,

Wα
[P,Q] = −

1

2

[

Wα
P (kP · AQ) +Wmα

P Am
Q +

1

2
(γrsWP )

αFrs
Q − (P ↔ Q)

]

,

Fmn
[P,Q] = −

1

2

[

Fmn
P (kP · AQ) + F

p|mn
P AQ

p + 2Fmp
P Fn

Qp + 2γ
[m
αβW

n]α
P Wβ

Q − (P ↔ Q)
]

.

Notice that the above Berends-Giele currents are non-local superfields as they contain

inverse factors of Mandelstams variables.

2.2.2 Linearized description of 10d SYM

The linearized description of ten-dimensional super-Yang-Mills is obtained by discarding

the quadratic terms from the equations of motion (2.6) and yields

DαA
i
β +DβA

i
α = γmαβA

i
m , DαF

i
mn = ∂m(γnWi)α − ∂n(γmWi)α ,

DαA
i
m = (γmWi)α + ∂mAi

α , DαW
β
i =

1

4
(γmn) β

α F i
mn .

(2.11)

In the context of scattering amplitudes, the superfields are labelled with a distinct natural

number i to associate them with the i-th particle taking part in the scattering process.

This association will be generalized below.

– 4 –
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2.3 Generalized Jacobi identities

As we will discuss below in the context of multiparticle superfields, there is the notion of a

superfield satisfying certain symmetries dubbed BCJ symmetries in [2]. These symmetries

can be given a precise mathematical characterization in terms of what is called generalized

Jacobi identities in the mathematics literature [10, 20].

Let A be a word and ℓ(A) its left-to-right bracketing defined in (A.1). The generalized

Jacobi identities correspond to the elements in the kernel of ℓ. For example

ℓ(12 + 21) = 0 , ℓ(123 + 231 + 312) = 0 , (2.12)

which correspond with the antisymmetry and Jacobi identity of the Lie bracket.

Using the identity ℓ(Pℓ(Q)) = [ℓ(P ), ℓ(Q)] it is easy to see that ℓ(Aℓ(B)+Bℓ(A)) = 0

for any words A and B. In addition, due to the recursive definition of ℓ if ℓ(P ) = 0 it

also follows that ℓ(PQ) = 0 for any word Q. Therefore, for objects labelled by words, the

generalized Jacobi identities can be characterized by an abstract operator £k

£k ◦KABC ≡ KAℓ(B)C +KBℓ(A)C , ∀A,B 6= ∅ and ∀C such that |A|+ |B| = k. (2.13)

We emphasize the arbitrary partition of non-empty words A and B in the above definition

(while C can be empty), leading to a non-unique operator £. For instance

£3 ◦K123 = K123 −K132 +K231 , for A = 1, B = 23 and C = ∅ (2.14)

£3 ◦K123 = K123 +K312 −K321 , for A = 12, B = 3 and C = ∅ .

Note that if £2 ◦K123 = 0 then the right-hand side of the expressions in (2.14) agree and

can be written as the cyclic sum K123 +K231 +K312.

Definition 1 The objects KP are said to satisfy generalized Jacobi identities iff

£k ◦KP = 0 , ∀k ≤ |P | . (2.15)

The generalized Jacobi identities are also called BCJ symmetries.

The defining identities for objects KP of increasing multiplicities can be written as

K12C +K21C = 0, ∀ C, (2.16)

K123C +K231C +K312C = 0, ∀ C,

K1234C +K2143C +K3412C +K4321C = 0, ∀ C.

where we have already used the fact that KP satisfies the BCJ symmetries £k ◦KP = 0

for all k ≤ |P | to simplify the appearance of the above. This fact in general can be used

to show the equivalence of the BCJ symmetries for the various partitions of P = ABC as

mentioned after the example (2.14).

It is not hard to be convinced that the BCJ symmetries are equivalent to the symme-

tries of a concatenated string of structure constants, K12...p ↔ f12a2fa23a3fa34a4 ...fap−1pap .

– 5 –
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If KP satisfies BCJ symmetries then it is convenient to use the notation Kℓ(P ) ≡ KP .

In particular, this implies that for superfields in the BCJ gauge we have [21],

K[P,Q] = KPℓ(Q) . (2.17)

For example, K[12,34] = K1234 − K1243. In addition, it follows from the definitions (2.13)

and (2.15) that if KP with |P | = n satisfies generalized Jacobi identities then

KAiB = −Kiℓ(A)B , A 6= ∅ , ∀B , (2.18)

which implies that there is an (n− 1)! basis of KP .

3 Contact terms for general Lie polynomials

For the purpose of this paper, P is a Lie polynomial if it is a linear combination of words

written in terms of (nested) Lie brackets [x, y] ≡ xy − yx. For example P = [[1, 2], 3] =

123− 213− 312 + 321 is a Lie polynomial while Q = 123 is not.1

In this section we will introduce mathematical maps acting on words and Lie polyno-

mials that will play a central role in later discussions about several aspects of local and

non-local multiparticle superfields.

3.1 Planar binary tree map on words

A nested Lie bracket can be interpreted as a planar binary tree and vice versa [23]. In

the context of tree-level scattering amplitudes one can map each planar binary tree to a

product of inverse Mandelstam invariants. For example the two binary trees with three

leaves are mapped to

1 2 3 1 2 3

[[1,2],3]
s12s123

[1,[2,3]]
s23s123

Mapping the sum over all binary trees with a given number of leaves will be related to

Berends-Giele currents later on, and the explicit expansions can be generated from the

following recursion.

Definition 2 (Binary tree map) A word P of length |P | is recursively mapped to a Lie

polynomial built from a sum over all planar binary trees with |P | leaves as

b(i) = i, b(P ) =
1

sP

∑

XY=P

[b(X), b(Y )] , (3.1)

where sP is the Mandelstam invariant (2.1).

1It may not be immediately obvious that a given linear combination of words is a Lie polynomial. For

P = 12 − 21 this is clear, but it is harder to see that P = 1324 + 1423 − 1432 − 2134 + 2341 − 3124 +

3214− 3241− 4123 + 4213− 4231 + 4312 is the Lie polynomial P = [[[1, 2], 3], 4] + [[[2, 3], 4], 1]. A theorem

by Dynkin-Specht-Wever states that if ℓ(P ) = |P |P then P is a Lie polynomial [20], and this fact can be

used to find the expression written in terms of nested Lie brackets [22].

– 6 –



J
H
E
P
1
0
(
2
0
1
9
)
0
2
2

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

b(1234) = [[[1,2],3],4]
s12s123s1234

[[1,[2,3]],4]
s23s123s1234

[[1,2],[3,4]]
s12s34s1234

[1,[2,[3,4]]]
s34s234s1234

[1,[[2,3],4]]
s23s234s1234

+ + + +

+ + + +

Figure 1. The sum generated by the recursion (3.1) of b(1234).

The number of terms in the recursion above is given by the Catalan numbers

1, 2, 5, 14, . . . and one gets, for example,

b(1) = 1, b(12) =
[1, 2]

s12
, b(123) =

[[1, 2], 3]

s12s123
+

[1, [2, 3]]

s23s123
,

b(1234) =
[[[1, 2], 3], 4]

s12s123s1234
+

[[1, [2, 3]], 4]

s123s1234s23
+

[[1, 2], [3, 4]]

s12s1234s34
+

[1, [[2, 3], 4]]

s1234s23s234
+

[1, [2, [3, 4]]]

s1234s234s34
. (3.2)

These expansions are easily seen to be examples of Lie polynomials [20], see figure 1 for

the diagrammatic representation of b(1234).

3.2 Contact terms associated to Lie polynomials

Given the Lie polynomial [1, 2] we can associate to it the following contact terms propor-

tional to (k1 · k2) = s12; C ◦ [1, 2] ≡ (k1 · k2)(1 ⊗ 2 − 2 ⊗ 1). It is easy to see that this

definition leads to a deconcatenation of b(12),

C ◦ b(12) = b(1)⊗ b(2)− b(2)⊗ b(1) =
∑

XY=12

(

b(X)⊗ b(Y )− (X ↔ Y )
)

. (3.3)

We would like to extend this action to an arbitrary Lie polynomial C ◦ [P,Q] such that

C ◦ b(P ) =
∑

XY=P

(

b(X)⊗ b(Y )− (X ↔ Y )
)

. (3.4)

The following definition does the job, as will be proven below.

Definition 3 (Contact term map) Let C be the coproduct C : Lie → Lie ⊗ Lie that

maps a Lie polynomial into the tensor product of two Lie polynomials recursively by

C ◦ i ≡ 0 (3.5)

C ◦ [P,Q] ≡
(

C ◦ P
)

∧Q+ P ∧
(

C ◦Q
)

+ (kP · kQ)
(

P ⊗Q−Q⊗ P
)

,

where ∧ is defined by2

(A⊗B) ∧ C ≡ [A,C]⊗B +A⊗ [B,C] (3.6)

A ∧ (B ⊗ C) ≡ [A,B]⊗ C +B ⊗ [A,C] ,

and kmP ≡ kmp1p2...p|P |
, where pi for i = 1 to i = |P | are the letters of P .

2Note the relations (3.6) should be used to remove ∧ operations in the reverse order to that which they

are introduced. Without such a criterion ambiguities can arise when objects of the form A∧ [B,C]∧D are

considered.

– 7 –
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As an immediate consistency check, we note that the definitions given in (3.6) imply

that C ◦ [Q,P ] = −C ◦ [P,Q]. Note that when the contact term map is used to generate

combinations of superfields, the notation described in (C.5) and (5.1) may be used. For

example applications of the C map, see the appendix D.

Proposition 1 The C map satisfies

C ◦ b(P ) =
∑

XY=P

(

b(X)⊗ b(Y )− (X ↔ Y )
)

. (3.7)

Proof. The proof is inductive in nature. When the word P has length two the statement

has been verified explicitly in (3.3). We now assume that the relation (3.7) is satisfied for

any word P of length less than n, and let Q be a word of length n. Then we get

sQC ◦ b(Q) = C ◦
∑

XY=Q

[b(X), b(Y )] (3.8)

=
∑

XY=Q

[

(C ◦ b(X)) ∧ b(Y ) + b(X) ∧ (C ◦ b(Y ))

+ (kX · kY )(b(X)⊗ b(Y )− b(Y )⊗ b(X))
]

where we have used the definition of the contact term algorithm (3.5). Now we separate the

above into the three possible cases; both of |X| and |Y | being greater than 1, |X| = 1, and

|Y | = 1. We then use that C ◦b(i) = 0 for i a letter, and that the induction hypothesis (3.7)

holds for all C ◦ b(P ) such that |P | < |Q|, so that every application of the map C can be

removed from this equation. This leaves us with

sQC ◦ b(Q) =
∑

XY=Q

(kX · kY )
(

b(X)⊗ b(Y )− b(Y )⊗ b(X)
)

(3.9)

+
∑

XY =Q
|X|>1,|Y |>1

∑

AB=X

(

b(A)⊗ b(B)− b(B)⊗ b(A)
)

∧ b(Y )

+
∑

XY =Q
|Y |=1

∑

CD=X

(

b(C)⊗ b(D)− b(D)⊗ b(C)
)

∧ b(Y )

+
∑

XY =Q
|X|>1,|Y |>1

b(X) ∧
∑

CD=Y

(

b(C)⊗ b(D)− b(D)⊗ b(C)
)

+
∑

XY =Q
|X|=1

b(X) ∧
∑

AB=Y

(

b(A)⊗ b(B)− b(B)⊗ b(A)
)

Absorbing the |X| = 1 and |Y | = 1 summations into the |X| > 1, |Y | > 1 cases we get

sQC ◦ b(Q) =
∑

XY=Q

(kX · kY )
(

b(X)⊗ b(Y )− b(Y )⊗ b(X)
)

(3.10)

+
∑

XY =Q
|X|>1

∑

AB=X

(

b(A)⊗ b(B)− b(B)⊗ b(A)
)

∧ b(Y )

+
∑

XY =Q
|Y |>1

∑

CD=Y

b(X) ∧
(

b(C)⊗ b(D)− b(D)⊗ b(C)
)
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Now we shall consider the two double sums. First of all we merge them using that, for

example,
∑

XY=Q,|X|>1

∑

AB=X is the same as
∑

ABY=Q. Then we remove the ∧ using the

definition (3.6) to get

∑

ABY=Q

(

b(A)⊗ b(B)−b(B)⊗b(A)
)

∧ b(Y ) +
∑

XCD=Q

b(X) ∧
(

b(C)⊗b(D)−b(D)⊗ b(C)
)

=
∑

ABY=Q

(

[b(A), b(Y )]⊗b(B)+b(A)⊗[b(B), b(Y )]−[b(B), b(Y )]⊗b(A)−b(B)⊗[b(A), b(Y )]
)

+
∑

XCD=Q

(

[b(X), b(C)]⊗ b(D) + b(C)⊗ [b(X), b(D)]

− [b(X), b(D)]⊗ b(C)− b(D)⊗ [b(X), b(C)]
)

We can now group the terms into two sets of four in a convenient way

=

(

∑

ABY=Q

(

[b(A), b(Y )]⊗ b(B)− b(B)⊗ [b(A), b(Y )]
)

(3.11)

+
∑

XCD=Q

(

b(C)⊗ [b(X), b(D)]− [b(X), b(D)]⊗ b(C)
)

)

+

(

∑

ABY=Q

(

b(A)⊗ [b(B), b(Y )]− [b(B), b(Y )]⊗ b(A)
)

+
∑

XCD=Q

(

[b(X), b(C)]⊗ b(D)− b(D)⊗ [b(X), b(C)]
)

)

which we will now look at separately. With the first set of terms, it is clear from relabeling

the second sum that it is just

∑

ABY=Q

(

[b(A), b(Y )]⊗ b(B)− b(B)⊗ [b(A), b(Y )]+ b(B)⊗ [b(A), b(Y )]− [b(A), b(Y )]⊗ b(B)
)

which is identically zero. The second set of terms in (3.11) can be simplified using the

definition of the b map (3.1) leading to

∑

ABY=Q

(

b(A)⊗ b(BY )sBY − sBY b(BY )⊗ b(A)
)

(3.12)

+
∑

XCD=Q

(

sXCb(XC)⊗ b(D)− b(D)⊗ b(XC)sXC

)

.

Then, since B and Y are adjacent everywhere they appear in the first sum, we can condense

them into a single word, and likewise for X and C in the second sum. This leaves us with3

∑

XY=Q

sY

(

b(X)⊗ b(Y )− b(Y )⊗ b(X)
)

+
∑

XY=Q

sX

(

b(X)⊗ b(Y )− b(Y )⊗ b(X)
)

. (3.13)

3There should be a |Y | > 1 in the first sum and a |X| > 1 in the second, as these words come from

combining two words of non-zero length. This can be left implicit since sP = 0 if |P | = 1.
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We now return to (3.8) and, using that the double sum terms are given by (3.13), we finally

obtain

C ◦ b(Q) =
1

sQ

∑

XY=Q

[

(sX + sY + (kX · kY ))
(

b(X)⊗ b(Y )− b(Y )⊗ b(X)
)]

=
∑

XY=Q

(

b(X)⊗ b(Y )− b(Y )⊗ b(X)
)

(3.14)

since sX + sY + (kX · kY ) = sXY . Hence the result is proved. �

Lemma 1 If P has the form of a left-to-right Dynkin bracket P = [[...[p1, p2], p3], ...], p|P |],

C ◦ P =
∑

XjY =P
δ(Y )=R⊗S

(kX · kj)
[

XR⊗ jS − (X ↔ j)
]

, (3.15)

where the deshuffle map δ(Y ) is defined in (A.2).

Proof. We use induction. From (3.5) it follows that C ◦ [1, 2] = (k1 · k2)(1⊗ 2− 2⊗ 1). We

then suppose that the relation (3.15) is satisfied for the bracket P , and consider C ◦ [P, q],

where q is a single letter.

C ◦ [P, q] = (C ◦ P ) ∧ q + P ∧ (C ◦ q) + (kP · kq)(P ⊗ q − q ⊗ P ) (3.16)

=
∑

XjY =P
δ(Y )=R⊗S

(kX · kj)
(

XR⊗ jS − (X↔j)
)

∧ q + (kP · kq)(P ⊗ q−q ⊗ P )

=
∑

XjY =P
δ(Y )=R⊗S

(kX · kj)
(

XRq ⊗ jS +XR⊗ jSq − (X↔j)
)

+ (kP · kq)(P ⊗ q−q ⊗ P )

=
∑

XjY =P
δ(Y q)=R⊗S

(kX · kj)
(

XR⊗ jS − (X ↔ j)
)

+ (kP · kq)(P ⊗ q − q ⊗ P )

=
∑

XjY =Pq
δ(Y )=R⊗S

(kX · kj)
(

XR⊗ jS − (X ↔ j)
)

where δ is the deshuffle map (A.2). Hence if (3.15) is true for the Dynkin bracket P , it is

true for the Dynkin bracket [P, q], and so by induction the result is proved. �

This result is important, as it shows that the general redefinition formulae of this paper

reduce to those previously found in [2] when the multiplicity is less than six.

3.2.1 Contact term-like algorithms for simplifying redefinition terms

In this subsection a further pair of algorithms based around that of contact terms (3.5)

will be defined, which will be useful when simplifying the redefinition terms (4.25) in the

next section. The first of these will be denoted C̃, and is defined by

C̃ ◦ i ≡ 0, C̃ ◦ [A,B] ≡
(

C ◦A
)

∧̃B +A ∧̃
(

C ◦B
)

, (3.17)

(note the C map (3.5) on the right-hand side) where ∧̃ is defined by

(A⊗B) ∧̃C ≡ [A,C]⊗B , A ∧̃(B ⊗ C) ≡ [A,B]⊗ C . (3.18)
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In addition we define a related algorithm C̃ ′ in terms of C̃,

C̃ ′ ◦ i ≡ 0, C̃ ′ ◦ [A,B] ≡ C̃ ◦ [A,B] +
1

2
(kA · kB)(A⊗B −B ⊗A) . (3.19)

The following notation, similar to that of (C.5), will be used with these maps

C̃[[K,S]] ◦ [P,Q] ≡ [[K,S]] ◦
(

C̃ ◦ [P,Q]
)

, C̃ ′[[K,S]] ◦ [P,Q] ≡ [[K,S]] ◦
(

C̃ ′ ◦ [P,Q]
)

(3.20)

where the double bracket [[·, ·]] is defined in (5.1).

Lemma 2 The map C̃ satisfies

C̃ ◦ [P,Q] =
∑

XjY =P
δ(Y )=R⊗S

(kX · kj)
(

[XR,Q]⊗ jS − (X ↔ j)
)

− (P ↔ Q) , (3.21)

for any Dynkin brackets P and Q.

Proof. To see this we use the identity (3.15) as follows,

C̃ ◦ [P,Q] = (C ◦ P ) ∧̃Q+ P ∧̃(C ◦Q) (3.22)

=
∑

XjY =P
δ(Y )=R⊗S

(kX · kj)
(

XR⊗ jS − (X ↔ j)
)

∧̃Q+ P ∧̃
∑

XjY =Q
δ(Y )=R⊗S

(kX · kj)
(

XR⊗ jS − (X ↔ j)
)

=
∑

XjY =P
δ(Y )=R⊗S

(kX · kj)
(

[XR,Q]⊗ jS − (X ↔ j)
)

+
∑

XjY =Q
δ(Y )=R⊗S

(kX · kj)
(

[P,XR]⊗ jS − (X ↔ j)
)

,

the second equality coming from the definition (3.18). The result follows after using the

antisymmetry [P,XR] = −[XR,P ] in the final line. �

For illustrative examples of the C̃ map, see the appendix D.2.

4 Redefinitions of local multiparticle superfields

In this section we write down the redefinition algorithms to obtain multiparticle superfields

in the so-called BCJ gauge starting from both the Lorenz and hybrid gauges with the most

general bracketing configurations. The characterization of these redefinitions as a gauge

transformation was identified in [2] and it will be reviewed and expanded in the next

section.

4.1 Multiparticle superfields

It was shown in [1, 2] that the single-particle description admits a generalization in terms

of multiparticle superfields AP
α (x, θ), A

P
m(x, θ), Wα

P (x, θ) and FP
mn(x, θ), which, for conve-

nience, are collected in the set KP

KP ∈ {AP
α (x, θ), A

m
P (x, θ), Wα

P (x, θ), F
mn
P (x, θ)} . (4.1)

We will review two different ways to construct them below. At the same time we will

seamlessly fill some gaps in the discussions of [1, 2] by utilizing the framework developed

in the previous section.
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4.1.1 Multiparticle superfield in the Lorenz gauge

The generalization of the single-particle linearized superfields of (2.11) to an arbitrary

number of labels follows from the local version of the recursive solution to the non-linear

wave equations (2.7) and can be summarized by the following definition:4

Definition 4 (Lorenz gauge) Multiparticle super-Yang-Mills superfields in the Lorenz

gauge are defined starting with the multiplicity-one superfields Âi
α, Â

i
m, Ŵα

i and F̂mn
i and

recursively for arbitrary nested bracketings via

Â[P,Q]
α = −

1

2

[

ÂP
α (k

P · ÂQ) + ÂP
m(γmŴQ)α − (P ↔ Q)

]

(4.2)

Â[P,Q]
m = −

1

2

[

ÂP
m(kP · ÂQ) + ÂP

n F̂
Q
mn − (ŴPγmŴQ)− (P ↔ Q)

]

Ŵα
[P,Q] =

1

4
F̂P
rs(γ

rsŴQ)α −
1

2
(kP · ÂQ)Ŵα

P −
1

2
Ŵmα

P Âm
Q − (P ↔ Q)

F̂mn
[P,Q] = −

1

2

[

F̂mn
P (kP · ÂQ) + F̂

p|mn
P ÂQ

p + 2F̂mp
P F̂n

Qp + 2γ
[m
αβŴ

n]α
P Ŵ

β
Q − (P ↔ Q)

]

where

Ŵmα
[P,Q] = kmPQŴ

α
[P,Q] − C[[Âm, Ŵα]] ◦ [P,Q] (4.3)

F̂
m|pq
[P,Q] = kmPQF̂

pq

[P,Q] − C[[Âm, F̂ pq]] ◦ [P,Q] ,

and the map C◦ is defined in (3.5). Alternatively, the field-strength can be written as

F̂mn
[P,Q] = kmPQÂ

n
[P,Q] − kmPQÂ

m
[P,Q] − C[[Âm, Ân]] ◦ [P,Q] . (4.4)

These recursions apply to arbitrary bracketing structures encompassed by P and Q. For

example Âm
[[1,2],[[3,4],5]] implies that P = [1, 2] and Q = [[3, 4], 5] and leads to

Âm
[[1,2],[[3,4],5]] =−

1

2

[

Â[1,2]
m (k12 · Â[[3,4],5]) + Â[1,2]

n F̂ [[3,4],5]
mn (4.5)

− (Ŵ [1,2]γmŴ [[3,4],5])− ([1, 2] ↔ [[3, 4], 5])
]

.

In addition, from the example for C ◦ [[1, 2], [3, 4]] in (D.1) we have for (4.4),

F̂mn
[[1,2],[3,4]] = km1234Â

n
[[1,2],[3,4]] − kn1234Â

m
[[1,2],[3,4]] (4.6)

− (k1 · k2)
(

Âm
[1,[3,4]]Â

n
2 + Âm

1 Ân
[2,[3,4]] − (1 ↔ 2)

)

− (k3 · k4)
(

Âm
[[1,2],3]Â

n
4 + Âm

3 Â[[1,2],4] − (3 ↔ 4)
)

− (k12 · k34)
(

Âm
[1,2]Â

n
[3,4] − Âm

[3,4]Â
n
[1,2]

)

.

Identifying the pair of words P and Q for the superfields on the right-hand side of (4.5)

leads to further applications of the recursions in (4.2) until eventually all superfields are of

single-particle nature.

4The Lorenz gauge discussion in [2] is missing the definition of the general field-strength F̂mn
[P,Q] while

the definition of Ŵα
[P,Q] is misleading as £3 ◦ Ŵ

α
[12,3] 6= 0 if one does not use momentum conservation.
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4.1.2 Multiparticle superfields in the hybrid gauge

Let us assume that all superfields of multiplicities P and Q in KP and KQ have been

redefined to satisfy all the BCJ symmetries (2.15) (we will explain how to do this below).

Since multiparticle superfields KP in the BCJ gauge satisfy the same symmetries as the

Dynkin bracket P = [[...[p1, p2], p3], ...], p|P |] their multiparticle labels will be written as

plain words P = p1p2 . . . p|P |. One then defines higher-multiplicity superfields in Ǩ[P,Q] as

follows:

Definition 5 (Hybrid gauge) Multiparticle super-Yang-Mills superfields in the hybrid

gauge are distinguished by a check accent Ǩ[P,Q] and are defined by

Ǎ[P,Q]
α = −

1

2
[AP

α (k
P ·AQ) +AP

m(γmWQ)α − (P ↔ Q)] (4.7)

Ǎ[P,Q]
m = −

1

2
[AP

m(kP ·AQ) +AP
nF

Q
mn − (WPγmWQ)− (P ↔ Q)]

W̌α
[P,Q] =

1

4
FP
rs(γ

rsWQ)α −
1

2
(kP ·AQ)Wα

P −
1

2
Wmα

P Am
Q − (P ↔ Q)

F̌mn
[P,Q] = −

1

2

[

Fmn
P (kP ·AQ) + F

p|mn
P AQ

p + 2Fmp
P Fn

Qp + 2γ
[m
αβW

n]α
P W

β
Q − (P ↔ Q)

]

where the superfields in KP and KQ on the right-hand side satisfy the generalized Jacobi

identities (2.15) and

Wmα
[P,Q] = kmPQW

α
[P,Q] − C[[Am,Wα]] ◦ [P,Q] (4.8)

F
m|pq
[P,Q] = kmPQF

pq

[P,Q] − C[[Am, F pq]] ◦ [P,Q] ,

are the local form of the superfields of higher-mass dimension defined in [2] with the map

C[[·, ·]] as in (C.5).

Note an important difference with respect to the definitions of superfields K̂[P,Q] in

the Lorenz gauge (4.2). The definitions in the Lorenz gauge are recursive while in the

hybrid gauge they are not — the superfields Ǩ[P,Q] on the left-hand side of (4.7) have

to be redefined before they can be used as the input on the right-hand side at the next

step. However, from a purely practical perspective, to obtain the explicit expressions of

the superfields in the BCJ gauge it is more convenient to use the hybrid gauge.

4.2 From hybrid gauge to BCJ gauge

The general formula to redefine the superfields Ǩ[P,Q] ∈ {Ǎα, Ǎ
m, W̌α} from the hybrid

gauge (4.7) to superfields K[P,Q] ∈ {Aα, A
m,Wα} in the BCJ gauge is given by

K[P,Q] ≡ Ǩ[P,Q] −
∑

P=XjY
δ(Y )=R⊗S

(kX · kj)
[

H[XR,Q] KjS − (X ↔ j)
]

(4.9)

+
∑

Q=XjY
δ(Y )=R⊗S

(kX · kj)
[

H[XR,P ] KjS − (X ↔ j)
]

−















DαH[P,Q] : K = Aα

kmPQH[P,Q] : K = Am

0 : K = Wα

.
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Alternatively, the identity (3.21) can be used to rewrite (4.9) more succinctly as

K [P,Q] = Ǩ [P,Q] − C̃[[H,K]] ◦ [P,Q]−















DαH[P,Q] : K = Aα

kmPQH[P,Q] : K = Am

0 : K = Wα

. (4.10)

These redefinitions introduce new superfields H[P,Q] whose purpose is to make the resulting

linear combinations satisfy the BCJ symmetries. For example, the first instances of the

redefinition (4.9) for Am
[P,Q] up to multiplicity |P | + |Q| = 5 are given by (recall that

Ǎm
i ≡ Am

i and Ǎm
[i,j] ≡ Am

ij )

Am
[1,2] = Ǎm

[1,2] (4.11)

Am
[12,3] = Ǎm

[12,3] − km123H[12,3]

Am
[12,34] = Ǎm

[12,34] − (k1 · k2)
[

H[1,34]A
m
2 −H[2,34]A

m
1

]

+ (k3 · k4)
[

H[3,12]A
m
4 −H[4,12]A

m
3

]

− km1234H[12,34]

Am
[123,4] = Ǎm

[123,4] − (k1 · k2)
[

H[13,4]A
m
2 −H[23,4]A

m
1

]

− (k12 · k3)H[12,4]A
m
3 − km1234H[123,4]

Am
[1234,5] = Ǎm

[1234,5] − (k1 · k2)
[

H[134,5]A
m
2 +H[14,5]A

m
23 +H[13,5]A

m
24 − (1 ↔ 2)

]

− (k12 · k3)
[

H[124,5]A
m
3 +H[12,5]A

m
34 − (12 ↔ 3)

]

− (k123 · k4)H[123,5]A
m
4 − km12345H[1234,5]

Am
[123,45] = Ǎm

[123,45] − (k1 · k2)
[

H[13,45]A
m
2 +H[1,45]A

m
23 − (1 ↔ 2)

]

− (k12 · k3)
[

H[12,45]A
m
3 − (12 ↔ 3)

]

+ (k4 · k5)
[

H[4,123]A
m
5 − (4 ↔ 5)

]

− km12345H[123,45]

To help in elucidating the outcome of the above redefinitions we note that, for suitable

H[P,Q] to be given below, the superfields K[P,Q] on the left-hand side satisfy all the identities

implied by the bracket structure. For example,

Am
[12,3] = −Am

[21,3] = −Am
[3,12] , Am

[12,3] +Am
[23,1] +Am

[31,2] = 0 . (4.12)

The above means that Am
[[1,2],3] satisfies the same symmetries as [[1, 2], 3] and can be repre-

sented via the shorthand Am
123 ≡ Am

[[1,2],3]. In general, the effect of the above redefinitions

is such that K[P,Q] = KPℓ(Q), as shown in (2.17).

We have not yet discussed how the field strength Fmn
[P,Q] superfields in the BCJ gauge

are found. These are most easily described by constructing them in terms of the above

redefined BCJ gauge superfields and using the contact-term map (3.5),

Fmn
[P,Q] = kmPQA

n
[P,Q] − knPQA

m
[P,Q] − C[[Am, An]] ◦ [P,Q] . (4.13)
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4.2.1 The explicit expression of H[A,B]

In [2] the explicit form of the superfields H[A,B] was only given up to multiplicity five. We

now propose the following recursive solution for general multiplicities5

H[i,j] = 0 , H[A,B] = (−1)|B| |A|

|A|+ |B|

∑

XjY=ȧB̃

(−1)|Y |H ′
Ỹ ,j,X

− (A ↔ B) , (4.14)

where ȧ and ḃ denote the letterifications of A and B as defined in the appendix A and

H ′
A,B,C ≡ HA,B,C +

[

1

2
H[A,B](kAB ·AC) + cyclic(A,B,C)

]

(4.15)

−

[

∑

XjY =A
δ(Y )=R⊗S

(kX · kj)
[

H[XR,B]H[jS,C] − (X ↔ j)
]

+ cyclic(A,B,C)

]

,

HA,B,C ≡ −
1

4
Am

AAn
BF

mn
C +

1

2
(WAγmWB)A

m
C + cyclic(A,B,C) . (4.16)

Given that H[A,B] of multiplicities less than three vanish, it is easy to see that the second

line of (4.15) can only be probed when the superfields have multiplicity six or higher.

Furthermore, note that H[A,B] satisfies generalized Jacobi identities within A and B and

therefore will be written using plain6 words.

The superfields H[P,Q] up to multiplicity seven are given by

H[12,3] =
1

3

(

H ′
1,2,3

)

(4.17)

H[123,4] =
1

4

(

H ′
12,3,4 −H ′

1,2,43

)

H[12,34] =
1

4

(

2H ′
1,2,34 − 2H ′

3,4,12

)

H[1234,5] =
1

5

(

H ′
123,4,5 −H ′

12,3,54 +H ′
1,2,543

)

H[123,45] =
1

5

(

2H ′
12,3,45 − 2H ′

1,2,453 − 3H ′
4,5,123

)

H[12345,6] =
1

6

(

H ′
1234,5,6 −H ′

123,4,65 +H ′
12,3,654 −H ′

1,2,6543

)

H[1234,56] =
1

6

(

2H ′
123,4,56 − 2H ′

12,3,564 + 2H ′
1,2,5643 − 4H ′

5,6,1234

)

H[123,456] =
1

6

(

3H ′
12,3,456 − 3H ′

1,2,4563 − 3H ′
45,6,123 + 3H ′

4,5,1236

)

H[123456,7] =
1

7

(

H ′
12345,6,7 −H ′

1234,5,76 +H ′
123,4,765 −H ′

12,3,7654 +H ′
1,2,76543

)

H[12345,67] =
1

7

(

2H ′
1234,5,67 − 2H ′

123,4,675 + 2H ′
12,3,6754 − 2H ′

1,2,67543 − 5H ′
6,7,12345

)

H[1234,567] =
1

7

(

3H ′
123,4,567 − 3H ′

12,3,5674 + 3H ′
1,2,56743 − 4H ′

56,7,1234 + 4H ′
5,6,12347

)

,

5We acknowledge the invaluable usage of FORM [24, 25] in these calculations.
6By convention, a plain word in a BCJ-gauge superfield is a shorthand for the left-to-right nested

bracketing, e.g P = 1234 ↔ P = [[[1, 2], 3], 4].

– 15 –



J
H
E
P
1
0
(
2
0
1
9
)
0
2
2

while higher multiplicity examples can be easily generated using the general formula (4.14).

We have explicitly tested that the superfields up to and including multiplicity nine following

from the formulas (4.9) and (4.14) satisfy the generalized Jacobi identities.7 Since new

corrections cubic inH[A,B] could be present at multiplicity nine, the fact that these formulas

lead to superfields satisfying the BCJ symmetries suggest that (4.14) is correct for arbitrary

multiplicity.

4.3 From Lorenz gauge to BCJ gauge

Alternatively, one can generate superfields in the BCJ gauge by starting from the superfields

in the Lorenz gauge obtained through the recursions (4.2). The redefinitions are more

involved in this case and one can show that to obtain their BCJ gauge counterparts requires

the following iterated redefinition,

K [P,Q] = L1 ◦ K̂
[P,Q] , (4.18)

where the operator Lj is defined by

Lj ◦ K̂
[P,Q] ≡ K̂ [P,Q] −

1

j
C[[Ĥ, L(j+1) ◦ K̂]] ◦ [P,Q]−

1

j















DαĤ[P,Q] : K = Aα

kmPQĤ[P,Q] : K = Am

0 : K = Wα

, (4.19)

while C ◦ [[·, ·]] is defined in (C.5). Notice that Lj ◦ K̂ [P,Q] gives rise to the action of the

operator L(j+1) ◦ K̂
[A,B] on the right-hand side with |A|+ |B| < |P |+ |Q|. Therefore this

is a iteration over the index j which eventually stops. As we will see below, the iteration

built into the redefinition (4.18) yields the infinite series of non-linear terms present in the

finite gauge transformation (5.11).

The examples (4.11) of redefinitions from the hybrid to BCJ gauge have the following

Lorenz to BCJ counterparts, using (4.18) and keeping all the nested Lie brackets explicit

Am
[1,2] = Âm

[1,2] , (4.20)

Am
[[1,2],3] = Âm

[[1,2],3] − km123Ĥ[[1,2],3] ,

Am
[[1,2],[3,4]] = Âm

[[1,2],[3,4]] − (k1 · k2)
(

Ĥ[1,[3,4]]Â
m
2 − Ĥ[2,[3,4]]Â

m
1

)

+ (k3 · k4)
(

Ĥ[[1,2],4]Â
m
3 − Ĥ[[1,2],3]Â

m
4

)

− km1234Ĥ[[1,2],[3,4]] ,

Am
[[[1,2],3],4] = Âm

[[[1,2],3],4] − (k1 · k2)
(

Ĥ[[1,3],4]Â
m
2 − Ĥ[[2,3],4]Â

m
1

)

− (k12 · k3)
(

Ĥ[[1,2],4]Â
m
3

)

− (k123 · k4)
(

Ĥ[[1,2],3]Â
m
4

)

− km1234Ĥ[[[1,2],3],4] ,

7To simplify the algebra we tested the bosonic components. Since the backbone of the recursion (4.14)

is given by the supersymmetric HA,B,C we believe that (4.14) also leads to correct fermionic components.
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Am
[[[[1,2],3],4],5] = Âm

[[[[1,2],3],4],5] − (k1 · k2)
(

Ĥ[[1,3],4]Â
m
[2,5] + Ĥ[[1,3],5]Â

m
[2,4] + Ĥ[[1,4],5]Â

m
[2,3]

+ Ĥ[[[1,3],4],5]Â
m
2 − (1 ↔ 2)

)

− (k12 · k3)
(

Ĥ[[1,2],4]Â
m
[3,5] + Ĥ[[1,2],5]Â

m
[3,4] + Ĥ[[[1,2],4],5]Â

m
3 − ([1, 2] ↔ 3)

)

− (k123 · k4)
(

Ĥ[[1,2],3]Â
m
[4,5] + Ĥ[[[1,2],3],5]Â

m
4

)

− (k1234 · k5)
(

Ĥ[[[1,2],3],4]Â
m
5

)

− Ĥ[[[[1,2],3],4],5]k
m
12345 ,

Am
[[[1,2],3],[4,5]] = Âm

[[[1,2],3],[4,5]] − (k1 · k2)
(

Ĥ[1,[4,5]]Â
m
[2,3] + Ĥ[[1,3],[4,5]]Â

m
2 − (1 ↔ 2)

)

− (k12 · k3)
(

Ĥ[[1,2],[4,5]]Â
m
3 − Ĥ[3,[4,5]]Â

m
[1,2]

)

− (k123 · k45)
(

Ĥ[[1,2],3]Â
m
[4,5]

)

+ (k4 · k5)
(

Ĥ[[[1,2],3],5]Â
m
4 − Ĥ[[[1,2],3],4]Â

m
5

)

− km12345Ĥ[[[1,2],3],[4,5]] .

To illustrate (4.18) when there is more than one iteration, consider the redefinition of the

superfield Â
[[12,34],56]
m to the BCJ gauge. It starts as

A[[12,34],56]
m = L1 ◦ Â

[[12,34],56]
m (4.21)

= Â[[12,34],56]
m − k123456m Ĥ[[12,34],56] − C[[Ĥ, L2 ◦ Â

m]] ◦ [[12, 34], 56]

Using the definition of the C◦ map from (3.5) leads to

A[[12,34],56]
m = Â[[12,34],56]

m − k123456m Ĥ[[12,34],56] (4.22)

− (k1 · k2)
(

(

L2 ◦ Â
2
m

)

Ĥ[[1,34],56] +
(

L2 ◦ Â
[2,34]
m

)

Ĥ[1,56]

+
(

L2 ◦ Â
[2,56]
m

)

Ĥ[1,34] − (1 ↔ 2)
)

− (k12 · k34)
(

(

L2 ◦ Â
34
m

)

Ĥ[12,56] − (12 ↔ 34)
)

− (k1234 · k56)
(

L2 ◦ Â
56
m

)

Ĥ[12,34]

− (k3 · k4)
(

(

L2 ◦ Â
4
m

)

Ĥ[123,56] +
(

L2 ◦ Â
[12,4]
m

)

Ĥ[3,56]

+
(

L2 ◦ Â
[4,56]
m

)

Ĥ[12,3] − (3 ↔ 4)
)

− (k5 · k6)
(

(

L2 ◦ Â
6
m

)

Ĥ[[12,34],5] − (5 ↔ 6)
)

.

Note that on most of the terms the iteration stops since L2 ◦ Â
i
m = Âi

m and L2 ◦ Â
ij
m = Â

ij
m.

The only remaining non-trivial action L2 ◦ ÂP
m are on terms are of multiplicity three.

From (4.18) we obtain,

L2 ◦ Â
[12,3]
m = Â[12,3]

m −
1

2
km123Ĥ[12,3] , L2 ◦ Â

[1,23]
m = Â[1,23]

m −
1

2
km123Ĥ[1,23]. (4.23)
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Plugging all of this into (4.22) yields

A[[12,34],56]
m = Â[[12,34],56]

m − k123456m Ĥ[[12,34],56] (4.24)

− (k1 · k2)

(

Â2
mĤ[[1,34],56] + Â[2,34]

m Ĥ[1,56] + Â[2,56]
m Ĥ[1,34]

−
1

2
k234m Ĥ[2,34]Ĥ[1,56] −

1

2
k256m Ĥ[2,56]Ĥ[1,34] − (1 ↔ 2)

)

− (k12 · k34)
(

Â34
m Ĥ[12,56] − (12 ↔ 34)

)

− (k1234 · k56)Â56
m Ĥ[12,34]

− (k3 · k4)

(

Â4
mĤ[123,56] + Â[12,4]

m Ĥ[3,56] + Â[4,56]
m Ĥ[12,3]

−
1

2
k124m Ĥ[12,4]Ĥ[3,56] −

1

2
k456m Ĥ[4,56]Ĥ[12,3] − (3 ↔ 4)

)

− (k5 · k6)
(

Â6
mĤ[[12,34],5] − (5 ↔ 6)

)

.

Higher-rank examples can be similarly generated from the recursion (4.19).

4.3.1 Explicit form of Ĥ[P,Q] for the Lorenz to BCJ gauge redefinition

Each Ĥ[P,Q] is defined by enforcing the BCJ symmetry on the corresponding superfield

K[P,Q]. It has been found that up to multiplicity eight these can be simplified as

Ĥ[A,B] = Ĥ ′
[A,B] −

1

2
C̃[[Ĥ, Ĥ]] ◦ [A,B] , (4.25)

Ĥ ′
[A,B] = H[A,B] −

1

2

[

(Ĥ ′
Ak

m
A − C̃ ′[[Ĥ, Ĥm]] ◦A)AB

m − (A ↔ B)
]

,

Ĥ ′
i = Ĥ ′

[i,j] = 0 ,

where the H[A,B] are defined as they were in (4.14)–(4.16), and Ĥm
A ≡ kmA ĤA. Furthermore,

the maps C̃ and C̃ ′ are the variants of the contact-term map C defined in the section 3.2.1.

To demonstrate the meaning of these maps we will now provide examples. First of all

note that the C̃ and C̃ ′ maps in (4.25) are both associated with pairs of Ĥ superfields, each

of which requires three indices, and so these terms will only be non-zero when |A|+ |B| ≥ 6.

Thus at lower multiplicities these relations reduce to equation (3.15) of [2], as the C̃ and

C̃ ′ terms only start contributing at multiplicity 6+. An example of the relations in this

case is as follows:

Ĥ[[[1,2],3],[4,5]] = Ĥ ′
[[[1,2],3],[4,5]] (4.26)

= H[[[1,2],3],[4,5]] −
1

2
km123Ĥ

′
[[1,2],3]A

[4,5]
m

= H[[[1,2],3],[4,5]] −
1

2
H[[1,2],3](k123 ·A

[4,5]) .

We will now outline an example of (4.25) for the multiplicity six redefinition term

Ĥ[[[[1,2],3],[4,5]],6], which should demonstrate the formulae more clearly.

Ĥ[[[[1,2],3],[4,5]],6] = Ĥ ′
[[[[1,2],3],[4,5]],6] −

1

2
C̃[[Ĥ, Ĥ]] ◦ [[[[1, 2], 3], [4, 5]], 6] . (4.27)
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The expansion of the C̃ term above is given as the example (D.4) in appendix D.2, and

from it we see that

C̃[[Ĥ, Ĥ]]◦[[[[1, 2], 3], [4, 5]], 6] = (k1 · k2)
(

Ĥ[[1,3],6]Ĥ[2,[4,5]] − Ĥ[[2,3],6]Ĥ[1,[4,5]]

)

(4.28)

+ (k12 · k3)
(

Ĥ[[1,2],6]Ĥ[3,[4,5]]

)

+(k123 · k45)
(

Ĥ[[4,5],6]Ĥ[[1,2],3]

)

= (k1 · k2)
(

H[[1,3],6]H[2,[4,5]] −H[[2,3],6]H[1,[4,5]]

)

+ (k12 · k3)
(

H[[1,2],6]H[3,[4,5]]

)

+(k123 · k45)
(

H[[4,5],6]H[[1,2],3]

)

As for the Ĥ ′
[[[[1,2],3],[4,5]],6] term, this piece is given by

Ĥ ′
[[[[1,2],3],[4,5]],6] = H[[[[1,2],3],[4,5]],6]−

1

2

[

(Ĥ ′
[[[1,2],3],[4,5]]k

m
12345−C̃ ′[[Ĥ, Ĥ]]◦[[[1, 2], 3], [4, 5]])A6

m

]

= H[[[[1,2],3],[4,5]],6] −
1

2
H[[[1,2],3],[4,5]](k12345 ·A

6)

+
1

4
H[[1,2],3](k123 ·A

45)(k12345 ·A6) , (4.29)

where we have used (4.26) and that the action of C̃ ′[[Ĥ, Ĥ]] on any Lie polynomial with

less than six letters is zero. Putting this all together we thus have that

Ĥ[[[[1,2],3],[4,5]],6] = H[[[[1,2],3],[4,5]],6] (4.30)

−
1

2
H[[[1,2],3],[4,5]](k12345 ·A

6) +
1

4
H[[1,2],3](k123 ·A

45)(k12345 ·A6)

−
1

2
(k1 · k2)

(

H[[1,3],6]H[2,[4,5]] −H[[2,3],6]H[1,[4,5]]

)

−
1

2
(k12 · k3)

(

H[[1,2],6]H[3,[4,5]]

)

−
1

2
(k123 · k45)

(

H[[4,5],6]H[[1,2],3]

)

.

Unfortunately to see an example where the C̃ ′ map in the definition of Ĥ ′ comes into

affect requires going to multiplicity seven, which considerably increases the number of

terms involved and makes any such example less easy to follow. The process is not terribly

different from the one just outlined though, there are just more terms involved.

It might raise some concerns that (4.25) and (4.14)–(4.16) are in some places defined in

terms of BCJ gauge superfields, and so this might not represent a true gauge transforma-

tion. This is however not an issue, as a purely Lorenz gauge version of (4.25) can be found

by just replacing the BCJ superfields with their Lorenz gauge expansions (4.18). Some

difficulty may arise doing this for HA,B,C due to the presence of Fmn
P terms. However, we

do the same thing, and plug the Lorenz gauge expansions into (4.13) to get

Fmn
[P,Q] = kPQ

m (L1 ◦ Â
[P,Q]
n )− kPQ

m (L1 ◦ Â
[P,Q]
m )− C[[(L1 ◦ Âm), (L1 ◦ Ân)]] ◦ [P,Q] . (4.31)

The notation of (4.25) has just been chosen for its compactness and clarity.

5 BCJ symmetries and standard gauge transformations

In this section we will briefly review the result of [2] that the redefinitions of a local su-

perfield K from the Lorenz to the BCJ gauge amount to a standard gauge transformation
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of the corresponding non-linear superfield K introduced in section 2.2. However, the dis-

cussion of [2] was based on examples up to multiplicity five and consequently missed an

infinite number of correction terms. As a result, the gauge transformations were identified

only in infinitesimal form. We will prove that the iterative redefinitions (3.5) lead to a

finite gauge transformation instead.

To show this one uses the perturbiner series expansion K as given in (2.8) in terms of its

Berends-Giele currents. Before proceeding, we review the definition of the Berends-Giele

currents using a formulation based on the b map (5.2).

5.1 Berends-Giele currents and contact terms from maps on words

We will define the notion of a Berends-Giele current from a purely combinatorial point of

view based on the map b(P ) acting on words. In order to do this for arbitrary labelled

objects such as multiparticle superfields, let us define a replacement of words by arbitrary

superfields as

[[K]] ◦ P ≡ KP , [[K,S]] ◦ P ⊗Q ≡ KPSQ . (5.1)

In turn, this definition can be used to define the Berends-Giele currents and related concepts

through the b and C maps.

Definition 6 (Berends-Giele map) If KP ∈ {AP
α , A

m
P ,Wα

P , F
mn
P } is a local multiparti-

cle superfield, its associated Berends-Giele current is represented by a calligraphic letter

KP ∈ {AP
α ,A

m
P ,Wα

P ,F
mn
P } and is given by

KP ≡ [[K]] ◦ b(P ) , (5.2)

where [[ · ]] is defined in (5.1).

For example, the Berends-Giele currents up to multiplicity five associated to the vector

potential Am
P following from the definition Am

P = [[Am]] ◦ b(P ) are given by Am
1 = Am

1 and

Am
12 =

Am
[1,2]

s12
, (5.3)

Am
123 =

Am
[[1,2],3]

s12s123
+

Am
[1,[2,3]]

s123s23
,

Am
1234 =

Am
[[[1,2],3],4]

s12s123s1234
+

Am
[[1,[2,3]],4]

s123s1234s23
+

Am
[[1,2],[3,4]]

s12s1234s34
+

Am
[1,[[2,3],4]]

s1234s23s234
+

Am
[1,[2,[3,4]]]

s1234s234s34
,

Am
12345 =

Am
[[[[1,2],3],4],5]

s12s123s1234s12345
+

Am
[[[1,[2,3]],4],5]

s123s1234s12345s23
+

Am
[[[1,2],[3,4]],5]

s12s1234s12345s34
+

Am
[[[1,2],3],[4,5]]

s12s123s12345s45

+
Am

[[1,[[2,3],4]],5]

s1234s12345s23s234
+

Am
[[1,[2,[3,4]]],5]

s1234s12345s234s34
+

Am
[[1,[2,3]],[4,5]]

s123s12345s23s45
+

Am
[[1,2],[[3,4],5]]

s12s12345s34s345

+
Am

[[1,2],[3,[4,5]]]

s12s12345s345s45
+

Am
[1,[[[2,3],4],5]]

s12345s23s234s2345
+

Am
[1,[[2,[3,4]],5]]

s12345s234s2345s34
+

Am
[1,[[2,3],[4,5]]]

s12345s23s2345s45

+
Am

[1,[2,[[3,4],5]]]

s12345s2345s34s345
+

Am
[1,[2,[3,[4,5]]]]

s12345s2345s345s45
.
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The multiplicity six case is given in equation (F.7) of the appendix. Moreover, one can

show that MP = [[V ]] ◦ b(P ) reproduces the intuitive Berends-Giele definition given in the

appendix of [1]. See figure 2.

5.2 BCJ symmetries of local superfields as a gauge transformation

It was already pointed out in [2] that the redefinitions of the local multiparticle superfields

in the Lorenz gauge correspond to a gauge transformation of the corresponding Berends-

Giele current.

Indeed, if we define the Berends-Giele currents using (5.2)

Am
P ≡ [[Am]] ◦ b(P ) , H ≡ [[H]] ◦ b(P ) , (5.4)

one can show using the relations (4.20) and (5.3) up to multiplicity five that [2],

Am,BCJ
123 = Am,L

123 − km123H123 , (5.5)

Am,BCJ
1234 = Am,L

1234 − km1234H1234 +Am,L
1 H234 −Am,L

4 H123 ,

Am,BCJ
12345 = Am,L

12345 − km12345H12345 +Am,L
1 H2345 +Am,L

12 H345 −Am,L
5 H1234 −Am,L

45 H123 .

Therefore, in terms of the perturbiner series

H ≡
∑

P

HP t
P , (5.6)

the equations (5.5) correspond to the infinitesimal non-linear gauge transformation (2.5)

with Ω = −H

A
BCJ
m = A

L
m − [∂m,H] + [AL

m,H] . (5.7)

However, the identification of (5.7) as the gauge transformation relating the superfields

in the different gauges is not complete. This is because the analysis of [2] was restricted

to multiplicity five, whereas we know from (4.14) and (4.15) that there are non-linear

corrections to the superfields H[A,B] that start at multiplicity six — see for instance the

quadratic terms ∼ 1
2k

mH2 in the redefinition of Â
[[12,34],56]
m (4.24).

In fact, using the general formulas for the redefinitions and the Berends-Giele currents

one can show, after considerable effort,

Am,BCJ
123456 = Am,L

123456 − km123456H123456 (5.8)

+Am,L
1 H23456+Am,L

12 H3456+Am,L
123 H456−Am,L

6 H12345−Am,L
56 H1234−Am,L

456 H123

−
1

2
km123H123H456 +

1

2
km456H456H123 .

Therefore, at multiplicity six the transformation between Lorenz and BCJ gauge fol-

lows from

A
BCJ
m = A

L
m − [∂m,H] + [AL

m,H]−
1

2
[[∂m,H],H] . (5.9)

We will now demonstrate that there is an infinite series of non-linear corrections to (5.9)

which generate a finite gauge variation.
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5.3 BCJ symmetries from finite gauge transformations

If H represents a generating series of Berends-Giele superfields HP (5.6), one can show that

the series representation of the recursive iterations (4.19) for the gauge superpotential Am

is given by

Lj ◦ Am = Am −
1

j
[∂m,H]−

1

j
[H,Lj+1 ◦ Am] . (5.10)

Iterating the series representation of the transformation A
BCJ
m = L1 ◦ A

L
m from Lorenz to

BCJ gauge leads to (∇L
m ≡ ∂m − A

L
m)

A
BCJ
m = A

L
m + [H, ∂m]− [H,AL

m]−
1

2
[H, [H, ∂m]] +

1

2
[H, [H,AL

m]] +
1

3!
[H, [H, [H, ∂m]]] + · · ·

= A
L
m + [H,∇L

m]−
1

2
[H, [H,∇L

m]] +
1

3!
[H, [H, [H,∇L

m]]] + · · · (5.11)

Unsurprisingly, the expression (5.11) is nothing more than the series expansion of the finite

gauge transformation given by

A
BCJ
m = UA

L
mU−1 + ∂mUU−1 , U = exp(−H) . (5.12)

Alternatively (5.11) can be rewritten as ∇BCJ
m = e−adH(∇L

m), where adH(X) ≡ [H, X].

6 Conclusions and outlook

One of the main achievements of this paper is the recursive solution to the redefinition

superfields H[A,B] given in (4.14). These superfields encode the non-linear gauge variations

required to obtain local multiparticle superfields in the BCJ gauge. The pursuit of this

formula led to improvements to and clarifications of earlier discussions given in [1, 2].

In particular, in going beyond the multiplicity-five examples of [2], we found an infinite

set of higher-order corrections leading to the perturbiner representation of a finite gauge

transformation (5.11).

We also introduced new combinatorial maps on words and rigorously proved key state-

ments that address some natural although not crucial questions previously left unanswered.

For instance, we found closed formulas for the gauge redefinition of K[P,Q] for arbitrary

nested bracketings as well as the field-strength form of Fmn
[P,Q] and related superfields at

higher-mass dimension. Several other formulas along these lines can now be written down,

such as the local equations of motion (B.1) for the Lorenz-gauge superfields K̂[P,Q], again

for arbitrary Lie bracket structure. The precise definition of maps in section 3 ultimately

related to the definition of Berends-Giele currents also lead to explanations of why some

patterns are ubiquitous when discussing BRST variations of various superfields in the pure

spinor formalism as seen in the discussions of [21].

We will end this paper with some observations that could lead to further investigations.
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6.1 Tree-level amplitudes using redefinition superfields

The gauge transformations responsible for the BCJ gauge require redefinitions by super-

fields of ghost-number zero H[A,B] determined recursively through (4.14). Customarily,

after performing the redefinitions using the redefining superfields one writes down the tree

amplitudes of SYM using the newly obtained superfields [8]. For example, using the com-

pact language of the pure spinor superspace [26] one gets

ASYM(1, 2, 3, 4, 5) =
〈V123V4V5〉

s12s123
+

〈V321V4V5〉

s23s123
+

〈V12V34V5〉

s12s34
+

〈V1V432V5〉

s34s234
+

〈V1V234V5〉

s23s234
,

(6.1)

where VP ≡ λαAP
α is a BCJ-satisfying superfield whose explicit expression contains the

redefinition superfields H ′
A,B,C in various combinations.

So, in the usual formulation, we see that the superfields in the BCJ gauge are used to

write down the local numerators of tree-level SYM amplitudes. These numerators have

ghost number three [6, 7] and, if one wishes to produce expressions written in terms

of particle polarizations and momenta, require the standard pure spinor zero-mode rule

〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉 = 1 [6, 7] to integrate out the pure spinors. Somewhat

surprisingly, it turns out that the redefinition superfields themselves give rise to numera-

tors of the tree amplitudes of SYM.

6.2 Tree-level amplitudes as a map on planar binary trees

The observation above can be made more intuitive and intriguing if we frame it in terms

of the b map (3.1). The SYM tree amplitudes can be viewed as a map ASYM◦ acting on

the Lie polynomials in the expansion of (3.1). More precisely,

ASYM(P, n) = sPA
SYM ◦

(

b(P )b(n)
)

, (6.2)

where the map ASYM◦ admits two formulations

ASYM ◦ [P,Q]n ≡

{

〈VPVQVn〉

H ′
P,Q,n

(6.3)

For example, using the Lie bracket expansion from figure 1 and the top line of the map (6.3)

gives rise to amplitude expression (6.1). Using the bottom line of the map yields instead

ASYM(1, 2, 3, 4, 5) = s1234A
SYM ◦ b(1234)b(5) (6.4)

=
H ′

123,4,5

s12s123
+

H ′
321,4,5

s23s123
+

H ′
12,34,5

s12s34
+

H ′
1,432,5

s34s234
+

H ′
1,234,5

s23s234

In hindsight, the statement that tree-level amplitudes can be written using the definition

of HA,B,C could be made when putting together the results of [8] and [2]. But now we have

explicitly checked up to multiplicity nine that all the new corrections introduced in (4.15)

that lead to the definition of H ′
A,B,C do not affect the final results of the amplitudes.

These observations give rise to the speculation that the new prescription to compute

tree level amplitudes from [27] naturally gives rise to the amplitudes written in terms of
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H ′
A,B,C . After all the prescription in [27] does not involve unintegrated vertices (so no

pure spinors) and the end result will have to involve the double poles in the OPEs among

integrated vertices. This agrees with the mechanism in the usual formulation [1] where the

double poles are distributed among the simple poles using integration by parts, and it is

after this step that the superfields in the numerators satisfy BCJ symmetries. This may

give rise to a systematic derivation of the H ′
A,B,C redefinitions via OPE calculations and it

is an interesting question left to the future.

BCJ numerators were constructed for gauge theories deformed by α′F 3 and α′2F 4 in-

teractions by finding appropriate α′ corrections to the HP fields [28]. Since low-multiplicity

examples show that these corrections can also be written in terms of α′-corrected HA,B,C

in a similar manner as discussed in this paper, one may wonder whether the all-multiplicity

formulas found here can be applied with minimal changes to the setup of [28].

The color-kinematics duality has given reasons to speculate about the existence of

a “kinematic algebra” [29] in the same way as the color factors are related to standard

Lie algebras. It will be interesting to connect this line of thought with the gauge variation

approach pursued here. See [30] for a recent account on the quest for the kinematic algebra.

Finally, the Berends-Giele recursion relations have been recently derived using the

technology of an L∞-algebra in [31]. It would be interesting to find a new derivation of the

recursions for the gauge parameter H[A,B] using the methods of [31].
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A Some common operations on words

In this appendix we list some of the operations on words used in this paper. With the

exception of the letterification introduced below, the following definitions are standard and

can be found in [20].

The left-to-right bracketing map ℓ(A) is defined recursively by

ℓ(123..n) ≡ ℓ(123...n− 1)n− nℓ(123...n− 1), ℓ(i) = i, ℓ(∅) = 0 . (A.1)

The deshuffle map is defined by

δ(P ) =
∑

X,Y

〈P,X ⊔⊔Y 〉X ⊗ Y , (A.2)

where 〈·, ·〉 denotes the scalar product on words

〈A,B〉 ≡ δA,B, δA,B =

{

1, if A = B

0, otherwise
. (A.3)
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The shuffle product ⊔⊔ between A = a1a2 . . . a|A| and B = b1b2 . . . b|B| is given by

∅ ⊔⊔A = A ⊔⊔∅ = A, A ⊔⊔B ≡ a1(a2 . . . a|A| ⊔⊔B) + b1(b2 . . . b|B| ⊔⊔A) , (A.4)

where ∅ represents the empty word.

In certain formulas such as (4.14) it is necessary to handle a word as if it were a single

letter to avoid it being split by other maps. To deal with these situations we introduce a

letterfication operation whereby a word Q is mapped to a letter q̇,

Q → q̇ . (A.5)

Since a letter can not be deconcatenated this freezes the individual letters within Q. In

the end q̇ is restored by its original word Q. For example, suppose that the word Q = 12

has been letterified to q̇ = 12 — as may be the case in a formula such as (4.14) — and that

P = 3. Then deconcatenating QP is different than deconcatenating q̇P . For example, one

gets only one term

Q = 12, P = 3 →
∑

XY=q̇P

SXTY = Sq̇T3 = S12T3 (A.6)

instead of the usual two (S1T23 + S12T3) if Q is not letterified.

B Equations of motion for local K̂[P,Q]

In this appendix we will write down the equations of motion satisfied by the multiparticle

superfields in the Lorenz gauge for general nested Lie brackets.

The equations of motion satisfied by the local multiparticle superfields (4.2) can be

written as a local counterpart of the non-linear equations (2.6)

∇
(L)
(α Â

[P,Q]
β) = γmαβÂ

m
[P,Q] ∇(L)

α Ŵ
β

[P,Q] =
1

4
(γmn)α

βF̂ [P,Q]
mn

∇(L)
α Âm

[P,Q] = (γmŴ[P,Q])α + kmPQÂα [P,Q] ∇(L)
α F̂mn

[P,Q] =
(

Ŵ
[m
[P,Q]γ

n]
)

α

(B.1)

where ∇
(L)
α is the local counterpart of ∇α ≡ Dα − Aα and is defined by

∇(L)
α ≡ Dα − C[[Âα, · ]] , C[[Âα, · ]]K[P,Q] ≡ C[[Âα,K]] ◦ [P,Q] . (B.2)

where C[[·, ·]] is the contact-term coproduct map on words defined in (3.5) and (C.5). To

illustrate the above equations, consider ∇
(L)
α Âm

[1,2] = (γmŴ[1,2])α + km12Âα [1,2] where

∇(L)
α Âm

[1,2] = DαÂ
m
[1,2] − C[[Âα, Â

m]] ◦ [1, 2] (B.3)

= DαÂ
m
[1,2] − (k1 · k2)(Â

1
αÂ

m
2 − Â2

αÂ
m
1 )

where we used the first example in (C.7). Therefore the equation of motion of Âm
[1,2] reads

DαÂ
m
[1,2] = (γmŴ[1,2])α + km12Âα [1,2] + (k1 · k2)(Â

1
αÂ

m
2 − Â2

αÂ
m
1 ) . (B.4)
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1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

M1234 = V[[[1,2],3],4]

s12s123s1234

V[[1,[2,3]],4]

s23s123s1234

V[[1,2],[3,4]]

s12s34s1234

V[1,[2,[3,4]]]

s34s234s1234

V[1,[[2,3],4]]

s23s234s1234

+ + + +

+ + + +

Figure 2. The Berends-Giele current M1234 = [[V ]] ◦ b(1234) according to the map (5.2).

C Symmetries and deconcatenations of Berends-Giele currents

C.1 Symmetries of Berends-Giele currents

We have seen on section 3.1 that b(P ) is a Lie polynomial. A standard result in the theory

of free Lie algebras states that any Lie polynomial is orthogonal to non-trivial shuffles [20].

This implies that

〈A ⊔⊔B, b(P )〉 = 0 , ∀A,B 6= ∅ |A|+ |B| = |P | , (C.1)

where 〈·, ·〉 is the scalar product of words and ⊔⊔ is the shuffle product defined in (A.3)

and (A.4), respectively. A more compact way of stating (C.1) is through the shorthand

b(A ⊔⊔B) = 0.

Using the property (C.1) it follows that every Berends-Giele current defined via (5.2)

is annihilated by proper shuffles, i.e. (note KA⊔⊔B ≡
∑

σ∈A⊔⊔B Kσ)

KA⊔⊔B = 0 , ∀A,B 6= ∅. (C.2)

Note that the original currents Jm
P defined by Berends and Giele in [9] were argued to

satisfy Jm
A⊔⊔B = 0 in [32]. One can show that, in our conventions, Jm

P = Am
P [8].

C.2 Deconcatenation terms in the equations of motion

The equations of motion of local multiparticle superfields (see the appendix B) contain

contact-term corrections with respect to their single-particle counterparts. When expressed

in terms of Berends-Giele currents, these contact terms corrections are translated to a

deconcatenation structure. For example, the Berends-Giele counterpart of the local equa-

tion of motion

DαÂ
m
[1,2] = (γmŴ[1,2])α + km12Âα [1,2] + (k1 · k2)(Â

1
αÂ

m
2 − Â2

αÂ
m
1 ) , (C.3)

is given by

DαÂ
m
12 = (γmŴ12)α + km12Â

12
α +

∑

XY=12

(

ÂX
α Âm

Y − (X ↔ Y )
)

. (C.4)

These observations can now be given a universal justification as follows. If one assigns the

superfields K and S to the contact terms of a Lie polynomial [P,Q] as

C[[K,S]] ◦ [P,Q] ≡ [[K,S]] ◦
(

C ◦ [P,Q]
)

, (C.5)
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it follows from (3.7) that

C[[K,S]] ◦ b(P ) =
∑

XY=P

(

KXSY − (X ↔ Y )
)

, (C.6)

which demonstrates several deconcatenation formulas of this kind from a local superfield

perspective. Using the contact-term map C displayed in (D.1), the simplest example

applications of (C.5) read

C[[Âα, Â
m]] ◦ [1, 2] = (k1 · k2)(Â

1
αÂ

m
2 − Â2

αÂ
m
1 ) , (C.7)

C[[V, T ]] ◦ [[1, 2], 3] = (k1 · k2)
(

V[1,3]T2 + V1T[2,3] − V[2,3]T1 − V2T[1,3]

)

+ (k12 · k3)
(

V[1,2]T3 − V3T[1,2]

)

.

In addition, the contact terms generated with the formula (C.5) can be used to write

down the BRST variations of the multiparticle unintegrated VP for arbitrary nested Lie

bracketings. This generalizes the previous formula valid for the left-to-right nesting [1].

More precisely, the BRST variation can be written as

QV[P,Q] =
1

2
C[[V, V ]] ◦ [P,Q] . (C.8)

For example, using (C.8) one can write down the BRST variation of V[1,[2,3]] directly,

QV[1,[2,3]] = (k2 · k3)
(

V[1,2]V3 + V2V[1,3]

)

+ (k1 · k23)V1V[2,3] . (C.9)

Previously one would need to use V[1,[2,3]] = V123 − V132 before applying the formula for

QVP for P = [[...[p1, p2], p3], ...], p|P |] ≡ p1p2 . . . p|P | given in [21],

QVP =
∑

P=XjY
δ(Y )=R⊗S

(kX · kj)VXRVjS . (C.10)

It is worth mentioning that (3.15) shows the equivalence between (C.8) and (C.10).

D Example applications of the C and C̃ maps

In this appendix we display some example applications of the C and C̃ maps acting over

some simple Lie polynomials. These examples help to elucidate how the algorithms are

used, and can be used to verify that the redefinition formulas arising from the general

formulas match the formulas for the simplest cases that were previously known.

D.1 Examples of the C map

To demonstrate the (3.5) algorithm, the first few expansions generated from it are

C ◦ 1 = 0 (D.1)

C ◦ [1, 2] = (k1 · k2)(1⊗ 2− 2⊗ 1)

C ◦ [[1, 2], 3] = (k1 · k2)
(

[1, 3]⊗ 2 + 1⊗ [2, 3]− [2, 3]⊗ 1− 2⊗ [1, 3]
)

+ (k12 · k3)
(

[1, 2]⊗ 3− 3⊗ [1, 2]
)
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C ◦ [1, [2, 3]] = (k2 · k3)
(

[1, 2]⊗ 3 + 2⊗ [1, 3]− [1, 3]⊗ 2− 3⊗ [1, 2]
)

+ (k1 · k23)
(

1⊗ [2, 3]− [2, 3]⊗ 1
)

C ◦ [[[1, 2], 3], 4] = (k1 · k2)
(

[[1, 3], 4]⊗ 2 + [1, 3]⊗ [2, 4] + [1, 4]⊗ [2, 3] + 1⊗ [[2, 3], 4]

− [[2, 3], 4]⊗ 1− [2, 3]⊗ [1, 4]− [2, 4]⊗ [1, 3]− 2⊗ [[1, 3], 4]
)

+ (k12 · k3)
(

[[1, 2], 4]⊗ 3 + [1, 2]⊗ [3, 4]− [3, 4]⊗ [1, 2]− 3⊗ [[1, 2], 4]
)

+ (k123 · k4)
(

[[1, 2], 3]⊗ 4− 4⊗ [[1, 2], 3]
)

C ◦ [[1, [2, 3]], 4] = (k2 · k3)
(

[[1, 2], 4]⊗ 3 + [1, 2]⊗ [3, 4] + [2, 4]⊗ [1, 3] + 2⊗ [[1, 3], 4]

− [[1, 3], 4]⊗ 2− [1, 3]⊗ [2, 4]− [3, 4]⊗ [1, 2]− 3⊗ [[1, 2], 4]
)

+ (k1 · k23)
(

[1, 4]⊗ [2, 3] + 1⊗ [[2, 3], 4]− [[2, 3], 4]⊗ 1− [2, 3]⊗ [1, 4]
)

+ (k123 · k4)
(

[1, [2, 3]]⊗ 4− 4⊗ [1, [2, 3]]
)

C ◦ [[1, 2], [3, 4]] = (k1 · k2)
(

[1, [3, 4]]⊗ 2 + 1⊗ [2, [3, 4]]− [2, [3, 4]]⊗ 1− 2⊗ [1, [3, 4]]
)

+ (k3 · k4)
(

[[1, 2], 3]⊗ 4 + 3⊗ [[1, 2], 4]− [[1, 2], 4]⊗ 3− 4⊗ [[1, 2], 3]
)

+ (k12 · k34)
(

[1, 2]⊗ [3, 4]− [3, 4]⊗ [1, 2]
)

C ◦ [1, [2, [3, 4]]] = (k3 · k4)
(

[1, [2, 3]]⊗ 4 + [2, 3]⊗ [1, 4] + [1, 3]⊗ [2, 4] + 3⊗ [1, [2, 4]]

− [1, [2, 4]]⊗ 3− [2, 4]⊗ [1, 3]− [1, 4]⊗ [2, 3]− 4⊗ [1, [2, 3]]
)

+ (k2 · k34)
(

[1, 2]⊗ [3, 4] + 2⊗ [1, [3, 4]]− [1, [3, 4]]⊗ 2− [3, 4]⊗ [1, 2]
)

+ (k1 · k234)
(

1⊗ [2, [3, 4]]− [2, [3, 4]]⊗ 1
)

C ◦ [1, [[2, 3], 4]] = (k2 · k3)
(

[1, [2, 4]]⊗ 3 + [1, 2]⊗ [3, 4] + [2, 4]⊗ [1, 3] + 2⊗ [1, [3, 4]]

− [1, [3, 4]]⊗ 2− [1, 3]⊗ [2, 4]− [3, 4]⊗ [1, 2]− 3⊗ [1, [2, 4]]
)

+ (k23 · k4)
(

[1, [2, 3]]⊗ 4 + [2, 3]⊗ [1, 4]− [1, 4]⊗ [2, 3]− 4⊗ [1, [2, 3]]
)

+ (k1 · k234)
(

1⊗ [[2, 3], 4]− [[2, 3], 4]⊗ 1
)

.

One application at multiplicity five is given by

C ◦ [[[1, 2], 3], [4, 5]] = (k1 · k2)
(

1⊗ [[2, 3], [4, 5]] + [1, 3]⊗ [2, [4, 5]] (D.2)

+ [1, [4, 5]]⊗ [2, 3] + [[1, 3], [4, 5]]⊗ 2− (1 ↔ 2)
)

+ (k12 · k3)
(

[1, 2]⊗ [3, [4, 5]] + [[1, 2], [4, 5]]⊗ 3− ([1, 2] ↔ 3)
)

+ (k123 · k45)
(

[[1, 2], 3]⊗ [4, 5]− ([[1, 2], 3] ↔ [4, 5])
)

+ (k4 · k5)
(

4⊗ [[[1, 2], 3], 5] + [[[1, 2], 3], 4]⊗ 5− (4 ↔ 5)
)

,

which, after using the formula (4.18), reproduces the redefinition (B.2) from [2] which was

written down without justification.

D.2 Examples of the C̃ map

As an illustration of the C̃ map, we get

C̃ ◦ 1 = 0 (D.3)

C̃ ◦ [1, 2] = 0
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C̃ ◦ [[1, 2], 3] = (k1 · k2)
(

[1, 3]⊗ 2− [2, 3]⊗ 1
)

C̃ ◦ [1, [2, 3]] = (k2 · k3)
(

[1, 2]⊗ 3− [1, 3]⊗ 2
)

C̃ ◦ [[[1, 2], 3], 4] = (k1 · k2)
(

[[1, 3], 4]⊗ 2 + [1, 4]⊗ [2, 3]− [[2, 3], 4]⊗ 1− [2, 4]⊗ [1, 3]
)

+ (k12 · k3)
(

[[1, 2], 4]⊗ 3− [3, 4]⊗ [1, 2]
)

C̃ ◦ [[1, [2, 3]], 4] = (k2 · k3)
(

[[1, 2], 4]⊗ 3 + [2, 4]⊗ [1, 3]− [[1, 3], 4]]⊗ 2− [3, 4]⊗ [1, 2]
)

+ (k1 · k23)
(

[1, 4]⊗ [2, 3]− [[2, 3], 4]⊗ 1
)

C̃ ◦ [[1, 2], [3, 4]] = (k1 · k2)
(

[1, [3, 4]]⊗ 2− [2, [3, 4]]⊗ 1
)

+ (k3 · k4)
(

[[1, 2], 3]⊗ 4− [[1, 2], 4]⊗ 3
)

C̃ ◦ [1, [2, [3, 4]]] = (k3 · k4)
(

[1, [2, 3]]⊗ 4 + [1, 3]⊗ [2, 4]− [1, [2, 4]]⊗ 3− [1, 4]⊗ [2, 3]
)

+ (k2 · k34)
(

[1, 2]⊗ [3, 4]− [1, [3, 4]]⊗ 2
)

C̃ ◦ [1, [[2, 3], 4]] = (k2 · k3)
(

[1, [2, 4]]⊗ 3 + [1, 2]⊗ [3, 4]− [1, [3, 4]]⊗ 2− [1, 3]⊗ [2, 4]
)

+ (k23 · k4)
(

[1, [2, 3]]⊗ 4− [1, 4]⊗ [2, 3]
)

One application at multiplicity six is given by

C̃◦[[[[1, 2], 3], [4, 5]], 6] = (k1 · k2)
(

[[[1, 3], [4, 5]], 6]⊗ 2 + [[1, 3], 6]⊗ [2, [4, 5]] (D.4)

+ [[1, [4, 5]], 6]⊗ [2, 3] + [1, 6]⊗ [[2, 3], [4, 5]]− (1 ↔ 2)
)

+ (k12 · k3)
(

[[[1, 2], [4, 5]], 6]⊗ 3 + [[1, 2], 6]⊗ [3, [4, 5]]−([1, 2]↔3)
)

+ (k4 · k5)
(

[[[[1, 2], 3], 4], 6]⊗ 5 + [4, 6]⊗ [[[1, 2], 3], 5]− (4 ↔ 5)
)

+ (k123 · k45)
(

[[[1, 2], 3], 6]⊗ [4, 5]− ([[1, 2], 3] ↔ [4, 5])
)

.

This will be of particular use in the example discussed in section 4.3.1.

E Freedom in defining Hs

There is considerable freedom in defining the Hs, arising from the symmetries within the

H ′
A,B,C terms. These are by construction antisymmetric in A, B, and C. Furthermore each

of the sets of indices will satisfy generalized Jacobi identities, for instance

H ′
123,B,C +H ′

213,B,C = 0, (E.1)

H ′
123,B,C +H ′

231,B,C +H ′
312,B,C = 0.

Also there are a number of other more complex relations between some H ′ terms, which

can be identified from the condition that H[A,B] satisfies generalized Jacobi identities in

each of A and B. For example, we must have that £3 ◦H[123,4] = 0, £3 ◦H[1234,5] = 0, and

£4 ◦ H[1234,5] = 0, and so writing these relations in terms of their H ′ expansions, we see

that we must have

£3 ◦
(

H ′
12,3,4 +H ′

34,1,2

)

= 0, (E.2)

£3 ◦
(

H ′
123,4,5 −H ′

543,2,1 +H ′
54,3,12

)

= 0,

£4 ◦
(

H ′
123,4,5 −H ′

543,2,1 +H ′
54,3,12

)

= 0.
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These identities can be described in general with the formula (4.14) for H[A,B]. Consider

£n ◦H[A,B], with n ≤ |A|. One half of (4.14) will disappear under the action of the £, as

£n ◦





∑

XjY=ȧB̃

(−1)|Y |H ′
Ỹ ,j,X



 = £n ◦





∑

XjY=B̃

(−1)|Y |H ′
Ỹ ,j,ȧX



 = 0, (E.3)

where in the second sum X is not constrained to be non-empty. The final equality then just

comes from the fact that H ′
A,B,C is constructed so as to satisfy generalized Jacobi identities

in each of A, B, and C. Using this and (4.14) it then just follows that, if £n ◦H[A,B] = 0

for n ≤ |A|, then

£n ◦





∑

XjY=ḃÃ

(−1)|Y |H ′
Ỹ ,j,X



 = 0, n < |A| (E.4)

for any word A and letterification ḃ.

F BCJ gauge versus Lorenz gauge at multiplicity six

The redefinitions for moving from the Lorenz to the BCJ gauge for all possible topologies at

rank six are identified with the usual formula (4.18), and are stated below for convenience.

We emphasize the typographical convention of representing a left-to-right nested bracket

by its composing letters, e.g. Ĥ[[[1,2],3],4] ≡ Ĥ1234, even though the parent superfields do

not obey BCJ symmetries.

Am
[12345,6] = Âm

[12345,6] − km123456Ĥ[12345,6]

− (k1 · k2)
(

Ĥ13456Â
m
2 + Ĥ1345Â

m
26 + Ĥ1346Â

m
25 + Ĥ1356Â

m
24

+ Ĥ1456Â
m
23 + Ĥ134Â

m
256 + Ĥ135Â

m
246 + Ĥ136Â

m
245

+ Ĥ145Â
m
236 + Ĥ146Â

m
235 + Ĥ156Â

m
234

−
1

2
Ĥ134Ĥ256k

m
256 −

1

2
Ĥ135Ĥ246k

m
246 −

1

2
Ĥ136Ĥ245k

m
245

−
1

2
Ĥ145Ĥ236k

m
236 −

1

2
Ĥ146Ĥ235k

m
235 −

1

2
Ĥ156Ĥ234k

m
234

− (1 ↔ 2)
)

− (k12 · k3)
(

Ĥ12456Â
m
3 + Ĥ1245Â

m
36 + Ĥ1246Â

m
35 + Ĥ1256Â

m
34

+ Ĥ124Â
m
356 + Ĥ125Â

m
346 + Ĥ126Â

m
345

−
1

2
Ĥ124Ĥ356k

m
356 −

1

2
Ĥ125Ĥ346k

m
346 −

1

2
Ĥ126Ĥ345k

m
345

− Ĥ3456Â
m
12 − Ĥ345Â

m
126 − Ĥ346Â

m
125 − Ĥ356Â

m
124

+
1

2
Ĥ345Ĥ126k

m
126 +

1

2
Ĥ346Ĥ125k

m
125 +

1

2
Ĥ356Ĥ124k

m
124

)

− (k123 · k4)
(

Ĥ12356Â
m
4 + Ĥ1235Â

m
46 + Ĥ1236Â

m
45
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+ Ĥ123Â
m
456 − Ĥ456Â

m
123

−
1

2
Ĥ123Ĥ456k

m
456 +

1

2
Ĥ456Ĥ123k

m
123

)

− (k1234 · k5)
(

Ĥ12346Â
m
5 + Ĥ1234Â

m
56

)

− (k12345 · k6)Ĥ12345Â
m
6 (F.1)

Am
[1234,56] = Âm

[1234,56] − km123456Ĥ[1234,56]

− (k1 · k2)
(

Ĥ[1,56]Â
m
234 + Ĥ[13,56]Â

m
24 + Ĥ[14,56]Â

m
23

+ Ĥ[134,56]Â
m
2 + Ĥ134Â

m
[2,56]

−
1

2
Ĥ134Ĥ[2,56]k

m
256 −

1

2
Ĥ[1,56]Ĥ234k

m
234 − (1 ↔ 2)

)

− (k12 · k3)
(

Ĥ[12,56]Â
m
34 + Ĥ[124,56]Â

m
3 + Ĥ124Â

m
[3,56]

− Ĥ[3,56]Â
m
124 − Ĥ[34,56]Â

m
12

−
1

2
Ĥ124Ĥ[3,56]k

m
356 +

1

2
Ĥ[3,56]Ĥ124k

m
124

)

− (k123 · k4)
(

Ĥ[123,56]Â
m
4 + Ĥ123Â

m
[4,56] − Ĥ[4,56]Â

m
123

−
1

2
Ĥ123Ĥ[4,56]k

m
456 +

1

2
Ĥ[4,56]Ĥ123k

m
123)

− (k1234 · k56)(Ĥ1234Â
m
56

)

+ (k5 · k6)
(

Ĥ[5,1234]Â
m
6 − (5 ↔ 6)

)

(F.2)

Am
[123,456] = Âm

[123,45,6] − km123456Ĥ[123,456]

− (k1 · k2)
(

Ĥ[1,456]Â
m
23 + Ĥ[13,456]Â

m
2 − (1 ↔ 2)

)

− (k12 · k3)
(

Ĥ[12,456]Â
m
3 − Ĥ[3,456]Â

m
12

)

− (k123 · k456)
(

Ĥ123Â
m
456 − Ĥ456Â

m
123

−
1

2
Ĥ123Ĥ456k

m
456 +

1

2
Ĥ456Ĥ123k

m
123

)

+ (k4 · k5)
(

Ĥ[4,123]Â
m
56 + Ĥ[46,123]Â

m
5 − (4 ↔ 5)

)

+ (k45 · k6)
(

Ĥ[45,123]Â
m
6 − Ĥ[6,123]Â

m
45

)

(F.3)

Am
[[12,34],56] = Âm

[[12,34],56] − km123456Ĥ[[12,34],56]

− (k1 · k2)
(

Ĥ[1,34]Â
m
[2,56] + Ĥ[1,56]Â

m
[2,34] + Ĥ[[1,34],56]Â

m
2

−
1

2
Ĥ[1,34]Ĥ[2,56]k

m
256 −

1

2
Ĥ[1,56]Ĥ[2,34]k

m
234 − (1 ↔ 2)

)

+ (k3 · k4)
(

Ĥ[3,12]Â
m
[4,56] + Ĥ[3,56]Â

m
[4,12] + Ĥ[[3,12],56]Â

m
4

−
1

2
Ĥ[3,12]Ĥ[4,56]k

m
456 −

1

2
Ĥ[3,56]Ĥ[4,12]k

m
124 − (3 ↔ 4)

)
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− (k12 · k34)
(

Ĥ[12,56]Â
m
34 − Ĥ[34,56]Â

m
12

)

− (k1234 · k56)
(

Ĥ[12,34]Â
m
56

)

+ (k5 · k6)
(

Ĥ[[12,34],6]Â
m
5 − Ĥ[[12,34],5]Â

m
6

)

(F.4)

Am
[[123,45],6] = Âm

[[123,45],6] − km123456Ĥ[[123,45],6]

− (k1 · k2)
(

Ĥ[1,45]Â
m
236 + Ĥ136Â

m
[2,45] + Ĥ[[1,45],6]Â

m
23

+ Ĥ[13,45]Â
m
26 + Ĥ[[13,45],6]Â

m
2

−
1

2
Ĥ[1,45]Ĥ236k

m
236 −

1

2
Ĥ136Ĥ[2,45]k

m
245 − (1 ↔ 2)

)

− (k12 · k3)
(

Ĥ126Â
m
[3,45] + Ĥ[12,45]Â

m
36 + Ĥ[[12,45],6]Â

m
3

− Ĥ[3,45]Â
m
126 − Ĥ[[3,45],6]Â

m
12

−
1

2
Ĥ126Ĥ[3,45]k

m
345 +

1

2
Ĥ[3,45]Ĥ126k

m
126

)

+ (k4 · k5)
(

Ĥ[4,123]Â
m
56 + Ĥ[[4,123],6]Â

m
5 − (4 ↔ 5)

)

− (k123 · k45)
(

Ĥ1236Â
m
45 + Ĥ123Â

m
456 − Ĥ456Â

m
123

−
1

2
Ĥ123Ĥ456k

m
456 +

1

2
Ĥ456Ĥ123k

m
123

)

− (k12345 · k6)
(

Ĥ[123,45]Â
m
6

)

(F.5)

Am
[[[12,34],5],6] = Âm

[[[12,34],5],6] − km123456Ĥ[[[12,34],5],6]

− (k1 · k2)
(

Ĥ156Â
m
[2,34] + Ĥ[1,34]Â

m
256 + Ĥ[[1,34],6]Â

m
25

+ Ĥ[[1,34],5]Â
m
26 + Ĥ[[[1,34],5],6]Â

m
2

−
1

2
Ĥ156Ĥ[2,34]k

m
234 −

1

2
Ĥ[1,34]Ĥ256k

m
256 − (1 ↔ 2)

)

+ (k3 · k4)
(

Ĥ356Â
m
[4,12] + Ĥ[3,12]Â

m
456 + Ĥ[[3,12],6]Â

m
45

+ Ĥ[[3,12],5]Â
m
46 + Ĥ[[[3,12],5],6]Â

m
4

−
1

2
Ĥ356Ĥ[4,12]k

m
124 −

1

2
Ĥ[3,12]Ĥ456k

m
456 − (3 ↔ 4)

)

− (k12 · k34)
(

Ĥ1256Â
m
34 + Ĥ126Â

m
345 + Ĥ125Â

m
346

−
1

2
Ĥ126Ĥ345k

m
345 −

1

2
Ĥ125Ĥ346k

m
346 − (12 ↔ 34)

)

− (k1234 · k5)
(

Ĥ[12,34]Â
m
56 + Ĥ[[12,34],6]Â

m
5

)

− (k12345 · k6)
(

Ĥ[[12,34],5]Â
m
6

)

(F.6)

where the redefinition terms ĤP are defined so as to enforce generalized Jacobi iden-

tities upon superfields, and can be identified most easily with repeated use of (4.25)

and (4.14)–(4.16).
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The rank six Berends-Giele currents are found using the Berends-Giele map (5.2), and

for a general superfield K is

s123456K123456 =

K[[[[[1,2],3],4],5],6]

s12s123s1234s12345
+

K[[[[1,[2,3]],4],5],6]

s123s1234s12345s23
+

K[[[[1,2],[3,4]],5],6]

s12s1234s12345s34
+

K[[[[1,2],3],[4,5]],6]

s12s123s12345s45

+
K[[[[1,2],3],4],[5,6]]

s12s123s1234s56
+

K[[[1,[[2,3],4]],5],6]

s1234s12345s23s234
+

K[[[1,[2,[3,4]]],5],6]

s1234s12345s234s34
+

K[[[1,[2,3]],[4,5]],6]

s123s12345s23s45

+
K[[[1,[2,3]],4],[5,6]]

s123s1234s23s56
+

K[[[1,2],[[3,4],5]],6]

s12s12345s34s345
+

K[[[1,2],[3,[4,5]]],6]

s12s12345s345s45
+

K[[[1,2],[3,4]],[5,6]]

s12s1234s34s56

+
K[[[1,2],3],[[4,5],6]]

s12s123s45s456
+

K[[[1,2],3],[4,[5,6]]]

s12s123s456s56
+

K[[1,[[[2,3],4],5]],6]

s12345s23s234s2345
+

K[[1,[[2,[3,4]],5]],6]

s12345s234s2345s34

+
K[[1,[[2,3],[4,5]]],6]

s12345s23s2345s45
+

K[[1,[[2,3],4]],[5,6]]

s1234s23s234s56
+

K[[1,[2,[[3,4],5]]],6]

s12345s2345s34s345
+

K[[1,[2,[3,[4,5]]]],6]

s12345s2345s345s45

+
K[[1,[2,[3,4]]],[5,6]]

s1234s234s34s56
+

K[[1,[2,3]],[[4,5],6]]

s123s23s45s456
+

K[[1,[2,3]],[4,[5,6]]]

s123s23s456s56
+

K[[1,2],[[[3,4],5],6]]

s12s34s345s3456

+
K[[1,2],[[3,[4,5]],6]]

s12s345s3456s45
+

K[[1,2],[[3,4],[5,6]]]

s12s34s3456s56
+

K[[1,2],[3,[[4,5],6]]]

s12s3456s45s456
+

K[[1,2],[3,[4,[5,6]]]]

s12s3456s456s56

+
K[1,[[[[2,3],4],5],6]]

s23s234s2345s23456
+

K[1,[[[2,[3,4]],5],6]]

s234s2345s23456s34
+

K[1,[[[2,3],[4,5]],6]]

s23s2345s23456s45
+

K[1,[[[2,3],4],[5,6]]]

s23s234s23456s56

+
K[1,[[2,[[3,4],5]],6]]

s2345s23456s34s345
+

K[1,[[2,[3,[4,5]]],6]]

s2345s23456s345s45
+

K[1,[[2,[3,4]],[5,6]]]

s234s23456s34s56
+

K[1,[[2,3],[[4,5],6]]]

s23s23456s45s456

+
K[1,[[2,3],[4,[5,6]]]]

s23s23456s456s56
+

K[1,[2,[[[3,4],5],6]]]

s23456s34s345s3456
+

K[1,[2,[[3,[4,5]],6]]]

s23456s345s3456s45
+

K[1,[2,[[3,4],[5,6]]]]

s23456s34s3456s56

+
K[1,[2,[3,[[4,5],6]]]]

s23456s3456s45s456
+

K[1,[2,[3,[4,[5,6]]]]]

s23456s3456s456s56
. (F.7)

Verifying that the redefinitions (F.1)–(F.6) amount to a gauge transformation in the

Berends-Giele currents means plugging them into the above, and checking that in the

resulting expression the Mandelstams cancel perfectly and the formula (5.8), which has the

form of a gauge transformation, is produced.

Clearly this calculation requires considerable effort, but it has been performed and

the result works as it should. A more efficient alternative approach based on (3.7) of

Proposition 1 is possible though, and works as follows. We begin with the definition

of the BG current, Am,BCJ
123456 = [[Am]] ◦ b(123456). Using the general form of the gauge

transformation (4.18) we see that this is just

Am,BCJ
123456 = [[Âm]] ◦ b(123456)− C[[Ĥ, L2 ◦ Â

m]] ◦ b(123456)− [[Ĥm]] ◦ b(123456), (F.8)

which by (5.2) and (3.7) is just

Am,BCJ
123456 = Am,L

123456 − km123456H123456 − [[Ĥ, L2 ◦ Â
m]] ◦

∑

XY=12...6

(

b(X)⊗ b(Y )− b(Y )⊗ b(X)
)

= Am,L
123456 − km123456H123456 −

∑

XY=12...6

(

HX [[L2 ◦ Â
m]] ◦ b(Y )−HY [[L2 ◦ Â

m]] ◦ b(X)
)

.
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Completing another round of the same sort of calculation on the [[L2 ◦ Â
m]] terms yields8

Am,BCJ
123456 = Am,L

123456 − km123456H123456 −
∑

XY=12...6

(

HXAm,L
Y −HY A

m,L
X

)

(F.9)

+
1

2

∑

XY=12...6

(

HXHY k
m
Y −HY HXkmX

)

, .

This is then just (5.8), as was desired. By a similar argument it could be shown that all

redefinitions produced by (4.18) have the form of a gauge transformation.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[6] N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018

[hep-th/0001035] [INSPIRE].

[7] N. Berkovits, ICTP lectures on covariant quantization of the superstring, ICTP Lect. Notes

Ser. 13 (2003) 57 [hep-th/0209059] [INSPIRE].

[8] C.R. Mafra and O. Schlotterer, Berends-Giele recursions and the BCJ duality in superspace

and components, JHEP 03 (2016) 097 [arXiv:1510.08846] [INSPIRE].

[9] F.A. Berends and W.T. Giele, Recursive Calculations for Processes with n Gluons,

Nucl. Phys. B 306 (1988) 759 [INSPIRE].

[10] D. Blessenohl and H. Laue, Generalized Jacobi identities, Note Mat. 8 (1988) 111.

[11] Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes,

Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

[12] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double

Copy of Gauge Theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

8Note there are no L3 terms in the below. These have been omitted intentionally as any such terms

would be of the form
∑

XY Z=12...6 HXHY AZ , and since each H requires at least three indices to be non-zero

all terms of this form will be zero.

– 34 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP07(2014)153
https://arxiv.org/abs/1404.4986
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.4986
https://doi.org/10.1007/JHEP03(2016)090
https://arxiv.org/abs/1510.08843
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.08843
https://doi.org/10.1016/0550-3213(77)90328-5
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B121,77%22
https://doi.org/10.1016/j.nuclphysb.2013.04.023
https://arxiv.org/abs/1106.2645
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.2645
https://doi.org/10.1103/PhysRevD.83.126012
https://arxiv.org/abs/1012.3981
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3981
https://doi.org/10.1088/1126-6708/2000/04/018
https://arxiv.org/abs/hep-th/0001035
https://inspirehep.net/search?p=find+EPRINT+hep-th/0001035
https://arxiv.org/abs/hep-th/0209059
https://inspirehep.net/search?p=find+EPRINT+hep-th/0209059
https://doi.org/10.1007/JHEP03(2016)097
https://arxiv.org/abs/1510.08846
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.08846
https://doi.org/10.1016/0550-3213(88)90442-7
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B306,759%22
https://doi.org/10.1285/i15900932v8n1p111
https://doi.org/10.1103/PhysRevD.78.085011
https://arxiv.org/abs/0805.3993
https://inspirehep.net/search?p=find+EPRINT+arXiv:0805.3993
https://doi.org/10.1103/PhysRevLett.105.061602
https://arxiv.org/abs/1004.0476
https://inspirehep.net/search?p=find+EPRINT+arXiv:1004.0476


J
H
E
P
1
0
(
2
0
1
9
)
0
2
2

[13] C.R. Mafra, O. Schlotterer and S. Stieberger, Explicit BCJ Numerators from Pure Spinors,

JHEP 07 (2011) 092 [arXiv:1104.5224] [INSPIRE].

[14] C.R. Mafra and O. Schlotterer, Towards one-loop SYM amplitudes from the pure spinor

BRST cohomology, Fortsch. Phys. 63 (2015) 105 [arXiv:1410.0668] [INSPIRE].

[15] C.R. Mafra and O. Schlotterer, Two-loop five-point amplitudes of super Yang-Mills and

supergravity in pure spinor superspace, JHEP 10 (2015) 124 [arXiv:1505.02746] [INSPIRE].

[16] K.G. Selivanov, On tree form-factors in (supersymmetric) Yang-Mills theory,

Commun. Math. Phys. 208 (2000) 671 [hep-th/9809046] [INSPIRE].

[17] K.G. Selivanov, Post-classicism in Tree Amplitudes, in Proceedings of 34th Rencontres de

Moriond on Electroweak Interactions and Unified Theories, Les Arcs France (1999), pg. 473

[hep-th/9905128] [INSPIRE].

[18] E. Witten, Twistor-Like Transform in Ten-Dimensions, Nucl. Phys. B 266 (1986) 245

[INSPIRE].

[19] W. Siegel, Superfields in Higher Dimensional Space-time, Phys. Lett. B 80 (1979) 220

[INSPIRE].

[20] C. Reutenauer, Free Lie Algebras, London Mathematical Society Monographs, Clarendon

Press, Oxford U.K. (1993).

[21] C.R. Mafra and O. Schlotterer, Towards the n-point one-loop superstring amplitude. Part I.

Pure spinors and superfield kinematics, JHEP 08 (2019) 090 [arXiv:1812.10969] [INSPIRE].

[22] J.-Y. Thibon, Lie idempotents in descent algebras, (lecture notes), Workshop on Hopf

Algebras and Props, Boston U.S.A. (2007).

[23] H. Barcelo and S. Sundaram, On Some Submodules of the Action of the Symmetrical Group

on the Free Lie Algebra, J. Algebra 154 (1993) 12.

[24] J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].

[25] M. Tentyukov and J.A.M. Vermaseren, The Multithreaded version of FORM,

Comput. Phys. Commun. 181 (2010) 1419 [hep-ph/0702279] [INSPIRE].

[26] N. Berkovits, Explaining Pure Spinor Superspace, hep-th/0612021 [INSPIRE].

[27] N. Berkovits, Untwisting the pure spinor formalism to the RNS and twistor string in a flat

and AdS5 × S5 background, JHEP 06 (2016) 127 [arXiv:1604.04617] [INSPIRE].

[28] L.M. Garozzo, L. Queimada and O. Schlotterer, Berends-Giele currents in

Bern-Carrasco-Johansson gauge for F 3- and F 4-deformed Yang-Mills amplitudes,

JHEP 02 (2019) 078 [arXiv:1809.08103] [INSPIRE].

[29] R. Monteiro and D. O’Connell, The Kinematic Algebra From the Self-Dual Sector,

JHEP 07 (2011) 007 [arXiv:1105.2565] [INSPIRE].

[30] G. Chen, H. Johansson, F. Teng and T. Wang, On the kinematic algebra for BCJ numerators

beyond the MHV sector, arXiv:1906.10683 [INSPIRE].
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