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1 Introduction

The definition and usage of multiparticle superfields [1, 2] of supersymmetric Yang-Mills
(SYM) theory [3] has proved to be an essential feature in obtaining compact expressions for
high-multiplicity amplitudes in superstring [4] and field theories [5] using the pure spinor
formalism [6, 7].

In the simplest formulation of multiparticle superfields in the Lorenz gauge, their defini-
tion is given by a straightforward recursion over the particle labels [2]. While this recursive
definition has its own merits and is certainly useful in relating the new expressions for
tree-level amplitudes [8] to the standard Berends-Giele recursions [9], there is an alterna-
tive formulation related by a non-linear gauge transformation whose properties have more
appeal, the BCJ-gauge representation [1]. As will be reviewed in section 2.3, the superfields
in this gauge satisfy generalized Jacobi identities [10] in their particle labels, for example
ATy = —A5, ATy + ATy + ABl, = 0, and so forth. In this gauge, they constitute the
natural building blocks used in the expressions of local SYM numerators satisfying the
Bern-Carrasco-Johansson numerator identities [11, 12] at tree- [13] and loop-level [14, 15].

As explained in [2], the gauge transformations required to go to the BCJ gauge are
encoded in so-called redefining superfields Hip g to be reviewed below. Until now, the
explicit expressions of these superfields were known only up to multiplicity five [2]. In
section 4.2.1 of this paper this restriction will be lifted when we propose a recursive formula
for Hp ), namely

P

1Pl +1Q )

XjY=pQ

where the auxiliary superfields H' ; ~ are defined by

1 .
H;D,Q,R = HP,Q,R + |:2H[p7Q](k’PQ - AR) + CyChC(P, Q, R)}

- [ Z (k™ k) [HixroHysr — (X 0 4)] + CYCHC(P,QaR)] :
Xjy=pP
5(Y)=R®S

1 1 .
Hpor= —ZA’]?AZ?FE“" + 5(VV}D%”VVQ)A?z1 + cyclic(P,Q, R) .



As a consequence of the quadratic corrections H? in these formulas, we will show in sec-
tion 5.3 that the superfields satisfying the generalized Jacobi identities follow from a stan-
dard gauge transformation of SYM theory in its finite form,

A%CJ = UAL U™ 40, UU ! with U = exp(—H), (1.2)

whose series representation is given by

ABOY = AL+, O] 1, ALy 2 B [H, O]+ [, (B, AL ]+ B [ B, ][4+ (1.3
We note that in [2] only the first three terms of (1.3) were identified.

While in pursuit of finding these formulas we also filled some gaps of the previous
discussions. These mostly concern writing down closed formulas for expressing contact
terms (in a multitude of different situations) where the multiparticle labels are given in
terms of an arbitrary configuration of nested Lie brackets. As will be explained in section 3,
we found a novel recursive description of such terms which is universal and whose backbone
is given by the solution to a purely combinatorial problem. Several equations relevant to
the framework of multiparticle superfields can be written down using this newly found
recursion and we prove several associated results.

Finally, in the appendices we write down some longer examples of applications of
several recursive maps from the main text, among other things.

2 Review

In this section we review some aspects of the construction of 10d supersymmetric Yang-
Mills superfields following the recent discussions of [1, 2] using the framework of pertur-
biners [16, 17]. For the original references on the covariant description of super Yang-Mills
in ten dimensions, see [18, 19]

2.1 Notation and conventions
2.1.1 Ten-dimensional superspace

The ten-dimensional superspace coordinates are denoted {z™, 6%}, where m = 0,...,9
are the vector indices and o = 1,...,16 denote the spinor indices of the Lorentz group.
The spinor representation is based on the 16 x 16 Pauli matrices fyZ/”B = ’ngx satisfying the

Clifford algebra %(ng,yn)ﬁ 7 = 2p™"§7. In this paper the (anti)symmetrization of n indices
does not include a factor of %

2.1.2 Multiparticle index notation

In the following discussions we will use a notation based on “words” composed of “letters”
from the alphabet of natural numbers. Capital letters from the Latin alphabet are used
to represent words (e.g. P = 1423) while their composing letters are represented by lower
case letters (e.g. ¢ = 3). The length of a word P is denoted |P| and it is given by the
number of its letters. The reversal of a word P = pipa...pp| is P = p\p|---p2p1- The



word notation is also used in place of arbitrary commutators, such as P = [1,2] = 12 — 21;
the context will disambiguate whether a word denotes a sequence of letters or a bracketing
structure. In addition, when the bracketing structure is nested from left to right such as
P =[[[1,2],3],4],5] we will often write it as P = 12345. Such structures may be referred
to as (left-to-right) “Dynkin brackets”

The multiparticle momentum for a word with letters (labels) from massless particles
(ki - ki) = 0 and its associated Mandelstam invariant are given by

m m m 1
kP Ekp1+'”+kp|p\’ SPE§<kp-k'P). (21)

For example k7% = k7" + k' + k5" and s123 = s12 + 513 + S23.

2.2 Non-linear supersymmetric Yang-Mills

To describe ten-dimensional SYM one introduces Lie algebra-valued superfield connections
Ay =A,(x,0) and A, = A, (x,0) and the supercovariant derivatives [18, 19],

Va=D,— Ay, Vi = 0Om — Ay s (2.2)
where the superspace derivative D, = a% + %('me)aﬁm satisfies { Dy, Dg} = fyglﬂﬁm. The
constraint {Va, Vg} = Y45Vm and the associated Bianchi identities imply the following
non-linear equations of motion [18],

1
{von vﬁ} = ’Yglﬁvmv {VO“WB} = X(an)aﬁﬂ?mnv (2.3)
[V, Vin] = —(3mW)a, [V, F™™] = (Wimynly, |
where
Frin == [V, Vo], Wi = [V, W] (2.4)

These equations are invariant under the gauge transformations of the superpotentials
5QA04 = [Vcn Q] ) 5QAm = [vma Q] (25)

which in turn induce the gauge transformations of their field-strengths joW® = [Q, Wa],
SoF™ = [Q,F™], and 6oW, = [Q, WS, | where Q = Q(z,0) is a Lie algebra-valued gauge
parameter superfield. The equations of motion (2.3) can also be rewritten as

1
{V(OHAB)} = fYZLBAm {VQ,W’B} = Z(’Ymn)aﬁan

(2.6)
[VmAm] = [amaAa] + (vmW)a, [vamn] = (W[mVn])a



2.2.1 Non-linear wave equations and Berends-Giele supercurrents

Alternatively, in the Lorenz gauge (defined by the constraint [0,,, A™] = 0), the equations
of motion (2.3) are equivalent to the non-linear wave equations [2],

DAO& - [ m’ 8m ] [(’me)omAm] (27)
= [Ap, [07, A™]] + [F™, Ap] + yip{W*, WP}
= [

1
+ 5 [anu (,Ymnw)a}

OF™ = [Ap, (87, F™]] + [A,, FP™] 4 2[F™P, F,"] 4 4{(Wlmqm), We},

A, [0, W] + [A™, W]

where 0K = [0, [0, K]] and FPIm? = [V, F™n],
To solve the wave equations (2.7) we use the perturbiner method of Selivanov [16, 17].
In this approach, one expands the superfields K € {A,, A", W* F""} as a series with

respect to the generators t% of a Lie algebra summed over all possible non-empty words
P as
K=Y Kpt",  tF=up..ne (2.8)

After plugging these series in (2.7) one learns that the expansion coefficients Kp €
{AD, A WS Finy turn out to be the Berends-Giele currents,

= — Z Kixy (2.9)

XYP

where sp = %k% arises from the [J operator acting on plane waves of momentum k% and

1
AP = S [ALRT - A9) + AL (W — (P& Q)] (2.10)
ARQ = L[AD(R A9) + A FS, — WP3uW?) — (P & Q)]

SRR F — (P 6 Q)]

(63 1 (0% mao m
Wikq = =5 We(ke - Ag) + Wi
1 m mn M, m n|o
Fiplgy = =5 [FE"(kp - Ag) + FO™" AL + 2F P FE, + 29 WEWS — (P Q)]

Notice that the above Berends-Giele currents are non-local superfields as they contain
inverse factors of Mandelstams variables.
2.2.2 Linearized description of 10d SYM

The linearized description of ten-dimensional super-Yang-Mills is obtained by discarding
the quadratic terms from the equations of motion (2.6) and yields

Do Al + DAl = lL AL, DoFL = 0m(mWi)a — On(YmWi)a
. . s 1 , (2.11)
DocAin = (’YmWi)oc + 8mAla s DaWi = Z(an)aﬁF&n

In the context of scattering amplitudes, the superfields are labelled with a distinct natural
number ¢ to associate them with the i-th particle taking part in the scattering process.
This association will be generalized below.



2.3 Generalized Jacobi identities

As we will discuss below in the context of multiparticle superfields, there is the notion of a
superfield satisfying certain symmetries dubbed BCJ symmetries in [2]. These symmetries
can be given a precise mathematical characterization in terms of what is called generalized
Jacobi identities in the mathematics literature [10, 20].

Let A be a word and ¢(A) its left-to-right bracketing defined in (A.1). The generalized
Jacobi identities correspond to the elements in the kernel of £. For example

((12421) =0,  £(123+231+312) =0, (2.12)

which correspond with the antisymmetry and Jacobi identity of the Lie bracket.

Using the identity £(P4(Q)) = [((P),¢(Q)] it is easy to see that {(A¢(B)+ B¢(A)) =0
for any words A and B. In addition, due to the recursive definition of ¢ if ¢(P) = 0 it
also follows that ¢(PQ) = 0 for any word ). Therefore, for objects labelled by words, the
generalized Jacobi identities can be characterized by an abstract operator £

£k o KABC’ = KAE(B)C =+ KBE(A)C7 VA, B ;é (Z) and VC' such that ’A’ + ’B‘ = k. (213)

We emphasize the arbitrary partition of non-empty words A and B in the above definition
(while C' can be empty), leading to a non-unique operator £. For instance

£30Ki93 = Kio3 — K139 + Ko31, forA=1, B=23and C =10 (2.14)
L30Ki93 = Kiog+ K319 — K391, for A=12, B=3and C=10.

Note that if £5 0 Kj93 = 0 then the right-hand side of the expressions in (2.14) agree and
can be written as the cyclic sum Kjo3 + Ko31 + K319.

Definition 1 The objects Kp are said to satisfy generalized Jacobi identities iff
LroKp=0, Vk<|P|. (2.15)
The generalized Jacobi identities are also called BCJ symmetries.

The defining identities for objects Kp of increasing multiplicities can be written as

Kioc + Ko1c =0, VC, (2.16)
Ki23c + Kazic + Kzi2c =0, VC,
Ki234c + Kowazc + K3zaioc + Kuzo1c =0, V C.

where we have already used the fact that Kp satisfies the BCJ symmetries £, 0 Kp = 0
for all & < |P| to simplify the appearance of the above. This fact in general can be used
to show the equivalence of the BCJ symmetries for the various partitions of P = ABC as
mentioned after the example (2.14).

It is not hard to be convinced that the BCJ symmetries are equivalent to the symme-
tries of a concatenated string of structure constants, K2, p, <+ f 12ay fazdas fazdas  fap-1pap



If Kp satisfies BCJ symmetries then it is convenient to use the notation Kypy = Kp.
In particular, this implies that for superfields in the BCJ gauge we have [21],

For example, K[j34 = Ki234 — Ki243. In addition, it follows from the definitions (2.13)
and (2.15) that if Kp with |P| = n satisfies generalized Jacobi identities then

Kaip = —Kyayp, A#0,VB, (2.18)

which implies that there is an (n — 1)! basis of Kp.

3 Contact terms for general Lie polynomials

For the purpose of this paper, P is a Lie polynomial if it is a linear combination of words
written in terms of (nested) Lie brackets [z,y] = zy — yx. For example P = [[1,2],3] =
123 — 213 — 312 + 321 is a Lie polynomial while Q = 123 is not.!

In this section we will introduce mathematical maps acting on words and Lie polyno-
mials that will play a central role in later discussions about several aspects of local and
non-local multiparticle superfields.

3.1 Planar binary tree map on words

A nested Lie bracket can be interpreted as a planar binary tree and vice versa [23]. In
the context of tree-level scattering amplitudes one can map each planar binary tree to a
product of inverse Mandelstam invariants. For example the two binary trees with three
leaves are mapped to

1 2 3 1 2 3
[[1,2],3] (1,2,3]]
8128123 $235123

Mapping the sum over all binary trees with a given number of leaves will be related to
Berends-Giele currents later on, and the explicit expansions can be generated from the
following recursion.

Definition 2 (Binary tree map) A word P of length |P| is recursively mapped to a Lie
polynomial built from a sum over all planar binary trees with |P| leaves as

i =i BP)= - D BBV, (31)

XY=P

where sp is the Mandelstam invariant (2.1).

Tt may not be immediately obvious that a given linear combination of words is a Lie polynomial. For
P = 12 — 21 this is clear, but it is harder to see that P = 1324 + 1423 — 1432 — 2134 + 2341 — 3124 +
3214 — 3241 — 4123 4+ 4213 — 4231 + 4312 is the Lie polynomial P = [[[1, 2], 3],4] 4+ [[[2, 3], 4], 1]. A theorem
by Dynkin-Specht-Wever states that if £(P) = |P|P then P is a Lie polynomial [20], and this fact can be
used to find the expression written in terms of nested Lie brackets [22].



NN

b(1234) [[1,2],3],4] [[1,[2,3]].4 [[1,2],[3,4]] ,[3,4]]] 1,[[2,3],4]]

312512331234 523512351234 51233451234 534523431234 323523431234

Figure 1. The sum generated by the recursion (3.1) of b(1234).

The number of terms in the recursion above is given by the Catalan numbers
1,2,5,14, ... and one gets, for example,

b(1) =1, b(12) = [1122] b(123) = [EHZ]HZ] + [;ili] )

(01,2034 (1L02,30,4) |, [1,23,4) | [L02.3,4) , [1[2034)
512512351234 512351234523 51251234534 512345235234 512345234534

b(1234) = (3:2)

These expansions are easily seen to be examples of Lie polynomials [20], see figure 1 for
the diagrammatic representation of b(1234).
3.2 Contact terms associated to Lie polynomials

Given the Lie polynomial [1, 2] we can associate to it the following contact terms propor-
tional to (ki - k2) = s12; Co[1,2] = (k1 - k2)(1 ®2 —2® 1). It is easy to see that this
definition leads to a deconcatenation of b(12),

Cob(12) =b(1) @b(2) —b(2) @b(1) = Y  (BX)@bY)— (X +Y)). (3.3)
XY=12
We would like to extend this action to an arbitrary Lie polynomial C o [P, Q] such that
Cob(P)= > (b(X)®@b(Y)— (X +Y)). (3.4)
Xy=P

The following definition does the job, as will be proven below.

Definition 3 (Contact term map) Let C be the coproduct C : Lie — Lie ® Lie that
maps a Lie polynomial into the tensor product of two Lie polynomials recursively by

Coi=0 (3.5)
o[P,Q=(CoP)ANQ+PA(CoQ)+(kp-ko)(PRQ—Q®P),

where A is defined bi?

(A B)NC=[A,C]® B+ A® [B,(] (3.6)
ANB®C)=[A,BleC+B®[A,C],
and kg = kplp, pp > where p; fori =1 toi= |P| are the letters of P.

*Note the relations (3.6) should be used to remove A operations in the reverse order to that which they
are introduced. Without such a criterion ambiguities can arise when objects of the form A A [B,C] A D are
considered.



As an immediate consistency check, we note that the definitions given in (3.6) imply
that C o [Q, P] = —C o [P,Q]. Note that when the contact term map is used to generate
combinations of superfields, the notation described in (C.5) and (5.1) may be used. For
example applications of the C' map, see the appendix D.

Proposition 1 The C map satisfies
Cob(P)= Y (b(X)®bY)— (X« Y)). (3.7)
Xy=pP
Proof. The proof is inductive in nature. When the word P has length two the statement
has been verified explicitly in (3.3). We now assume that the relation (3.7) is satisfied for
any word P of length less than n, and let @ be a word of length n. Then we get
sCob(Q) =Co 3 b(X),b(Y)] (3.8)
XY=Q

> [(c o b(X)) Ab(Y) +b(X) A (Cob(Y))
XY=Q

+ (X V)Y (b(X) @ b(Y) = b(Y) @ b(X))

where we have used the definition of the contact term algorithm (3.5). Now we separate the
above into the three possible cases; both of | X| and |Y| being greater than 1, | X| = 1, and
Y| = 1. We then use that Cob(i) = 0 for i a letter, and that the induction hypothesis (3.7)
holds for all C' o b(P) such that |P| < |Q|, so that every application of the map C' can be
removed from this equation. This leaves us with

soCob(Q) = S (K- &) (b(X) @b(Y) - b(Y)® b(X)> (3.9)
XY=0Q
o — b(B) @ b(A)) Ab(Y)
|x|>1Ty\>1
+ D (o —b(D) ®b(C)) AB(Y)

XY=Q CD=X
[Y]=1

+ ) b)) A (( —b(D) ®b(C))

| X|>1,|]Y[>1 eb=y
+Zb A (b(A) @ b(B) - b(B) @ b(A))
IX\ AB=Y

Absorbing the | X| =1 and |Y| = 1 summations into the |X| > 1, |Y| > 1 cases we get

s50Cob(@Q) = Y (KX -kY) (b(X) @b(Y) —b(Y)® b(X)) (3.10)

XY=Q

£33 (b ~b(B) @ b(4)) AB(Y)

XY=Q AB=X
1X|>1

+3 0 Y ax)A (b(C) ®b(D) —b(D) ® b(C>)

XY=Q CD=Y
[Y[>1



Now we shall consider the two double sums. First of all we merge them using that, for
example, > vy g x|>1 2_ap=x is the same as 3 4 py_ . Then we remove the A using the
definition (3.6) to get

S (oA @ b(B)-b(B)@b(A)) AbY) + 3 b(X) A (B(C)@H(D)—b(D) @ H(C))

ABY=Q XCD=Q
= > ([b(A), b(V)]@b(B)+b(A)@[b(B), b(Y)] = [b(B), b(Y )] @b(A) —b(B)@[b(A), b(Y)))
ABY=Q
+ > (b C)] @ b(D) + b(C) @ [b(X), b(D)]
XCD=Q
— [b(X),b(D)] ® b(C) — b(D) @ [b(X), b(C)])

We can now group the terms into two sets of four in a convenient way

—( > (1), b(V)] @ b(B) ~ b(B) @ [b(4),b(Y)]) (3.11)

ABY=Q

+ Y ()@ (X)), b(D)] - [b(X),b(D)] @ b<c>)>

XCD=Q

+< > () @ B, b)) - )] @ ()

ABY=Q

+ ¥ ( 0)] © b(D) — b(D)@[b(X),b(C)])>

XCD=Q

which we will now look at separately. With the first set of terms, it is clear from relabeling
the second sum that it is just

> (1(4), ()] @b(B) ~ b(B) @ [b(A), b(Y )] +b(B) @ [b(4), b(Y)] - [b(A), b(Y )] @ b(B) )
ABY =Q

which is identically zero. The second set of terms in (3.11) can be simplified using the
definition of the b map (3.1) leading to

S (b(A)®b(BY)sBy—sByb(BY)®b(A)) (3.12)
ABY =Q
+ Y (sxcb(XC) @b(D) ~ b(D) & H(XC)sxc).
XCD=Q

Then, since B and Y are adjacent everywhere they appear in the first sum, we can condense
them into a single word, and likewise for X and C in the second sum. This leaves us with?

> sy (BX) @b(Y) = b(¥) @b(X)) + D sx (b(X) @b(Y) = b(¥) 2 b(X)) . (313)

XY=Q XY=Q

3There should be a Y| > 1 in the first sum and a |X| > 1 in the second, as these words come from
combining two words of non-zero length. This can be left implicit since sp = 0 if |[P| = 1.



We now return to (3.8) and, using that the double sum terms are given by (3.13), we finally
obtain

Cob(Q) = :@ S ox sy + BB (5(X) @ b(Y) = b(Y) @ b(X) )]
XY=Q

= > (b(X) Rb(Y) = b(Y) ® b(X)) (3.14)

XY=Q

since sx + sy + (kX - k¥) = sxy. Hence the result is proved. [

Lemma 1 If P has the form of a left-to-right Dynkin bracket P = [[...[p1, p2], p3l, ---], p|p|];
CoP= " (k" K)[XR®jS— (X ¢ j), (3.15)

XjY=P

5(Y)=R®S

where the deshuffle map §(Y) is defined in (A.2).

Proof. We use induction. From (3.5) it follows that Co[1,2] = (k! - k*)(1®2—-2®1). We
then suppose that the relation (3.15) is satisfied for the bracket P, and consider C o [P, ],
where ¢ is a single letter.

Co[P,ql=(CoP)Aq+PA(Coq)+ (k' kN (P®q—q® P) (3.16)
= Y - W)(XR®jS— (X)) Ag+ (K- k) (PR g—q® P)

XjY=P
5(Y)=R®S

= Y () (XRg®jS+XR®jSq— (X)) + (k- k) (P®q—q& P)

XjY=P
5(Y)=R®S

= > (K (XR®jS— (X <)+ E k) (Peq-q® P)
5(3)’(3)2:1?%5
= ) () (XR®jS— (X ¢ j))

XjY=Pq
5(Y)=R®S

where 0 is the deshuffle map (A.2). Hence if (3.15) is true for the Dynkin bracket P, it is
true for the Dynkin bracket [P, ¢], and so by induction the result is proved. O

This result is important, as it shows that the general redefinition formulae of this paper
reduce to those previously found in [2] when the multiplicity is less than six.

3.2.1 Contact term-like algorithms for simplifying redefinition terms

In this subsection a further pair of algorithms based around that of contact terms (3.5)
will be defined, which will be useful when simplifying the redefinition terms (4.25) in the
next section. The first of these will be denoted C, and is defined by

Coi=0, Co[A,Bl=(CoA)AB+AA(CoB), (3.17)
(note the C' map (3.5) on the right-hand side) where A is defined by

(A9 BJAC=[A,C]® B, AAB®C)=[AB]aC. (3.18)

,10,



In addition we define a related algorithm C’ in terms of C,
C'oi=0, C'o[A,B]=ColA, B]+ %(kA ‘EPY (A9 B-B®A). (3.19)
The following notation, similar to that of (C.5), will be used with these maps
CIK,S]o[P,Q) = [K,S]o(Co[P,Q)), C'[K,S]o[P,Q]=[K,S]o(C'o[P,Q]) (3.20)
where the double bracket [-, -] is defined in (5.1).

Lemma 2 The map C satisfies

ColP,Ql= ) (kX -K)(XR,Q®jS— (X« j)—(P+Q), (3.21)
(V) RES

for any Dynkin brackets P and Q).

Proof. To see this we use the identity (3.15) as follows,

Col[P,Q]=(CoP)AQ+PA(CoQ) (3.22)
= > (W) (XR®jS—(X < §)AQ+PA Y (kX -K)(XR®jS— (X <))
XjY=P XiY=Q
5(Y)=R®S 5(Y)=R®S
= Y F-K)(XRQ @S — (X < 4)+ > (k" -KF)([P,XR]©jS — (X ¢ j)),
XjY=P XjiY=Q
5(Y)=R®S 5(Y)=R®S

the second equality coming from the definition (3.18). The result follows after using the
antisymmetry [P, X R| = —[X R, P| in the final line. J
For illustrative examples of the C' map, see the appendix D.2.

4 Redefinitions of local multiparticle superfields

In this section we write down the redefinition algorithms to obtain multiparticle superfields
in the so-called BCJ gauge starting from both the Lorenz and hybrid gauges with the most
general bracketing configurations. The characterization of these redefinitions as a gauge
transformation was identified in [2] and it will be reviewed and expanded in the next
section.

4.1 Multiparticle superfields

It was shown in [1, 2] that the single-particle description admits a generalization in terms
of multiparticle superfields AL (z,0), AL (z,0), Wg&(x,0) and FZL, (x,0), which, for conve-
nience, are collected in the set Kp

Kp € {AL(2,0), A% (z,0), W&(z,0), FF"™(z,0)}. (4.1)

We will review two different ways to construct them below. At the same time we will
seamlessly fill some gaps in the discussions of [1, 2] by utilizing the framework developed
in the previous section.
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4.1.1 Multiparticle superfield in the Lorenz gauge

The generalization of the single-particle linearized superfields of (2.11) to an arbitrary
number of labels follows from the local version of the recursive solution to the non-linear

wave equations (2.7) and can be summarized by the following definition:*

Definition 4 (Lorenz gauge) Multiparticle super-Yang-Mills superfields in the Lorenz
gauge are defined starting with the multiplicity-one superfields A%, AL, W and E™ and
recursively for arbitrary nested bracketings via

ARG = L[AP(P - 49) 4 AD (W) — (P 5 Q)] (4.2)
APl = _[AD (P - A9) 4 ALES, — (WPrn¥9) — (P & Q)]
Wiy = FEOMWAR = S - AQWg - JWE A5 — (P> @)
gty = S [0 Aq) + Y™ 4 + 2B By + W - (P )
where
Wity = kpoWh o — CIA™, W] o [P, Q)] (4.3)

Fipbt = kpoFre o — CIA™, PP o [P, Q)

PQl — (P.Ql
and the map Co is defined in (3.5). Alternatively, the field-strength can be written as

F[?Zg] = kITSLQA’[”};’Q] — kITSLQA’[?}jQ] —C[A™, A"] o [P, Q)] . (4.4)
These recursions apply to arbitrary bracketing structures encompassed by P and ). For
example flﬁ”l o). ([3.4),5)) ‘mplies that P = [1,2] and @ = [[3,4],5] and leads to
. 17 . ) o
Al a5 =~ 5 ARA k2 - AlBAS]) 4 AL F (3,41 (4.5)

— (W12, WARALSD) — (11, 9] 4 [[3,4],5))]
In addition, from the example for C o [[1,2],[3,4]] in (D.1) we have for (4.4),

FifYy 15,1 = K153 AT 213,01 — Fsa AL 2 3.0 (4.6)
— (k' k) (A 3,49 A5 + AT ATy 13 — (1 45 2))
— (K - k) (AR 548 + A5 A g4 — (3 > 4))
= (k7 K (A 9 Ay — ARy Afr )
Identifying the pair of words P and @ for the superfields on the right-hand side of (4.5)

leads to further applications of the recursions in (4.2) until eventually all superfields are of
single-particle nature.

4The Lorenz gauge discussion in [2] is missing the definition of the general field-strength F{Sfég] while
the definition of W[‘;Q] is misleading as £3 o W[ol‘m] # 0 if one does not use momentum conservation.
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4.1.2 Multiparticle superfields in the hybrid gauge

Let us assume that all superfields of multiplicities P and @ in Kp and Kg have been
redefined to satisfy all the BCJ symmetries (2.15) (we will explain how to do this below).
Since multiparticle superfields Kp in the BCJ gauge satisfy the same symmetries as the
Dynkin bracket P = [[...[p1,p2],p3], -], p|p|] their multiparticle labels will be written as
plain words P = p1p2...p/p|. One then defines higher-multiplicity superfields in Kp g as
follows:

Definition 5 (Hybrid gauge) Multiparticle super-Yang-Mills superfields in the hybrid
gauge are distinguished by a check accent K[P,Q} and are defined by

ARG = AT 49) 1+ AL (W) — (P 5 Q)] (4.7)

AlPQl _ _E[A;;(kP.AQ) ALFS, — (WFy,We) — (P Q)]

1 1 r m m
Wihg = 4 Fi(yW9)” — (kP AQWE — pr CAG = (P Q)
Fipty = —3 [F,@””(kp CAQ) + FE™AQ + 2FRPF , + 2 W WS — (P & Q)]

where the superfields in Kp and Kg on the right-hand side satisfy the generalized Jacobi
identities (2.15) and

Wi, = klgWh o — CIA™ W] o [P, Q)] (4.8)

Flpt = kg FI o) — CIA™, F™] o [P,Q),

are the local form of the superfields of higher-mass dimension defined in [2] with the map
C[- -] asin (C.5).

Note an important difference with respect to the definitions of superfields K (P,Q] In
the Lorenz gauge (4.2). The definitions in the Lorenz gauge are recursive while in the
hybrid gauge they are not — the superfields K (P, on the left-hand side of (4.7) have
to be redefined before they can be used as the input on the right-hand side at the next
step. However, from a purely practical perspective, to obtain the explicit expressions of
the superfields in the BCJ gauge it is more convenient to use the hybrid gauge.

4.2 From hybrid gauge to BCJ gauge

The general formula to redefine the superfields K| PQ] € {Ay, A, W<} from the hybrid
gauge (4.7) to superfields K(p g € {Aa, A™, W} in the BCJ gauge is given by

Kipg = Kipg — Z (kx - kj) [Hixpq) Kjs — (X < j)] (4.9)
6(};/:)51%?(;5

DQH[P7Q} : K= Aa
+ Z kx - k? XR,P] st— (X H])] — ngH[pr] : K=A™ .

=XjY

5(y) R@S 0 . K =W«
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Alternatively, the identity (3.21) can be used to rewrite (4.9) more succinctly as

DaH[pr] : K= Aa
KPQl = gIPQl _ O[H, K] o [P, Q] — KpoHpg @ K =A™ . (4.10)
0 . K=Ww®

These redefinitions introduce new superfields H|p o) whose purpose is to make the resulting
linear combinations satisfy the BCJ symmetries. For example, the first instances of the
redefinition (4.9) for Ap g up to multiplicity |P| + |Q| = 5 are given by (recall that
At = A" and AR = AT

lij] =
AHLVQ] — Aﬁlg] (411)
ﬁm] = vﬁlzs} - k$3H[12,3]

Afly sy = ATy gy — (K- K?) [H[1,34]A§" - H[2,34]Aﬂ
+ (k) [ His 1 AT — i1y AT ] = Ksaa Hipo

Affyg 4 = Affng] — (k' k%) [H[13,4]A72n - H[23,4]Aﬂ
— (k" k) Hp1o ) AS" — k334 H123 41

Affogas = Af’f234,5] — (k1 - ko) [Hpsa 5 A5 + Hpa 5 Ay + Hpg 51 A5 — (1 2)]
— (k12 - k3) [Hpio4,5) A5 + Hpo 5 A5 — (12 ¢ 3)]
— (k123 - ka) Hj103,5) A% — k3345 H[1234.5)

Aflog 45 = Aff23,45} — (k' k%) [H[13,45]A§n + Hipa5A%; — (1 < 2)}
— (K2 1) [ Hppz 5 A — (12 5 3)

+ (K k) [15[[47123}14@I —(4+ 5)} — k12345 H 123 5]

To help in elucidating the outcome of the above redefinitions we note that, for suitable
H|p q) to be given below, the superfields K[p ) on the left-hand side satisfy all the identities
implied by the bracket structure. For example,

Ao = —AB1g = — A9 Aoz + Ay T Afsrg = 0- (4.12)

The above means that Aﬁll,Q],?)] satisfies the same symmetries as [[1, 2], 3] and can be repre-
sented via the shorthand A7}; = Am72}73]. In general, the effect of the above redefinitions
is such that Kp g = Kpy(g), as shown in (2.17).

We have not yet discussed how the field strength F| [7127’&” superfields in the BCJ gauge
are found. These are most easily described by constructing them in terms of the above

redefined BCJ gauge superfields and using the contact-term map (3.5),

FIty = kg Al o) — Kibg AT o) — CIA™, A"] o [P, Q). (4.13)
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4.2.1 The explicit expression of H4 p

In [2] the explicit form of the superfields H{4 p) was only given up to multiplicity five. We
now propose the following recursive solution for general multiplicities®

A
Hiz) =0, HMmZCJVﬂmLL% > ()VHL (Ao B),  (@14)
XjY=aB

where @ and b denote the letterifications of A and B as defined in the appendix A and

1 .
HII4,B,C =Hypco+ [2H[A,B](kAB . AC) + CyChC(A, B, C’)] (4.15)
- [ > (K W) [HixppHysc) — (X < §)] + cyclic(4, B, 0)} ,
XjY=A
§(Y)=R®S
1 1
Hypc = —ZA’XA%FE”" + §(WA’YmWB) &+ cyclic(A, B,C). (4.16)

Given that Hjy p) of multiplicities less than three vanish, it is easy to see that the second
line of (4.15) can only be probed when the superfields have multiplicity six or higher.
Furthermore, note that H4 p) satisfies generalized Jacobi identities within A and B and
therefore will be written using plain® words.

The superfields Hp ) up to multiplicity seven are given by

Hmﬂ:%( 2:3) (4.17)

Hijo3.4) = i( 1234 — Hi943)

Hiyg34 = i(2H1 530 — 2H3 4 1)

Hiy9345) = %(H 123,45 — Hi 350 + Hi 5 53)

Hiy93 451 = %(2H12 345 — 2H1 5455 — 3H1 5 193)
Hii93456) = é (His31,56 — Hi2sa65 + Hla 650 — H12,6513)
H1234,56) = é(2H123 156 — 2H123. 561 + 2H] 2 5613 — 4H5 6 1234)
H123 456) = %(3]{12 3,456 — 3H1 24563 — 3HUs 6103 + 3H) 5.1236)
H193456,7) = %(H 12345.6,7 — Hi2sa5,m6 + Hios.am65 — Hiz3 7651 + H12.76543)
H19345 67) = %(2H1234 567 — 2H1a3 4675 + 2H13 36750 — 2H1 2 67513 — 5HG 71235)
H1934 567) = %(3H123,4,567 —3Hs 3 5674 + 3H1 256743 — 4Hgg 71231 + 4H5 6 10347) 5

®We acknowledge the invaluable usage of FORM [24, 25] in these calculations.
By convention, a plain word in a BCJ-gauge superfield is a shorthand for the left-to-right nested
bracketing, e.g P = 1234 <» P = [[[1, 2], 3], 4].
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while higher multiplicity examples can be easily generated using the general formula (4.14).
We have explicitly tested that the superfields up to and including multiplicity nine following
from the formulas (4.9) and (4.14) satisfy the generalized Jacobi identities.” Since new
corrections cubic in Hy4 p) could be present at multiplicity nine, the fact that these formulas
lead to superfields satisfying the BCJ symmetries suggest that (4.14) is correct for arbitrary
multiplicity.

4.3 From Lorenz gauge to BCJ gauge

Alternatively, one can generate superfields in the BCJ gauge by starting from the superfields
in the Lorenz gauge obtained through the recursions (4.2). The redefinitions are more
involved in this case and one can show that to obtain their BCJ gauge counterparts requires
the following iterated redefinition,

KW@ = 1, o KPRl (4.18)
where the operator L; is defined by

1 Doz-[;[[P,Q} . K= Aa
Lj o K[P’Q] = K[P’Q] - ;C[[.ﬁ, L(J+1) o Kﬂ o) [P, Q] - 5 k‘?}QIA{[P’Q] K =A™ y (4.19)
0 : K=W*

while C o [-,-] is defined in (C.5). Notice that L; o KI%@ gives rise to the action of the
operator L) 0 KAP] on the right-hand side with |A| + |B| < |P| + |Q|. Therefore this
is a iteration over the index j which eventually stops. As we will see below, the iteration
built into the redefinition (4.18) yields the infinite series of non-linear terms present in the
finite gauge transformation (5.11).

The examples (4.11) of redefinitions from the hybrid to BCJ gauge have the following
Lorenz to BCJ counterparts, using (4.18) and keeping all the nested Lie brackets explicit

fLo =Af 5, (4.20)
7[TL1,2],3] = fﬁz],g} - kggH[[m]:’] )

Afs 21y = Aff 21y — Ok - ko) (Hp s, 45" = Hp 5. AT)
+ (k3 - ky) (ﬁ[[1,2],4]f4§” - I:-’[u,z},a]fiT) — K334 Hip1 o1 (347 »
21314 = Affj2 8.4 — (B k2)<H[[1,3},4]A72n - H[[2,3]74]A71n>

— (k12 - k3)(ff[[1,2],4]/1§”> — (K123 - k4)(ff[[1,2},3]f12”) — ks Hin,2)3,4 »

"To simplify the algebra we tested the bosonic components. Since the backbone of the recursion (4.14)
is given by the supersymmetric Ha, p,c we believe that (4.14) also leads to correct fermionic components.
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Allin 231415 = Aﬁ[1,21,31,4],5] — (k1 - k2) (H [[1,3],4]AE,5] + 1 [[1’3]75][17[374] + ﬁ[[1’4]’5]A7[§’3]
+ Hjp3.4,5 48 — (1 2)>
~ (ko - k3) (ﬁ[[1,2],4]Afg,5] + ﬁ[[l,ng,]AfgLA] + Hypy o,4,5 A5 — ([1,2] < 3))
— (k123 - k4) <ﬁ[[1,2],3]fif2,5] + IA{[[[172],3L5]AT)
— (k1234 - ks) (ﬁ[[[1,2],3]74}‘4?> N ﬁ[[[[172}»3]74],5] k13345 5
At 105 = At gaas) — k) (Fopasy A + g as A5 — (14 2))
— (k12 - k3) (H[[1 2,14, 5]]A3 FI[3,[475HAE2]>
— (k123 - kas) (H[[l 2, 3}A7[Z5]>
(ks

+ (k- hs) (B a5 A7~ B 2048 ) — Fbsas Hip 20100 -

To illustrate (4.18) when there is more than one iteration, consider the redefinition of the
superfield /Al,[q[% 234156] 5 the BCJ gauge. It starts as

Alli234,56 _ 1, o A[112,34),56] (4.21)
= A%Q’M]’%] - k;33456[:[[[12,34],56] - C[[ﬁ7 Lso Am]] o [[12, 34], 56]

Using the definition of the C'o map from (3.5) leads to

All12,34,56) _ Al12:34)56] _ k123456HH12 34].56] (4.22)

m

k' k )((Lz o A2 Hyjy 341 56) + (L2 0 AZ3Y) Hy 5

_|_

—(

(Lo o AR iy 5 — (1 > 2))

C (k12 ((L2 0 A3) Hiyp 56 — (12 ¢ 34))

— (K" k) (Ly 0 A2%) Hyy 34

— (k% ) (L2 0 Ab,) Hpnzs ey + (La 0 AR) Hig s
+ (Ly o A5 Hypp g — (3 5 4))
—(

K )((L2°A) ([12,34],5] — (596))

Note that on most of the terms the iteration stops since Lo oflfn = flin and Lyo A% = AY.
The only remaining non-trivial action Lo o fli are on terms are of multiplicity three.
From (4.18) we obtain,

R R 1 . A A 1 A
L2 ] A,Lll2’3] = ALIZZS] — 5]{?1753}1[12’3} s L2 o A,Lll’23] = ALIZ’Q?)] — 5]{31753}1[1723}. (423)
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Plugging all of this into (4.22) yields

All234.56] _ 4111234156 _ RIS FT ) o s (4.24)

— (k' k%) (Agng[[l,M]éG] + AR Hp s+ AR Hpy g

1 - . 1 . .
- 5’“7273415’[2,34]}—’[1,56] - §k121§6H[2,56]H[1,34] - (1« 2))
— (klz . k34) (A::r%ﬁ[12756] — (12 A 34))

— (k'3 k%) ADS Hpg 5y

— (K- kY <Afnﬁ[123,56} + A%A]ﬁ[s,%] + A[rﬁ’%]ﬁ[w,?)]
1 124 7 a 1 456 713 &
- Ekm Hiyo 41 Hi3 56) — §k‘m Hiy 56 Hi12,3) — (3 <> 4)
— (k> k6)(1‘1?nﬁ[[12,34],5} — (5« 6)) .
Higher-rank examples can be similarly generated from the recursion (4.19).

4.3.1 Explicit form of H (p,q) for the Lorenz to BCJ gauge redefinition

Each H (p,q] is defined by enforcing the BCJ symmetry on the corresponding superfield
Kipg)- It has been found that up to multiplicity eight these can be simplified as

N ~ 1~ ~ -
H[A,B} = H[IA,B] - 50[[1_[7 H]] © [Av B] ) (425)
~ 1 N ~ A A
Hiy g = Hiap — 5 [(H},kf _C'[H, B 0 A)AB — (A & B)],
2 (A 2 ¢4 o
H; = Hy; =0,

where the H|4 p) are defined as they were in (4.14)—(4.16), and I—YZ‘ = kﬁfﬁA. Furthermore,
the maps C' and C’ are the variants of the contact-term map C' defined in the section 3.2.1.

To demonstrate the meaning of these maps we will now provide examples. First of all
note that the C' and C’ maps in (4.25) are both associated with pairs of H superfields, each
of which requires three indices, and so these terms will only be non-zero when |A|+|B| > 6.
Thus at lower multiplicities these relations reduce to equation (3.15) of [2], as the C' and
C' terms only start contributing at multiplicity 64. An example of the relations in this
case is as follows:

H 131,451 = Hijp1,2,3),45] (4.26)
1 m 4.5
= Hip 3050 — 5k 2540
1
= Hip o005 ~ 5H(0.2,8(ks - A7),

We will now outline an example of (4.25) for the multiplicity six redefinition term
H ([[[1,2],3],[4,5]],6], Which should demonstrate the formulae more clearly.

R R 1~ a
Hip,21.3,4.50.6) = Hij,21,3),4.50,6) ~ §CHH7 H] o [[[[1,2],3],[4,5]],6]. (4.27)
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The expansion of the C' term above is given as the example (D.4) in appendix D.2, and
from it we see that

CL, HYol([1,2), 31, [4,51),6) = (& ) (Hip .0 Fo ooy — Hipsfossy)  (429)
+ (k" - k%) (Hip 21,6 His a,s) + (6" - 6°) (Ha 5.6 Hip2).3))

= (k" &%) (Hyp a0 Hiza.5) — Hiz.a,0Ha5))
+ (k' B%) (Hip o0 His,a,s) (B 6%) (Hija 1,61 Hir,21,3)

As for the H!

(11,21,31,[4,5]1,6] term, this piece is given by

) 1. . . o
Hip23,14.50,6) = Hill11.21.3),[4.5.6) — 5 [(H{j1 2.3 ja.5 F13345 — C'[H, H]o[[[1, 2], 3], [4,5]]) A7,

1 6
= Hijp,213),5).6) — 571111,21.3)14.5) (F12345 - A7)

1
t+  Hip 2 (kios - A) (BT AP), (4.29)

where we have used (4.26) and that the action of C/[H, H] on any Lie polynomial with
less than six letters is zero. Putting this all together we thus have that

H,21,3),14,50,6) = H[111,2),31,14,5]).6] (4.30)

1 1
- §H[[[1,2},3],[4,5]](k?12345 - A%) + ZH[[1,2},3](1€123 - AP (12345 . A9)

1
= 5 (k1 k2) (Hip g6 Hiz ) — Hiz 1.6 H1pas)

1 1
— 5 (k1o - ks) (Hipr 21,6 His a31)) — 5 (K123 - kas) (Ha .6 Hip.2)3)) -

2
Unfortunately to see an example where the C’ map in the definition of H' comes into
affect requires going to multiplicity seven, which considerably increases the number of
terms involved and makes any such example less easy to follow. The process is not terribly
different from the one just outlined though, there are just more terms involved.

It might raise some concerns that (4.25) and (4.14)—(4.16) are in some places defined in
terms of BCJ gauge superfields, and so this might not represent a true gauge transforma-
tion. This is however not an issue, as a purely Lorenz gauge version of (4.25) can be found
by just replacing the BCJ superfields with their Lorenz gauge expansions (4.18). Some
difficulty may arise doing this for H4 p ¢ due to the presence of FZ" terms. However, we
do the same thing, and plug the Lorenz gauge expansions into (4.13) to get

Fipty = k@ (L1 0 AP — k@ (L1 0 AR — Cl(Ly 0 Ap), (Ly 0 Ag)] o [P, Q). (4.31)

The notation of (4.25) has just been chosen for its compactness and clarity.

5 BCJ symmetries and standard gauge transformations

In this section we will briefly review the result of [2] that the redefinitions of a local su-
perfield K from the Lorenz to the BCJ gauge amount to a standard gauge transformation
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of the corresponding non-linear superfield K introduced in section 2.2. However, the dis-
cussion of [2] was based on examples up to multiplicity five and consequently missed an
infinite number of correction terms. As a result, the gauge transformations were identified
only in infinitesimal form. We will prove that the iterative redefinitions (3.5) lead to a
finite gauge transformation instead.

To show this one uses the perturbiner series expansion K as given in (2.8) in terms of its
Berends-Giele currents. Before proceeding, we review the definition of the Berends-Giele
currents using a formulation based on the b map (5.2).

5.1 Berends-Giele currents and contact terms from maps on words

We will define the notion of a Berends-Giele current from a purely combinatorial point of
view based on the map b(P) acting on words. In order to do this for arbitrary labelled
objects such as multiparticle superfields, let us define a replacement of words by arbitrary
superfields as

[[K]]OPEKP, [[K,S]]OP@QEKPSQ (51)

In turn, this definition can be used to define the Berends-Giele currents and related concepts
through the b and C maps.

Definition 6 (Berends-Giele map) If Kp € {AL, A W& Fun} is a local multiparti-
cle superfield, its associated Berends-Giele current is represented by a calligraphic letter
Kp € {AL, A W& Frunl and is given by

Kp=[K]ob(P), (5.2)
where [ -] is defined in (5.1).

For example, the Berends-Giele currents up to multiplicity five associated to the vector
potential A7 following from the definition A} = [A™] o b(P) are given by A}* = A" and

Am
m— 12 (5.3)
512
o Alhas | Al
27 5198193 S123893
mo_ Alhagy | Adeag | Ahapsg | ATega | ATesa)
1234 — )
512512351234 512351234523 51251234534 512345235234 512345234534
m Aiasas Al .37.4.5) Alih 21 3475 Al 21,30, 14.5]
12345 512512351234512345 512351234512345523 51251234512345534 5125123512345545
Am Am Am Am
[1,[12.3],411.5 (1L, [2,[3,4]1.5 Leams) | Aapas)
512345123455235234 512345123455234534 5123512345523545 5125123455345345
L Ahapua Al [2.31.4.5) A Aleaus)
5125123455345545 $12345523523452345 $12345523452345534 51234552352345545
Al 2 3,415 AN o 3 5]

512345523455345345 512345523455345545
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The multiplicity six case is given in equation (F.7) of the appendix. Moreover, one can
show that Mp = [V] o b(P) reproduces the intuitive Berends-Giele definition given in the
appendix of [1]. See figure 2.

5.2 BCJ symmetries of local superfields as a gauge transformation

It was already pointed out in [2] that the redefinitions of the local multiparticle superfields
in the Lorenz gauge correspond to a gauge transformation of the corresponding Berends-
Giele current.

Indeed, if we define the Berends-Giele currents using (5.2)

B=[A"ob(P), H=[H]ob(P), (5.4)
one can show using the relations (4.20) and (5.3) up to multiplicity five that [2],

m,BCJ _ m,L m

Algs " = Ajgs’ — kiasHizs (5.5)
m,BCJ m,L m,L m,L

Ajozy ™ = Ajgsy — ko34 Hizsa + A7 Haga — Ay Haos

m,BCJ m,L m m,L m,L m,L m,L
Aigzas” = Avgsas — klosasHi2sas + Ay Hazas + Ajy Haas — A5 Hagsa — Ay Haos.
Therefore, in terms of the perturbiner series

H=> #pt", (5.6)
P

the equations (5.5) correspond to the infinitesimal non-linear gauge transformation (2.5)
with Q = —H

ABCT = AL [0, H] + [AL, H]. (5.7)

However, the identification of (5.7) as the gauge transformation relating the superfields
in the different gauges is not complete. This is because the analysis of [2] was restricted
to multiplicity five, whereas we know from (4.14) and (4.15) that there are non-linear
corrections to the superfields H{4 p) that start at multiplicity six — see for instance the
quadratic terms ~ k™H? in the redefinition of All12:341,56] (4.24).

In fact, using the general formulas for the redefinitions and the Berends-Giele currents
one can show, after considerable effort,

m,BCJ _ m,L m
"4123456 - "4123456 - k123456H123456 (58)

L L L L L L
+ AT Hogase + ATy Haase +Alss Hase— A" Hiogas —Arg Hioza — Ayrg Hios
1 1
— §k717§37'l1237'l456 + ik%67'l4567'1123 :

Therefore, at multiplicity six the transformation between Lorenz and BCJ gauge fol-
lows from

ABCT = AL, — [0, H] + [AL, H] — ([0, H], H]. (5.9)

1
2
We will now demonstrate that there is an infinite series of non-linear corrections to (5.9)
which generate a finite gauge variation.
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5.3 BCJ symmetries from finite gauge transformations

If H represents a generating series of Berends-Giele superfields Hp (5.6), one can show that
the series representation of the recursive iterations (4.19) for the gauge superpotential A,
is given by

1 1
Lj o Am == Am - ;[am,H] - E[H,L]Jrl o Am] . (510)

Iterating the series representation of the transformation AB®) = IL; o AL from Lorenz to
BCJ gauge leads to (VL = 0, — AL)

ABOY = AL+ [H, O] — [H, AL] — 5 [HL [ O] + 3 [F,[H, AL ]+ o L [, [F, 0] + -
= AL+ [ V] — 5[, 6, V] + o B [, V5 + (511)

Unsurprisingly, the expression (5.11) is nothing more than the series expansion of the finite
gauge transformation given by

ABCT — AL U 40, UU, U = exp(—H). (5.12)

Alternatively (5.11) can be rewritten as VB = e=adu (VL) where ady(X) = [H, X].

6 Conclusions and outlook

One of the main achievements of this paper is the recursive solution to the redefinition
superfields H4 p] given in (4.14). These superfields encode the non-linear gauge variations
required to obtain local multiparticle superfields in the BCJ gauge. The pursuit of this
formula led to improvements to and clarifications of earlier discussions given in [1, 2].
In particular, in going beyond the multiplicity-five examples of [2], we found an infinite
set of higher-order corrections leading to the perturbiner representation of a finite gauge
transformation (5.11).

We also introduced new combinatorial maps on words and rigorously proved key state-
ments that address some natural although not crucial questions previously left unanswered.
For instance, we found closed formulas for the gauge redefinition of K[p g for arbitrary
nested bracketings as well as the field-strength form of Fﬁg”b} and related superfields at
higher-mass dimension. Several other formulas along these lines can now be written down,
such as the local equations of motion (B.1) for the Lorenz-gauge superfields K (P,q]» again
for arbitrary Lie bracket structure. The precise definition of maps in section 3 ultimately
related to the definition of Berends-Giele currents also lead to explanations of why some
patterns are ubiquitous when discussing BRST variations of various superfields in the pure
spinor formalism as seen in the discussions of [21].

We will end this paper with some observations that could lead to further investigations.
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6.1 Tree-level amplitudes using redefinition superfields

The gauge transformations responsible for the BCJ gauge require redefinitions by super-
fields of ghost-number zero H{4 p) determined recursively through (4.14). Customarily,
after performing the redefinitions using the redefining superfields one writes down the tree
amplitudes of SYM using the newly obtained superfields [8]. For example, using the com-
pact language of the pure spinor superspace [26] one gets

(ViasVaVs) n (Va1 VaVs) n (Vi2V34V5) n (ViVazaVs) n (V1VasaVs)

5125123 5235123 512534 5345234 5235234
(6.1)

ASYM(1.92.3,4,5) =

where Vp = )\O‘Ag is a BCJ-satisfying superfield whose explicit expression contains the
redefinition superfields H 1’4, p,c in various combinations.

So, in the usual formulation, we see that the superfields in the BCJ gauge are used to
write down the local numerators of tree-level SYM amplitudes. These numerators have
ghost number three [6, 7] and, if one wishes to produce expressions written in terms
of particle polarizations and momenta, require the standard pure spinor zero-mode rule
((AY"0)(AY"0) (MPO) (Oymnpt)) = 1 [6, 7] to integrate out the pure spinors. Somewhat
surprisingly, it turns out that the redefinition superfields themselves give rise to numera-
tors of the tree amplitudes of SYM.

6.2 Tree-level amplitudes as a map on planar binary trees

The observation above can be made more intuitive and intriguing if we frame it in terms

ASYM

of the b map (3.1). The SYM tree amplitudes can be viewed as a map o acting on

the Lie polynomials in the expansion of (3.1). More precisely,

ASYM(P ) = spASYM o (b(P)b(n)), (6.2)
where the map ASYMo admits two formulations
VeVoVa
ASYM 6 [P, Qln = {< e ) (6.3)
PQn

For example, using the Lie bracket expansion from figure 1 and the top line of the map (6.3)
gives rise to amplitude expression (6.1). Using the bottom line of the map yields instead

ASYM(1,2,3.4,5) = 51934 A5Y™ 0 b(1234)b(5) (6.4)

B Higs45 " Hig1 45 " Hiysu5 " Hi 4305 i Hi 345
5125123 5235123 512534 5345234 5235234
In hindsight, the statement that tree-level amplitudes can be written using the definition
of Hy p ¢ could be made when putting together the results of [8] and [2]. But now we have
explicitly checked up to multiplicity nine that all the new corrections introduced in (4.15)
that lead to the definition of H ;‘7 B.C do not affect the final results of the amplitudes.
These observations give rise to the speculation that the new prescription to compute
tree level amplitudes from [27] naturally gives rise to the amplitudes written in terms of
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H'y p o After all the prescription in [27] does not involve unintegrated vertices (so no
pure spinors) and the end result will have to involve the double poles in the OPEs among
integrated vertices. This agrees with the mechanism in the usual formulation [1] where the
double poles are distributed among the simple poles using integration by parts, and it is
after this step that the superfields in the numerators satisfy BCJ symmetries. This may
give rise to a systematic derivation of the H 1’47 p.c redefinitions via OPE calculations and it
is an interesting question left to the future.

BCJ numerators were constructed for gauge theories deformed by o/ F3 and o/ 2F4 in-
teractions by finding appropriate o’ corrections to the Hp fields [28]. Since low-multiplicity
examples show that these corrections can also be written in terms of o’-corrected H A,B,C
in a similar manner as discussed in this paper, one may wonder whether the all-multiplicity
formulas found here can be applied with minimal changes to the setup of [28].

The color-kinematics duality has given reasons to speculate about the existence of
a “kinematic algebra” [29] in the same way as the color factors are related to standard
Lie algebras. It will be interesting to connect this line of thought with the gauge variation
approach pursued here. See [30] for a recent account on the quest for the kinematic algebra.

Finally, the Berends-Giele recursion relations have been recently derived using the
technology of an L-algebra in [31]. It would be interesting to find a new derivation of the
recursions for the gauge parameter H[4 p) using the methods of [31].

Acknowledgments

EB thanks Kostas Skenderis for useful discussions. CRM thanks Oliver Schlotterer for
collaboration on closely related topics and for comments on the draft. CRM is supported
by a University Research Fellowship from the Royal Society.

A Some common operations on words

In this appendix we list some of the operations on words used in this paper. With the
exception of the letterification introduced below, the following definitions are standard and
can be found in [20].

The left-to-right bracketing map ¢(A) is defined recursively by

0(123.n) = 6(123..n — 1)n — nf(123..n — 1), £(i) =i, £(0)=0. (A.1)
The deshuffle map is defined by

§(P)= > (PXLIY)X®Y, (A.2)
XY

where (-,-) denotes the scalar product on words

1, ifA=B

0, otherwise .

(A,B) =B, daB = {
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The shuffle product LU between A = ajay...aj4 and B = biby ... byp| is given by
LA =ALLD = A, A|_|_|BEa1(a2a|A| |_|_|B)—|-b1(b2b|B| LLIA), (A.4)

where () represents the empty word.

In certain formulas such as (4.14) it is necessary to handle a word as if it were a single
letter to avoid it being split by other maps. To deal with these situations we introduce a
letterfication operation whereby a word () is mapped to a letter ¢,

Q—q. (A.5)

Since a letter can not be deconcatenated this freezes the individual letters within Q. In
the end ¢ is restored by its original word (). For example, suppose that the word @ = 12
has been letterified to ¢ = 12 — as may be the case in a formula such as (4.14) — and that
P = 3. Then deconcatenating QP is different than deconcatenating ¢P. For example, one
gets only one term

Q = 12, P=3— Z SxTy = Sng = Sng (Aﬁ)
XY=qP

instead of the usual two (51753 + S1273) if @ is not letterified.

B Equations of motion for local K (P,Q]

In this appendix we will write down the equations of motion satisfied by the multiparticle
superfields in the Lorenz gauge for general nested Lie brackets.

The equations of motion satisfied by the local multiparticle superfields (4.2) can be
written as a local counterpart of the non-linear equations (2.6)

(L) 4P _ m jm @B L mny spPQ
v(a Ag) - ’YQBA[P,Q] Voz W[RQ} - 4(7 )a an (Bl)
L) im o mix m A L) tmn __ (15i/m n
VAR g = (" Wipg)a + kbodaipa VP EEG = Wipgn™).,
where VgL) is the local counterpart of V, = D, — A, and is defined by
VEXL) =D — C[[Aa, ’ ]] ) C[[Aom : ]]K[P,Q} = C[[AOHK]] © [Pv Q} : (BQ)

where CT-, -] is the contact-term coproduct map on words defined in (3.5) and (C.5). To

illustrate the above equations, consider V&L)AHQ] = (’ymW[Lg})a + k15Aq1,2) where

VP ARy = Do A 5 — C[Aa, A 0 [1,2] (B.3)
= Do AT} 5 — (k1 - ko) (AL AZ — AL ATY)

m

where we used the first example in (C.7). Therefore the equation of motion of fl[l 3] reads

DaA[ﬂf,z] = (’YmW[LQ])a + kgAa (1,2] T (k1 - k‘2)(1213121£n — 121312171”) . (B.4)
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NN

Mio34 = Viir.2rs), .[2,3]].4] Vi(1,2],[3.4]] Vi1,12.13,4])) J[[2.3],4]]
312812351234 523512351234 51253451234 534523451234 523523481234

Figure 2. The Berends-Giele current Mia34 = [V] 0 b(1234) according to the map (5.2).

C Symmetries and deconcatenations of Berends-Giele currents

C.1 Symmetries of Berends-Giele currents

We have seen on section 3.1 that b(P) is a Lie polynomial. A standard result in the theory
of free Lie algebras states that any Lie polynomial is orthogonal to non-trivial shuffles [20].
This implies that

(ALLIB,b(P)) =0, YA, B#0 |Al+|B|=|P|, (C.1)

where (-, -) is the scalar product of words and LL!/ is the shuffle product defined in (A.3)
and (A.4), respectively. A more compact way of stating (C.1) is through the shorthand
b(ALLB) = 0.

Using the property (C.1) it follows that every Berends-Giele current defined via (5.2)
is annihilated by proper shuffles, i.e. (note Ko =3 c a8 Ko)

Kawup =0, VA B#0. (C.2)

Note that the original currents Jp' defined by Berends and Giele in [9] were argued to
satisfy J}l, ;5 = 0 in [32]. One can show that, in our conventions, Jj' = AL [8].

C.2 Deconcatenation terms in the equations of motion

The equations of motion of local multiparticle superfields (see the appendix B) contain
contact-term corrections with respect to their single-particle counterparts. When expressed
in terms of Berends-Giele currents, these contact terms corrections are translated to a
deconcatenation structure. For example, the Berends-Giele counterpart of the local equa-

tion of motion

Do ARl g = (V" Wing))a + kb A 19 + (k1 - ko) (ALAY — AZAT), (C.3)
is given by
Do Ay = (V" Waa)a + KBAR + > (AXAY — (X V). (C.4)
XY=12

These observations can now be given a universal justification as follows. If one assigns the
superfields K and S to the contact terms of a Lie polynomial [P, Q] as

CIK,S]o[P,Q]| = [K,S]o (Co[P,Q)), (C.5)
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it follows from (3.7) that
CLK,Sob(P) = Y (KxSv — (X ¢Y)), (C.6)
XY=P

which demonstrates several deconcatenation formulas of this kind from a local superfield
perspective. Using the contact-term map C displayed in (D.1), the simplest example
applications of (C.5) read

ClAn, A™] 0 [1,2]
Cv, T [[1,2],3]

= (k1 - k) (AR AT — AZAT), (C.7)
= (k1 - ko) (Vg To + ViTo 3 — Vi T — VoTj1 3))
+ (k2 - k3) (Vg T3 — VaTh ) -

In addition, the contact terms generated with the formula (C.5) can be used to write
down the BRST variations of the multiparticle unintegrated Vp for arbitrary nested Lie
bracketings. This generalizes the previous formula valid for the left-to-right nesting [1].
More precisely, the BRST variation can be written as

QVirg) = 5CIV. V10 [P,Q). (C3)

For example, using (C.8) one can write down the BRST variation of V| 5 3 directly,

QVir 3 = (ko - k3) (Vi g Vs + VaViy g)) + (k1 - k23)ViVigg) - (C.9)
Previously one would need to use Vjj 237 = Vizs — Viz2 before applying the formula for
QVp for P = [[...[p1,p2], 3, -], pp|] = P1p2 - .. pp| given in [21],
QVp= Y (kx-k;)VxrVjs. (C.10)
P=XjY
5(Y)=R®S

It is worth mentioning that (3.15) shows the equivalence between (C.8) and (C.10).

D Example applications of the C and C maps

In this appendix we display some example applications of the C' and C' maps acting over
some simple Lie polynomials. These examples help to elucidate how the algorithms are
used, and can be used to verify that the redefinition formulas arising from the general
formulas match the formulas for the simplest cases that were previously known.

D.1 Examples of the C map
To demonstrate the (3.5) algorithm, the first few expansions generated from it are
Col=0 (D.1)
Coll,2]=(ki-ky)(1®2—-2®1)
Col[1,2],3] = (k1 - ko) ([1,3] ®2+1®[2,3] - [2,3] ® 1 —2®[1, 3])
+ (k12 - k3)([1,2) ® 3 — 3 ®[1,2])
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Coll,[2,3]] = (ka-k3)([1,2] ®3+2®[1,3] - [1,3] ®2 - 3®[1,2])

+ (k1 - ko) (1®[2,3] — [2,3] @ 1)

Co[[[1,2],3],4] = (k1 - k2)([[1,3],4] ® 2+ [1,3] @ [2,4] + [1,4] ® [2,3] + 1 ® [[2, 3], 4]
—[[2,3],4]®1—[2,3]®[1,4] — [2,4] ® [1,3] — 2 ® [[1, 3], 4])
+ (k1o - k3)([[1,2,4] @ 3+ [1,2] ® [3,4] — [3,4] ® [1,2] — 3®[[1,2],4])
+ (ki2s - ka) ([1,2],3] @4 — 4 ®[[1,2],3))

Col[1,[2,3]],4] = (k2 - k3)([[1,2],4] ® 3+ [1,2] @ [3,4] + [2,4] ® [1, 3] + 2 ® [[1, 3], 4]
— 1,34 ®2—[1,3] ® [2,4] — [3,4] ® [1,2] — 3®[[1,2],4])
+ (k1 - ko3) ([1,4] ® [2,3] + 1 @ [[2,3],4] — [[2,3],4] ® 1 — [2,3] @ [1,4])
+ (k23 - ka) ([1, 12,3 @4 — 4 @ [1,[2,3]))

Co[[1,2],3,4]] = (k1 - ko) ([1,[3, 4] ® 2+ 1@ [2,[3,4]] — [2,[3,4]] ® 1 —2® [1,[3,4]))
+ (ks - ka)([[1,2],3] @4 + 3@ [[1,2],4] - [[1,2],4] ® 3 — 4®[[ ,2],3))
+ (k12 - k3a) ([1,2] ® [3,4] — [3,4] ® [1,2])

Coll,[2,(3,4]]] = (ks - ka)([1,[2,3]] ® 4+ [2,3] @ [1,4] + [1,3] ® [2,4] + 3 ® [1, [2,4]
—[1,[2,4]®3- (2,4 ®[1,3] - [1,4] ® [2,3] —4®[1,[2,3]])
+ (ko - ks3a) ([1,2] ® [3,4] + 2® [1,[3,4]] — [1,[3,4]] ® 2 — [3,4] ® [1,2])
+ (k1 kosa) (1@ [2,[3,4]] - [2,[3,4]] @ 1)

Coll,[[2,3],4] = (k2 - k3)([1,[2,4]] ® 3+ [1,2] ® [3,4] + [2,4] @ [1,3] + 2@ [1, [3,4]]
—[1,13,4] ®2—[1,3] ® [2,4] — [3,4] ® [1,2] — 3®[1,[2,4]])
+ (kas - ka) ([1,[2,3]] @ 4+ [2,3] @ [1,4] — [1,4] @ [2,3] = 4 @ [1,[2,3]))
+ (k1 - kasa) (1@ [[2,3),4] - [[2,3],4] @ 1)

One application at multiplicity five is given by

Col[[1,2],3],[4,5] = (k1 - ko) (1 @ [[2,3], [4,5] + [1,3] © [2, [4, 5] (D.2)
+ (1 [4,5]] @ [2,3] + [[1, 3], [4, H®2—(1<—>2))
+ (ka2 - k3) ([1,2] @ [3, [4, 5] + [[1,2], [4,5]) © 3 — ([1,2] + 3))
+ (kr2s - kas) ([[1, 2], 3] @ [4, 5] = ([[1,2], 3] > [4,5]))
+ (ks - k) (4@ [[[1,2],3],5] + [[[1,2], 3], 4] ® 5 — (4 > 5)) ,

which, after using the formula (4.18), reproduces the redefinition (B.2) from [2] which was
written down without justification.

D.2 Examples of the C map

As an illustration of the C' map, we get

é 1 (D.3)
2]

o[t
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Col[1,2],3] = (k1 k2)([1,3] ®2 — [2,3] ® 1)
Col[l1,[2,3] = (ko k3)([1,2] ®3 — [1,3] ® 2)
Co[[[1,2],3],4] = (k1 - k2) ([[1, 3], 4]®2+[1 4®[2,3] - [[2,3,4®1~[2,4]®1,3])
+ (k12 - k3)([[1,2],4] ® 3 — [3,4] @ [1,2])
CollL,[2,3)].4] = (kz ka)([[lﬂ] 4]®3+[2 4] [ ;3] = (1,3, 4] @2 - [3,4] @ [1,2])
ks) ([1,4] @ 4 ®1)
Col[1,2),[3.4]] = ( )([1,[374]]692—[ [34 ®1)
ka)([[1,2),3] @ 4 [[1,2],4] @ 3)
Coll[2,03,4]] = (ks k4)([1,[2,3]]®4+[1 3] [2,4] [1,[2,4] ®3 - [1,4] ® [2,3])
- (ky - haa) (11,2) @ [3,4] - [1,[3,4] ©2)
Col[L,[[2.3],4)) = (k2 - ks)([17[274]]®3+[1 2] [ ] [1,[3,4] ®2 - [1,3] ® [2,4])
+ (kas - k) ([1,[2, 3] @ [2,3])
One application at multiplicity six is given by
Colll[L,2],3], [4,5]],6] = (k1 - k2) ([[[1, 3], [4,5]], 6] © 2 + [[1,3],6] @ [2, [4, 5] (D.4)
+[[1,4,5]],6] @ [2,3] + [1,6] ® [[2, 3], [4,5] — (1 ¢+ 2))
+ (k12 - k) ([111, ] [ 51, 6] @ 3+ [[1,2],6] @ [3, [4, 5] - ([1, 2] ¢+ 3))
+ (ka - ks) ([[[[1, 2], 3],4], 6] @ 5 + [4,6] ® [[[1,2], 3],5] — (4 ¢+ 5))
+ (123 - k45)([[[ ] 3],6] ® [4,5] — ([[1,2], 3] ¢ [4,5])) -

This will be of particular use in the example discussed in section 4.3.1.

E Freedom in defining Hs

There is considerable freedom in defining the Hs, arising from the symmetries within the
H', 5 o terms. These are by construction antisymmetric in A, B, and C'. Furthermore each
of the sets of indices will satisfy generalized Jacobi identities, for instance

Hiys po+ Hyzpo =0, (E.1)
Hiys p.c + Hasipo + Hsiopo =0
Also there are a number of other more complex relations between some H’ terms, which
can be identified from the condition that H, p) satisfies generalized Jacobi identities in
each of A and B. For example, we must have that £30 Hjjo34 =0, £30 H1345 = 0, and
£40 Hpjg345 = 0, and so writing these relations in terms of their H " expansions, we see
that we must have

£30 (H{2,3,4 + H§4,1,2) =0, (E.2)

£30 (Higg 45— Hiyz01 4+ Hiyz12) =0,

Ly0 (Higzaps — Higzon + Higz10) =0
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These identities can be described in general with the formula (4.14) for Hi4 p). Consider
£n 0 Hiy p), with n < [A]. One half of (4.14) will disappear under the action of the £, as

Lao| Y (OMHL ) =0 > (CD)YVHL | =0, (E3)

)

XjY=aB XjY=B

where in the second sum X is not constrained to be non-empty. The final equality then just
comes from the fact that H ;1’ p,c 1s constructed so as to satisfy generalized Jacobi identities
in each of A, B, and C. Using this and (4.14) it then just follows that, if £, 0 Hj4 g = 0
for n < |A|, then

Lo (—1)|Y‘H§~/’j,X =0, n<]|A (E.4)
XjY=bA

for any word A and letterification b.

F BCJ gauge versus Lorenz gauge at multiplicity six

The redefinitions for moving from the Lorenz to the BCJ gauge for all possible topologies at
rank six are identified with the usual formula (4.18), and are stated below for convenience.
We emphasize the typographical convention of representing a left-to-right nested bracket
by its composing letters, e.g. H ([1,2],3),4] = ﬁ1234, even though the parent superfields do
not obey BCJ symmetries.

Aftyaas.6) = Altosas,e) — Fibsase 235,
— (k' k%) <ﬁ1345612172” + Hizas Ay + Hiza6 ABL + Hizs6 A%,
+ Higs6 AJY + H34ADk + Hizs Ahg + Hyzs AL
+ Higs ASs + Hiag AGys + Hise Ay,

1~ A 1~ A 1~ N

- §H134H256k%6 — §H135H246k§716 - 5H136H245k?45
1. A 1 A 1 - .

- §H145H236k§r§6 — §H146H2357€5§5 - §H156H234k§'§4

(1o 2))
— (K2 k%) (ﬁ12456/1§1 + Hioas AT + Hipae AT + Higss AT,
+ Higg Abg + Hyos AT + Higg Als
- %ﬁ124ﬁ356k§%6 — %ﬁ125£’346k§?16 - %ff126ﬁ345k§315
— H3us6 AT — Haus AThg — Hsus Ass — Hsse AT,
1

L 1. . 1. .
+ §H345H126k§r§5 + §H346H125k7f§5 + §H356H124k§rﬁ4>

. (k?123 . k4) <ﬁ12356142n + ﬁ[ugg,fii% + ﬁ1236‘4%
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+ Hig3 Al — Hise ATy

— %ﬁ123ﬁ456k2§6 + %I:I456ﬁ123k$3>
— (k'3 KP) <ﬁ123461‘i? + ﬁ12341‘1€%)
. (k12345 . kﬁ)ﬁ12345Agz

m _ Am m 2
A[1234,56] - A[1234,56] - k123456H[1234,56}

m
[123,456)]

Affi2,34) 56]

— (k' K?) (ﬁ[1756]fl727§4 + Hpz 56 A% + Hia 561 A
+ Hyyz 50 A5 + ﬁ134Afg,56}
B %I:I134ﬁ[2,56]k5§>6 - %ﬁ[1756}ﬁ234k%4 -1 2))
— (k2 k%) (ﬁ[12756]f‘173751 + Hpzas6) A5 + FhanAff 5
it [3,56] Ag% — i (34,56] A%
1

. 1. R
— 5 Hi2aHp 5 k3se + §H[3,56}H124k?54>

— (K" kY (Fl[ug,%}ﬁT + ﬁlZSA?[Z,%] - ﬁ[4756}12171g3
1 . 1 A

- §H123H[4,56} kise + §H[4,56}H1237€$3)

(k124 k56)(ﬁ12341[1%nﬁ>

+ (0 10 (B s A7 = (54 6))

_am m 2
= All93.45,6) — F123456 1 [123,456]

— (k" k%) (ﬁu 156] Ay + f[[ls 156 A3 — (1 ¢ 2))
— (k" kg)(H[H 156/ A" — Hi3, 456]A12>

— (K" |99) (H123A£%6 — Hys AT,

1 - A 1~ A
— §H123H4567<3T56 + *H456H123k$3>

+ (k- )( 4 123}A56 + H[46 123]A5 — (4 5))

(k45 k )(H[45 123]A6 - [6 123}A45>

= Am2,34],56] - k123456H[[12,34},56]

— (k' k?) (H 34 AR, 56} + Hiu s A g + Hip o045

- *H[l 34] [2 56]K256 — *H[l 56]H[2 3a1k534 — (1 < 2))

+ (k3 k4)< [3712114[4,56} + H[3,56]A[4,12] +H[[3,12],56‘]AT

Lo
- §H[3,12]H[4,56]k456 - §H[3,56]H[4,12]k?124 GRS 4))
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(F.1)

(F.3)



— (k"2 1Y) <ﬁ[12,56]f1§?1 - ﬁ[34,56]121%>

o A ) (ﬁ[12,34]f4g%)

+ (K- &%) (ﬁ[[12,34},6}A? - ﬁ[[12,34],5}121g1> (F.4)
Affiosa516) = Alfi23,45).6) — F 33456 123,45 6]

_ () (ﬁ[1745]/1§§6 + Hiss AR 45 + Hj1,45),6) A%

+ Hy3.45 A% + Hins 45,6 A3
1

2
— (12 ) (s A 45y + Biun as) A + Hino a5 A5
— Hi3 451 ATy — Hip3.45,6) AT

X X 1. .
Hpy 451 Haseks36 — §H136H[2,45}/<?72n45 -1« 2))

IO UL

- §H126H[3,45} k345 + iH[3,45]H126k7126>

+ (K k) (&4,123}1%% + E[[[4,123],6}A? — (4 5))
— (K% . k15) <ﬁ1236/12§ + Hig3 ATt — Hyse AT,

A~

— = Hios Hysokijhe + %ﬁ456ﬁ123k$3>

(k12345 . kﬁ)(ﬁ[ms,%]fi?) (F.5)
Affizaa.5.6) = Affhi2:34,5)6) ~ FzsasoHi12.30,5).6

— (k" k%) (Hiso Afy ) + Hy gy Ay + Hip A%

+ Hip 341,51 A5 + Hijpsa).5.6 45"

— %ﬁ156ﬁ[2,34}k727§4 - %]:[[1,34]F[256k%6 (e 2)>
(6 k) (oo A 1)+ g Al + Higaz6A%,
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where the redefinition terms Hp are defined so as to enforce generalized Jacobi iden-

tities upon superfields, and can be identified most easily with repeated use of (4.25)
and (4.14)—(4.16).
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The rank six Berends-Giele currents are found using the Berends-Giele map (5.2), and
for a general superfield K is

5123456123456 =

Kinaaas.6  Knesjgse | Knosase | Kines s
512512351234512345 512351234512345523 51251234512345534 5125123512345545
Kipasape | Kiuesase | Bpesase | Kines) s
512512351234556 512345123455235234 512345123455234534 5123512345523545
L Bieaape | Kipaesase | Kpaesusne | K2 sase)
512351234523556 5125123455345345 5125123455345545 51251234534556
L Basmse | Kipaswse | Kooesase | Bepase
51251235455456 51251235456556 512345523523452345 512345523452345534
L Broesusne | Kupesase | Kuepgsne | Kpepssie
51234552352345545 512345235234 556 512345523455345345 512345523455345545
L Boppanse) | Kpespuse | Brespesen | K456
512345234534556 51235235455456 51235235456556 512534534553456
L Boanmspsie) | Kpampasen | B2 pmsien | Ko mse)
512534553456545 51253453456556 512534565455456 512534565456 556
Kpesgse | Bugesase) | Kugesusie) | Kuies s
523523452345523456 523452345523456534 $2352345523456545 5235234523456556
K1, [12,(13,41,5)1.61] N K,[12,(3,4,50.6]] N K1, (12,3411, 15.,6)]] N K1,[12,31,114,5),6]]
523455234565345345 523455234565345545 5234523456534556 5235234565455456
N K1,[12,3],14,05.6] N K1,12,(113,41,5),6)] N K1,(2,(13,4,5]1,6)] n K,(2,13,41, 05,61
5235234565456556 523456534534553456 523456534553456545 $2345653453456 556
K1,12,(3,[14,5),6)1] n K s ab00
523456534565455456 523456534565456556

_l’_

(F.7)

Verifying that the redefinitions (F.1)—(F.6) amount to a gauge transformation in the
Berends-Giele currents means plugging them into the above, and checking that in the
resulting expression the Mandelstams cancel perfectly and the formula (5.8), which has the
form of a gauge transformation, is produced.

Clearly this calculation requires considerable effort, but it has been performed and
the result works as it should. A more efficient alternative approach based on (3.7) of
Proposition 1 is possible though, and works as follows. We begin with the definition
of the BG current, Aﬁ’?ﬁgﬁj = [A™] o b(123456). Using the general form of the gauge
transformation (4.18) we see that this is just

ATBOT _ [AM] 0 b(123456) — C[H, Ly 0 A™] 0 b(123456) — [H™] 0 b(123456),  (F.8)
which by (5.2) and (3.7) is just

m,BC m, m 3 “m
A1255156J = A123L456 — k193456 H123456 — [H, L2 0 A™] o E (b(X) ®@b(Y)-b(Y)® b(X))
XY=12..6

= Ag’?ﬁl% — kg3456,H123456 — Z (HX [[Lg o Am]] o b(Y) — Hy [[LQ o Am]] o b(X))
XY=12...6

— 33 —



Completing another round of the same sort of calculation on the [Ly o Am]] terms yields®

m,B m,L m m,L m, L
Alsise = Alsins — ka6 H123456 — Z (HX-AY —Hy Ay ) (F.9)
XY=12...6
1 " m
5 0> (HXHka - ”HyHXkX) N
XY=12..6

This is then just (5.8), as was desired. By a similar argument it could be shown that all
redefinitions produced by (4.18) have the form of a gauge transformation.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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