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Abstract: We study Euler scale hydrodynamics of massless integrable quantum field

theories interpolating between two non-trivial renormalisation group fixed points after in-

homogeneous quantum quenches. Using a partitioning protocol with left and right initial

thermal states and the recently developed framework of generalised hydrodynamics, we fo-

cus on current and density profiles for the energy and momentum as a function of ξ = x/t,

where both x and t are sent to infinity. Studying the first few members of the An and

Dn massless flows we carry out a systematic treatment of these series and generalise our

results to other unitary massless models.

In our analysis we find that the profiles exhibit extended plateaux and that non-trivial

bounds exist for the energy and momentum densities and currents in the non-equilibrium

stationary state, i.e. when ξ = 0. To quantify the magnitude of currents and densities,

dynamical central charges are defined and it is shown that the dynamical central charge

for the energy current satisfies a certain monotonicity property. We discuss the connection

of the Landauer-Büttiker formalism of transport with our results and show that this pic-

ture can account for some of the bounds for the currents and for the monotonicity of the

dynamical central charge. These properties are shown to be present not only in massless

flows but also in the massive sinh-Gordon model suggesting their general validity and the

correctness of the Landauer-Büttiker interpretation of transport in integrable field theories.

Our results thus imply the existence of a non-equilibrium c-theorem as well, at least in inte-

grable models. Finally we also study the interesting low energy behaviour of the A2 model

that corresponds to the massless flow from the tricritical to the critical Ising field theory.
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1 Introduction

Understanding the out-of-equilibrium dynamics of isolated quantum many-body systems

and giving a rigorous foundation of quantum statistical mechanics are one of the most chal-

lenging problems in contemporary physics. Thanks to the recent advances in laboratory

techniques [1–9] the experimental realisability of closed quantum systems provides a direct

insight into quantum statistical physics. As a result of intensive experimental and theo-

retical investigations, significant progress has been made in the study of non-equilibrium

behaviour and recent investigations have led to a series of interesting discoveries. Perhaps

the most unusual behaviour is related to integrable quantum systems and the experimen-

tal observation of the lack of thermalisation therein [1–3, 10]. Because of their unusual

properties, their experimental relevance and analytic tractability, non-equilibrium physics

in integrable models continues to attract a lot of attention.
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A paradigmatic setting for non-equilibrium dynamics is provided by so-called quan-

tum quenches corresponding to a sudden change in the parameters of a closed quantum

system [11, 12]. One of the simplest examples is that of a homogeneous system where time

evolution after a quantum quench is expected to lead to relaxation to thermal equilibrium.

However, in the case of integrable system thermalisation is absent and the steady state

was proposed to be described by the generalised Gibbs ensemble (GGE) [13] which is sup-

ported by experimental and theoretical studies [4, 14–27]. Nevertheless, important issues

such as a theoretical description of the eventual time evolution, as well as the complete set

of relevant conserved quantities necessary for the construction of the steady state ensemble

are still open in general.

Inhomogeneous quenches, in general, pose a more difficult problem than homogeneous

ones with fewer exact or approximate results [28–36]. One promising approach exploits

hydrodynamical description assuming the separation of spatial and temporal scales and a

local (GGE) equilibrium, and is supported both by numerical simulations and experimental

observations [37–41]. Based on the previously mentioned assumptions and on the functional

completeness of conserved quantities a hydrodynamical description of integrable systems

named Generalised Hydrodynamics (GHD) was developed in [42–44]. In its simplest form

the GHD describes the exact average densities and currents associated with conserved

quantities at the Euler scale, that is when x, t → ∞ such that their ratio is fixed. The

appearance of non-trivial physics in this limit is in accordance with the ballistic spreading

of quasi-particles in integrable models and in many relevant situations the GHD predictions

become valid after a relatively short transient time interval [37–40]. The GHD approach has

been applied to various systems including spin chains and the Hubbard model [43, 45–52],

classical gases and fields [53–56] and quantum gases and fields [38, 42, 57, 58]. Interesting

view points on the GHD approach are given in [59–61]. Besides the Euler scale description

of current and density averages in various integrable models important new directions are

understanding the fluctuations of the hydrodynamic quantities [62, 63] and incorporating

diffusive effects which requires going beyond the Euler scale in the GHD description [64–66].

The aim of the present paper is to introduce a renormalisation group perspective

and connect the GHD description of the non-equilibrium dynamics of integrable quantum

field theories to their formulation as relevant perturbations of conformal field theories

(CFT) [67]. In the works [68–74] a rather extensive description of transport properties of

out-of-equilibrium CFTs was given. The non-equilibrium setting was provided by the (bi-)

partitioning protocol, in which two semi-infinite and independent systems described by the

same Hamiltonian are prepared in different initial states, typically in two thermal states

with different temperatures. The left and right semi-infinite systems are joined together at

a given time and the subsequent time-evolution is governed by the full and homogeneous

Hamiltonian acting on the whole space. In the resulting dynamics for CFTs, two shock

waves originating from the boundary point move with the speed of light to the left and

right directions and in the expanding region between the waves a non-equilibrium steady-

state (NESS) emerges. The NESS is obtained in the limit t→∞ for finite x and therefore

corresponds to ξ = 0, supporting non-trivial flows of currents while the asymptotic left

(ξ < 0) and right (ξ > 0) regions act as effective heat reservoirs. In [69–73] the properties
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of the NESS, current and density averages, fluctuation spectrums for large deviations and

correlation functions in the NESS were studied. In particular for CFTs the average energy

density qe and energy current je are given by

qe =
cπ

12

(
T 2
l + T 2

r

)
je =

cπ

12

(
T 2
l − T 2

r

)
,

(1.1)

where Tl and Tr are the initial left and right temperatures and c is the central charge of

the CFT. Due to relativistic invariance je equals the momentum density qp and due to

conformal invariance qe equals the momentum current jp (and also the pressure).

These results are also valid for systems at or sufficiently close to their critical points but

a certain neighbourhood of the critical point or more precisely a certain type of irrelevant

perturbation of the fixed point CFT was also studied in [72]. In general, the vicinity of

critical points is described by (relevant) perturbations of the critical theory resulting in

either a massive quantum field theory (QFT) or a crossover to an infrared (long-distance)

fixed point. The high energy behaviour and consequently the high temperature transport

properties of such a system are captured by the fixed point CFT, but the intermediate and

low energy physics is generally not known. If the perturbed CFT is integrable, which is

quite often the case of interest, the GHD approach can be used to explore the transport

properties at all scales of the field theory.

Some relevant perturbations of CFTs give rise to massless QFTs, which host massless

excitations. For these interpolating renormalisation group flows describing crossover be-

haviour the high- and low-energy properties are dictated by CFTs. The massless models

are not conformal invariant theories and transition from the ultra-violet (UV) CFT to the

infra-red (IR) occurs at the characteristic energy scale M called the crossover scale.

Integrable massless flows have a long history and many of them have a detailed de-

scription based on the standard techniques of integrability such as S-matrix bootstrap,

thermodynamic Bethe Ansatz (TBA) and form factor bootstrap. In this paper we primar-

ily focus on the so-called An and Dn massless flows. The An models interpolate between

multi-critical Ising field theories [75–77] corresponding to the conformal minimal models

Mn+2 →Mn+1 whereas the Dn flows describe the crossover between the Zn parafermion

model and Mn+1 [78]. The S-matrices of these models and the corresponding TBA equa-

tions are well-known [75–79] together with certain form factors [80–82] and correlation

functions [80] for the A2 case, and it is worth noting the interesting connection of these

flows to roaming trajectories and staircase models [83–87].

As these theories interpolate between a UV and an IR conformal field theory, it is nat-

ural to investigate the crossover in terms of transport behaviour. This is what the present

work aims to accomplish by applying the GHD approach to the partitioning protocol and

focusing on the interpolation between the behaviour of the fixed point CFTs describing the

endpoints of the RG flow.

The paper is organised as follows. In section 2 the description of homogeneous and

inhomogeneous macro-states in terms of the TBA type equations is discussed for integrable

models and the main ideas of the GHD approach are summarised. In section 3 some ele-
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ments of the thermodynamics of the An and Dn flows are discussed that are useful to under-

stand the inhomogeneous problem. Section 4 is devoted to hydrodynamics of the A2 model.

Besides reviewing its interesting low temperature limit, we identify features that are later

shown to be generally present in massless models and introduce the notion of dynamical

central charges. In section 5 the discussion is generalised to higher members of the An and

Dn hierarchy of massless flows. In section 6 we establish a connection with the Landauer-

Büttiker (LB) theory of transport and discuss its implications for the dynamical central

charges in RG flows. In this section the transport of massive sinh-Gordon integrable QFT

is also studied and compared to the LB results, and we show that all the results suggest an

out-of-equilibrium version of the c-theorem [88, 89], at least for relativistic integrable QFTs.

Finally we conclude in section 7. Some details are relegated to appendices: in appendix A,

the low-temperature expansion of the TBA and GHD equations are performed for the A2

model, while appendix B discusses the hydrodynamics of the W 3
5 →W 3

4 massless flow.

2 Macro-states in integrable models and the GHD

In this section we briefly review how macro-states such as homogeneous thermal or inhomo-

geneous locally quasi-stationary states (LQSS) can be characterised in integrable models

and discuss the main ideas behind the GHD approach. For most integrable models, the

spectrum of energy levels can be described in terms of stable quasi-particles excitations.

Averages of local operators in macro states can be constructed by representing the corre-

sponding density matrices in terms of continuous densities associated with the distribution

of these stable quasi-particles. In particular the so-called root density ρ(ϑ) gives the num-

ber of quasiparticles in the range [ϑ, ϑ + ∆ϑ], which is Lρ(ϑ)∆ϑ, if L is the system size

and the rapidity ϑ parametrizes the energy and momentum of the quasi-particles. In the

case of additional quantum numbers or different species of quasi-particles, multiple root

densities labeled by the appropriate quantum numbers are required.

Similarly to the root densities one can introduce the hole densities ρh(ϑ) as well, which

are associated with unoccupied one-particle energy levels. The root and hole densities are

not independent quantities due to the interaction between the quasiparticles. Extending

our description to models with n quasiparticle species and with diagonal scattering, the

root and hole densities ρj and ρj,h corresponding to the different species satisfy the Bethe

Ansatz equations

ρj(ϑ) + ρj,h(ϑ) =
1

2π
p′j(ϑ) +

n∑
k=1

(ϕjk ? ρk) (ϑ) . (2.1)

In (2.1), p′j(ϑ) denotes the derivative of the one-particle momentum of the jth species with

respect to the rapidity ϑ, ϕjk is specified by the two-particle scattering matrix Sjk as

ϕjk(ϑ) = −i d

dϑ
ln (−Sjk(ϑ)) , (2.2)

and the symbol ? denotes convolution:

(f ? g) (ϑ) =

∫ ∞
−∞

dϑ′

2π
f(ϑ− ϑ′)g(ϑ′) . (2.3)
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It is convenient to introduce the filling functions nj(ϑ) and the pseudo-energies εj(ϑ) via

nj(ϑ) =
ρj(ϑ)

ρj(ϑ) + ρj,h(ϑ)
=

1

eεj(ϑ) + 1
, (2.4)

with j=1, . . . , n and also the dressing operation for a set of functions fj(ϑ) with j=1, . . . , n

by the solution of the integral equation

fdr
j (ϑ) = fj(ϑ) +

n∑
k=1

(
ϕjk ? nkf

dr
k

)
(ϑ) . (2.5)

Given the root and hole densities or the filling functions, the densities of various extensive

quantities can be easily calculated in the macro-state. For conserved charges Qi with

one-particle eigenvalue h
(i)
j (ϑ) with respect to the jth particle species, that is

Qi|ϑ〉j = h
(i)
j (ϑ)|ϑ〉j ,

the corresponding density qi can be expressed equivalently as

qi =
n∑
j=1

∫ ∞
−∞

dϑ

2π
h

(i)
j (ϑ)ρj(ϑ) ,

=

n∑
j=1

∫ ∞
−∞

dϑ

2π

(
p′j(ϑ)

)dr
nj(ϑ)h

(i)
j (ϑ)

=

n∑
j=1

∫ ∞
−∞

dϑ

2π
p′j(ϑ)nj(ϑ)

(
h

(i)
j (ϑ)

)dr
.

(2.6)

Similarly to the quantum mechanical operator qi, which is the density of the charge Qi,

the average of the corresponding current ji in the macro-state can be expressed in terms

of the filling functions or root densities. Before quoting the expressions we first introduce

the effective velocity veff
j (ϑ) defined as

veff
j (ϑ) =

(
e′j(ϑ)

)dr

(
p′j(ϑ)

)dr
. (2.7)

While the velocity of a single particle can be defined as

e′j(ϑ)

p′j(ϑ)
,

the dressing in (2.7) accounts for the effect of other quasi-particles in the macro-state

specified by the root densities. Due to scattering processes, the single-particle velocity is

modified according to (2.7).
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With the effective velocity, the averages ji of ji can be written as

ji =
n∑
j=1

∫ ∞
−∞

dϑ

2π
veff
j (ϑ)h

(i)
j (ϑ)ρj(ϑ)

=

n∑
j=1

∫ ∞
−∞

dϑ

2π

(
e′j(ϑ)

)dr
nj(ϑ)h

(i)
j (ϑ)

=

n∑
j=1

∫ ∞
−∞

dϑ

2π
e′j(ϑ)nj(ϑ)

(
h

(i)
j (ϑ)

)dr
.

(2.8)

The expressions were first proposed in [42] and later verified for relativistic QFT in [90].

These equations are in accordance with the ballistic transport of conserved quantities in

integrable models.

Finally, we mention that the entropy density s of the macro-state can be written as

s =

n∑
j=1

∫ ∞
−∞

dϑ [ρj,t(ϑ) ln ρj,t(ϑ)− ρj(ϑ) ln ρj(ϑ)− ρj,h(ϑ) ln ρj,h(ϑ)] . (2.9)

2.1 Thermodynamic Bethe Ansatz description for thermal and GGE states

The root densities or the filling functions of homogeneous and global thermal and GGE

states can be obtained by solving the Thermodynamic Bethe Ansatz (TBA) equations

εj(ϑ) = wj(ϑ)−

(
n∑
k=1

ϕjk ? ln
(
1 + e−εk

))
(ϑ) , (2.10)

where the driving term reads

wj(ϑ) =
∞∑
i=1

βih
(i)
j (ϑ) , (2.11)

if the state to describe is a GGE state with density matrix

ρGGE =
1

Z
e−

∑
βiQi , (2.12)

with generalised chemical potentials βi associated with each conserved charge. For the

particular case of thermal states, wj is merely

wj(ϑ) =
1

T
ej(ϑ) , (2.13)

where T is the temperature. The corresponding free-energy density or generalised free-

energy density f = F/L with F =
∑
βi〈Qi〉 − S can be calculated by

f =

n∑
k=1

∫ ∞
−∞

dϑ p′k(ϑ) ln
(

1 + e−εk(ϑ)
)
. (2.14)

From the thermal free energy density the effective central charge

c̃(T ) =
1

T

3

π2

n∑
k=1

∫ ∞
−∞

dϑ p′k(ϑ) ln
(

1 + e−εk(ϑ)
)

(2.15)
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can be obtained, which plays an important role in our subsequent considerations. Due to

the c-theorem [89], c̃(T ) increases monotonously with the temperature1 and signals the

amount of the effective degrees of freedom in the field theory. In the T →∞ limit its value

is determined by the UV limiting conformal field theory, in particular

lim
T→∞

c̃(T ) = cUV , (2.16)

where cUV is the central charge of the UV conformal field theory if it is unitary. In the

T → 0 limit, c̃ is zero in massive models but equals the central charge of the IR conformal

field theory for massless flows

lim
T→0

c̃(T ) =

{
0 massive case

cIR massless case.
(2.17)

2.2 GHD and the partitioning protocol

The main purpose of our paper is to study transport properties of massless integrable

models in inhomogeneous initial states. To treat inhomogeneous situations, it is convenient

to apply a hydrodynamic approach relying on the separation of space and time scales and on

the assumption of local equilibration. The large-scale behaviour of inhomogeneous systems

can be described by a space-time dependent GGE

ρGGE =
1

Z
e−

∑∫
dxβi(x,t)qi(x) , (2.18)

and consequently the large-scale expectation values of local operators can be obtained as

〈O(x, t)〉 = 〈O〉x,t , (2.19)

where

〈O〉x,t =
1

Z
TrO(0, 0)e−

∑
βi(x,t)Qi . (2.20)

Similarly to the homogeneous case, (x, t)-dependent root densities ρj(ϑ, x, t) and filling

functions nj(ϑ, x, t) can be introduced to describe the LQSS. Exploiting eqs. (2.19)

and (2.20), the continuity equation of the conserved quantities ∂tqi + ∂xji = 0 transforms

into

∂tqi(x, t) + ∂xji(x, t) = 0 , (2.21)

where

qi(x, t) = 〈qi〉x,t
ji(x, t) = 〈ji〉x,t .

(2.22)

In integrable models, assuming a sufficient functional completeness of the conserved

charges, the continuity equation for the LQSS averages (2.21) can be recast in many

1In its most commonly formulated version, the effective central charge c̃ entering the c-theorem is a

function of the distance R instead of the temperature T .
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different forms including the space-time dependent root densities or filling functions. For

our purposes, the most direct rewriting reads [42]

∂tnj(ϑ, x, t)− veff
j [ϑ, {nj(ϑ, x, t)}]∂xnj(ϑ, x, t) = 0 , (2.23)

where veff
j is defined by eq. (2.7) and the argument in the bracket stresses that veff

j is

a complicated functional of the set of filling functions nj which now depend on space

and time besides the rapidity. The equation (2.23) is in complete agreement with the

ballistic spreading of quasi-particles in integrable models. The effect of the interactions is

incorporated in the effective velocity of the quasi-particles. For the case of the partitioning

protocol corresponding to an initial density matrix

ρ0 ∝ ρl ⊗ ρr , (2.24)

which is different on the left and right halves of the system, eq. (2.23) can be solved in a

particularly simple way. For the particular case of thermal states considered in this paper,

the initial density matrix reads

ρ0 =
1

Z
e−βlHl ⊗ e−βrHr , (2.25)

where the Hamiltonians Hl and Hr act in the left and right half-spaces. The two halves are

joined together at time t = 0 and subsequent time evolution is governed by the homogeneous

Hamiltonian acting on the whole space. To be precise, some boundary conditions have to

be prescribed for Hr and Hl at the position x = 0 before t = 0; nevertheless, it is expected

that their effect becomes negligible at the Euler scale. Consequently, the initial condition

for nj(ϑ, x, 0) can be written as

nj(ϑ, x, 0) = ΘH(x)n
(r)
j (ϑ) + ΘH(−x)n

(l)
j (ϑ) , (2.26)

where ΘH is the Heaviside function and n
(r)
j and n

(l)
j are the filling functions corresponding

to the right and left density matrices describing homogeneous thermal (or GGE in general)

states with temperatures Tr and Tl. To obtain a solution of (2.23) with an initial condition

for nj compatible with (2.26) it is exploited that both the differential equations (2.23) and

the initial condition (2.26) are invariant under the reparametrisation x, t → λx, λt. As a

consequence the solution of (2.23) depends only on the ratio x/t which we denote by ξ and

call a ray. The corresponding ray-dependent continuity equations read

− ξ∂ξqi(ξ) + ∂ξji(ξ) = 0 , (2.27)

and (
ξ − veff

j [{nj(ϑ, ξ)}]
)
∂ξnj(ϑ, ξ) = 0 , (2.28)

and the implicit solution of the latter is given by

nj(ϑ, ξ) = ΘH

(
veff
j (ϑ, ξ)− ξ

)
n

(l)
j (ϑ, ξ) + ΘH

(
ξ − veff

j (ϑ, ξ)
)
n

(r)
j (ϑ, ξ) . (2.29)
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Its interpretation in terms of the ballistic spreading of quasi-particles is natural; quasi-

particles that contribute at the ray ξ come from the left if their effective velocity is larger

than ξ and they come from the right side if their effective velocity is slower than ξ; the

effective velocity depends on all the other particles due to the elastic scattering between

them. The self-consistent numerical solution of the above equation is usually straightfor-

ward to obtain by iteration. In particular when veff
j (ϑ, ξ) is a monotonously increasing

function of ϑ for all ξ, the solution can be rewritten as

nj(ϑ, ξ) = ΘH(ϑ− ϑj)n(l)
j (ϑ, ξ) + ΘH(ϑj − ϑ)n

(r)
j (ϑ, ξ) , (2.30)

where ϑj is determined by the implicit equations

veff
j (ϑj) = ξ (2.31)

for all j and veff
j , which is a functional of all nj(ϑ, ξ), is determined by (2.7). As discussed

in section 3, the effective velocities of magnonic particles can be monotonously decreasing

or non-monotonous functions of the rapidity too. In such a case (2.30) may include more

terms, and more than a singe ϑj is necessary to use to describe the jumps in the filling

functions. The values of the ϑ
(m)
j parameters are still to be determined by (2.7) for all m

in a self-consistent manner.

In massless models the effective velocities of the quasi-particles (either the later intro-

duced right- and left-moving particles or the magnons are regarded) usually do not cover

the full [−1, 1] interval but only its subset [vmin
j , vmax

j ]. In such a case the solution of (2.28)

for a ray ξ ∈ [−1, vmin
j ] is n

(l)
j (ϑ) since there are only faster than ξ particles, which must

come from the left and similarly for a ray ξ ∈ [vmax
j , 1] it is n

(r)
j (ϑ) (where n

(l)
j (ϑ) and

n
(r)
j (ϑ) are the filling functions of the homogeneous left/right thermal states or GGE).

This situation is similar to what was discussed in [91], which focused on the transport of

non-linear Luttinger liquids.

Once nj(ϑ, ξ) are determined, the ray-dependent averages of the densities and currents

of conserved charges can be straightforwardly calculated using (2.5), (2.6) and (2.8).

3 Thermodynamics of the An and Dn massless flows

In this section we review on the finite temperature description of integrable massless flows

using the TBA. The finite temperature filling functions are essential inputs for the hydro-

dynamics of the partitioning protocol, moreover many peculiar features of the emerging

hydrodynamics can be understood by analysing the homogeneous, finite temperature case.

The TBA equations for massless flows associated with the An and Dn series can be writ-

ten [79] as

εj(ϑ) = wj(ϑ)−

(
n∑
k=1

ϕ ? ln
(
1 + e−εk

)
Gjk

)
(ϑ) , (3.1)

where

ϕ(ϑ) =
1

coshϑ
, (3.2)

– 9 –
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Figure 1. Dynkin diagrams of the An and Dn Lie algebras.

Gjk is the adjacency matrix of the An and Dn Dynkin diagrams (cf. figure 1) and the

source terms read

wj(ϑ) =
M

2T

(
eϑδj,1 + e−ϑδj,n

)
for An, n ≥ 2

wj(ϑ) =
M

2T

(
eϑδj,n−1 + e−ϑδj,n

)
for Dn, n ≥ 3.

(3.3)

The nodes in the diagrams correspond to different particle species. The scattering

between these species is non-trivial only for the neighbouring nodes. According to eq. (3.3)

only two nodes in the Dynkin diagrams couple to non-vanishing driving terms. The source

terms M
2T e
±ϑ correspond to right- and left-moving i.e. (RM) and (LM) particles, whose

one-particle energy and momentum are M
2 e
±ϑ and ±M

2 e
±ϑ respectively. The energy scale

M is the crossover scale, which separates the low and high energy regimes dominated by

the UV and IR limiting CFTs. The other nodes in the Dynkin diagrams correspond to

magnons, which describe internal degrees of freedom of the quasi-particle excitations. It

is important to note that although the magnonic excitations themselves may be regarded

as quasi-particles, they have zero one-particle eigenvalues with respect to the conserved

charge operators, hence quantities such as the energy or momentum are carried by only

the RM and LM species.

The eventual identification of the models described by the TBA equations is a non-

trivial task. The An flows interpolate between multi-critical Ising field theories [75–77]

according to Mn+2 →Mn+1 with

cUV = 1− 6

(n+ 2) (n+ 3)

cIR = 1− 6

(n+ 1) (n+ 2)
.

(3.4)

These integrable RG trajectories are the φ1,3 perturbations with scaling dimension

∆ = 1− 2
n+3 of the UV conformal theory Mn+2 [75–77]. For the An massless models,

both cUV and cIR tends to 1 as n→∞ and the difference between the UV and IR central

charges vanishes in this limit.

The Dn flows describe the crossover between the Zn parafermion model andMn+1 [78]

with

cUV =
2 (n− 1)

n+ 2

cIR = 1− 6

(n+ 1) (n+ 2)

(3.5)
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Figure 2. (a) Filling function of right-moving (red continuous curve) and left-moving particles

(blue dashed curve) and (b) the effective velocities of the right-moving (red continuous curve) and

left-moving (blue dashed curve) particles in the D4 flow in a thermal state with T/M = 1.4.

and are obtained by adding the perturbing operator ψ1(z)ψ̄1(z̄)+ψ†1(z)ψ̄†1(z̄) with dimension

1− 1
n [79] to the UV limiting CFT. Here in the n→∞ limit cUV = 2 6= cIR = 1.

For thermal states the filling function of the RM and LM particles are of a very peculiar

form in all massless integrable models: they are kinks related by nRM(ϑ) = nLM(−ϑ).

Focusing on nRM for ϑ → −∞ its value is a constant and for ϑ → ∞ it goes to zero as

exp (−M(expϑ)/(2T )). This behaviour is illustrated on figure 2 for the case of the D4

massless model.

Although the bare velocities of the RM and LM particles are ±1 in units of the speed of

light, in highly-excited states such as thermal states the effective velocities are different from

±1 due to interactions which results in non-trivial kinetics in the GHD setting. The TBA

description of the D4 flow also includes two magnonic particles, whose effective velocities

can even be non-monotonous functions of the rapidity as demonstrated by figure 3.

Finally, to conclude this section subfigure (b) in figure 3 shows the c-function as a

function − log T/M for the D4 massless model.

4 Hydrodynamics of the tricritical to critical Ising flow

In this section we focus on the Euler scale hydrodynamics of the A2 flow after a bipartite

quench. The A2 model, whose UV and IR limiting theories are the tricritical and critical

Ising CFTs [75, 76], is the simplest massless flow with a RM and LM particle in the TBA

equations. By solving first the corresponding TBA equations (3.1) with (3.3) for the left

and right filling functions and then the final form of the GHD equations (2.30) and (2.31),

the ray-dependent density and current profiles are easy to obtain from eqs. (2.6) and (2.8).

We start our analysis by first discussing some peculiar features of these profiles such as the

existence of extended plateaux and the bounds on the currents and densities which turn

out to be quite generic for all massless models studied in this work.
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Figure 3. (a) the effective velocities of the first (red continuous curve) and second (blue dashed

curve) magnons in the D4 flow in a thermal state with T/M = 1.4. The first and the second

magnons correspond to the first and second nodes in the D4 Dynkin diagram. (b) The c-theorem

for the D4 massless model. The c̃ function interpolates between the UV and IR central charges

whose values are 1 and 0.8.

4.1 Plateaux in the profiles and the dynamical central charges

Figure 4 shows the ray-dependent energy and momentum densities and currents and one

peculiar feature of these quantities are the extended plateaux in the currents and densities.

As discussed in the introduction, the Euler scale behaviour of these quantities in CFTs are

described by exactly flat plateaux and discontinuous jumps at ξ = ±1. Since both at low

and high energies, i.e. low and high temperatures the limiting theories of massless models

are CFTs, one should not be surprised about the emergence of similar plateaux in the mass-

less flows. It is slightly more interesting that the plateaux still exist outside the conformal

regimes where the left and right temperatures are close to the inverse of the crossover scale

M−1, corresponding to the massless flow being far away from the conformal limits.

The existence of the plateaux in this regime can be understood from the TBA equations

using that in thermal states the filling functions nRM and nLM are kinks. Whereas these

kinks possess some structure, they can be roughly regarded as Heaviside theta functions.

The transition from a non-zero value to zero takes place at a temperature dependent

rapidity, which we can denote as ϑ
(r)/(l)
RM/LM depending on the species and its leading order

temperature dependence is logarithmic (cf. eqs. (2.4), (3.1) and (3.3)). In the bipartite

quench protocol the left and right filling functions are joined together according to (2.30)

and the transition from the right filling function to the left in nRM(ϑ, ξ) = nRM(ϑ, ϑRM)

and nLM(ϑ, ξ) = nLM(ϑ, ϑLM) takes place at a rapidity ϑRM and ϑLM respectively. When

the rapidities ϑRM and ϑLM sweep through the real interval and the filling functions are

approximated by theta functions, nRM(ϑ, ϑRM) and nLM(ϑ, ϑLM) are either the left or right

filling functions apart from the case when ϑRM ∈ [ϑ
(r)
RM, ϑ

(l)
RM] and ϑLM ∈ [ϑ

(l)
LM, ϑ

(r)
LM]. For

sufficiently high temperature with a not too large difference between the left and right

values these rapidity intervals are very short. Although the ray ξ is a generally function of

both ϑRM and ϑLM, the regions of ξ where the right-left transition occurs in nRM(ϑ, ξ) and
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Figure 4. Ray-dependent (a) energy density qe, (b) energy current je, (c) momentum density qp
and (d) momentum current jp in the A2 tricritical to critical Ising flow after bipartite quenches at

the Euler scale. The green curve with diamonds corresponds to left and right initial temperatures

Tl = 2.5M and Tr = 1.25M , the orange curve with squares to Tl = 0.9M and Tr = 0.6M and the

blue curve with circles to Tl = 0.25M and Tr = 0.1M . The discrete points in the plots indicated by

the plotmarkers are obtained by the numerical solution of GHD equations, the continuous curves are

first order interpolations. The dashed part of the curves indicates the region of constant densities

and currents. Due to relativistic invariance, je = qp.

nLM(ϑ, ξ) remain narrow. These regions correspond to the sharp transitions in the density

and current profiles, whereas for the left, middle and right plateaux nRM(ϑ, ξ) = n
(l)
RM(ϑ),

nLM(ϑ, ξ) = n
(l)
LM(ϑ); nRM(ϑ, ξ) = n

(l)
RM(ϑ), nLM(ϑ, ξ) = n

(r)
LM(ϑ) and nRM(ϑ, ξ) = n

(r)
RM(ϑ),

nLM(ϑ, ξ) = n
(r)
LM(ϑ) respectively. Of course, the left and right filling functions are not

exact Heaviside theta functions and hence the middle plateaux are not exactly flat.

Our argument seems to be invalid when the difference between the left and right

temperatures is large. In such a case, however, the high energy particles almost exclusively

originate from the left side and hence the UV limiting CFT dominates the dynamics as

supported by table 1 discussed shortly. In summary, irrespectively of the magnitude of

the left and right temperatures, the plateaux in the energy and momentum density and

current profiles are a generic feature the Euler scale hydrodynamics of the A2 massless flow.

As demonstrated in the next section, the extended plateaux also occur in other massless

integrable theories.
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Tl/M Tr/M c̃(Tl) c̃(Tr) c̃je(Tl, Tr) c̃qe(Tl, Tr) c̃jp(Tl, Tr) c̃lbje(Tl, Tr)

0.25 0.1 0.527539 0.505141 0.555744 0.551405 0.535171 0.531832

0.9 0.1 0.610694 0.505141 0.642663 0.64557 0.633447 0.634259

0.9 0.6 0.610694 0.581244 0.666046 0.670596 0.603226 0.612022

0.95 0.9 0.614468 0.610694 0.675198 0.682408 0.612715 0.64752

1.4 0.9 0.639252 0.610694 0.682109 0.691041 0.631924 0.659371

2.5 1.25 0.666775 0.632483 0.691766 0.700926 0.66099 0.678208

6 0.2 0.68853 0.519057 0.695114 0.698746 0.69212 0.68872

6 5 0.68853 0.685515 0.698716 0.70355 0.68731 0.695382

6.5 6 0.689664 0.68853 0.69897 0.703259 0.689146 0.696195

9 6 0.693292 0.68853 0.699239 0.702619 0.691869 0.697102

9 8.5 0.693292 0.692755 0.69942 0.702409 0.693041 0.697723

Table 1. The effective central charges for (left and right) thermal states and the dynamical central

charges for the partitioning protocol for various left and right temperatures in the A2 massless flow,

where cUV = 0.7 and cIR = 0.5.

To discuss a second characteristic feature, we first define a dynamical central charge

inspired by (1.1) by writing

je(0) = qp(0) =
c̃je(Tl, Tr)

12π

(
T 2
l − T 2

r

)
. (4.1)

The dynamical central charge c̃je (together with its counterparts for the cumulants of the

transferred energy) was already defined and used in [92] for non-equilibrium situations.

Calculating the energy current (or momentum density) at the ray ξ = 0, c̃je can easily be

obtained knowing the left and right temperatures. Whereas in CFTs the energy current

je(ξ) is constant if ξ ⊂ (−1, 1), for the massless flows je(ξ) usually exhibits a non-trivial

ξ-dependence, therefore we must specify at which ray ξ je is to take in order to define c̃je .

It seems natural to choose ξ at which je is maximal, which occurs at ξ = 0 as a consequence

of the continuity equation (2.27). Moreover, taking the limit t→∞ at any fixed position

x gives the NESS, which also corresponds to ξ = 0.

In table 1 the values of c̃je are collected for various left and right temperatures together

with the effective central charges for the left and right thermal states. Based on the data

we propose the following conjecture for the dynamical central charge in bipartite quenches

with left and right initial thermal states:

cIR ≤ c̃(max (Tr, Tl)) ≤ c̃je(Tl, Tr) ≤ cUV . (4.2)

This is an interesting property of the dynamical central charge which (4.2) also implies up-

per and lower bounds on the maximum of the ray-dependent energy current or equivalently

the current in the NESS, and an upper bound for the energy current at any ray. In [93] a
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lower bound for the steady-state energy current was given, which reads in our case

je(0) ≥
〈jp〉βl − 〈jp〉βr

2
, (4.3)

where the averages of the momentum current are taken in the left and right thermal states.

When a lower bound on je(0) is considered, this inequality (4.3) turns out to be more

restrictive than (4.2) in almost all cases, which is demonstrated by table 1 too. For better

transparency we define

c̃lbje =
6

π

〈jp〉βl − 〈jp〉βr(
T 2
l − T 2

r

) (4.4)

to compare the dynamical central charge with.

A trivial consequence of (4.2) is the bound

cIR ≤ c̃je(Tl, Tr) ≤ cUV , (4.5)

where the bounds are now independent of the temperatures, and the lower bound is less

strict than the one obtained in [93]. This means that a simple estimate for je(0) is given by

πcIR

12

(
T 2
l − T 2

r

)
≤ je(0) = max je ≤

πcUV

12

(
T 2
l − T 2

r

)
, (4.6)

and hence the whole Euler scale energy current is always bounded by πcUV
12

(
T 2
l − T 2

r

)
.

The dynamical central charge c̃je has another nice property; similarly to the effective

central charge, this quantity is a monotonously increasing function of the energy scale. In

more precise terms

c̃je(T
(1)
l , T (1)

r ) ≥ c̃je(T
(2)
l , T (2)

r ) if max
(
T

(1)
l , T (1)

r

)
≥ max

(
T

(2)
l , T (2)

r

)
and min

(
T

(1)
l , T (1)

r

)
≥ min

(
T

(2)
l , T (2)

r

) (4.7)

and

c̃je(T
(1)
l , T (1)

r ) ≥ c̃je(T
(2)
l , T (2)

r ) if min
(

(T
(1)
l , T (1)

r

)
≥ min

(
T

(2)
l , T (2)

r

)
and max

(
T

(1)
l , T (1)

r

)
= max

(
T

(2)
l , T (2)

r

)
.

(4.8)

A monotonic behaviour of c̃je was first pointed out in [92]. However, the validity of

the approach used to determine the NESS in that particular work was not justified by

later comparison with the GHD [42], although the difference between the numerical values

was small. Our analysis relying on the GHD approach now gives solid evidence for the

monotonicity of c̃je in terms of (4.7) and (4.8).

Based on eq. (1.1), nevertheless, an effective central charge can be defined not only

from je, but also from qe and jp, which are not equal due to the lack of exact conformal

symmetry in massless models. Again, it seems reasonable to chose their value at the ray

ξ = 0, which corresponds to the NESS, but it is important to keep in mind that for these

quantities their maximum does not occur at ξ = 0. Defining the corresponding dynamical

central charges denoted them by c̃qe and c̃jp their numerical values can be determined as
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seen in table 1. As indicated by table 1 similar observation can be made to the case of c̃je ,

which we summarise as follows: for c̃jp

cIR ≤ c̃jp(Tl, Tr) ≤ c̃je(Tl, Tr) (4.9)

holds, from which it also follows that

cIR ≤ c̃jp(Tl, Tr) ≤ cUV . (4.10)

On the contrary for c̃qe we find that

cIR ≤ c̃(max (Tl, Tr)) ≤ c̃qe(Tl, Tr) > cUV . (4.11)

In this formula the symbol > before cUV seems very unnatural first. Even though the

problematic numerical values for c̃qe (i.e. those slightly large than 0.7) seem to be stable

against varying the parameters in the numerical solutions (such as the number of iterations

or discretisation points etc.) we cannot exclude the possibility of numerical errors and

therefore leave this problem open. Nevertheless it is important to remember that qe has no

global extremum at ξ = 0 and in the rest of the paper we present an interesting argument

stating that unlike for currents such an anomalous behaviour is not prohibited by physical

principles for densities (apart from the T (l), T (r) → 0 and T (l), T (r) →∞ limits where the

CFT description becomes exact).

In the next section it is also demonstrated that the conjectures (4.2), (4.9) and (4.11)

and the monotonicity property (4.7), (4.8) for c̃je remain valid for the other flows of the

An and Dn family together with the extended plateaux in the current and density profiles.

4.2 Low energy behaviour and constant regions in the density/current profiles

in the A2 flow

As indicated by figure 1, for low and intermediate left and right temperatures, there are

regions of the ray ξ where the densities and currents have constant values. To understand

the emergence of such regions, it is useful to remember that the bare velocities of the RM

and LM particles are ±1 and in macro-states (either homogeneous or inhomogeneous) the

interactions changes the range of the effective velocities from ±1 to [vmin
RM , 1] and [−1, vmax

LM ].

The appearance of the flat regions in the density and current profiles is related the fact that

at not too high temperatures these intervals do not overlap. This means that, according

to our discussion at the end of section 2.2,

nRM(ϑ, ξ) = n
(l)
RM(ϑ)

nLM(ϑ, ξ) = n
(r)
LM(ϑ)

if ξ ∈ [vmax
LM , vmin

RM ] , (4.12)

which are independent of ξ and consequently the current and density profiles have no

ξ-dependence too. It is a notable observation that if [vmin
RM , 1] ∩ [−1, vmax

LM ] = {} then

0 ∈ [vmax
LM , vmin

RM ] always holds.

At very low temperatures it is also possible to treat the problem by analytical means at

least in two different ways. An obvious approach is the low temperature expansion of the
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thermal TBA equations first. If one is interested in the flat regions of the profiles the values

of the densities and currents are straightforwardly obtained using again a low-temperature

expansion in (2.6), (2.8) and (2.5) since (4.12) can be exploited.

Another approach is describing the low energy behaviour of the A2 massless flow as

an irrelevant perturbation of the IR CFT by
∫
d2xT T̄ [94, 95]. In particular for the A2,

model the low-energy effective Lagrangian reads [80, 94]

Leff = ψ∂̄ψ + ψ̄∂ψ̄ − 4

M2
(ψ∂ψ)

(
ψ̄∂̄ψ̄

)
+ . . . , (4.13)

where ψ∂̄ψ + ψ̄∂ψ̄ is the Lagrangian of the critical Ising field theory with c = 1
2 and

T = −1

2
ψ∂ψ

T̄ = −1

2
ψ̄∂̄ψ̄ .

(4.14)

The bipartite quench with left and right thermal heat reservoirs was analysed in [72] for

perturbed CFTs with the action

S = SCFT + g

∫
d2xT T̄ . (4.15)

In particular, the average of the energy and momentum densities and currents are modified

by the perturbation [72] from eq. (1.1) to

qe =
cπ

12

[
T 2
l + T 2

r −
gcπ

12

(
T 4
l + T 4

r + T 2
l T

2
r

)]
+O(g2)

je = qp =
cπ

12

[
T 2
l

(
1− gcπ

12
T 2
l

)
− T 2

r

(
1− gcπ

12
T 2
r

)]
+O(g2)

jp =
cπ

12

[
T 2
l + T 2

r −
gcπ

12

(
T 4
l + T 4

r − T 2
l T

2
r

)]
+O(g2)

(4.16)

and the velocities for the shock waves vmax
LM and vmin

RM are

vmax
LM = −1− gcπ

12
T 2
l +O(g2)

vmin
RM = 1 +

gcπ

12
T 2
r +O(g2) .

(4.17)

Substituting − 16
M2 for g according to eqs. (4.16) and (4.17) and trading the small

parameter to T 2, the results obtained describe the low temperature Euler scale behaviour

of the A2 flow:

qe =
π

24

[
T 2
l + T 2

r +
2π

3

(
T 4
l + T 4

r + T 2
l T

2
r

)]
+O(T 6)

je = qp =
π

24

[
T 2
l

(
1 +

2π

3
T 2
l

)
− T 2

r

(
1 +

2π

3
T 2
r

)]
+O(T 6)

jp =
π

24

[
T 2
l + T 2

r +
2π

3

(
T 4
l + T 4

r − T 2
l T

2
r

)]
+O(T 6)

(4.18)
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for ξ ∈ [vmax
LM , vmin

RM ], where

vmax
LM = −1 +

2π

3
T 2
l +O(T 4)

vmin
RM = 1− 2π

3
T 2
r +O(T 4) .

(4.19)

An alternative derivation of these results is given in appendix A by performing the low

temperature expansion of the TBA equations (2.5), (2.6), (2.8) and (2.10).

Finally, it is important to note that for the particular case of the A2 flow no shocks

develop due to integrability contrary to the general case of the T T̄ perturbation [72].

5 Hydrodynamics of the An and Dn flows

Now we turn to studying higher members of the An and also Dn type massless models,

which correspond to the Dynkin diagrams in figure 1.

In figure 5 the density and current profiles for the A3 flow are displayed for various left

and right initial temperatures. The model can be regarded as the RG trajectory from the

tetra-critical to the tricritical Ising field theory with cUV = 0.8 and cIR = 0.7, and for this

model the TBA equations also include a magnonic particle. Figure 5 shows a behaviour

similar to the case of the A2 flow: irrespectively of the left and right temperatures the

profiles include extended plateaux and in fact the flat regions are even broader than in

the previous case. For the A2 model an explanation for the plateaux was given based on

the high- and low-temperature conformal behaviour and also on the qualitative behaviour

of GHD and TBA equations. To give an explanation for the plateaux for this case and

eventually for all higher members of the An flow it is sufficient to note that the difference

between the IR and UV central charges decreases as n increases (3.4). This means that

the UV and IR CFTs only slightly differ from each other as long as the number of effec-

tive degrees of freedom or the transport properties determined by the central charge are

concerned. Thus the properties of the interpolating flow are expected to be similar to the

CFT case including the appearance of the plateaux. In this respect, the A2 case is the one

expected to show the largest departure from the CFT behaviour since it is for this case

that the difference between the UV and IR central charges is the largest.

It is worth noting that unlike for the A2 for the A3 flow (and also for higher members

as one expects) the exactly flat constant regions in the profiles do not appear. Although

at low temperatures the range of effective velocities for RM and LM particles do not

overlap and consequently their filling functions become independent of ξ, the range of the

effective velocity for the magnons spans this non-overlapping region and nM (ϑ, ξ) has real

ray-dependence. Even though the contribution to the densities and currents originates

from only the RM and LM particles, the ray-dependence of nM (ϑ, ξ) is transmitted to the

densities and currents due to the dressing equation (2.5). This accounts for a weak ray-

dependence in the profiles in the non-overlapping region in the range of the RM and LM

effective velocities. At sufficiently small temperatures the effective velocities for magnons

also do not overlap with that of the RM or LM particles. It is a general observation the

even in this case the range of the magnonic effective velocity (at least for one magnonic
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Figure 5. Ray-dependent (a) energy density qe, (b) energy current je, (c) momentum density

qp and (d) momentum current jp in the A3 (tetra-critical to tricritical Ising) and D3 flow after

bipartite quenches at the Euler scale. The green curve with diamonds corresponds to left and right

initial temperatures Tl = 7M and Tr = 0.4M , the orange curve with squares to Tl = 1.4M and

Tr = 0.9M and the blue curve with circles to Tl = 0.3M and Tr = 0.15M . The discrete points in

the plots indicated by the plotmarkers are obtained by the numerical solution of GHD equations,

the continuous curves are first order interpolations. Due to relativistic invariance, je = qp.

species) always touches the lower and upper endpoints of the range of the RM and LM

effective velocities.

In table 2, the effective and dynamical central charges defined in eq. (4.1) are collected

for different left and right temperatures in the A3 interpolating flow, and the data confirm

that the conjecture (4.2) proposed for the A2 massless flow remains valid in the present

case. Therefore it is plausible to assume that together with the appearance of the plateaux

in the profile, the conjectures (4.2), (4.9) and (4.11) for the dynamical central charges

and the bounds for the currents are a general property of the An models in the thermal

partitioning protocol.

In fact the broad plateaux in the profiles and the conjectures (4.2)–(4.11) seem to

be a generic property of not only the An massless models, but also of the Dn series and

eventually of all unitary massless integrable flows. This is confirmed by studying the

first two members of the Dn series. What concerns the D3 flow it is to mention that its

TBA system is equivalent with that of the A3 model. Though the operator content and

consequently the models themselves are different, the energy and momentum densities and

currents are given by the same equations and figure 5 and table 2 describes both the A3 and
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Tl/M Tr/M c̃(Tl) c̃(Tr) c̃je(Tl, Tr) c̃qe(Tl, Tr) c̃jp(Tl, Tr) c̃lbje(Tl, Tr)

0.2 0.1 0.713424 0.704842 0.726069 0.724252 0.714633 0.716494

0.25 0.1 0.717545 0.704842 0.730977 0.729825 0.720382 0.720142

0.3 0.15 0.721433 0.709139 0.738176 0.736503 0.722257 0.725665

0.9 0.1 0.751467 0.704842 0.766027 0.767382 0.761988 0.752054

0.9 0.85 0.751467 0.749811 0.778166 0.779638 0.750716 0.765082

0.95 0.9 0.753023 0.751467 0.779363 0.781042 0.752307 0.76658

1.4 0.9 0.763667 0.751467 0.783582 0.786193 0.76077 0.772155

2.9 1.1 0.779635 0.75717 0.790933 0.794089 0.778236 0.783189

6.5 6 0.790221 0.789469 0.796616 0.799242 0.789463 0.793952

7 0.4 0.790867 0.728439 0.794791 0.796047 0.792994 0.790611

7 6 0.790867 0.789469 0.796669 0.799237 0.789854 0.794116

9 8.5 0.792724 0.792344 0.796894 0.799172 0.791988 0.795059

Table 2. The effective central charges for (left and right) thermal states and the dynamical central

charges for the partitioning protocol for various left and right temperatures in the A3 and D3

massless flows, where cUV = 0.8 and cIR = 0.7.

D3 flows. Another notable remark is that the Z3 parafermion model, i.e. the UV limiting

theory of the D3 model is the critical three-state Potts model.

Figure 6 and table 3 show the ray-dependent energy and momentum density and

current profiles and the values of effective and dynamical central charges. For the Dn

series the n→∞ limit the difference of the UV and IR central charges is now 1 (3.5) and

arguing that the UV and IR CFTs are ‘similar’ is not possible. Nevertheless, the presence of

the extended plateaux and validity of the conjectures (4.2)–(4.11) in the D4 model besides

the D3 case suggest that these features emerge in any member of the Dn flows.

Whereas tables 2 and 3 suggest that the approximate inequality in (4.11) is rather a

strict one, studying the hydrodynamics of massless perturbation of the W 3
5 CFT (carried

out in appendix B) slightly larger than cUV values for c̃qe can be seen again. Our analysis

is therefore not conclusive in the question whether cUV ≥ c̃qe or cUV ? c̃qe holds for finite

and non-zero left and right temperatures but we revisit this issue in the next section.

6 The Landauer-Büttiker picture and its implications on transport

In this section, we would like to discuss a simple physical picture that gives a natural inter-

pretation for the observed bounds for the dynamical central charges and provides a possible

explanation for the anomalous behaviour of c̃qe . This picture is based on the Landauer-

Büttiker (LB) formalism [96–99] of electronic systems, which claims that in the simplest

case the total electric conductance for 1D systems with ballistic electron propagation is

the number of open channels for the electrons times the conductance quantum 2e2/h. The
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Figure 6. Ray-dependent (a) energy density qe, (b) energy current je, (c) momentum density qp
and (d) momentum current jp in the D4 flow after bipartite quenches at the Euler scale. The green

curve with diamonds corresponds to left and right initial temperatures Tl = 7M and Tr = 0.4M , the

orange curve with squares to Tl = 1.4M and Tr = 0.9M and the blue curve with circles to Tl = 0.2M

and Tr = 0.1M . The discrete points in the plots indicated by the plotmarkers are obtained by the

numerical solution of GHD equations, the continuous curves are first order interpolations. Due to

relativistic invariance, je = qp.

Tl/M Tr/M c̃(Tl) c̃(Tr) c̃je(Tl, Tr) c̃qe(Tl, Tr) c̃jp(Tl, Tr) c̃lbje(Tl, Tr)

0.2 0.1 0.824632 0.808665 0.847828 0.844655 0.826961 0.830546

0.6 0.1 0.87268 0.808665 0.900474 0.902396 0.889841 0.874614

1.1 0.1 0.905374 0.808665 0.93072 0.933312 0.924594 0.905972

1.1 0.9 0.905374 0.894632 0.950457 0.954026 0.901267 0.926701

1.4 0.9 0.917764 0.894632 0.955841 0.960591 0.912188 0.933531

2.9 1.1 0.949132 0.905346 0.971613 0.977795 0.946437 0.955505

6.5 6.0 0.971295 0.969662 0.985085 0.991036 0.968856 0.978339

7 0.4 0.972897 0.852085 0.980875 0.983581 0.977281 0.971403

7 6 0.972707 0.969662 0.985222 0.991092 0.969695 0.978704

9 8.5 0.976816 0.975969 0.98579 0.991373 0.974226 0.980793

Table 3. The effective central charges for (left and right) thermal states and the dynamical central

charges for the partitioning protocol for various left and right temperatures in the D4 massless flow,

where cUV = 1 and cIR = 0.8.
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prototypical case where this formalism is used is a clean quantum wire supporting coher-

ent propagation of electronic excitations attached to a source and a drain with an applied

voltage emitting and absorbing electrons according to Fermi-Dirac statistics. It is easy to

use the LB formalism to describe thermal transport when the temperatures of the drain

and the source are different. For the energy current of relativistic and spinless fermions

with mass m elementary calculations give

J (Tl)− J (Tr) (6.1)

with

J (T ) =
T 2
[
π2 − 3m

2

T 2 + 6m
T log

(
1 + em/T

)
+ 6Li2

(
−em/T

)]
12π

(6.2)

whose m→ 0 limit, which is the conformal limit, yields

1

2

π

12

(
T 2
l − T 2

r

)
, (6.3)

i.e. the CFT result. Whereas this result is obtained for the case of non-interacting quasi-

particles and it is not obvious how the LB formalism could be applied for general CFTs,

the connection between the LB formalism and the CFT treatment in the free case inspires

the following interpretation for the CFT current formula: the central charge simply counts

the number of open channels for the energy transport. This statement is in agreement

with usual interpretation of the central charge counting the number of effective degrees of

freedom in the theory.

If one accepts this picture linking the central charge and the number of open channels

for the energy transport, the existence of both an upper and a lower bound for the dynam-

ical central charge c̃je in massless flows comes naturally. The number of effective degrees

of freedom in massless models cannot be larger than cUV and smaller than cIR and conse-

quently the number of open channels available for energy transport must be bounded by

cUV and cIR too. Clearly, the same argument holds also for the current of the momentum.

Even if the transport is ballistic and an upper bound for the conductance is expected,

the accumulation of charge is not prohibited, at least by our simple picture. In our analysis

the problematic quantity with respect to an upper bound was the average energy density at

ξ = 0, which is a density of a conserved charge and hence is compatible with the previous

statements. Due to relativistic invariance je = qp, which explains why anomalous behaviour

could be detected only for qe.

The formulae (6.1) and (6.2) were derived for massive relativistic fermions, which

means that cIR equals zero. Analysing the behaviour of the dynamical central charge c̃je
for the energy current (6.1), it is easy to check that it is indeed bounded by 0 and 1/2 in

accordance with the above interpretation and that cIR = 0. Due to the exact expression for

c̃je , nevertheless, its monotonicity properties can also be explicitly investigated and (4.7)

and (4.8) are satisfied. For this property, which is therefore valid for massless flows as well

as relativistic fermions in the LB picture, the interpretation is also at hand. Increasing

the temperature in any of the initial subsystems results in higher energy densities and a

larger number of open channels available for the energy transport since in unitary theories
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Tl/M Tr/M c̃(Tl) c̃(Tr) c̃je(Tl, Tr) c̃qe(Tl, Tr) c̃jp(Tl, Tr) c̃lbje(Tl, Tr)

0.2 0.04 0.0122958 0 0.0255886 0.0681836 0.0118277 0.0128082

0.2 0.1 0.0122958 0.00011 0.0326524 0.0569543 0.00986332 0.0163566

0.5 0.1 0.172818 0.00011 0.263287 0.444249 0.167334 0.180014

0.5 0.3 0.172818 0.054912 0.342032 0.397678 0.142199 0.23914

0.6 0.1 0.227963 0.000113 0.326837 0.521414 0.223859 0.234473

0.6 0.3 0.227963 0.054912 0.392442 0.473548 0.194677 0.285647

1.2 0.1 0.447465 0.000113 0.546621 0.721098 0.452063 0.450593

1.2 0.6 0.447465 0.227963 0.619103 0.698749 0.406992 0.520632

7 3.5 0.789094 0.695874 0.855191 0.884953 0.773724 0.820188

7 6 0.789094 0.771895 0.867738 0.892567 0.782 0.836757

8 0.6 0.802629 0.227963 0.842828 0.878939 0.813516 0.805906

8 6 0.802629 0.771895 0.871823 0.895377 0.792172 0.842194

Table 4. The effective central charges for (left and right) thermal states and the dynamical central

charges for the partitioning protocol for various left and right temperatures in the massive sinh-

Gordon theory with B = 0.5, where cUV = 1 and cIR = 0.

the number of effective degrees of freedom is increased with increased energy density.

Whereas it remains an assumption that the number of open channels for transport is a

monotonous function of the number of effective degrees of freedom as it happens for free

fermions, thinking in terms of the stable quasi-particles of integrable systems with ballistic

propagation makes this link very plausible.

Having seen how the LB picture can explain some of the observed bounds for the dy-

namical central charges together with the monotonicity of c̃je in massless integrable models

and massive free fermions, it is natural to speculate about the case of massive integrable

and eventually general 1+1D QFTs. For this reason we also analyse the dynamical cen-

tral charges in the sinh-Gordon model using the GHD and the partitioning protocol again.

Without explaining too many details about the model (in connection with GHD this model

was investigated in [42] reviewing its definition) we merely quote the corresponding TBA

equation containing one single particle species:

ε(ϑ) =
mcosh(ϑ)

T
−
(
ϕshG ? ln

(
1 + e−ε

))
(ϑ) , (6.4)

with

ϕshG(ϑ) = −
4 cosh(ϑ) sin(Bπ2 )

cos(Bπ)− cosh(2ϑ)
, (6.5)

where m is particle mass and the parameter B takes values from [0, 2] and is related to the

strength of the interaction.

Table 4 shows the data for the effective and dynamical central charges for the sinh-

Gordon model and the data are in perfect agreement with the predictions of the LB picture.
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All the dynamical central charges are bounded by cIR from below and for the currents (and

in this case also for qe) the data are consistent with an upper bound given by cUV, and

the monotonicity property of c̃je is also satisfied. Moreover, the conjectures (4.2), (4.9)

and (4.11) proposed for the massless models also hold in this case together with (4.3),

whose validity is independent of the massless or massive nature of the theory.

Although a systematic treatment of the hydrodynamics in massive integrable QFTs

is out of the scope of this paper, based on the above results it is plausible to expect

that the bounds for the dynamical central charges of currents given by cIR and cUV, the

monotonicity of c̃je and the conjectures (4.2), (4.9) and (4.11) are valid in any relativistic

and unitary integrable QFT and the interpretation inspired by the LB picture is correct.

The monotonic behaviour of c̃je is an especially interesting finding, since it corresponds to

an out-of-equilibrium version of the well-known c-theorem.

In fact, considering a generic unitary and relativistic 1+1 D QFT with homogeneous

bulk action it is reasonable to assume that the dynamical central charges of the energy

and momentum current are still bounded by cUV from above and cIR from below. In

non-integrable cases there are usually no additional conserved quantities to the energy

and the momentum and the ray-dependent profiles for the currents and densities of these

conserved quantities can exhibit discontinuities at the Euler scale. Nevertheless the NESS

corresponding to ξ = 0 at the Euler scale is expected to be well defined and therefore the

dynamical central charges can be introduced similarly to the integrable case. Whether the

strict monotonicity property of c̃je alias a non-equilibrium c-theorem holds in non-integrable

cases is a more subtle issue. Whereas the c-function [89] in eq. (2.15) was defined via the

TBA and hence exists only for Bethe Ansatz integrable models, a c-function with the same

monotonicity property was first defined from the two-point function of the stress-energy

tensor [88]. This function can be ascribed to the same interpretation as the TBA c-function

i.e. counting the number of effective degrees of freedom but it can be defined for any 1+1 D

perturbed CFT and accordingly the equilibrium c-theorem is valid in any field theory of this

type. Although its monotonicity suggests a monotonic behaviour for c̃je , due to the inelastic

scattering between particles, the possible particle production processes and the absence of

ballistic propagation it is difficult to give evidence and to reduce the uncertainty left. We

therefore leave this question open, which we hope to be the subject of further studies.

7 Conclusions

In this paper we studied the Euler scale hydrodynamics of massless integrable quantum

field theories (QFTs) in the partitioning protocol using the recently developed framework

of generalised hydrodynamics (GHD) [42–44]. The peculiarity of these models is that they

interpolate between two non-trivial renormalisation group fixed points corresponding to

conformal field theories (CFTs) with a crossover from one CFT to another characterised

by an energy scale called crossover scale. In particular we calculated the Euler scale current

and density profiles for the energy and momentum after joining the semi-infinite left and

right halves of the massless systems initially prepared to different thermal states. Focusing
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on the first few members of the An and Dn massless flows, we carried out a systematic

treatment of the An and Dn series.

Our analysis identified some general characteristic features regarding the transport

properties of these massless flows. Irrespectively of the magnitude of the left and right

temperatures with respect to the crossover scale of the massless theory, the density and

current profiles exhibit extended plateaux in the non-trivial region ξ ∈ [−1, 1], where ξ

stands for x/t sending x and t to infinity. This behaviour is similar to the case of CFTs,

whose profiles contain constant regions separated by discontinuous jumps at ξ = ±1 in

the Euler limit [69, 70], but integrability prevents the formation of such discontinuities and

shock-waves in massless flows. The presence of discontinuities in the CFT profiles and their

absence in the integrable massless case might seem surprising given that rational CFTs are

eventually integrable models having infinitely many local conserved quantities. The main

difference between these theories accounting for the different behaviour is the existence of

particles with non-trivial dispersion in integrable cases, whereas in CFTs the propagation

of modes is dispersionless, which can thus accumulate to form shock-waves.

We analysed the magnitude of the currents and densities and constructed a series of

bounds for them at ray ξ = 0, which corresponds to the non-equilibrium stationary state

(NESS) that is when t→∞ but x remains finite. Simple upper and lower bounds for the

energy current can be given using the CFT result (1.1) with central charge of the UV and

IR limiting CFTs respectively and the initial left and right temperatures. We also showed

the dynamical central charge c̃je defined in eq. (4.1) inspired by writing the maximum of

the energy current in form of the CFT energy current is bounded from below by not only

the central charge of the IR limiting CFT but by the effective central charges (2.15) of the

massless model corresponding to the left and right temperatures. In [93] a different lower

bound was given for the energy current in the NESS or for the corresponding dynamical

central charge. Our data are consistent with this lower bound, which in almost all cases

turned out to be even more restrictive than the one resulting from the effective central

charges. It is worth mentioning that the value of the energy current in the NESS is equal

to its absolute maximum, therefore the upper bound for je(0) is an upper bound for je at

any ray. We also verified that the dynamical central charge c̃je satisfies a particular mono-

tonicity property first discussed in [92], which resembles the usual effective central charge.

Similarly to the energy current we defined dynamical central charges c̃qe and c̃jp for

the energy density qe and for the momentum current jp using their values in the NESS

and corresponding CFT formula (1.1). For c̃jp a lower bound is given by cIR and an upper

bound by c̃je whereas for c̃qe only a lower bound could be given by c̃je , as its value can

occasionally be larger than cUV.

All these observations are based on the explicit investigation of the A2, A3 D3 and D4

models and on the massless flow from the W 3
5 to the W 3

4 CFTs and their validity is very

plausible for any member of the An and Dn flow and eventually in any unitary massless

models. The emergence of the extended plateaux is easy to understand in the low- and high-

temperature limits as in these cases the CFT description of the massless model becomes

valid and for intermediate temperatures a simple argument was given based on the TBA

equations and neglecting magnonic particles in section 4.
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Regarding the peculiar properties of the currents and densities we discussed the

Landauer-Büttiker formalism of ballistic transport and its applicability to the free fermion

CFT in the partitioning protocol. This connection suggests that the dynamical central

charges for the currents count the number of open channels for transport and also accounts

for the extremal upper and lower bounds given by cIR and cUV. This picture, however,

does not prohibit the accumulation of charge and can be compatible with the observed

behaviour of c̃qe . Using this picture it is also possible to argue for the monotonicity prop-

erty of c̃je . These predictions do not depend on the massless and massive nature of the

integrable theory and were indeed found valid for the massive sinh-Gordon model together

with the other bounds discussed in the previous paragraphs. The bounds, and the pre-

dictions coming from the Landauer-Büttiker picture such as the extremal bounds and the

monotonicity of c̃je corresponding to a non-equilibrium c-theorem are therefore likely to

be valid in any 1+1 D relativistic integrable QFT. A further notable implication of the

argument based upon the Landauer-Büttiker formalism is that for any low dimensional

perturbed conformal field theory universal upper and lower bounds exist for the energy

and momentum currents in the NESS. These bounds are given by cUV and cIR i.e. the cen-

tral charge of the UV limiting CFT and the IR limiting CFT when cIR 6= 0. The cIR = 0

case corresponds to massive theories, whose low-energy properties are not described by a

CFT. This statement should also hold in near critical systems as long as the temperatures

are not too large to spoil the effective field theory description.

Finally, for the particular case of the A2 flow, which corresponds to the massless flow

from the tricritical to the critical Ising model, interesting low-temperature transport prop-

erties were observed: in this case exactly constant regions appear in the profiles although

at the same time they become smooth functions contrary to the CFT limit. The origin of

this phenomenon is related to the existence of additional (temperature-dependent) bounds

for the effective velocities of massless particles besides the speed of light, and the exactly

flat regions emerge in any massless integrable models without magnons as demonstrated

by the W 3
5 → W 3

4 flow in appendix B. For the particular case of the A2 whose low-energy

limit can be described by a T T̄ perturbation of the IR CFT, we checked our results against

the prediction of [72].

Our work leaves many interesting open directions for further exploration. The current

formulation of GHD uses the language of TBA but for many integrable models the non-

linear integral equation (NLIE) [100–107] provides an alternative way to extract thermal

(or equivalently finite volume) properties. It is therefore tempting to try to generalise the

NLIE to be able to describe inhomogeneous situations. The applicability of a generalised

NLIE would be especially valuable for models with a nested Bethe Ansatz. An important

example is the sine-Gordon theory for general coupling, whose TBA system has infinitely

many magnons, whereas the its NLIE description is much simpler. As for many massless

models, such as the An series, the NLIEs are known they provide an ideal playground to

develop an ‘inhomogeneous NLIE’ because of their simple transport properties to crosscheck

the NLIE results with.

The NLIE would be also helpful when analysing the flows associated with the ex-

ceptional Lie algebras as their TBA system contains several magnons and the numerical
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solution of the GHD equations can become very tedious. Another interesting potential

application is to non-unitary flows such as the Tn series of models. For many non-unitary

flows that the effective central charge has a non-monotonic behaviour [103], which may

have interesting implications for the transport properties of the system.

Finally, it would be interesting to study if the Landauer-Büttiker picture can explain

the other observed bounds for the dynamical central charges and to explore if some of its

implications together with the out-of-equilibrium version of the c-theorem remain valid in

non-integrable relativistic and low dimensional quantum field theories.
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A Low temperature expansion of the GHD equations for the A2 flow

In the following we briefly review the main steps of deriving the low temperature behaviour

of the A2 model via the low temperature expansion of the GHD equations (2.5), (2.6), (2.8)

and (2.10). Considering first the RM and LM pseudo-energies in thermal states they are

determined by

εRM =
M

2T
eϑ − 1

2π

∫
dϑ′

1

cosh (ϑ− ϑ′)
ln
(

1 + eεLM(ϑ′)
)

εLM =
M

2T
e−ϑ − 1

2π

∫
dϑ′

1

cosh (ϑ− ϑ′)
ln
(

1 + eεLM(ϑ′)
)
,

(A.1)

which are the rewriting of eqs. (3.1) and (3.3). In the lowest order in T , the pseudo-energies

ε
(0)
RM and ε

(0)
LM equal the driving terms in (A.1) and the convolutions are neglected. The

next order contributions are obtained by iterating (A.1) with ε
(0)
RM and ε

(0)
LM using expansion

of the logarithmic expression in the rewriting of eq. (A.1)

ε
(1)
RM =

M

2T
eϑ − 1

2π

∫
dϑ̃

1

cosh ϑ̃
ln

(
1 + exp

[(
M

2T
e−ϑ
)
e−ϑ̃
])

ε
(1)
LM =

M

2T
e−ϑ − 1

2π

∫
dϑ̃

1

cosh ϑ̃
ln

(
1 + exp

[(
M

2T
eϑ
)
eϑ̃
])

,

(A.2)

which gives

ε
(1)
RM =

M

2T
eϑ − 1

2π

(
π2

6

2T

M
eϑ − 49π4

1260

(
2T

M
eϑ
)3

+ . . .

)

ε
(1)
LM =

M

2T
e−ϑ − 1

2π

(
π2

6

2T

M
e−ϑ − 49π4

1260

(
2T

M
e−ϑ
)3

+ . . .

)
.

(A.3)
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The leading order corrections for the pseudo-energies are hence

ε
(1)
RM =

M

2T
eϑ

(
1− π

3

(
T

M

)2

+O(T 4)

)

=
M

2T̃
eϑ +O(T 3)

ε
(1)
LM =

M

2T
e−ϑ

(
1− π

3

(
T

M

)2

+O(T 4)

)

=
M

2T̃
e−ϑ +O(T 3) ,

(A.4)

where to simplify the formulas T̃ was introduced as

T̃ = T

(
1 +

π

3

(
T

M

)2
)
. (A.5)

We need to determine the minimal and maximal values of the RM and LM effective ve-

locities in pure thermal states. The effective velocities are defined in eq. (2.7) and for

their extremal values it is first necessary to calculate
(
e′j(ϑ)

)dr
and

(
p′j(ϑ)

)dr
in the limits

ϑ → ∓∞ for RM and LM particles respectively. For this goal we assume that in these

limits the following Ansatz is valid(
e′RM(ϑ)

)dr ≈ ce′RMe
ϑ(

p′RM(ϑ)
)dr ≈ cp’

RMe
ϑ(

e′LM(ϑ)
)dr ≈ −ce′LMe

−ϑ(
p′LM(ϑ)

)dr ≈ cp
′

LMe
−ϑ .

(A.6)

Then the unknown coefficients are determined by the dressing equation (2.5), which read

for (e′(ϑ))dr as

ce
′

RMe
ϑ =

M

2
eϑ − 1

2π

∫
dϑ′

1

cosh (ϑ− ϑ′)
n

(1)
LM(ϑ′)ce

′
LMe

−ϑ′

−ce′LMe
−ϑ = −M

2
e−ϑ +

1

2π

∫
dϑ′

1

cosh (ϑ− ϑ′)
n

(1)
RM(ϑ′)ce

′
RMe

ϑ′ .

(A.7)

eq. (A.6) is indeed a consistent approximation of
(
e′j(ϑ)

)dr
and

(
p′j(ϑ)

)dr
in the limits

ϑ→ ∓∞ for RM and LM particles. In the first line of eq. (A.7) the region where (A.6) is

not valid for (e′LM(ϑ))dr is suppressed by n
(1)
LM(ϑ′) in a super-exponential way. Expanding

1
cosh(ϑ−ϑ′) in eq. (A.7) and performing the integration, the following equations are obtained

for (A.6):

ce
′

RMe
ϑ =

M

2
eϑ − π

12
ce
′

LMe
ϑ

(
2T̃

M

)2

+O(T 4e3ϑ)

ce
′

LMe
−ϑ =

M

2
e−ϑ − π

12
ce
′

RMe
−ϑ

(
2T̃

M

)2

+O(T 4e3ϑ)

(A.8)
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and after similar manipulations for
(
p′j(ϑ)

)dr

cp
′

RMe
ϑ =

M

2
eϑ +

π

12
cp
′

LMe
ϑ

(
2T̃

M

)2

+O(T 4e3ϑ)

cp
′

LMe
−ϑ =

M

2
e−ϑ +

π

12
cp
′

RMe
−ϑ

(
2T̃

M

)2

+O(T 4e3ϑ) ,

(A.9)

from which the coefficients in eq. (A.6) can be uniquely determined:

ce
′

RM = ce
′

LM =
M

2

1− π
3

(
T̃
M

)2

1−
(
π
3

(
T̃
M

)2
)2 +O(T 4)

cp
′

RM = cp
′

LM =
M

2

1 + π
3

(
T̃
M

)2

1−
(
π
3

(
T̃
M

)2
)2 +O(T 4)

(A.10)

which are correct up to the second order in T , that is T̃ → T and from the denominators

only T 2 terms are to keep. The minimal and maximal values for the RM and LM effective

velocities are hence

vmin
RM =

1− π
3

(
T
M

)2
1− π

3

(
T
M

)2 +O(T 4)

= 1− 2π

3

(
T

M

)2

+O(T 4)

vmax
LM = −

1− π
3

(
T
M

)2
1− π

3

(
T
M

)2 +O(T 4)

= −

(
1− 2π

3

(
T

M

)2
)

+O(T 4) .

(A.11)

It is easy to apply the above calculation for the partitioning protocol we are primarily

interested in. At low temperatures vmin
RM and vmax

LM are the endpoints of the interval of ξ

where the density profiles are constant where nRM(ϑ, ξ) = n
(l)
RM(ϑ) and nLM(ϑ, ξ) = n

(r)
LM(ϑ).

As a consequence, the temperature T in (A.11) has to be modified; for the RM particles
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T (r) and for the LM particles T (l) has to be used leading to

ce
′

RM =
M

2

1− π
3

(
T̃r
M

)2

1−
(
π
3

(
T̃r
M

)2
)(

π
3

(
T̃l
M

)2
) +O(T 4)

cp
′

RM =
M

2

1 + π
3

(
T̃r
M

)2

1−
(
π
3

(
T̃r
M

)2
)(

π
3

(
T̃l
M

)2
) +O(T 4)

ce
′

LM =
M

2

1− π
3

(
T̃l
M

)2

1−
(
π
3

(
T̃r
M

)2
)(

π
3

(
T̃l
M

)2
) +O(T 4)

cp
′

LM =
M

2

1 + π
3

(
T̃l
M

)2

1−
(
π
3

(
T̃r
M

)2
)(

π
3

(
T̃l
M

)2
) +O(T 4)

(A.12)

which are correct only up to 2nd order in the temperature and hence the velocity bounds

read

vmin
RM = 1− 2π

3

(
Tr
M

)2

+O(T 4)

vmax
LM = −

(
1− 2π

3

(
Tl
M

)2
)

+O(T 4) ,

(A.13)

which equal [72].

Thanks to the known expressions (A.12) for
(
e′j(ϑ)

)dr
and

(
p′j(ϑ)

)dr
we can easily

calculate the energy and momentum densities and currents when ξ ∈ [vmax
LM , vmin

RM ] using the

second lines in eqs. (2.6) and (2.8). The corresponding formulas, which are correct up to

4th order in the temperature, are as follows:

qe =
π

24

M
2
cp
′

RM

(
2T̃l
M

)2

+
M

2
cp
′

LM

(
2T̃r
M

)2
+O(T 6)

je =
π

24

M
2
ce
′

RM

(
2T̃l
M

)2

− M

2
ce
′

LM

(
2T̃r
M

)2
+O(T 6)

qp =
π

24

M
2
cp
′

RM

(
2T̃l
M

)2

− M

2
cp
′

LM

(
2T̃r
M

)2
+O(T 6)

jp =
π

24

M
2
ce
′

RM

(
2T̃l
M

)2

+
M

2
ce
′

LM

(
2T̃r
M

)2
+O(T 6) ,

(A.14)
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which we can rewrite as

qe =
π

24

[
T 2
l + T 2

r +
2πM2

3

{(
Tl
M

)4

+

(
Tl
M

)2(Tr
M

)2

+

(
Tr
M

)4
}]

+O(T 6)

je =
π

24

[
T 2
l

(
1 +

2π

3

(
Tl
M

)2
)
− T 2

r

(
1 +

2π

3

(
Tr
M

)2
)]

+O(T 6)

qp =
π

24

[
T 2
l

(
1 +

2π

3

(
Tl
M

)2
)
− T 2

r

(
1 +

2π

3

(
Tr
M

)2
)]

+O(T 6)

jp =
π

24

[
T 2
l + T 2

r +
2πM2

3

{(
Tl
M

)4

−
(
Tl
M

)2(Tr
M

)2

+

(
Tr
M

)4
}]

+O(T 6) .

(A.15)

B Hydrodynamics of the W 3
5 → W 3

4 massless model

The W 3
p models [108] are CFTs with an extended symmetry algebra, whose generators

are spin-3 currents. These models possess a Z3 symmetry and can be regarded as certain

generalisations of the critical 3-states Potts model, which is recovered for p = 4. The

central charge is given by

c = 2

(
1− 12

p (p+ 1)

)
, (B.1)

with p ≥ 4. A particular perturbation of these models by the field Φ3 with ∆ = 1 − 3
p+1

results in integrable massless flows from W 3
p to W 3

p−1.

A TBA description for the W 3
p massless flows (and also for massive perturbations) was

proposed in [109] which are related to the A2 Dynkin diagram in a non-trivial way. For

the particular case of the W 3
5 → W 3

4 flow the TBA equations contain only RM and LM

species but each species is doubled. The corresponding TBA system reads

εaRM(ϑ) =
M

2T
eϑ −

(
Kab ? ln

(
1 + e−ε

b
RM

))
(ϑ)

+
(
Kab ? ln

(
1 + e−ε

b
LM

))
(ϑ)

εaLM(ϑ) =
M

2T
e−ϑ −

(
Kab ? ln

(
1 + e−ε

b
LM

))
(ϑ)

+
(
Kab ? ln

(
1 + e−ε

b
RM

))
(ϑ) ,

(B.2)

where a, b = 1, 2 and with the kernels

K11(ϑ) = K22(ϑ) = −
√

3

2 coshϑ− 1

K12(ϑ) = K21(ϑ) = −
√

3

2 coshϑ+ 1
.

(B.3)
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Figure 7. Ray-dependent (a) energy density qe, (b) energy current je, (c) momentum density qp
and (d) momentum current jp in the W 3

5 →W 3
4 massless flow after bipartite quenches at the Euler

scale. The green curve with diamonds corresponds to left and right initial temperatures Tl = 2.5M

and Tr = 1.25M , the orange curve with squares to Tl = 0.9M and Tr = 0.6M and the blue curve

with circles to Tl = 0.25M and Tr = 0.1M . The discrete points in the plots indicated by the

plotmarkers are obtained by the numerical solution of GHD equations, the continuous curves are

first order interpolations. The dashed part of the curves indicates the region of constant densities

and currents. Due to relativistic invariance, je = qp.

The one-particle energies and momentum are

e1,2
RM/LM =

M

2
e±ϑ

p1,2
RM/LM = ∓M

2
e±ϑ .

(B.4)

The Euler scale hydrodynamics of this model is easy to obtain. Figure 7 shows the profiles

for various left and right temperatures and table 5 displays the values of the effective and

dynamical central charges. These are in accordance with our previous findings, such as

the broad plateaux in the profiles, the bound on the dynamical central charges and the

monotonicity of c̃je . Moreover, regions of constant densities are currents appear in the

profiles for low temperatures as a consequence of the lack of magnonic particles in the

TBA system.
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Tl/M Tr/M c̃(Tl) c̃(Tr) c̃je(Tl, Tr) c̃qe(Tl, Tr) c̃jp(Tl, Tr) c̃lbje(Tl, Tr)

0.25 0.1 0.868088 0.811868 0.93966 0.928449 0.88748 0.878801

0.6 0.3 1.0011 0.890578 1.1193 1.12183 0.991055 1.03793

0.9 0.6 1.06489 1.0011 1.17196 1.19334 1.047 1.11592

0.9 0.85 1.06489 1.05658 1.1807 1.20618 1.06099 1.1335

0.95 0.9 1.07249 1.06489 1.18307 1.20934 1.06891 1.13906

1.1 0.1 1.09176 0.811868 1.14362 1.16375 1.12339 1.09408

1.4 0.9 1.11894 1.06489 1.18975 1.21554 1.10385 1.157

2.5 1.25 1.16275 1.10687 1.19694 1.21587 1.15202 1.18136

5.5 5.0 1.18864 1.18681 1.19973 1.20689 1.18777 1.19729

6 0.6 1.19009 1.0011 1.19854 1.20418 1.18918 1.19196

6 5 1.19009 1.18681 1.19974 1.20642 1.18871 1.19751

9 8.5 1.19482 1.19432 1.19976 1.2033 1.19453 1.19888

Table 5. The effective central charges for (left and right) thermal states and the dynamical central

charges for the partitioning protocol for various left and right temperatures in the W 3
5 → W 3

4

massless flow, where cUV = 1.2 and cIR = 0.8.
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[104] G. Feverati, F. Ravanini and G. Takács, Truncated conformal space at c = 1, nonlinear

integral equation and quantization rules for multi-soliton states, Phys. Lett. B 430 (1998)

264 [hep-th/9803104] [INSPIRE].
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