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Abstract: Understanding jets initiated by quarks and gluons is of fundamental impor-

tance in collider physics. Efficient and robust techniques for quark versus gluon jet discrimi-

nation have consequences for new physics searches, precision αs studies, parton distribution

function extractions, and many other applications. Numerous machine learning analyses

have attacked the problem, demonstrating that good performance can be obtained but

generally not providing an understanding for what properties of the jets are responsible

for that separation power. In this paper, we provide an extensive and detailed analysis of

quark versus gluon discrimination from first-principles theoretical calculations. Working

in the strongly-ordered soft and collinear limits, we calculate probability distributions for

fixed N -body kinematics within jets with up through three resolved emissions (O(α3
s)).

This enables explicit calculation of quantities central to machine learning such as the like-

lihood ratio, the area under the receiver operating characteristic curve, and reducibility

factors within a well-defined approximation scheme. Further, we relate the existence of a

consistent power counting procedure for discrimination to ideas for operational flavor defi-

nitions, and we use this relationship to construct a power counting for quark versus gluon

discrimination as an expansion in eCF−CA � 1, the exponential of the fundamental and

adjoint Casimirs. Our calculations provide insight into the discrimination performance of

particle multiplicity and show how observables sensitive to all emissions in a jet are opti-

mal. We compare our predictions to the performance of individual observables and neural

networks with parton shower event generators, validating that our predictions describe the

features identified by machine learning.
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1 Introduction

High energy quarks and gluons fragment and hadronize into jets of particles through quan-

tum chromodynamics (QCD). Identifying light jets as arising from quarks or gluons is

a fundamental challenge for collider physics at the Large Hadron Collider (LHC). Many

efforts have proposed new observables [1–12] or jet flavor definitions [13–17], completed

theoretical calculations [18–21], and used machine learning methods [22–26] to push the

boundaries of the discrimination power between quark and gluon jets. While these studies

have led to steady improvements over time, they have been done with no clear organizing

principle or agreed-upon “best” discrimination strategy. Further, while machine learning

methods have demonstrated the greatest discrimination power, no clear physical reason

for that performance has been presented. It is therefore desirable to construct a gen-

eral theory of quark versus gluon discrimination which both explains and provides robust

understanding of the discrimination power.

Previous studies have made progress in this direction. For example, ref. [8] was the

first broad study of the quark versus gluon discrimination power of a large number of jet

observables in simulation, including identifying those pairs of observables that improved

discrimination power the most. Ref. [18] introduced mutual information as a metric for

useful discrimination information in distributions, applying it to pairs of generalized an-

gularities [27–29] measured on jets. Resummed predictions of mutual information were

performed and compared to simulation which concretely enabled identification of features

that are both under theoretic control and well-described by simulation. Nevertheless, this

study was limited to observables that are first non-zero for jets with two particles in them.

In ref. [10], an infrared and collinear (IRC) safe definition of multiplicity was introduced,

based on a generalization of the soft drop grooming algorithm [30]. This observable, called

soft drop multiplicity nSD, counts the number of relatively hard, angular-ordered emissions

off of the hard jet core. At leading-logarithmic accuracy, it can be proven that nSD is the

optimal quark versus gluon discriminant, on the phase space of particles directly emitted

off of the hard initiating particle of the jet. However, this is not a proof that nSD is the

optimal observable for quark versus gluon discrimination in general, because there are re-

gions of phase space in which emissions live that may improve discrimination power, but

to which nSD does not have access.

In this paper, we present a first systematic theoretical analysis of quark versus gluon

discrimination. Working in the strongly-ordered soft and collinear limits, we explicitly

calculate the resummed probability distribution of multiple infrared and collinear safe ob-

servables on a jet. These multiple observables enable a characterization of the emission

phase space and evaluation of the optimal observable for discrimination. We calculate the

energy distributions for quark and gluon jets with up to three resolved emissions, though

nothing prohibits continuing to arbitrary numbers of emissions. Our approximations en-

able simple, recursive evaluation of the probability distribution as a product of conditional

probability distributions. Though simple, these calculations are sufficient to validate pre-

dictions and make several concrete conjectures regarding quark versus gluon discrimination

to all-orders.
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Our first step in developing a theory of quark versus gluon discrimination is to estab-

lish a robust power counting scheme that can be used to construct individual observables,

strictly from general statements about the singular limits of QCD. Power counting rules for

observables useful for discriminating multi-prong substructure in jets has been extensively

developed [31–33]. An observable parametrically separates jet categories if power counting

identifies arbitrarily pure samples at the phase space boundaries, enabling an unambiguous

definition in a singular limit. By a pure sample we mean that a formal region of phase

space, however small, exclusively consists of one type or category of jet. For binary clas-

sification, the existence of such pure phase space regions provides a robust definition of

the jet categories, which is referred to as “mutual irreducibility” [16] of the samples be-

ing discriminated. The complementary ideas of power counting and mutual irreducibility

are powerful tools we exploit to identify pure phase space regions and quantify potential

discrimination power.

The precise notion of mutual irreducibility is relatively new in particle physics, but the

requirement that pure phase space regions are necessary to unambiguously define jet cat-

egories is well-understood. Throughout this paper, we refer to “signal” and “background”

jets in an idealized sense, assuming that we have perfect knowledge of the jet categories.

Then, on a restricted space of measurements on those jets, we study the possible discrim-

ination power accessible by those measurements. Thus, even if two jet samples are not

mutually irreducible on some restricted observable phase space, we are still able to use our

perfect knowledge to study their separation. This notion is widely used in discrimination

studies in jet physics, though often not explicitly stated. For jet samples that are not able

to be purified on phase space, a so-called reducibility factor κ is defined as the accessible

purity of signal or background phase space regions. Further, reducibility factors are just

the limiting values of the likelihood ratio and, as we will show, they quantify parametric

discrimination power.

As a first familiar example, we demonstrate mutual irreducibility for a problem in

which power counting is well-understood: in the context of QCD jet versus hadronically-

decaying, boosted Z boson discrimination. Power counting for quark and gluon jets is

intrinsically more difficult because, as we demonstrate on any phase space with finitely-

many resolved emissions, quark and gluon jets are not strictly mutually irreducible. Thus

a power counting scheme does not currently exist to identify robust phase space boundaries

between both quark-pure and gluon-pure regions. Nevertheless, because the rates of particle

emission from quarks and gluons are controlled by the color Casimirs of the fundamental

and adjoint representations with CF = 4/3 < CA = 3, gluon jets exhibit greater Sudakov

suppression near the singular phase space boundaries, and so one can define a quark-pure

region of phase space. This motivates using the power counting parameter eCF−CA ' 0.189

to identify such a phase space region, which we formally take to be parametrically smaller

than 1. A gluon-rich phase space region is then one for which Sudakov factors are irrelevant

and approximately unity.

With explicit, analytic expressions for multi-differential cross sections measured on

quark and gluon jets, we are able to calculate any of the quantities familiar from statistics

and machine learning, but within the context of a well-defined approximation scheme, with
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no black boxes. By the Neyman-Pearson lemma [34], the optimal binary discrimination

observable formed from the measurement of some collection of observables is the likelihood

ratio. This is simply the ratio of the corresponding probability distributions for quark

and gluon jets, and will provide a benchmark when comparing to other observables. The

likelihood ratio is in general some complicated function of the phase space variables that

does not enable a simple determination of the receiver operating characteristic (ROC) or

signal versus background efficiency curve. Nevertheless, the discrimination power of the

likelihood ratio, or any observable, can be quantified by the area under the ROC curve

(AUC). We use a ROC convention where AUC = 0 is perfect performance and a random

classifier has AUC = 1
2 . The AUC can be calculated directly from an ordered integral of

the product of quark and gluon probability distributions. This also enables a variational

approach to construct discrimination observables, whose parameters are chosen to minimize

the AUC.

Our results enable a number of statements that we prove at this accuracy including:

• Due to Sudakov suppression and since CF < CA, the reducibility factor for quark

jets is κq = 0 for the measurement of any number of resolved emissions in the jets.

Pure quark jet phase space regions can essentially always be defined.

• For jets on which measured observables resolve n emissions, the reducibility factor

for gluon jets κg is

κg =

(
CF
CA

)n
. (1.1)

A fully pure gluon jet phase space region can therefore only be exactly defined if all

emissions are resolved. The gluon-rich region of phase space is where Sudakov factors

are irrelevant, and so is well-described at fixed-order. This particular scaling comes

from diagrams in which all particles in the jet are emitted off of the initiating hard

particle, ensuring maximum sensitivity to the color Casimirs CF and CA.

• There is an upper limit on the quark vs. gluon discrimination performance with n

resolved emissions of

AUC ≥ κq + κg − 2κqκg
2− 2κqκg

=
1

2

(
CF
CA

)n
, (1.2)

at this accuracy, with even stronger bounds for specific observables. This bound fol-

lows from monotonicity of the ROC and its first derivative, and so the reducibility

factors define a quadrilateral whose area is necessarily no larger than the AUC. Anal-

ogous bounds on other measures of classification performance can also be derived.

We also are able to make a number of well-motivated conjectures that follow from our

explicit calculations including:

• The reducibility factor of gluon jets does not improve by resolving the full 3n − 4

dimensional phase space for a jet with n constituents. One only needs to measure

n− 1 observables to resolve the existence of each emission off of the initiating gluon.

– 3 –
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• Multiplicity is a powerful discrimination observable because it is sensitive to every

emission in the jet. Because CF /CA ' 0.444, the gluon reducibility factor of multi-

plicity quickly converges to 0 as the number of particles in the jet increases.

• The discrimination power of a single observable τn that is sensitive to n emissions

in a jet, such that its value is 0 if the jet has fewer than n emissions, is bounded by

multiplicity. The performance of τn increases with n for small n, and degrades when

n is comparable to the total number of particles in the jets. An optimal value of n

occurs when n is comparable to the minimal number of constituents of gluon jets.

• Unlike the case for discrimination of jets with different multi-prong substructure,

the likelihood for quark vs. gluon discrimination is an IRC-safe observable. By the

established power counting, the most singular region of phase space is necessarily pure

quark jet, and so contours of constant likelihood should be parallel to this boundary.

Therefore, the singular region of phase space is mapped to a unique value of the

likelihood. This means that the distribution of the likelihood ratio can be calculated

in fixed-order perturbation theory.

We perform an analysis of quark versus gluon discrimination in a Monte Carlo parton

shower to validate that these results describe the physics in simulation.

This paper is organized as follows. In section 2, we establish the observables that

we measure on jets and clearly lay out our approximations. While this is not a precision

QCD study, our approximations become increasingly accurate as the jet energy increases.

Section 3 reviews and relates concepts from power counting and mutual irreducibility, out-

lining our general conceptual and mathematical approach. In section 4, we construct the

rules for power counting on the observable phase space for quark versus gluon jet discrimi-

nation. Several results then immediately follow from these rules, which we validate in later

sections. Sections 5, 6, and 7 contain our explicit calculations for jets on which one, two,

or three emissions are resolved, respectively. For concreteness, we focus our calculations

on N -subjettiness [35–37] observables, though to our accuracy identical results follow for

other observables, such as (generalized) energy correlation functions [33, 38–41]. We are

able to construct an IRC safe definition of multiplicity that depends on a resolution pa-

rameter Λ0 > 0. Section 8 is devoted to calculations of the distribution of this multiplicity

observable and developing an understanding of the “true” multiplicity limit for Λ0 → 0.

Simulated events are analyzed in section 9, in which we both test our predictions and verify

that simulation describes physics as expected. For high dimensional phase space, we uti-

lize machine learning techniques to approximate the likelihood and related discrimination

observables in simulation. We conclude in section 10 and look forward to further advance-

ments in probing and defining quark and gluon jets. An appendix applies reducibility ideas

to the problem of up vs. down quark jet discrimination.

2 Approximations and observables

We work to leading-logarithmic accuracy in the strongly-ordered soft and collinear limits of

QCD with fixed coupling. This means that we will successfully resum all double logarithms,
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terms in the fixed-order cross section that scale as αns log2nO, of the observables O that we

measure on our quark and gluon jets. While this approximation clearly has its limitations,

it does enable explicit, analytic formulas for all of the cross sections that we present in this

paper. Further, Sudakov factors in the double logarithmic limit can be easily calculated

from the areas of emission veto regions in the Lund plane [42]. We briefly present results

for calculations beyond this accuracy from elsewhere in the literature in section 5.

At double logarithmic order, the hard, initiating parton defines the jet flavor and

so there is no ambiguity in the definition of quark and gluon jets. The subtleties in

defining a jet flavor beyond this accuracy have been addressed by the community in a

review article [15] and it remains an active research direction, with recent efforts to define

quark and gluon jets based directly upon mutual irreducibility ideas [16, 17]. We also do

not include non-perturbative physics due to hadronization, for example, which would be

needed for precision comparison to data. For IRC safe observables, the effects of non-

perturbative physics is suppressed by ΛQCD/Q where Q is some characteristic high energy

scale (∼ 1 TeV), so our calculations will have an increasingly large domain of applicability

at higher energies. Nevertheless, at any finite Q, there is always some region of phase space

dominated by non-perturbative physics.

Given the double-logarithmic approximation, in this paper we choose to analyze sets

of N -subjettiness observables measured on our jets. N -subjettiness observables vanish for

configurations of n < N particles, and hence they probe the degree to which a jet can be

described by N -subjets. The definition of N -subjettiness τ
(β)
N that we use when measured

on jets at a hadron collider is

τ
(β)
N =

1

pTJR
β
0

∑
i∈J

pT i min
{
Rβi1, R

β
i1, . . . , R

β
iN

}
. (2.1)

Here, pTJ is the transverse momentum of the jet with respect to the colliding beam axis,

R0 is the jet radius, the sum runs over all particles i in the jet J , pT i is the transverse

momentum of particle i, and RiK is the distance in the rapidity-azimuth plane from particle

i to subjet axis K in the jet. Specifically, RiK is

RiK =
√

(yi − yK)2 + (φi − φK)2 , (2.2)

in terms of the respective rapidity y and azimuthal angle φ of the particle and axis about

the colliding beam axis. The N -subjettiness observables are IRC safe with the angular

exponent β > 0 and to our approximation, any recoil-free axis definition suffices for our

calculations of the discrimination power. In fact, our calculations hold even with recoil for

choices of β where the same emission dominates both the axis position and the value of

the observable. However, we will have to make an explicit choice of axes in our simulation,

which we will discuss in section 9.

N -subjettiness observables are nice for calculation both because they are IRC safe,

and so are calculable at fixed-order in perturbation theory, and additive, and so can be

resummed to double logarithmic accuracy simply. Measuring a sufficient number of these

observables can be used to completely specify the 3M − 4 dimensional phase space of a
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jet with M particles [43]. N -subjettiness is not unique in these points, but the linear

computational complexity in the number of particles (after determining axes) means that

calculating τ
(β)
N for large N (N & 5) is not computationally prohibitive within simulation.

Further, to the accuracy of our calculations, the angular exponent β does not affect

the discrimination power of the N -subjettiness observables that we measure on the jets.

Effectively, to double logarithmic accuracy, the angular exponent can be absorbed into

a redefinition of the coupling αs → αs/β, which is the same for quark and gluon jets.

Therefore, we typically will simply fix β = 1 in our calculations so that N -subjettiness

measures the total momentum that is transverse to the N subjet axes in the jet. For

compactness, we denote τ
(β=1)
N ≡ τN throughout this article. However, in section 5, we

will discuss the effects of measuring two 1-subjettiness observables on jets and higher-

order effects of the angular exponent, in which we maintain explicit β dependence in the

observable definition.

An observable which counts the number of resolvable, angular-ordered emissions off of

a hard core was introduced in ref. [10], referred to as soft drop multiplicity nSD. There, it

was argued that nSD is the optimal quark vs. gluon discriminator at leading-logarithmic

accuracy for observables on the phase space of those particles emitted directly off of the

hard core of the jet. For such emissions, the rate of emission is controlled by the appro-

priate color Casimir and the kinematic distribution of the emissions is identical between

quarks and gluons. Thus, all discrimination information is contained in simply counting

the emissions, with the kinematics adding no discrimination power. In this paper, we will

consider the more general case of jets with relevant emissions off of emitted particles. In

this more general case, the quark and gluon kinematic distributions on phase space are

no longer equal, because there are different weights on the phase space regions in which

such secondary emissions could live, depending on the quark or gluon color Casimirs. We

explicitly demonstrate that there is discrimination information in kinematic distributions,

beyond just counting emissions.

3 Power counting and mutual irreducibility

Using power counting to identify optimal observables for classification [31–33] is a concep-

tual framework that has led to new jet substructure observables which have successfully

been applied to analyses at the LHC [44–47]. The key idea is to identify regions of phase

space that parametrically separate signal and background. An observable is then optimal

in this framework if it separates the signal-dominated and background-dominated regions

of phase space. A robust power counting on a phase space of jet observables requires that

the boundaries of that phase space define pure regions of the underlying categories. That is,

for power counting of discrimination observables as studied in earlier work, this implicitly

requires that the two discriminated samples are “mutually irreducible”.

Mutual (ir)reducibility was first introduced in a collider physics context to statistically

disentangle or define different types of jets from mixed samples [16, 17]. Signal and back-

ground categories are said to be mutually irreducible if there exist pure phase space regions,

however small, for each of the categories. Further, the degree to which two categories are

– 6 –
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mutually irreducible can be sharply quantified in terms of their reducibility factors:

κS ≡ min
O

pB(O)

pS(O)
, κB ≡ min

O
pS(O)

pB(O)
, (3.1)

where O is an observable or set of observables that define some phase space. pS(O) and

pB(O) are the probability distributions of the observable measured on signal and back-

ground, respectively.1 Evidently, if there is a region of phase space where signal dominates

then its reducibility factor vanishes, κS = 0. Similarly, κB = 0 if and only if there is a

region of phase space where background dominates. Hence the categories are mutually

irreducible only when κS = κB = 0.

Here, we will use the language and mathematical machinery of mutual (ir)reducibility

for a new purpose: as a technique to quantify the parametric separability of two calculated

distributions. The central importance of pure phase space regions is shared with power

counting strategies. In particular, these ideas will allow us to quantify the power counting

ideas in a new way and apply them to quark versus gluon jet classification. While previ-

ous studies have conjectured that quark vs. gluon discrimination did not admit a power

counting [31], later efforts have identified requirements on observables to go beyond the

leading-order CA/CF separation [33]. Our definition of power counting for quarks and

gluons here will be much more general than previous considerations and enable analysis of

arbitrary multi-differential probability distributions.

3.1 Theoretically bounding classification performance

While we will have our quark vs. gluon case in mind for the following discussion, we keep

the signal vs. background terminology general in order to highlight the broad applicability

of this reasoning. The signal and background reducibility factors are related to the deriva-

tives of the ROC curve near its endpoints. Note that the ROC curve is the background

cumulative distribution evaluated at the inverse of the signal cumulative distribution:

ROC(x) = ΣB

(
Σ−1
S (x)

)
, (3.2)

for signal efficiency x. The derivative of the ROC curve is then

d

dx
ROC(x) =

d

dx
ΣB

(
Σ−1
S (x)

)
=
pB(Σ−1

S (x))

pS(Σ−1
S (x))

=
pB(O(x))

pS(O(x))
, (3.3)

which is precisely the signal-background likelihood ratio for the observable value O(x)

giving rise to signal efficiency x. The emergence of the likelihood ratio as centrally relevant

highlights the close relationship between mutual (ir)reducibility, power counting ideas, and

optimal classification.

This relationship between reducibility factors and the ROC curve can be exploted

further: we now prove a strict lower bound on the ROC curve and its AUC from the

reducibility factors. The ROC curve can be taken to be strictly monotonic with a positive

1In the notation of refs. [16, 17], our κS and κB are κBS and κSB , respectively. While the two-index

notation generalizes to more categories, we use our simplified notation for the two-class context of this paper.
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Figure 1. An illustration of the bound on the ROC curve and its AUC from extrapolating the

reducibility factor slopes κS and 1/κB from the endpoints. The ROC is monotonic and concave

up and so the gray quadrilateral is always completely contained underneath the full ROC curve,

yielding the bound.

first derivative because the value of the ROC curve between any two points can (at worst)

be a random weighting of the values at those points. The reducibility factors are then

the slope (or its inverse) of the ROC curve at the appropriate endpoints. Therefore, we

can bound the area under the ROC curve by a quadrilateral, of which the angle of two of

the vertices are set by the values of κS and κB. An illustration of this quadrilateral for a

general ROC curve is shown in figure 1. Its area is straightforward to compute, yielding

the bound

AUC ≥ κS + κB − 2κSκB
2− 2κSκB

. (3.4)

This bound only vanishes when κS = κB = 0, namely when the categories are mutually

irreducible. Thus when pure phase space regions do not exist, an intrinsic ceiling on

classification performance at that accuracy can instead be obtained. Further, as we shall

show in later sections, the reducibility factors tend to isolate the dominant phase space

regions and are thus typically significantly simpler to calculate than the full distributions

of the phase space observables.

The quadrilateral in figure 1 provides a bound to the overall signal vs. background

ROC curve. Hence any measure of the classification performance can be bounded through

the reducibility factors in this way, not solely the AUC. To highlight this fact, we also

derive a bound on another common measure of classification performance: the (inverse)

background mistag rate 1/εB at a specified signal efficiency ε̂S . Computing this bound,

we find

1

εB

∣∣∣∣
εS=ε̂S

≤
{

1
ε̂SκS

if ε̂S ≤ 1−κB
1−κSκB

κB
ε̂S+κB−1 otherwise,

(3.5)

– 8 –



J
H
E
P
1
0
(
2
0
1
9
)
0
1
4

demonstrating again the relationship between parametric discrimination power and phase

space purity, quantified through the reducibility factors.

3.2 Z boson vs. QCD jets

In this section, we calculate the reducibility factors for a discrimination problem in which

a robust power-counting scheme has been defined and used [31]. Specifically, we study

the discrimination of two-prong quark jets from hadronically-decaying boosted Z bosons.

This will provide us with a concrete case study to explore the relationship between power

counting optimality and mutual irreducibility in a known context before moving on to

discuss quark vs. gluon discrimination. The calculations that follow were also presented in

ref. [48].

Unlike quark or gluon jets, Z bosons are massive, which fixes a relationship between

the energies of the Z decay products and their opening angle. Because the Z boson has

a fixed mass, we consider measuring N -subjettiness observables with angular exponent

β = 2, which (approximately) corresponds to the ratio of mass to jet energy squared. In

particular, there is no soft singularity for the decay products of the Z boson, so in the large

boost limit, 1-subjettiness measured on the Z boson is simply

τ
(2)
1 = z(1− z)θ2 =

m2
Z

p2
T J

, (3.6)

where z is the energy fraction of one of the quark decay products of the Z boson and

θ is the angle between decay products. For unpolarized Z bosons because there is no

soft singularity, to leading power, the distribution of the energy fraction z is uniform on

z ∈ [0, 1]. To calculate the cross section of τ
(2)
2 given this value of τ

(2)
1 , we consider the

emission of a soft and collinear gluon off of either decay product of the Z boson and find:

dσZ(τ
(2)
1 )

dτ
(2)
2

= 4
αs
π
CF

∫ 1

0
dz

∫ 1

0

dz1

z1

∫ 1

0

dθ1

θ1
δ
(
τ

(2)
2 − zz1θ

2
1

)
Θ

(
τ

(2)
1

z(1− z)
− θ2

1

)
(3.7)

= 2
αs
π

CF

τ
(2)
2

log
τ

(2)
1

τ
(2)
2

,

where we have neglected subleading terms in τ
(2)
2 /τ

(2)
1 � 1.

The corresponding conditional cross section for quark jets will be calculated in sec-

tions 5 and 6, and we will state them here to complete our argument. We find

dσq(τ
(2)
1 )

dτ
(2)
2

= −αs
π

1

τ
(2)
2

[
CF log τ

(2)
2 + CA log

τ
(2)
2

τ
(2)
1

]
. (3.8)

To calculate the quark reducibility factor, we would in principle need the complete,

normalized probability distributions for both quark and Z boson jets. However, these fixed

order cross sections are sufficient, without the inclusion of exponential Sudakov factors,

because the reducibility factor vanishes. In the limit that τ
(2)
2 → τ

(2)
1 , the quark reducibility
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factor can be found from taking the ratio of these two cross sections:

κq = min
τ
(2)
2

dσZ(τ
(2)
1 )

dτ
(2)
2

dσq(τ
(2)
1 )

dτ
(2)
2

= −
2CF log

τ
(2)
1

τ
(2)
2

CF log τ
(2)
2 + CA log

τ
(2)
2

τ
(2)
1

∣∣∣∣∣∣∣
τ
(2)
2 →τ

(2)
1

= 0 . (3.9)

The identified purifying phase space region of τ
(2)
2 → τ

(2)
1 suggests using an observable such

as τ
(2)
2 /τ

(1)
1 as a parametrically optimal classifier. This has long been studied and identified

from power counting arguments as the combination of N -subjettiness observables most

sensitive to two-prong substructure, so it is pleasing to observe that reducibility arguments

readily produce the same result.

To determine the Z boson reducibility factor directly, we would need to include the

appropriate Sudakov form factors for both quark and Z boson jets. The prediction of the

resummed conditional probability for quark jets can be extracted from our later results

in sections 5 and 6 and Z bosons require a new calculation. We will not perform that

calculation explicitly here, though it is relatively simple because the distribution of energy

fractions of decay products from the Z boson is simply uniform. The Z boson reducibility

factor κZ is also 0, because the quark jet Sudakov factor provides more exponential sup-

pression in the limit that τ
(2)
2 → 0 than for Z bosons. This is due to the fact that the two

prongs of the quark jet are a quark and a gluon, while the two prongs of the Z boson are

both quarks. Further, this reasoning also applies to gluon jets versus Z bosons, through

replacing the color factors in the quark jet distributions CF → CA. Because CA > CF ,

gluon jets and Z boson jets are also mutually irreducible.

It is worth noting that higher order effects, such as g → qq̄, may spoil this mutual

irreducibility and hence the parametric separation of the categories. Calculating these ef-

fects requires working beyond leading logarithmic accuracy, at least including non-singular

pieces of the splitting functions as well as the running of the strong coupling constant.

While we will not pursue this further here, we highlight that the reducibility factors allow

for the investigation of optimal parametric separation at higher orders. Developing collider

observables which are optimal at next-to-leading and higher logarithmic accuracy is an

interesting avenue for further exploration.

4 Quark and gluon power counting rules

We now present power counting rules that can be applied to simply determine powerful

observables for quark versus gluon discrimination. As we justify in the following sections,

resolving any finite number of emissions in a jet strictly prohibits the isolation of a gluon-

pure phase space region. Nevertheless, due to Sudakov suppression and the fact that the

fundamental Casimir CF is smaller than the adjoint Casimir CA, only quark jets survive

deep in the infrared regions of phase space. Thus, a quark-pure region of phase space can

be defined, which motivates a power counting parameter and a definition of the gluon-

rich region of phase space simply as that region for which the Sudakov factors are unity.

Further, the power counting for quark and gluon jets is a bit different than that established
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for prong discrimination, for example. In the quark versus gluon case, we construct a power

counting scheme for the distribution of an observable (or multiple observables), and not

for the observables themselves. This enables us to identify the necessary properties of the

distribution such that quarks and gluons are optimally separated.

With this motivation and within the stated caveats, we present the power counting

rules for quark versus gluon discrimination:

1. Given a measured set of observables on the jets, such as N -subjettiness {τ (β)
N }, iden-

tify the corresponding phase space boundaries defined by these observables.

2. Formally take the power counting

eCF−CA � 1 . (4.1)

With this power counting, the boundaries of phase space where any ratio of a pair of

measured observables {τ (β)
N } becomes large (or small) are dominantly populated by

quarks. This is because Sudakov form factors exponentially suppress the gluon jet

cross section beyond that of quarks. The boundaries on which all observable ratios

are order 1 are dominantly populated by gluons.

3. Construct a function of the observables {τ (β)
N } whose constant values define hypersur-

faces for which, for example, when the function is 1 only the gluon region is selected,

and when the function is 0, only the quark region is selected. The resulting function

is guaranteed to be a powerful quark/gluon discriminant.

Our explicit calculations in the following sections will justify these rules in a concrete

context. Additionally, there are numerous immediate consequences. For a given set of

observables, the observable that is directly sensitive to the most emissions in the jet satisfies

the power counting requirements. In the context of N -subjettiness observables, τ
(β)
N is

necessarily smaller than τ
(β)
N−1. This means that τ

(β)
N is a better quark/gluon discriminant

than τ
(β)
N−1 in the limit that parametrically approaches the phase space boundaries. Further,

the multiplicity observable is obviously sensitive to all particles in a jet, hence it will also

be a very good quark/gluon discriminant.

Perhaps the most surprising consequence of these power counting rules is that good

quark versus gluon discrimination observables are IRC safe. By “IRC safe” we mean that

the region of phase space in which cross sections calculated at fixed-order in perturbation

theory diverge are mapped to a single value of the observable. This is a bit more of an

abstract definition of IRC safety than is typically stated (see for example ref. [49]), but

is equivalent to the heuristic that the observable is insensitive to exactly collinear or zero

energy emissions.

The argument for the IRC safety of good quark/gluon discriminants using the power

counting rules is as follows. The regions of phase space on which any N -subjettiness

observable ratio becomes large is the singular limit of perturbative QCD, in which the

corresponding fixed-order cross section would diverge. For powerful discrimination, we

need constant hypersurfaces of the constructed observable to be approximately parallel to
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these boundaries; otherwise quark-pure and gluon-rich regions of phase space would be

mixed by the observable. Thus, all singular phase space regions must be mapped onto the

same value of the discrimination observable. As such, all real and virtual divergences can

be correspondingly cancelled order-by-order. Because the N -subjettiness observables can

form a complete basis of M -dimensional phase space for any M , the optimal quark versus

gluon discrimination observable is some IRC safe combination of (many) N -subjettiness

observables. We emphasize that this is purely a perturbative argument, as IRC safety is

only relevant within perturbation theory. Nevertheless, this suggests a guiding principle

for constructing quark/gluon discriminants and attempting to understand the output of

high-dimensional machine learning studies.

We also note that this observation is not vacuous, as it is not true that IRC safe

observables are optimal for all jet discrimination problems. For example, in the case of

discrimination of jets with different numbers of prongs, such as QCD jets versus boosted

top quarks, it has been argued that optimal observables are not IRC safe. Power counting

in the two- versus one-prong or three- versus one-prong jet cases motivates ratio observables

such as τ
(β)
2 /τ

(β)
1 , D

(β)
2 , or τ

(β)
3 /τ

(β)
2 [31, 32], which are not IRC safe [50]. Of course, these

ratios can become IRC safe if combined with a constraint on other observables, such as

the jet mass. Nonetheless, it is interesting that the optimal discriminants for multi-prong

tagging are indeed not IRC safe without such a restriction. This is in contrast to what we

have established for quark vs. gluon discrimination, where the likelihood ratio is always

IRC safe.

5 Resolving one emission

We now present explicit calculations of collections of N -subjettiness observables on jets,

resolving one, two, or three emissions within the jet. In this section, we showcase results

for jets on which one emission is resolved and discuss their consequences, which will frame

the calculations in the next two sections. All results in this section have been calculated

elsewhere in the literature [51–54], so we will not present the details of the calculation. We

compile them to construct a complete picture of quark versus gluon discrimination on such

jets. The results in the following sections will be novel, in which complete calculations will

be presented.

To double logarithmic accuracy, the normalized distribution of one-subjettiness τ
(β)
1

for quark and gluons jets is

pq(τ
(β)
1 ) = −2

αs
π

CF
β

log τ
(β)
1

τ
(β)
1

exp

[
−αs
π

CF
β

log2 τ
(β)
1

]
, (5.1)

pg(τ
(β)
1 ) = −2

αs
π

CA
β

log τ
(β)
1

τ
(β)
1

exp

[
−αs
π

CA
β

log2 τ
(β)
1

]
.

The corresponding cumulative distributions are

Σq(τ
(β)
1 ) = exp

[
−αs
π

CF
β

log2 τ
(β)
1

]
, (5.2)

Σg(τ
(β)
1 ) = exp

[
−αs
π

CA
β

log2 τ
(β)
1

]
=
(

Σq(τ
(β)
1 )

)CA/CF
,
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which are related by so-called Casimir scaling. The quark/gluon ROC curve is thus:

ROC(x) = xCA/CF , (5.3)

and its integral is the AUC, namely:

AUC =

∫ 1

0
dxxCA/CF =

1

1 + CA
CF

=
4

13
' 0.308 . (5.4)

These results will provide a benchmark for discrimination performance that we will compare

to in the following sections.

We now proceed to calculate the quark and gluon reducibility factors for the phase

space of one resolved emission. For Casimir-scaling observables, this was calculated in

ref. [16], but we present the result here for completeness. For the one-subjettiness distri-

butions, the likelihood ratio is

pg(τ
(β)
1 )

pq(τ
(β)
1 )

=
CA
CF

exp

[
−αs
π

CA − CF
β

log2 τ
(β)
1

]
. (5.5)

Note the appearance of the power counting factor exp[CF − CA] � 1 in this distribution.

Approaching the boundary where τ
(β)
1 → 0, this small number is raised to a large positive

power, demonstrating that the quark reducibility factor is 0. The gluon reducibility factor

κg

(
τ

(β)
1

)
is the inverse of the value of the likelihood for τ

(β)
1 = 1 at which

κg

(
τ

(β)
1

)
=
pq(τ

(β)
1 = 1)

pg(τ
(β)
1 = 1)

=
CF
CA

. (5.6)

That is, by just measuring τ
(β)
1 , any phase space region of gluon jets is always contaminated

by quark jets, by a relative proportion of CF /CA or greater.

5.1 Resolving the one-emission phase space

Measuring τ
(β)
1 resolves one emission off of the hard jet core, and so effectively defines a jet

with two particles. Two-body phase space is two-dimensional, and this phase space can be

defined by the relative energy fraction and angle of the emission. Correspondingly, one can

measure two one-subjettiness observables, τ
(α)
1 and τ

(β)
1 with α > β, to completely resolve

two-body phase space. To double logarithmic accuracy, this joint probability distribution

was first calculated in ref. [51] and extended in refs. [52–54] which found

pq

(
τ

(α)
1 , τ

(β)
1

)
=

2αs
π

CF
α−β

1

τ
(α)
1 τ

(β)
1

1+
2αs
π

CF
β(α−β)

log
τ

(β)
1

τ
(α)
1

log
τ

(α)
1

β

τ
(β)
1

α

∆q

(
τ

(α)
1 , τ

(β)
1

)
,

pg

(
τ

(α)
1 , τ

(β)
1

)
=

2αs
π

CA
α−β

1

τ
(α)
1 τ

(β)
1

1+
2αs
π

CA
β(α−β)

log
τ

(β)
1

τ
(α)
1

log
τ

(α)
1

β

τ
(β)
1

α

∆g

(
τ

(α)
1 , τ

(β)
1

)
.
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The Sudakov factor is

∆i

(
τ

(α)
1 , τ

(β)
1

)
= exp

[
−αs
π
Ci

(
1

β
log2 τ

(β)
1 +

1

α− β log2 τ
(α)
1

τ
(β)
1

)]
, (5.7)

where Ci is the appropriate color factor. The physical phase space lies within the boundaries

of τ
(α)
1 < τ

(β)
1 and τ

(β)
1

α
< τ

(α)
1

β
.

The likelihood ratio for the two one-subjettiness observables is then

pg

(
τ

(α)
1 , τ

(β)
1

)
pq

(
τ

(α)
1 , τ

(β)
1

) =
CA
CF

1 + 2αs
π

CA
β(α−β) log

τ
(β)
1

τ
(α)
1

log
τ
(α)
1

β

τ
(β)
1

α

1 + 2αs
π

CF
β(α−β) log

τ
(β)
1

τ
(α)
1

log
τ
(α)
1

β

τ
(β)
1

α

∆g

(
τ

(α)
1 , τ

(β)
1

)
∆q

(
τ

(α)
1 , τ

(β)
1

) . (5.8)

The quark reducibility factor is still 0, due to the exponential suppression of the Sudakov

factors. Further, the gluon reducibility factor is still CF /CA; completely resolving the one-

emission phase space does not improve gluon jet purity. From power counting arguments,

this then implies that completely resolving the phase space does not parametrically improve

discrimination power. It is most important to measure observables to demonstrate that a

particular number of emissions exist in the jet.

The likelihood ratio is the optimal observable for discrimination, and it is straightfor-

ward to demonstrate that it is in this case indeed IRC safe, as claimed from our power

counting arguments. Due to the phase space boundaries, there is only one point on phase

space that corresponds to the singular limit: when τ
(α)
1 = τ

(β)
1 = 0. The only way that

the likelihood can vanish is if the ratio of Sudakov factors vanish; the prefactor formed

from a ratio of logarithms is always positive on the physical phase space. However, the

Sudakov factor can only vanish if its exponent diverges, corresponding to at least one of

the one-subjettiness observables going to 0. By the phase space constraints, if one goes to

0 the other must as well, and so the only point on phase space that makes the likelihood

vanish is the singular point τ
(α)
1 = τ

(β)
1 = 0. Therefore, all divergences on phase space are

isolated to a single point in the likelihood, and thus it is IRC safe.

5.2 Higher order effects

For this case of one resolved emission, we also briefly discuss higher-order corrections.

In ref. [40], a calculation of recoil-insensitive one-emission observables was presented at

next-to-leading logarithmic accuracy. For the one-subjettiness observables considered here,

this would correspond to defining the jet axis with a recoil-free scheme, such as the

broadening [55] or winner-take-all [56, 57] axis. For the ROC curve, they found the

following relationship between the gluon and quark cumulative distributions (with argu-

ments suppressed):

log Σg '
CA
CF

(
1 +

nf − CA
3CA

√
αsCF

πβ log 1/Σq
+
nf − CA
CA

αs
36π

b0
β

(2− β)

+
αsπ

3

CA − CF
β

− 17

36

αs
π

CF
CA

nf − CA
β log 1/Σq

+ . . .

)
log Σq , (5.9)
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where b0 = 11
3 CA− 2

3nf is the one-loop β-function coefficient with nf active fermions. The

lowest-order relationship is simply the overall CA/CF Casimir scaling, but effects like run-

ning coupling, hard collinear radiation, and multiple emissions all affect the discrimination

power at higher orders. In general, discrimination power improves as the angular exponent

β decreases, due to these higher order effects. This is directly observed in simulations,

suggesting that one should use as small an angular exponent as possible, while maintain-

ing theoretical control.2 These higher order effects could be explored for more resolved

emissions, but we leave that to future work. In the following sections, we will focus on the

calculations at double logarithmic accuracy.

6 Resolving two emissions

We now turn to calculations for jets on which two emissions are resolved. While some of

the calculations that we present are included in parts of various other calculations in the

literature [48, 59, 60], to our knowledge, these complete expressions have never appeared

for quark versus gluon discrimination. Therefore, we present a detailed discussion of the

calculations that follow. Further, as discussed in section 2, we simplify our analysis and

strictly consider measuring N -subjettiness observables with an angular exponent β = 1. As

higher-order corrections in the one emission case demonstrate, there is likely discrimination

power to be gained by changing the angular exponent. However, we do not consider that

here as even this simple analysis will enable significant understanding.

6.1 Fixed-order analysis

We begin with a calculation of the cross section for quarks jets on which both τ1 and τ2

have been measured. The phase space restrictions demand that τ2 ≤ τ1 ≤ 1 and at leading

order, there are two possibilities for the orientation of emissions in the jet. Either the

gluons that set τ1 and τ2 could be sequentially emitted from the initiating quark, or the

gluon that sets τ2 is emitted off of the gluon that sets τ1. In the first case, the color factor

is C2
F and the contribution to the cross section to double logarithmic accuracy is

1

σ0

d2σ
C2
F

q

dτ1 dτ2
=
(

2
αs
π

)2
C2
F

∫ 1

0

dz1

z1

∫ 1

0

dθ1

θ1

∫ 1

0

dz2

z2

∫ 1

0

dθ2

θ2
δ(τ1 − z1θ1)δ(τ2 − z2θ2) (6.1)

=
(

2
αs
π

)2
C2
F

log τ1 log τ2

τ1τ2
.

In the second case, the color factor is CFCA and we must account for the fact that the

gluon that sets τ2 can neither have more energy than the gluon that sets τ1 nor be at larger

angle. In this color channel, the cross section is then

1

σ0

d2σCFCAq

dτ1 dτ2
=
(

2
αs
π

)2
CFCA

∫ 1

0

dz1

z1

∫ 1

0

dθ1

θ1

∫ 1

0

dz2

z2

∫ θ1

0

dθ2

θ2
δ(τ1 − z1θ1)δ(τ2 − z1z2θ2)

=
(

2
αs
π

)2
CF

log τ1

τ1τ2

[
CA log

τ2

τ1

]
. (6.2)

2However, this is not observed in experiment; see for example ref. [58].
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Combining these results, the leading-order double differential cross section in the double

logarithmic limit for quark jets is

1

σ0

d2σq
dτ1 dτ2

=
(

2
αs
π

)2
CF

log τ1

τ1τ2

[
CF log τ2 + CA log

τ2

τ1

]
. (6.3)

This agrees with the results of ref. [48], in which they calculate the distribution of τ1 when

there is a cut on the ratio τ2/τ1. The result for gluon jets can be found by simply replacing

CF → CA:

1

σ0

d2σg
dτ1 dτ2

=
(

2
αs
π

)2
C2
A

log τ1

τ1τ2
log

τ2
2

τ1
. (6.4)

While only evaluated at fixed-order, these results are not probability distributions,

and so we cannot use them to determine likelihood ratios. However, the gluon reducibility

factor is the ratio of the cross sections in the region where the Sudakov factors are unity;

that is, the gluon reducibility factor can be calculated strictly from fixed order results. The

ratio of the quark to gluon cross sections is

d2σq
dτ1 dτ2
d2σg
dτ1 dτ2

=
CF
CA

CF log τ2 + CA log τ2
τ1

CA log
τ22
τ1

. (6.5)

This ratio is minimized in the ordered limits in which first τ2 → τ1 and then τ1 → 1. The

second limit is required to remain in the fixed-order regime and neglect the Sudakov factor.

In these limits, the gluon reducibility factor κg(τ1, τ2) is then

κg(τ1, τ2) =
C2
F

C2
A

' 0.198 . (6.6)

This is significantly smaller than the reducibility factor of CF /CA ' 0.444 with only one

resolved emission, demonstrating that purer gluon phase space can be isolated through

additional measurements.

With the fixed-order cross section in hand, we can additionally integrate over τ1 to

determine the cross section for jets on which τ2 is measured alone. From the power counting

arguments, τ2 should be a good discriminant itself, because it vanishes in the singular phase

space regions, where the Sudakov factors exponentially suppress the cross section, and when

τ2 → 1, then necessarily τ1 → 1. Integrating over τ1, we find the quark jet cross section

singly-differential in τ2 to be

1

σ0

dσq
dτ2

= −
(

2
αs
π

)2 3C2
F + CFCA

6

log3 τ2

τ2
. (6.7)

As before, the cross section for gluon jets can be found by replacing CF → CA:

1

σ0

dσg
dτ2

= −
(

2
αs
π

)2 2C2
A

3

log3 τ2

τ2
. (6.8)
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The gluon reducibility factor for jets on which just τ2 is measured is then the ratio of these

two cross sections:

κg(τ2) =
3

4

C2
F

C2
A

+
1

4

CF
CA
' 0.259 . (6.9)

While this reducibility factor is definitely larger than the case in which both τ1 and τ2 are

measured, it is still significantly smaller than the Casimir-scaling result of CF /CA ' 0.444.

Therefore, as predicted by power counting, just measuring τ2 enables an increased purity

of gluon jets and therefore improved discrimination power over just measuring τ1.

6.2 Including resummation

For a thorough analysis, however, we need to calculate the joint probability distribution of

τ1 and τ2 on jets. To calculate this, we will employ the expression for the joint probability

distributions expressed in terms of conditional probabilities. For the joint probability

distribution p(τ1, τ2), we can express it as

p(τ1, τ2) =

∫
dz1 p(τ1) p(z1|τ1) p(τ2|τ1, z1) . (6.10)

Here, z1 is the energy fraction of the gluon that sets the value of τ1. It is necessary to

include it in an intermediate step to correctly enforce angular ordering, as we will discuss

shortly. The probability distribution of τ1, p(τ1), was presented for quark and gluon jets in

eq. (5.1). The conditional distribution of the energy fraction p(z1|τ1) is found by noting that

to double logarithmic accuracy, log 1/z1 is just distributed uniformly from 0 to log 1/τ1.

That is, the conditional distribution is

p(z1|τ1) = − 1

z1 log τ1
Θ(z1 − τ1) . (6.11)

This integrates to 1 on z1 ∈ [τ1, 1].

To calculate the conditional probability distribution for τ2, p(τ2|τ1, z1), we first calcu-

late its cumulative distribution, Σ(τ2|τ1, z1). To calculate this distribution requires identi-

fying the regions in the Lund plane which are forbidden, given the measured value of τ2.

There are two possibilities for how the emission that sets τ2 was formed, and that produces

two different no emission regions. These regions are illustrated in figure 2 in gray. First, if

the gluon that sets τ2 is emitted off of the quark, the only restriction on its phase space to

this accuracy is that τ2 < τ1. This area, multiplied by the appropriate color and coupling

factors, is

AreaCF =
αs
π
CF
(
log2 τ2 − log2 τ1

)
. (6.12)

The no emission region in the case in which the gluon that sets τ2 is emitted off of the

gluon that sets τ1 is required to both be at smaller angle and smaller energy than the first

emission. This demonstrates why the energy fraction z1 is measured, as this enables an

identification of the angular-ordered phase space region. The area of this region, including

color and coupling factors, is

AreaCA =
αs
π
CA log2 τ2

τ1
. (6.13)
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1
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log
1
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1

τ1
log

1

τ2

log
1

τ1

log
1

τ2

Figure 2. Illustrations of the forbidden regions (grayed) for gluon emission that sets the value of

τ2, given a value of τ1. The location of the emission that sets the value of τ1 in the Lund plane is

illustrated by the star. On the left is the forbidden region if the gluon is emitted off of the initiating

quark; the only requirement is that the gluon must enforce τ2 < τ1. On the right is the forbidden

region if the gluon is emitted off of the gluon that sets the value of τ1: it must be both at smaller

angle and have smaller energy than the first emitted gluon.

With these results, the cumulative conditional probability distribution is just the ex-

ponential of these areas, as follows from considering gluon emission as a Poisson process:

Σq(τ2|τ1, z1) = exp

[
−αs
π

(
CF log2 τ2 − CF log2 τ1 + CA log2 τ2

τ1

)]
. (6.14)

The conditional probability distribution is then just the derivative of this expression:

pq(τ2|τ1, z1) =
∂

∂τ2
Σq(τ2|τ1, z1) (6.15)

= −2
αs
π

CF log τ2 + CA log τ2
τ1

τ2

× exp

[
−αs
π

(
CF log2 τ2 − CF log2 τ1 + CA log2 τ2

τ1

)]
.

For gluon jets, the whole analysis is identical, we just replace CF → CA and find

pg(τ2|τ1, z1) =
∂

∂τ2
Σg(τ2|τ1, z1) (6.16)

= −2
αs
π
CA

log
τ22
τ1

τ2
exp

[
−αs
π
CA

(
log2 τ2 − log2 τ1 + log2 τ2

τ1

)]
.

We can then multiply the distributions together and integrate over z1 ∈ [τ1, 1] to

find the double differential probability distribution to resolve two emissions off of a quark.

We find

pq(τ1, τ2) =
(

2
αs
π

)2
CF

log τ1

τ1τ2

(
CF log τ2 + CA log

τ2

τ1

)
e
−αs

π

(
CF log2 τ2+CA log2 τ2

τ1

)
. (6.17)
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The corresponding distribution for gluons is found by making the replacement CF → CA:

pg(τ1, τ2) =
(

2
αs
π

)2
C2
A

log τ1

τ1τ2
log

τ2
2

τ1
e
−αs

π
CA

(
log2 τ2+log2 τ2

τ1

)
. (6.18)

It is straightforward to see that these expressions reduce at lowest order in αs to eqs. (6.3)

and (6.4).

6.3 IRC safety of the likelihood

These expressions for the quark and gluon probability distributions can be used to construct

the likelihood ratio and demonstrate that it is IRC safe, as claimed. The likelihood ratio

L(τ1, τ2) is

L(τ1, τ2) =
pg(τ1, τ2)

pq(τ1, τ2)
=
C2
A

C2
F

log
τ22
τ1

log τ2 + CA
CF

log τ2
τ1

e−
αs
π

(CA−CF ) log2 τ2 . (6.19)

The non-exponential prefactor never vanishes on the physical phase space where τ2 < τ1.

Because CA > CF , the exponential factor vanishes as τ2 → 0, which is also the entire region

of phase space on which fixed-order cross sections diverge. Therefore, because the entire

singular region of phase space is mapped to a single point, the likelihood ratio L(τ1, τ2) is

indeed IRC safe.

6.4 AUC evaluation

To quantify the absolute discrimination power of the likelihood L(τ1, τ2), we could attempt

to construct its complete ROC curve. However, the likelihood is a complicated function of

the observables τ1 and τ2, which doesn’t enable a convenient inversion. Therefore, we take

a different route: instead of calculating the full functional form of the ROC curve, we just

calculate its integral, the AUC. Improved discrimination power corresponds to decreasing

the value of the AUC, so we are able to compare directly between the AUC calculated with

different numbers of resolved emissions.

What makes the AUC so convenient as a discrimination metric, even without an explicit

form of the ROC curve, is that it can be expressed as an ordered integral over the probability

distributions. For signal and background distributions ps(x) and pb(x) of a random variable

x, the AUC that corresponds to measurement of the variable x is

AUC =

∫ ∞
−∞

dxs

∫ ∞
−∞

dxb ps(xs) pb(xb) Θ(xb − xs) . (6.20)

Translated to the evaluation of the AUC of the likelihood for quark and gluon jets on which

τ1 and τ2 are measured, we have

AUC =

∫ 1

0
dτ1q

∫ τ1q

0
dτ2q

∫ 1

0
dτ1g

∫ τ1g

0
dτ2g pq(τ1q, τ2q)pg(τ1g, τ2g)Θ(L(τ1q, τ2q)−L(τ1g, τ2g)) .

To perform the integral to calculate the AUC, we use the implementation of Vegas within

Cuba 4.2 [61]. Using CF = 4/3 and CA = 3, we find that the AUC of the likelihood is

AUC ' 0.256 <
1

1 + CA
CF

' 0.308 . (6.21)
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On the right, we compare to the AUC for resolving one emission, just measuring τ1,

eq. (5.4). Because the coupling αs dependence enters in the exact same way for quarks and

gluons, the AUC is independent of the particular value of the coupling, which we verified.

An additional benefit of the AUC as a measure of discrimination power is that it

enables a simple, concrete variational algorithm to determine other observables. Consider

an observable O(α1, α2, . . . , αn) that is some function of the N -subjettiness observables,

that depends on some set of parameters {αi}. We can calculate the AUC for this observable

and then fix the parameters to minimize the AUC. Of course, the value of the AUC for such

an observable is bounded from below by the likelihood. However, this procedure provides

an approximation to the likelihood that may have a significantly simpler functional form.

We can construct such an observable with this technique. For illustration, we just

consider the observable formed from a product of powers of τ1 and τ2:

O = τα1
1 τα2

2 . (6.22)

In general, α1 and α2 are real numbers, but the observation that the likelihood is IRC safe

helps to dramatically constrain the observables. First, because the likelihood vanishes as

τ2 → 0, we want our constructed observable to map the entire τ2 = 0 line to the point

O = 0. This ensures that quark-pure and gluon-rich regions of phase space are still not

mixed by O. We enforce this on O by requiring the power α2 > 0. Any monotonic function

of an observable has the same discrimination power, so the IRC safety of this observable

enables us, with impunity, to set α2 = 1. Further, the likelihood vanishes in the ordered

limit τ2 → τ1 and τ1 → 0, and this requires α1 > −1. That is, the observable that we

consider is just

O = τα1 τ2 , (6.23)

with α > −1. While this ratio seems potentially ambiguous when α < 0 for a jet with

a single particle, it is nevertheless still IRC safe. The potential 0/0 ambiguity can be

eliminated and a well-defined result obtained by first taking τ2 → τ1 and then τ1 → 0. The

exponent α can then be determined by the value that minimizes the AUC.

To do the minimization, we simply scan through α ∈ [−1, 1], and plot the AUC as a

function of α. The result of this scan is plotted in figure 3. Also shown on this plot are the

AUC values of the likelihood for jets on which τ1 is measured and τ1 and τ2 are measured.

The AUC for the variational observable is minimized when α = −0.2, corresponding to an

observable that is O = τ−0.2
1 τ2. To three significant figures, the value of the AUC at this

point is 0.256, which is significantly lower than that for just τ1, and well within 1% of the

AUC value of the two-resolved-emission likelihood. That the minimum AUC exists near

α = 0 can be understood in the following way. As argued earlier, the likelihood is an IRC

safe observable, and when α ≤ −1, the observable O is no longer IRC safe. On the other

hand, if α is very large, then the discrimination power of the observable O is essentially

entirely controlled by τ1. Because τ2 is directly sensitive to more emissions in the jet than

τ1, it should have better discrimination power. This suggests that the power α should be

relatively close to 0 to maximize discrimination.
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Figure 3. Results of a scan over α of the AUC for the observable O = τα1 τ2. The AUC of the

likelihood for jets on which only τ1 is measured is the dotted line and for jets on which both τ1 and

τ2 are measured is the dashed line, for comparison. The AUC for the observable is minimized at

α = −0.2 where it takes the value 0.256.

7 Resolving three emissions

We now present calculations for resolving three emissions off of a hard jet core, by e.g.

measuring τ1, τ2, and τ3. To our knowledge, these calculations are novel, even in the

double logarithmic limit, and have application to top quark tagging. In addition to the

explicit fixed-order and resummed calculations, we also discuss properties that hold for an

arbitrary number of emissions. We prove that the gluon reducibility factor when n emissions

is resolved is (CF /CA)n and provide a robust lower bound on the AUC exclusively in terms

of reducibility factors.

7.1 Fixed-order analysis

Starting with the fixed-order calculation of the triple-differential cross section of τ1, τ2, and

τ3 in the double logarithmic limit, there are three separate color channels that contribute.

As in earlier sections, we start with the calculation for a quark jet, and then simply make

the replacement CF → CA for gluon jets. The C3
F color channel means that all three

emissions that set these observables are sequentially emitted off of the quark and we find

1

σ0

d3σ
C3
F

q

dτ1 dτ2 dτ3
=
(

2
αs
π

)3
C3
F

∫ 1

0

dz1

z1

∫ 1

0

dθ1

θ1

∫ 1

0

dz2

z2

∫ 1

0

dθ2

θ2

∫ 1

0

dz3

z3

∫ 1

0

dθ3

θ3
(7.1)

× δ(τ1 − z1θ1)δ(τ2 − z2θ2)δ(τ3 − z3θ3)

= −
(

2
αs
π

)3
C3
F

log τ1 log τ2 log τ3

τ1τ2τ3
.
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The C2
FCA channel has two emissions off of the quark and the third off of one of the

secondary gluons. There are three ways this can occur yielding

1

σ0

d3σ
C2
FCA

q

dτ1 dτ2 dτ3
=
(

2
αs
π

)3
C2
FCA

∫ 1

0

dz1

z1

∫ 1

0

dθ1

θ1

∫ 1

0

dz2

z2

∫ 1

0

dθ2

θ2

∫ 1

0

dz3

z3

∫ 1

0

dθ3

θ3
(7.2)

× [Θ(θ1 − θ2)δ(τ1 − z1θ1)δ(τ2 − z1z2θ2)δ(τ3 − z3θ3)

+ Θ(θ2 − θ3)δ(τ1 − z1θ1)δ(τ2 − z2θ2)δ(τ3 − z2z3θ3)

+Θ(θ1 − θ3)δ(τ1 − z1θ1)δ(τ2 − z2θ2)δ(τ3 − z1z3θ3)]

= −
(

2
αs
π

)3
C2
FCA

log τ1

τ1τ2τ3

(
log

τ2

τ1
log τ3 + log τ2 log

τ3

τ2
+ log τ2 log

τ3

τ1

)
.

Finally, the CFC
2
A channel consists of the gluon that sets τ1 emitted off of the quark, and

then the gluons that set τ2 and τ3 are subsequently emitted off of the secondary gluon.

There are two possible ordering of emissions, which results in

1

σ0

d3σ
CFC

2
A

q

dτ1 dτ2 dτ3
=
(

2
αs
π

)3
CFC

2
A

∫ 1

0

dz1

z1

∫ 1

0

dθ1

θ1

∫ 1

0

dz2

z2

∫ 1

0

dθ2

θ2

∫ 1

0

dz3

z3

∫ 1

0

dθ3

θ3
(7.3)

× [Θ(θ1 − θ2)Θ(θ2 − θ3)δ(τ1 − z1θ1)δ(τ2 − z1z2θ2)δ(τ3 − z1z2z3θ3)

+Θ(θ1 − θ2)Θ(θ1 − θ3)δ(τ1 − z1θ1)δ(τ2 − z1z2θ2)δ(τ3 − z1z3θ3)]

= −
(

2
αs
π

)3
CFC

2
A

log τ1

τ1τ2τ3
log

τ2

τ1
log

τ2
3

τ1τ2
.

The total cross section is then the sum of these three color channels. For brevity, we will not

write the combined result. Further, the result for gluon jets to this approximation is found

by making the replacement CF → CA, though we also will not write that out explicitly.

These results are sufficient to calculate the gluon reducibility factor, corresponding

to the smallest value of the likelihood formed from the ratio of the quark to gluon cross

sections. Motivated by the location of the likelihood minima in the case of the cross section

for τ1 and τ2, we consider the ordered limit τ3 → τ2 → τ1. In this limit, the cross sections

in the C2
FCA and CFC

2
A vanish; only the C3

F channel is non-zero. We therefore find

1

σ0

d3σq
dτ1 dτ2 dτ3

∣∣∣∣
τ3→τ2→τ1

= −
(

2
αs
π

)3
C3
F

log3 τ3

τ3
1

. (7.4)

The corresponding limit for gluon jets is similar:

1

σ0

d3σg
dτ1 dτ2 dτ3

∣∣∣∣
τ3→τ2→τ1

= −
(

2
αs
π

)3
C3
A

log3 τ3

τ3
1

. (7.5)

The reducibility factor for gluons is then the ratio of these cross sections, with τ1 → 1:

κg(τ1, τ2, τ3) =

(
CF
CA

)3

' 0.0878 . (7.6)

Marginalizing the cross section over τ1 and τ2 enables us to determine the distribution

of τ3. For quarks, we find

1

σ0

dσq
dτ3

= −α
3
s

π3

(
C3
F + C2

FCA +
4

15
CFC

2
A

)
log5 τ3

τ3
. (7.7)
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Correspondingly, for gluons, we find

1

σ0

dσg
dτ3

= −α
3
s

π3

34

15
C3
A

log5 τ3

τ3
. (7.8)

It then follows that the gluon reducibility factor with τ3 can be found from the ratio of

these distributions:

κg(τ3) =
C3
F + C2

FCA + 4
15CFC

2
A

34
15C

3
A

' 0.178 < 0.259 = κg(τ2) . (7.9)

Note that this reducibility factor for just measuring τ3 is smaller than even the reducibility

factor for measuring τ1 and τ2 in eq. (6.6). This suggests that just measuring τn for

sufficiently large n a pure sample of quarks and gluons can be defined.

7.1.1 Calculation of gluon reducibility for any number of emissions

These results are evidence for the scaling of the reducibility factor of gluons to be (CF /CA)n,

if n emissions in the jet are resolved by measuring the set of N -subjettiness observables

τ1, τ2, . . . , τn. For this to be true, it must be that the contribution to the quark cross

section from the mixed color channels Cn−iF CiA for 0 < i < n vanishes at the point that the

likelihood assumes its minimum value. We will prove this from a direct calculation of the

cross section in an arbitrary color channel, in the strongly-ordered soft and collinear limits.

The n-differential cross section for N -subjettiness observables measured on quark jets

in the Cn−iF CiA color channel can be expressed as

dnσ
Cn−iF CiA
q

dτ1 dτ2 · · · dτn
=
(

2
αs
π

)n
Cn−iF CiA

∑
σk

n∏
j=1

[∫ 1

0

dzj
zj

∫ θj,max

0

dθj
θj
δ

(
τj − zjθj

m∏
k=1

zσk

)]
.

(7.10)

Here, the product runs over all n emissions that set each of the τj values. The outer sum

runs over all possible orderings of the emission tree. The upper bound on the angular

integral θj,max represents the appropriate maximum angle for θj . If the jth emission is

from the hard core of the jet, θj,max is just 1. If j is a secondary (or later) emission off of

other emissions in the jet, then this is the appropriate angle to enforce angular ordering.

Note that the particular ordering fixes the maximum energy of any given emission; this

is expressed with the product of energy fractions within the δ-functions. In the strongly-

ordered energy limit, only if a gluon is directly emitted off of the initiating quark does its

energy range up to the total jet energy.

We now first assume that 0 < i < n, so that there is at least one gluon that is a

secondary emission off of another gluon. Now, set all N -subjettiness values τj equal to τ1,

corresponding to the ordered limit τn → τn−1 → · · · → τ1. Then, as long as 0 < i < n,

there will be at least one pair of δ-functions in the differential cross section for τj1 and τj2 ,

with j1 > j2, whose arguments are of the form

δ(τj1 − zj1θj1)δ(τj2 − zj1zj2θj2)→ δ(τ1 − zj1θj1)δ(τ1 − zj1zj2θj2) . (7.11)
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However, this then sets

θj1 = zj2θj2 . (7.12)

Choosing the appropriate pair j1 and j2 such that θj2,max = θj1 means that θj1 > θj2 , but

zj2 < 1, so these requirements are inconsistent. Note that this choice of j1 and j2 can

always be done: if j2 is a secondary emission off of j1, then both the energy and angle of

j2 are constrained by j1. Therefore, the Cn−iF CiA color channel of the quark cross section

vanishes for 0 < i < n, in the ordered limit τn → τn−1 → · · · → τ1.

By contrast, the cross section in the pure CnF color channel does not vanish. Every

gluon that sets the value of the N -subjettiness observables in this color channel is emitted

directly off of the initiating quark. Therefore, the cross section in this channel is

dnσ
CnF
q

dτ1 dτ2 · · · dτn
=
(

2
αs
π

)n
CnF

n∏
j=1

∫ 1

0

dzj
zj

∫ 1

0

dθj
θj
δ (τj − zjθj) . (7.13)

Setting all τj = τ1, then this evaluates to

dnσ
CnF
q

dτ1 dτ2 · · · dτn

∣∣∣∣∣
τj=τ1

= (−1)n
(

2
αs
π

)n
CnF

logn τ1

τn1
. (7.14)

The gluon cross section in this limit is found from CF → CA:

dnσ
CnA
g

dτ1 dτ2 · · · dτn

∣∣∣∣∣
τj=τ1

= (−1)n
(

2
αs
π

)n
CnA

logn τ1

τn1
. (7.15)

The gluon reducibility factor for measuring enough N -subjettiness observables to resolve

n emissions is then just the ratio of these cross sections:

κg(τ1, τ2, . . . , τn) =

(
CF
CA

)n
. (7.16)

Note that this is indeed the minimum value of the likelihood ratio; because CA > CF , a

contribution to the quark cross section from any other Cn−iF CiA color channel would increase

this ratio. This completes the proof of the gluon reducibility factor for n resolved emissions.

The arguments in this proof explicitly relied on the form of the cross section in the

double logarithmic limit. However, the region of phase space which is dominated by gluon

jets, where τn → τn−1 → · · · → τ1 → 1, is not accurately described by the double logarith-

mic approximation. Higher-order resummation and fixed-order corrections are necessary to

accurately describe this region, and those contributions do not necessarily have such a nice

organization. In the region of phase space dominated by fixed-order corrections, the matrix

elements are smooth and exhibit no non-analytic structure. Also, because Nc = 3 in QCD,

the leading-color approximation is accurate, up to corrections of about 10%. These features

of QCD and quark versus gluon discrimination suggest that the result for the reducibility

factor for jets with n resolved emissions derived in this section is a good approximation to

what would be derived when all relevant effects are taken into account.
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Figure 4. Illustrations of the two of the forbidden regions (grayed) for gluon emission that sets

the value of τ3, given a values of τ1 and τ2. The location of the emission that sets the value of τ2 in

the Lund plane is illustrated by the star. On the left is the forbidden region if the gluon is emitted

off of the initiating quark; the only restriction on the gluon is that it must set τ3 < τ2. On the right

is the forbidden region if the gluon is emitted off of the gluon that sets the value of τ2; it must be

both at smaller angle and have smaller energy than the first emitted gluon.

7.2 Including resummation

To calculate the likelihood and related quantities, we further need to calculate the re-

summed probability distribution for τ1, τ2, and τ3 measured on jets. In a similar way to

what was done in the case for just measuring τ1 and τ2, we can express the joint probability

distribution as an integral over a product of conditional probabilities:

p(τ1, τ2, τ3) =

∫ 1

0
dz1

∫ 1

0
dz2 p(τ1)p(z1|τ1)p(τ2|z1, τ1)p(z2|τ2, z1, τ1)p(τ3|z2, τ2, z1, τ1) .

(7.17)

In the strongly-ordered limit, the first three of these probability distributions have already

been calculated in the previous sections. We only need to calculate p(z2|τ2, z1, τ1) and

p(τ3|z2, τ2, z1, τ1). The quark jet probability distribution for the energy fraction z2 of the

second gluon emission p(z2|τ2, z1, τ1) can be extracted from the multi-differential fixed-

order cross section, allowing the second gluon to be emitted either from the quark line or

off of the primary gluon emission. One then finds

pq(z2|τ2, z1, τ1) = − 1

z2

CFΘ(1− z2)Θ(z2 − τ2) + CAΘ(z1 − z2)Θ
(
z2 − z1

τ2
τ1

)
CF log τ2 + CA log τ2

τ1

. (7.18)

To calculate the quark jet resummed conditional distribution for τ3, we first consider

its cumulative conditional distribution, Σq(τ3|z2, τ2, z1, τ1). This distribution is just the

Sudakov form factor in the double logarithmic approximation, and so is just exponentiated

areas on the Lund plane. These areas are illustrated in figures 4 and 5. First, on the left
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in figure 4, we can consider the forbidden emission area if the gluon that sets τ3 is emitted

off of the quark. With appropriate color and coupling factors, this area is:

AreaCFCF =
αs
π
CF
(
log2 τ3 − log2 τ2

)
. (7.19)

On the right of figure 4 is the situation if the gluon is emitted off of the secondary gluon,

the gluon that sets the value of τ2. The forbidden emission area in this case is:

AreaCFCA =
αs
π
CA log2 τ3

τ2
. (7.20)

Both of these areas are just the analogs of the corresponding situation in the two emission

case of figure 2.

If the emission that sets τ3 is off of the primary gluon, then the forbidden emission

area is a bit more subtle. This is illustrated in figure 5, and the area now depends on the

energy fraction and angle of the primary gluon emission, as well as the value of τ2. With

color and coupling factors, this forbidden emission area is

AreaCACF =
αs
π
CA

(
log2 τ3

τ1
− log2 τ2

τ1

)
. (7.21)

The Sudakov form factor is just the exponential of these areas. For calculating the condi-

tional probability, we differentiate the Sudakov form factor to find

pq(τ3|z2, τ2, z1, τ1) = −2
αs
π

1

τ3

(
CF log τ3 + CA log

τ2
3

τ1τ2

)
e−AreaCFCF−AreaCFCA−AreaCACF .

(7.22)

We leave the area factors in the exponential implicit for brevity and, as always, the result

for gluon jets is found from replacing CF → CA.

Unlike in previous sections, we will not explicitly write the triple differential distri-

bution out, as it is now unwieldy. At any rate, it can be calculated from the provided

conditional probabilities and by integrating over the values of the primary and secondary

emitted gluon energy fractions, z1 and z2, as in eq. (7.17). To lowest order, the resummed

expression agrees with the fixed-order calculations from earlier in this section. Additionally,

we just note that the likelihood ratio

L(τ1, τ2, τ3) =
pg(τ1, τ2, τ3)

pq(τ1, τ2, τ3)
(7.23)

is IRC safe, by a similar reasoning as we used in the previous section.

7.3 AUC evaluation

With the probability distributions and the likelihood calculated, we can then calculate

the AUC for quark versus gluon discrimination when three emissions in jets are observed.

Extending the calculation for the AUC from section 6.4, it can be expressed in this case as

AUC =

∫ 1

0
dτ1q

∫ τ1q

0
dτ2q

∫ τ2q

0
dτ3q

∫ 1

0
dτ1g

∫ τ1g

0
dτ2g

∫ τ2g

0
dτ3g (7.24)

× pq(τ1q, τ2q, τ3q)pg(τ1g, τ2g, τ3g) Θ (L(τ1q, τ2q, τ3q)− L(τ1g, τ2g, τ3g)) .
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Figure 5. Illustration of the third of the forbidden regions (grayed) for gluon emission that sets

the value of τ3, given a values of τ1 and τ2. The location of the emission that sets the value of τ1 in

the Lund plane is illustrated by the square and the emission. The forbidden region is constrained

by the energy and angle of the primary gluon emission and by enforcing τ2 < τ3.

As before, to perform the integral to calculate the AUC, we use the implementation of

Vegas within Cuba 4.2. Using CF = 4/3 and CA = 3, we find that the AUC of the triple

differential likelihood is

AUC ' 0.231 < 0.256 <
1

1 + CA
CF

' 0.308 . (7.25)

Going right we compare to the value of the AUC for resolving two emissions (0.256), and

resolving just one emission (0.308). So, the absolute discrimination power is definitely

improved, but the size of the relative improvement in going from resolving two to three

emissions has decreased from that of resolving one to two emissions.

We can also extend the variational approach to construct a powerful discrimination

observable whose functional form is much simpler than the full likelihood. For illustration,

we take a product form for an observable O, where

O = τα1 τ
γ
2 τ

δ
3 . (7.26)

The likelihood vanishes in the τ3 → 0 limit, manifesting its IRC safety, and so we enforce

δ > 0. Thus, without loss of generality, we can just set δ = 1 and consider the observable

O = τα1 τ
γ
2 τ3 . (7.27)

In the ordered limits τ3 → τ2 and τ3 → τ2 → τ1, IRC safety further enforces that 1 + γ > 0

and 1 +α+ γ > 0. To find the α and γ values that yield the best discrimination power, we

calculate the value of the AUC for an observable scan. The results of this scan are shown

in figure 6 for which the minimal AUC of 0.232 is achieved at α = −0.3, γ = 0.1. Perhaps

a more complicated observable could be constructed that performed slightly closer to that

of the likelihood, but we won’t pursue that further here.
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Figure 6. Results of a scan over α of the AUC for the observable O = τα1 τ
γ
2 τ3. The AUC for the

observable is minimized at α = −0.3 and γ = 0.1 where it takes the value 0.232.

7.3.1 Estimate of n → ∞ AUC

While we won’t present further calculations of probability distributions to resolve four or

more emissions in a jet in this paper, we can still make some robust statements about the

discrimination power for any number of resolved emissions.

Our general analysis of the reducibility factors and their relationship to the ROC curve

provided a bound on the AUC in eq. (3.4). We can then apply this bound to our results

for the quark and gluon reducibility factors. We have shown that κq = 0 for any number

of resolved emissions, while

κg =

(
CF
CA

)n
, (7.28)

when n emissions are resolved. Plugging these values into the bounding formula we find

AUC ≥ 1

2

(
CF
CA

)n
. (7.29)

That is, perfect discrimination power between quark and gluon jets is only possible if an

infinite number of emissions are resolved. As any physical jet contains only a finite number

of particles in it, this suggests that there is an absolute lower bound on the AUC for the

discrimination of physical quark and gluon jets.

This bound on the AUC is indeed satisfied by our results for one, two, and three

resolved emissions. Comparing to this bound, we had found

AUC1 ' 0.308 >
1

2

CF
CA
' 0.222 , (7.30)

AUC2 ' 0.256 >
1

2

(
CF
CA

)2

' 0.0988 ,

AUC3 ' 0.231 >
1

2

(
CF
CA

)3

' 0.0439 .

Here, the subscripts on the AUC represents the number of resolved emissions. Because

the rate of convergence to 0 observed in the complete calculations is so much slower than
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the bound would suggest, this might be evidence that any achievable AUC for a physical

jet, even resolving all of its emissions, is relatively large. So, our calculations suggest that

there seems to be an inherent limitation to quark and gluon jet discrimination, beyond all

of the subtleties regarding their fundamental, theoretical definition.

8 IRC safe multiplicity

The way through which we defined resolved emissions in a jet, by measuring N -subjettiness,

enables a simple, IRC safe, definition of resolved particle multiplicity in the jet. Given an

n+1 dimensional joint probability distribution, p(τ1, τ2, . . . , τn+1), the probability that the

jet has exactly n resolved constituents is

pn =

∫ 1

0
dτ1

∫ τ1

0
dτ2 · · ·

∫ τn−2

0
dτn−1

∫ τn−1

Λ0

dτn

∫ Λ0

0
dτn+1 p(τ1, τ2, . . . , τn+1) (8.1)

=

∫ 1

Λ0

dτn

∫ Λ0

0
dτn+1 p(τn, τn+1)

=

∫ 1

0
dτn

∫ Λ0

0
dτn+1 p(τn, τn+1)Θ(τn−τn+1)−

∫ Λ0

0
dτn

∫ Λ0

0
dτn+1 p(τn, τn+1)Θ(τn−τn+1)

= Σn+1(Λ0)−Σn(Λ0) .

Here, Λ0 > 0 is some resolution cut that is responsible for the IRC safety of this multiplicity

definition. While we always assume the ordering of N -subjettiness observables τn > τn+1,

we only first explicitly write it in the third line to connect to the expression in the final

line. In the final equation, Σn(Λ0) is shorthand for the cumulative distribution

Σn(Λ0) ≡
∫ Λ0

0
dτn p(τn) =

∫ Λ0

0
dτ ′ pn(τ ′) . (8.2)

This multiplicity distribution is normalized when summed over all n:

∞∑
n=0

pn =
∞∑
n=0

[Σn+1(Λ0)− Σn(Λ0)] = lim
n→∞

Σn(Λ0) = 1 . (8.3)

Because the N -subjettiness variables are ordered τ1 ≥ τ2 ≥ · · · , for sufficiently large n and

a fixed cutoff Λ0, the value of τn will have probability 1 to be below Λ0.

Note that the probability distribution of this multiplicity has strictly less information

than the full joint probability distribution, because information in lost in doing the integral

up to the scale of the resolution variable. Therefore, the discrimination power of such

a multiplicity is strictly less than that of the likelihood formed from the ratio of joint

probability distributions pg(τ1, τ2, . . . , τn+1)/pq(τ1, τ2, . . . , τn+1). The AUC as a measure of

the discrimination power of this IRC safe multiplicity can be calculated and one finds

AUC =
1

2

∞∑
i=0

[Σq,i+1(Λ0)− Σq,i(Λ0)] [Σg,i(Λ0) + Σg,i+1(Λ0)] . (8.4)
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This formula can be derived by summing over the area of the trapezoids that make up

the ROC curve. Additionally, we have assumed that the multiplicity is monotonic in the

likelihood of multiplicity, which is expected.

More realistically, one only resolves up through n emissions in the jet, inclusive over

more emissions. In our calculations, for example, we have only resolved up through three

emissions in the jet, and so we can only say if the jet has 0, 1, 2, or three-or-more emissions.

In this case, to calculate the AUC, the sum must be truncated:

AUC =
1

2

n−1∑
i=0

[Σq,i+1(Λ0)− Σq,i(Λ0)] [Σg,i(Λ0) + Σg,i+1(Λ0)] , (8.5)

where Σq,n(Λ0) = 1. Applying this formula to our multi-differential probability distribution

p(τ1, τ2, τ3) calculated in the previous section we found a minimum AUC value of about

0.274 for Λ0 ' 0.005. Note that this is indeed larger than the AUC formed from the

likelihood pg(τ1, τ2, τ3)/pq(τ1, τ2, τ3).

The expression of the triple-joint probability distribution is complicated and does not

provide an intuition for what physics controls the discrimination power of multiplicity. In

some cases, most notably through iterative soft drop [10], the multiplicity is approximately

distributed as a Poisson random variable. For such observables, the mean multiplicity of

quark and gluon jets are related by their color factors:

λq = CFλ , λg = CAλ , (8.6)

for some fiducial multiplicity λ. The probability for n resolved emissions distributed ac-

cording to the Poisson distribution is then

pn =
λni
n!
e−λi , (8.7)

for a mean λi. If all emissions in the jet are resolved, the quark and gluon reducibility

factors of Poisson-multiplicity are

κq = e−λg+λq = e−(CA−CF )λ , κg = 0 . (8.8)

From our expression on the lower bound on the AUC from reducibility factors, we find that

AUC ≥ e−(CA−CF )λ

2
. (8.9)

Note that this lower bound only vanishes if the fiducial mean multiplicity λ→∞.

Iterated soft drop multiplicity was argued to be the optimal quark versus gluon discrim-

inant at leading logarithmic accuracy [10]. This would seem to be at odds with our analysis

here with collections of N -subjettiness observables. However, there are a few differences.

First, at leading-logarithmic accuracy, iterated soft drop is only sensitive to emissions off

of the hard core of the jet, while N -subjettiness (or related) observables can be sensitive

to secondary emissions. Thus, the leading-logarithmic phase space is different between

these observables. A sufficiently large collection of N -subjettiness observables completely
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resolves M -body phase space, but iterated soft drop at leading-logarithm could, in princi-

ple, remove an arbitrary number of emissions from the jet before identifying an emission

that passes. Thus, to directly compare, one would at least need to consider jets on which

an arbitrary number of N -subjettiness observables are measured. Further, N -subjettiness

is a continuous variable while (any definition of) multiplicity is discrete, so comparing their

discrimination power in practice is more challenging.

8.1 Relationship of multiplicity to individual N-subjettiness observables

This formulation of multiplicity suggests a new way of thinking about it that can provide in-

sight into its discrimination performance in comparison to other observables. In particular,

in this section we compare the quark vs. gluon discrimination performance of multiplicity

to that of an individual N -subjettiness observable, τn. Definitive statements about their

relationship require more information about the multiplicity distribution, but we conjecture

that τn has an AUC bounded from below by multiplicity. Further, we conjecture that this

inequality is saturated when n is about the number of minimal constituents in a gluon jet.

The observation that N -subjettiness τn for large n is a good quark vs. gluon discriminant

has been known for a long time [8], and we hope that the arguments presented here can

be sharpened in the future. In this section, we work beyond leading-logarithmic accuracy,

and attempt to make general statements that hold even non-perturbatively regarding the

relationship of multiplicity and N -subjettiness as quark vs. gluon discriminants.

In practice, multiplicity is not defined with a cutoff; it is just a count of all those

experimentally-resolved constituents of a jet. We will not attempt at defining what

“experimentally-resolvable” means nor attempt to include a finite cutoff representing the

experimental limitations. In this spirit, we will just write Λ0 = 0 in the following with the

caveat that “0” here may actually be a finite value. At any rate, its value is not set within

the applicability of perturbation theory so invalidates the conclusions made earlier. True

multiplicity is thus the Λ0 → 0 limit of the IRC-safe multiplicity whose distribution we

had defined in eq. (8.1):

AUCmult =
1

2

nq,max−1∑
i=0

[Σq,i+1(0)− Σq,i(0)] [Σg,i(0) + Σg,i+1(0)] . (8.10)

Any realistic collection of jets will only have a finite number of constituents, and so the sum

terminates once the maximum number of quark jet constituents nq,max has been reached.

That is, once i is at least nq,max all jets have 0 value for τi or that

Σq,i(0) = 1 , (8.11)

for i ≥ nq,max.

Because we have defined multiplicity through properties of the N -subjettiness vari-

ables, this allows a convenient comparison to the discrimination power of an individual
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N -subjettiness τn. The AUC for τn can be approximated by:

AUCτn =

∫ 1

0
dτ ′ pq,n(τ ′)Σg,n(τ ′) (8.12)

≈ 1

2

N−1∑
i=0

[Σq,n(xi+1)− Σq,n(xi)] [Σg,n(xi) + Σg,n(xi+1)] .

Here, the {xi} are a collection of points of τn ∈ [0, 1] at which the ROC is evaluated. To

directly compare to multiplicity, it is convenient to set the number of bins in the ROC

curve N = nq,max and choose the locations of the bins to match that of multiplicity. This

means that we choose the points xi such that

Σq,n(xi) = Σq,i(0) , (8.13)

or that

xi = Σ−1
q,n(Σq,i(0)) . (8.14)

Note also that due to Σq,i(0) ≥ Σq,n(0) for i ≥ n we have that xi = 0 if i ≤ n. With this

choice of points, the AUC of τn is then approximately

AUCτn ≈
1

2
Σq,n(0)Σg,n(0) (8.15)

+
1

2

N−1∑
i=n

[Σq,i+1(0)− Σq,i(0)]
[
Σg,n(Σ−1

q,n(Σq,i(0))) + Σg,n(Σ−1
q,n(Σq,i+1(0)))

]
.

It’s then straightforward to evaluate the difference between the AUC for τn and mul-

tiplicity:

AUCτn−AUCmult≈
1

2
Σq,n(0)Σg,n(0)− 1

2

n−1∑
i=0

[Σq,i+1(0)−Σq,i(0)] [Σg,i(0)+Σg,i+1(0)]

+
1

2

nq,max−1∑
i=n

[Σq,i+1(0)−Σq,i(0)] (8.16)

×
[
Σg,n(Σ−1

q,n(Σq,i(0)))−Σg,i(0)+Σg,n(Σ−1
q,n(Σq,i+1(0)))−Σg,i+1(0)

]
.

The first term in this AUC difference is just the area of a right triangle with sides of length

Σq,n(0) and Σg,n(0). Because the ROC and its first derivative are both monotonically

increasing, the difference of the first two terms is necessarily non-negative:

1

2
Σq,n(0)Σg,n(0)− 1

2

n−1∑
i=0

[Σq,i+1(0)− Σq,i(0)] [Σg,i(0) + Σg,i+1(0)] ≥ 0 . (8.17)

Unfortunately, it is much more challenging to determine the sign of the sum on the

second line of eq. (8.16). The sign of this term is set by the difference of gluon cumulative

distributions:

Σg,n(Σ−1
q,n(Σq,i(0)))− Σg,i(0) , (8.18)
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Figure 7. Illustration of the integration region over N -subjettiness τn of the gluon jet probability

distribution that defines the quantity Σg,n(Σ−1
q,n(Σq,i(0))). Note the δ-function at τn = 0 for all

those jets with n or fewer constituents.

for i > n. For i = n, this difference is just 0. The interpretation of the term

Σg,n(Σ−1
q,n(Σq,i(0))) is the following. First, Σq,i(0) is the total integral of the quark jet

events for which τi is zero. Because we assume that i > n, note that Σq,n(0) < Σq,i(0).

Then, there exists some ε > 0 such that Σq,n(ε) < Σq,i(0). This ε then sets the region over

which we integrate the distribution pg,n(τn), which includes a δ-function at τn = 0 for those

jets with n or fewer constituents. This is illustrated in figure 7. We then need to compare

this term to Σg,i(0). We now make the following reasonable conjecture, but have not been

able to prove it. We assume that all gluon jets for which τi = 0 satisfy the inequality

τn ≤ Σ−1
q,n(Σq,i(0)) . (8.19)

With this assumption, it then follows that

Σg,n(Σ−1
q,n(Σq,i(0)))− Σg,i(0) ≥ 0 . (8.20)

While this is seems reasonable, we emphasize that we do not have a proof.

With this assumption, we then establish the approximate inequality

AUCτn & AUCmult . (8.21)

Note that, through our explicit calculation, we demonstrated that

AUCτ1 ≥ AUCτ2 ≥ AUCτ3 . (8.22)

Further, if n is very large and approaching the maximal number of quark jet constituents

nq,max, τn is just 0 for most quark and gluon jets. So, at very large n, AUCτn approaches

1/2. Therefore, there must be some n at which AUCτn is minimized, and is close to

AUCmult. Gluon jets in our sample will have some minimal number of constituents, call

it ng,min. For all n < ng,min, τn = 0 and then the first two terms of the difference in

eq. (8.16) vanish:

1

2
Σq,n(0)Σg,n(0)− 1

2

n−1∑
i=0

[Σq,i+1(0)− Σq,i(0)] [Σg,i(0) + Σg,i+1(0)] = 0 . (8.23)
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This follows because Σg,i(0) = 0 for i < ng,min. Therefore, the largest n for which this

term in the AUC difference is (approximately) 0 is when n & ng,min. This suggests that the

difference between the τn and multiplicity AUCs is minimized when ng,min . n � nq,max.

As we will see in our Monte Carlo studies, ng,min is about 15, or so, suggesting that τ15

is about as good a discriminant as multiplicity. However, in practice, the discrimination

power of τn quickly saturates, even for n as small as 5 or so.

9 Comparison to Monte Carlo simulation

In this section, we explore our calculations and conclusions in the context of simulated

samples of quark and gluon jets. While here we will use a manifestly unphysical flavor

definition for quark and gluon jets, operational flavor definitions [16, 17] may be used in

practice to study our conclusions directly in data.

Dijet events are generated with Pythia 8.226 [62, 63] at
√
s = 14 TeV with the default

tunings and shower parameters, including hadronization and multiple parton interactions

(i.e. underlying event). Final state non-neutrino particles are clustered into R = 0.4 anti-

kT jets [64] with FastJet 3.3.0 [65], keeping up to two jets with transverse momentum

pT ∈ [1000, 1100] GeV and rapidity |y| < 2.5. We compute N -subjettiness observables with

β ∈ {0.5, 1.0, 2.0} using FastJet Contrib 1.029 [66] with winner-take-all axes [55]. Jets

are labeled as “quark” or “gluon” based on the flavor of the closest parton in the hard

process, required to be within 2R of the jet four-momentum.

9.1 Quark vs. gluon classification performance

The quark vs. gluon discrimination ROC curves of the N -subjettiness observables with

N up to 5 are shown in figure 8a. While the angular weighting parameter β has no

effect on our calculations at this accuracy, we show results for β ∈ {0.5, 1.0, 2.0} to give

a sense of the robustness of our predictions. The AUCs of these observables are shown

in figure 8b, along with the N -emission AUC bound of 1
2(CF /CA)N and the tighter N -

subjettiness AUC bounds for N ≤ 3. The bounds are indeed borne out in practice, with

only mild dependence on β, and the N -subjettiness AUC bound explains the majority of

the performance ceiling for the computed N values. We find that smaller β values tend

to mildly improve the discrimination power of the individual observables, consistent with

the overall conclusions of refs. [40, 41]. Further, figure 8 shows the ROC curve and AUC

for the constituent multiplicity, which is an IRC unsafe observables that is known to be

a good quark/gluon discriminant [8]. We find that the N -subjettiness observables closely

approach the performance of multiplicity for large values of N .

This can be studied in more detail following the discussion of multiplicity in section 8.1.

Figure 9a shows the distributions of constituent particle multiplicity for quark and gluons

in our simulated jet samples. On average, quark jets have fewer constituents than glu-

ons, due to the smaller color factor, and the smallest nontrivially-populated bin (greater

than about one part in 105) for gluon jets is about 15 or so. From our conjecture at the

end of section 8.1, we then expect that τN from about N & 15 or so to exhibit similar

discrimination power to that of multiplicity. This is demonstrated in figure 9b in which
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Figure 8. The (a) ROC curves and (b) AUCs for N -subjettiness observables for N up to 5 and

β ∈ {0.5, 1.0, 2.0}. The AUCs indeed satisfy the predicted general N -emission bound 1
2 (CF /CA)N

(red) and specific calculated N -subjettiness bounds for N ∈ {1, 2, 3} that follow from applying

eq. (3.4) to the results of eq. (7.9) (gray), with minimal β dependence. The performance of consti-

tutent multiplicity is also shown, with N -subjettiness approaching the classification performance of

multiplicity for large N .
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Figure 9. The (a) distribution of constituent multiplicity in quark and gluon jets and (b) the AUCs

for N -subjettiness observables for N up to 100 and β ∈ {0.5, 1.0, 2.0}. The AUCs of N -subjettiness

observables quickly converge to the AUC of multiplicity for small N and then begin to diverge from

multiplicity once N is comparable to and larger than the mean quark multiplicity of about N & 40.

This is consistent with expectations from section 8.1.
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we plot the AUC for τ
(β)
N , for β ∈ {0.5, 1.0, 2.0} and N out to 100. The AUC of individ-

ual N -subjettiness observables converges rapidly to the AUC of multiplicity, and remains

comparable until N ∼ 40 at which the AUC diverges, approaching 0.5 as N increases.

This N of the divergence point is also approximately the mean multiplicity of quark jets,

suggesting that once most of the quark jets have τN = 0, the discrimination power of τN
is no longer optimal. Also, because multiplicity has (weak) jet pT dependence, these rela-

tionships will have some pT dependence. Nevertheless, we do expect, for any pT , a wide

range of N for which τN and multiplicity have comparable discrimination performance. As

discussed earlier, these fascinating relationships between individual N -prong observables

and multiplicity merit further study.

Beyond the AUC bounds, we also have predictions for the asymptotic ROC curve

behaviors predicted by our power counting arguments. Figure 10 shows the predicted

asymptotic ROC curve behaviors in the high quark-efficiency region together with the

ROC curve for β = 2 N -subjettiness observables, where we have the best perturbative con-

trol. We see good agreement with the analytical expectation, validating the applicability of

the power counting reasoning to analyzing quark vs. gluon discrimination. We also predict

that the ROC curve will have vanishing slope in the low quark-efficiency region, which is

also borne out in these results. These results indicate that N -subjettiness observables with

large N values may be a good candidates for data-driven quark/gluon definitions [16, 17],

due to their (near) mutual irreducibility while retaining analytic understanding and per-

turbative control.

To check the robustness of our analysis and conclusions to non-perturbative effects, we

have also repeated the studies in this section at parton level, without hadronization. Over-

all, we find a very similar story to the results presented in this section. Differences include a

decrease of quark/gluon discrimination power available at parton level and correspondingly

smaller N values for the performance saturation of τN .

9.2 Probing machine learning strategies

Our theoretical results allow us to explore and understand the behavior of machine learning

strategies for jet or event classification in new ways, at least in a limited context.

We begin by considering classifiers formed via the product of observables. This param-

eterization allows for the classification performance to be optimized while still producing a

theoretically-understandable observable. Such a strategy has been used successfully with

products of N -subjettiness observables to optimize the performance of tasks such as H → bb̄

vs. g → bb̄ using a brute force optimization of the product observable [67] as well as more

sophisticated machine learning techniques [68]. Here, we will consider this approach applied

to quark versus gluon classification, with the product observable:

O = τa11 τa22 · · · τaNN , (9.1)

where the goal is to learn the parameters a1, · · · , aN to achieve optimal performance. In

general, we set aN = 1 by monotonically rescaling the observable without changing the

classification performance. Note that refs. [67, 68] used observables with three different β
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Figure 10. The ROC curves for N -subjettiness observables with β = 2, together with the predic-

tions for their asymptotic behavior. The predictions are shown as shaded regions that are predicted

to match the slope of the ROC curve in the high quark-efficiency region. We also predict the slope

of the ROC curve to approach zero in the low quark-efficiency region. There is good agreement

between the predictions and the observed classification performance.

values together in the product, whereas here we will consider observables with the same β

value for simplicity.

The quark vs. gluon AUC performance of the product observable O = τα1 τ2 is shown in

figure 11 over a sweep of α values with β ∈ {0.5, 1.0, 2.0}. The qualitative features of this

product agree rather well with the theoretical predictions of figure 3, particularly for the

case of β = 2. While the overall scale of the classification performance differs, the relative

behavior of the different product observables is well-described by our calculation. As with

the prediction, the region near α = 0 is preferred to optimize the discrimination power.

Going further, the AUC performance of the product observable O = τα1 τ
γ
2 τ3 is shown in

figure 12 over a sweep of α and γ parameter values with β = 2. Again, we see qualitative

agreement with the predictions in figure 6. Both theoretically and in simulation, we see

that a single N -subjettiness observable τN with the largest N captures a great deal of

the overall product classification performance. These results suggest single N -subjettiness

observables with large-N as strong candidates for individual quark/gluon classification

observables. More broadly, these results are a significant step towards providing an analytic

understanding of machine learning with product observables, such as those explored in

refs. [67, 68], from a first-principles multi-differential calculation.

A general strategy in machine learning for collider physics has been to combine the

information from a collection of observables with dense neural networks (DNNs), boosted

decision trees, or linear methods. While these methods are intrinsically more opaque due
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observable O = τα1 τ2, sweeping over different parameter values. We see good qualitative agreement

with the predictions shown in figure 3.
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Figure 12. The AUC quark vs. gluon discrimination performance of N -subjettiness product ob-

servable O = τα1 τ
γ
2 τ3, sweeping over different parameter values. We see good qualitative agreement

with the predictions shown in figure 6.

to their black box nature, our theoretical understanding can nonetheless shed some light on

the performance achieved by the model. In particular, we will consider a relatively simple

dense neural network consisting of two fully-connected layers of 100 nodes each. All neural

networks are implemented in Keras [69] with the TensorFlow [70] backend on a sample of

200k jets with a 50k validation set and 50k test set. A ReLU activation [71] is used on

each layer with He-uniform [72] weight initializations, using a crossentropy loss function

and the Adam optimization algorithm [73]. Models were trained with a batch size of 500

for 25 epochs.
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Figure 13. A comparison of the classification performance added by considering two N -subjettiness

observables of the same N and different β values. Combining β = 1 and β = 2 N -subjettiness

observables with a DNN can increases the classification performance, particularly for N = 1. How-

ever, the parametric discrimination power, namely the ROC curve near the endpoints, is largely

unchanged and approaches that for the β = 1 N -subjettiness.

To probe the information accessed by the model in combining observables, we begin

by combining two N -subjettiness observables of the same N and different β values with

a DNN. The resulting ROC curves are shown in figure 13. Based on the analysis of

section 5.1, we do not anticipate two observables of the same N to parametrically improve

discrimination performance. Indeed, the marginal improvements in performance are largely

in the middle of the ROC curve with essentially unchanged parametric performance near

the endpoints. Thus on general grounds, in this simple case, we are able to understand the

limits on the information probed by the network using the different observables without a

requiring a detailed understanding of their multi-differential correlations.

The decisions made by the neural network can be understood in even more detail. The

output of a classifier trained with a crossentropy or mean squared error loss is optimally

S/(S+B), which is indeed monotonically related to the likelihood ratio. In a feature space

x, the output of the trained classifier is optimally:

NN(x) =
pS(x)

pS(x) + pB(x)
, (9.2)

where in the case of a two softmaxed outputs, each component is optimally S/(S+B) and

B/(S+B). Assuming that the neural network is sufficiently trained to approach this limit,

we can in principle predict its output and decision boundaries using our understanding of

the signal and background distributions.
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Figure 14. S/(S+B) for quarks (S) vs. gluons (B) in the (τ
(β=1)
1 , τ

(β=2)
1 ) phase space, determined

by (a) the prediction of eq. (5.8) using αs = 0.118, (b) Monte Carlo histogram counts, and (c) the

output of a neural network trained to classify quarks and gluons. The prediction successfully

captures the qualitative features of the neural network decision boundaries and correctly predicts

its saturation around CF /(CF + CA) ' 0.308.

The output of a quark/gluon discrimination neural network that combines two 1-

subjettiness observables with different β values is shown in figure 14, compared with the

theory prediction for S/(S + B) and a Monte Carlo histogram estimate. The values are

shown only in the physical phase space of τ
(β=2)
1 ≤ τ

(β=1)
1 and (τ

(β=1)
1 )2 ≤ τ

(β=2)
1 . The

neural network output is indeed well described by S/(S +B), which can be verified based

on its similarity to the binned histogram estimate of S/(S + B). Further, the network

interpolates its output much more smoothly than the binned histogram estimate, which

suffers from the curse of dimensionality. The theory prediction captures the general scale of

the neural network output and predicts is saturation around CF /(CF +CA) ' 0.308. Note

that we use a fixed strong coupling constant for the prediction, where running coupling

effects would provide an additional enhancement near the origin of phase space.

This analysis can also be carried out for neural networks combining N -subjettiness

observables that probe different numbers of emissions. The output of a neural network

that combines 1-subjettiness and 2-subjettiness is shown in figure 15, compared with the

corresponding theory prediction for S/(S + B) and a Monte Carlo histogram estimate.

The values are shown only in the physical phase space of τ2 ≤ τ1. Again, the neural
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Figure 15. S/(S + B) for quarks (S) vs. gluons (B) in the (τ1, τ2) phase space with β = 2,

determined by (a) the prediction of eqs. (6.17) and (6.18) using αs = 0.118, (b) Monte Carlo

histogram counts, and (c) the output of a neural network trained to classify quarks and gluons. The

prediction successfully captures the qualitative features of the neural network decision boundaries

and correctly predicts its saturation around C2
F /(C

2
F + C2

A) ' 0.165.

network is well-described by S/(S +B) and interpolates better than the binned histogram

estimate. The theory prediction provides a good description of the neural network decision

boundaries and its saturation around

1

1 + κg(τ1, τ2)
=

C2
F

C2
F + C2

A

' 0.165 . (9.3)

More broadly, while neural networks themselves are black-box function approximators, the

understanding of the optimum as S/(S+B) yields a way to theoretically probe the decisions

made by the model and to provide robust limits on its performance.

The ROC curves obtained by combining N -subjettiness values with a neural network

are shown in figure 16 through N = 4 for β = 1. For comparison, we also show the results

using 15-body phase space, namely all N -subjettiness values with β ∈ {0.5, 1.0, 2.0} and

N up to 15. This has been established to achieve competitive quark vs. gluon classification

performance with other machine learning methods, and so provides us with a proxy for

absolute convergence of the ROC curve. We see that combining a non-trivial number of

N -subjettiness observables with a neural network indeed achieves comparable performance
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Figure 16. The ROC curves for neural networks combining N -subjettiness observables with β = 1,

together with the predictions for their asymptotic behavior in the high quark efficiency region based

on κg = (CF /CA)N . The classification performance increases as N -subjettiness observables are

added, saturating at the performance of using 15-body phase space. The asymptotic classification

performance is qualitatively well described by the analytical estimates via reducibility factors for

N -emission sensitive observables.

to general machine learning techniques. Further, we see that the asymptotic classification

performance at high quark efficiencies is indeed well-described by the bound based on our

calculation of κg = (CF /CA)N for this feature space.

To probe our understanding of the parametric ROC curve performance, figure 17 shows

the high quark efficiency region of N -subjettiness observables combined with neural net-

works for β ∈ {0.5, 1.0, 2.0} and N through 4. For β = 2.0 where we have the highest

perturbative control, we see that indeed the parametric performance of the neural net-

work is relatively well governed by these limits. For smaller values of β, higher order

effects become more important and classification performance is increased, but the relative

hierarchy remains consistent. Hence our understanding based solely on the quark- and

gluon-enriched regions of phase space using our power counting rules has begun to provide

a good qualitative and semi-quantitative understanding of neural network performance in

high dimensions.

10 Conclusions

The identification of the initiating particle of a jet and the discrimination of jets of dif-

ferent origins are central problems in the analysis of events at the LHC. Due both to the

importance of the problem and the abundance of data from the LHC, machine learning

with DNNs, for example, has seen extensive use. However, in most studies, the inputs to
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Figure 17. ROC curves for neural networks trained on collections of multiple N -subjettiness

observables for (a) β = 0.5, (b) β = 1.0, and (c) β = 2.0, focused on the high quark efficiency

region. The theoretical ROC bounds from κg = (CF /CA)N for those collections of observables are

shown as the shaded regions. We see that the bounds are indeed near saturated for β = 2.0 with the

best perturbative control. Higher order effects increase the performance of lower β values, though

the hierarchy of performance remains.
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the DNN are low-level information such as individual particle four-momenta and so the di-

mensionality of the input can be tens or hundreds of numbers. This enormous dimension is

difficult to quantify and requires reliance on the DNN to tease out the important features.

Further, studies thus far have used simulation to train the models, which is not reality,

and this risks learning the idiosyncrasies of the simulation, and not real physics. Recent

ideas for training directly on the data [74–77] are closely related to the notions of power

counting and parametric discrimination power developed here [16, 17]. More generally, in

order to trust the output of the model and identify the relevant physics that drives the

discrimination power, first-principles theoretical calculations that parallel the machine as

best as possible are necessary.

Here, we performed these calculations to double-logarithmic accuracy within the con-

text of quark vs. gluon discrimination. We explicitly considered the measurement of

the IRC-safe and additive N -subjettiness observables to resolve emissions, which enable

straightforward resummation and a sufficient number of them measured on a jet is in one-

to-one correspondence with M -body phase space. For a binary discrimination problem,

a machine outputs an estimate of the likelihood ratio as a function of the training data

and the classification performance can be quantified via the AUC. With our predicted re-

summed probability distributions, the likelihood is just the ratio of signal and background

distributions and the AUC is calculated through an ordered integral over the distributions.

Further, limits of the likelihood quantify the achievable sample purity through reducibility

factors. This has a close relationship to power counting and enables the identification of

powerful discrimination observables without the necessity of a detailed calculation. This

established power counting method and our explicit calculations demonstrate that sensi-

tivity to a large number of emissions in the jet produces a good quark/gluon discriminant

and that, surprisingly, the likelihood is itself an IRC safe observable. These predictions are

exhibited in Monte Carlo parton shower simulations, providing an understanding of what

a machine trained on simulation is learning.

This is a first step in a theoretical effort to deconstruct machine learning for particle

physics. This new field is becoming increasingly sophisticated and performance metrics are

more well-established, providing concrete goals for theoretical studies. Binary classification,

like the case studied here, is an old problem within the field of jet substructure. However,

signal and background are not necessarily so well-defined, and so more general problems

include multi-label classification in which a given sample is divided into more than two

categories. In searching for new physics signals, the problem of anomaly detection or

anti-tagging is relevant, in which deviations from a fiducial distribution (that predicted

by the Standard Model), are of interest. These problems are just now being studied from

the machine learning angle [78–85], and theoretical efforts are necessary to identify the

individual observables, techniques, and signatures that are most sensitive to the goals.

Establishing uncertainties and demonstrating robustness from machine learning is chal-

lenging due to the high-dimensionality of the inputs. However, even in a simplified, but

theoretically well-defined, approximation, if individual observables can be identified that

perform comparable to the output of a DNN they are preferred. The definition of such an

observable would not rely on the details of Monte Carlo parton shower modeling and the
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physics of its performance would be well-understood. Such efforts work toward the goal of

opening up the black box and shining a new light on the physics of jets.

Acknowledgments

The authors would like to thank Jesse Thaler for helpful conversations and detailed criti-

cisms of the manuscript, as well as Patrick Komiske and Ben Nachman for comments on

the manuscript. The work of EMM is supported by the Office of Nuclear Physics of the

U.S. Department of Energy (DOE) under grant DE-SC-0011090 and the DOE Office of

High Energy Physics under grant DE-SC-0012567. EMM benefited from the hospitality of

the Harvard Center for the Fundamental Laws of Nature.

A Up vs. down quark classification

Our theoretical tools and results for quark vs. gluon classification can be directly trans-

lated to a number of other interesting collider physics problems. Section 3.2 discussed the

calculations and implications for hadronically-decaying boosted Z boson discrimination.

As another explicit demonstration, we consider up vs. down quark classification using the

photon radiation pattern within the jet.

Probing the electric charge of a jet, i.e. discriminating jets initiated by up-type quarks

from those initiated by down-type quarks, has been an ambitious and interesting goal of

great theoretical [86–88] and experimental [89–93] interest for many decades. Recent work

has also used machine learning to attack the problem [94]. Most strategies make use of

manifestly infrared- and collinear-unsafe information, such as the energy-weighted charges

of the constituents of the jet, making theoretical understanding more challenging. Here, we

will study this problem restricted to perturbatively accessible information: the radiation

pattern of emitted photons, which has previously been used to disentangle up-type quark

from down-type quark contributions to the Z width [95, 96]. While we focus on up and

down quarks, the lessons apply more broadly to all light up-type and down-type quarks

and anti-quarks.

The principal difference between up and down quarks is their electric charge, Qu =

+2/3 and Qd = −1/3. The singular piece of the probability for a quark to radiate a photon

at angle θ and energy fraction z is:

dPq→qγ =
αeQ

2
q

2π

dθ

θ

dz

z
, (A.1)

where Qq is the electric charge of the quark and αe is the electromagnetic coupling constant.

Already, we can see that this problem mirrors the case of classifying quark vs. gluon

jets using their gluon radiation patterns, for which the relevant differences are the color

factors. Due to their parallel soft and collinear singularity structures, we can lift our quark

vs. gluon results to the up vs. down quark case by the replacement CF → Q2
d and CA → Q2

u.

Since Q2
u/Q

2
d = 4 whereas CA/CF = 9/4 = 2.25, each perturbative photon emission will be

significantly more valuable for distinguishing up and down quarks than a gluon emission

in the analogous quark vs. gluon classification case.
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Observables τ1 which probe a single photon emission in the jet will, analogously to

Casimir scaling, have cumulative distributions which scale as:

Σu(τ1) = (Σd(τ1))Q
2
u/Q

2
d . (A.2)

The up and down reducibility factors for such observables can then be computed to be:

κd = 0, κu =
Q2
d

Q2
u

=
1

4
. (A.3)

For observables τ1, · · · , τn probing up to n photon emissions, the up vs. down reducibility

factors for the multi-differential phase space are:

κd = 0, κu =

(
Q2
d

Q2
u

)n
=

1

22n
. (A.4)

Hence up and down quarks are only mutually irreducible in their photon radiation

pattern in the limit of probing many emissions. For instance, a selection of jets with an

energetic photon will necessarily be contaminated by down quarks by a relative amount

Q2
d/Q

2
u. In practice, one can probe the electromagnetic aspect of quark jet physics using

isolated photon subjets, as studied in detail in ref. [97]. There are several experimental

complications that we do not consider here, such as backgrounds from π0 → γγ, that

would limit the sensitivity to perturbative photon emissions and hence further degrade

classification performance. Even so, using our results we are able to obtain a theoretical

understanding of and determine strict limits on the up vs. down quark discrimination

performance based on the photon radiation pattern. Theoretical investigation of these

ideas is important to extend operational jet (and event) flavor definitions [16, 17] beyond

solely “quark” and “gluon” categories.
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