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1 Introduction

One of the most challenging goals in the study of Quantum Chromodynamics (QCD) is

a precise mapping of the phase diagram of strongly interacting matter. First principle,

lattice QCD simulations predict that the transition from hadrons to deconfined quarks and

gluons is a smooth crossover [1–6], taking place in the temperature range T ' 145–165 MeV.

Lattice simulations cannot presently be performed at finite density due to the sign problem,

thus leading to the fact that the QCD phase diagram is still vastly unexplored when the

asymmetry between matter and antimatter becomes large.

With the advent of the second Beam Energy Scan (BES-II) at the Relativistic Heavy

Ion Collider (RHIC), scheduled for 2019–2020, there is a renewed interest in the heavy ion

community towards the phases of QCD at moderate-to-large densities. A rich theoretical

effort is being developed in support of the experimental program; several observables are

being calculated, in order to constrain the existence and location of the QCD critical point

and to observe it experimentally.

Fluctuations of conserved charges (electric charge Q, baryon number B and strangeness

S) are among the most relevant observables for the finite-density program for several rea-

sons. One possible way to extend lattice results to finite density is to perform Taylor

expansions of the thermodynamic observables around chemical potential µB = 0 [7–11].

Fluctuations of conserved charges are directly related to the Taylor expansion coefficients of

such observables, thus, they are needed to extend first principle approaches to the regions

of the phase diagram relevant to RHIC. An other popular method to extend observables
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to finite density is the analytical continuation from imaginary chemical potentials [12–16].

The agreement between the analytical continuation and Taylor expansion was shown for

the transition temperature with physical quark masses by Bonati et al. in ref. [17].

Fluctuations can also be measured directly, and a comparison between theoretical

and experimental results was used to extract the chemical freeze-out temperature Tf and

chemical potential µBf as functions of the collision energy [18–22]. Such fluctuations have

been recently calculated and extrapolated using the Taylor method in ref. [23]. Finally,

higher order fluctuations of conserved charges are proportional to powers of the correlation

length and are expected to diverge at the critical point, thus providing an important

signature for its experimental detection [9, 24, 25].

In this paper, we calculate several diagonal and non-diagonal fluctuations of conserved

charges up to sixth-order and give estimates for higher orders, in the temperature range

135 MeV ≤ T ≤ 220 MeV, for a system of 2+1+1 dynamical quarks with physical masses

and lattice size 483 × 12. We simulate the lower-order fluctuations at imaginary chemical

potential and extract the higher order fluctuations as derivatives of the lower order ones

at µB = 0. This method has been successfully used in the past and proved to lead to

a more precise determination of the higher order fluctuations, compared to their direct

calculation [26, 27]. The direct method (see e.g. [7]) requires the evaluation of several

terms and is affected by a signal-to-noise ratio which is decreasing as a power law of the

spatial volume V , with an exponent that grows with the order of the susceptibility.

We also construct combinations of these diagonal and non-diagonal fluctuations in

order to study the ratio of the cumulants of the net-baryon number distribution as functions

of temperature and chemical potential by means of their Taylor expansion in powers of

µB/T . We discuss their qualitative comparison with the experimental results from the

STAR collaboration, as well as the validity of the truncation of the Taylor series.

The paper is organized as follows: we first discuss the use of imaginary chemical poten-

tials in section 2. Section 3 gives details on the lattice setup, on the fitting procedure, on its

generalization for cross-correlators, and finally on the error estimation. The phenomeno-

logical results for the ratios of kurtosis, skewness and variance of the baryon number are

presented in section 4. Conclusions and outlook are discussed in section 5, while in the

appendix we present all diagonal and non-diagonal fluctuations needed to construct the

cumulant ratios shown in section 4, and give additional technical details.

2 Fluctuations and imaginary chemical potentials

The chemical potentials are implemented on a flavor-by-flavor basis, their relation to the

phenomenological baryon (B), electric charge (Q) and strangeness (S) chemical potentials

are given by

µu =
1

3
µB +

2

3
µQ

µd =
1

3
µB −

1

3
µQ

µs =
1

3
µB −

1

3
µQ − µS . (2.1)
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The observables we are looking at are the derivatives of the free energy with respect to the

chemical potentials. Since the free energy is proportional to the pressure, we can write:

χB,Q,Si,j,k =
∂i+j+k(p/T 4)

(∂µ̂B)i(∂µ̂Q)j(∂µ̂S)k
, (2.2)

with

µ̂i =
µi
T
. (2.3)

These are the generalized fluctuations we calculated around µ = 0 in our previous work [28].

The fermion determinant detM(µ) is complex for real chemical potentials, prohibiting

the use of traditional simulation algorithms. For imaginary µ, however, the determinant

stays real. The chemical potential is introduced through weighted temporal links in the

staggered formalism:

U0(µ) = eµU0, U †0(µ) = e−µU †0 (2.4)

Thus, an imaginary µ translates into a phase factor for the antiperiodic boundary condition

in the Dirac operator. Due to the Z(3) symmetry of the gauge sector, there is a non-trivial

periodicity in the imaginary quark chemical potential µq → µq+i(2π/3)T , which translates

to the baryochemical potential as µB → µB + i2πT , the Roberge-Weiss symmetry. This

is independent of the charge conjugation symmetry µB ↔ −µB. As a result, e.g. for the

imaginary part of the baryon density:

〈B〉|µB/T=iπ−ε = − 〈B〉|µB/T=iπ+ε (2.5)

At µB = iπT there is a first order phase transition at all temperatures above the

Roberge-Weiss critical end point TRW [29]. When µB crosses iπT in the imaginary direc-

tion, the imaginary baryon density is discontinuous. This behaviour is illustrated in figure 1,

where the imaginary baryon density as a function of the imaginary chemical potential is

shown. At low temperature the Hadron Resonance Gas model predicts 〈B〉 ∼ sinh(µB/T ),

thus for imaginary values we expect a sine function below Tc: Im〈B〉 ∼ sin(ImµB/T ).

At temperatures slightly above Tc, we observe that further Fourier components appear in

addition to sin(ImµB/T ) with alternating coefficients, these are consistent with a repulsive

interaction between baryons [30]. At very high temperatures, on the other hand, 〈B〉 is

a polynomial of µB since the diagrams contributing to its ∼ µ5B and higher order compo-

nents are suppressed by asymptotic freedom [31, 32]. The Stefan-Boltzmann limit is non-

vanishing only for two Taylor coefficients of Im 〈B〉, giving Im〈B〉|µB/T=iπ−ε = 8π/27. At

finite temperatures above TRW this expectation value is smaller but positive. By eq. (2.5),

it implies a first order transition at µB = iπT .

The order of the transition at TRW heavily depends on the quark masses [33, 34]. For

physical quark masses one obtains TRW = 208(5) MeV, and the scaling around the end-

point is consistent with the Ising exponents [35]. This implies that, for physical parameters,

the transition is limited to µB = iπT without any other structures between the imaginary

interval [0, iπ) [33].
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T = Tc 

T< Tc

Tc < T < TRW

T > TRW

Im µB/T

Figure 1. Cartoon for the imaginary baryon number (Im χB1 ) as a function of the imaginary

chemical potential. TRW is the temperature of the Roberge-Weiss critical point.

Thus, we have only the range µ/T ∈ [0, iπ) to explore the µ-dependence of the observ-

ables. Recent simulations in this range include the determination of the transition line,

where the slope was determined on the negative side of the T − µ2B phase diagram. Using

analyticity arguments, this coefficient gives the curvature of the transition line on the real

T −µB phase diagram [36–38]. Apart from the transition temperature, we used imaginary

chemical potentials also to extrapolate the equation of state to real µB [26], which serves

as an alternative approach to the Taylor extrapolation [39]. In an recent study D’Elia

et al. have used the low order fluctuations at imaginary chemical potentials to calculate

generalized quark number susceptibilities [27].

3 Analysis details

3.1 Lattice setup

In this work we calculate high order fluctuations by studying the imaginary chemical po-

tential dependence of various generalized quark number susceptibilities.

We use a tree-level Symanzik improved gauge action, with four times stout smeared

(ρ = 0.125) staggered fermions. We simulate 2 + 1 + 1 dynamical quarks, where the light

flavors are tuned in a way to reproduce the physical pion and kaon masses and we set
mc
ms

= 11.85 [40]. For the zero-temperature runs that we used for the determination of the

bare masses and the coupling, the volumes satisfy Lmπ > 4. The scale is determined via

fπ. More details on the scale setting and lattice setup can be found in [28].

Our lattice ensembles are generated at eighteen temperatures in the temperature range

135. . . 220 MeV. We simulate at eight different values of imaginary µB given as: µ
(j)
B = iT jπ

8

for j ∈ {0, 1, 2, 3, 4, 5, 6, 7}. In this work the analysis is done purely on a 483 × 12 lattice,

we leave the continuum extrapolation for future work.

In terms of quark chemical potentials we generate ensembles with µu=µd=µs=µB/3.

In each simulation point we calculate all derivatives in eq. (2.2) up to fourth order. Thanks

to our scan in Im µ̂B, we can calculate additional µB derivatives. Ref. [27] uses various
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“trajectories” in the µB − µQ − µS space, allowing the numerical determination of higher

e.g. µQ and µS derivatives. We find relatively good signal for the µQ and µS derivatives

by directly evaluating eq. (2.2) within one simulation. We recently summarized the details

of the direct calculation in ref. [28].

3.2 Expected result for χB
8

Before we embark into the discussion of the fit procedure we outline our expectations for

the higher order fluctuations. It is an established fact that Tc changes with the chemical

potential [17, 36–38] resulting in a positive curvature κ of the phase diagram with:

Tc = T

(
1− κ

µ2B
T 2

+O
(
µ4B
T 4

))
(3.1)

Let us make a simple observation regarding the observed pattern of the baryon den-

sities at imaginary chemical potential. At leading order in µ̂B the baryon density is sim-

ply χB1 (T, µ̂B) ≈ χB2 (T, 0)µ̂B. Thus, at very small chemical potential χB1 (T, µ̂B)/µ̂B ≈
χB2 (T, 0). In the left panel of figure 2 we show this ratio in the limit of µB = 0, that is, we

plot χB2 (T, 0) and interpolate with a spline. We have access to the same ratio χB1 (T, µ̂B)/µ̂B
at larger imaginary chemical potentials as well, one example (µ̂B = i5π/8) is plotted with

blue dots in figure 2. This curve is essentially similar, but its inflection point has been

shifted to higher temperatures, as a consequence of a positive κ parameter. We define the

following rescaling:

χB1
(toy)

(T, µ̂B) = µ̂Bχ
B
2

(
T (1 + κµ̂2B), 0

)
(3.2)

The quality of the agreement between χB1
toy

and χB1 can be seen in the left panel of figure 2.

For the rescaling we used κ = 0.02 as obtained for the µS = 0 setup in ref. [38]. We note

that χB2 at finite chemical potential cannot be so simply approximated by shifting the

µB = 0 result.

The relation (3.2) is just an approximation, but if it is takes as a definition of a toy

model it gives access to the µ̂B dependence at any temperature if χB2 (T, 0) is known. The

high µ̂B-derivatives of χB1
(toy)

lead to high T -derivatives of χB2 (T, 0), this is only possible

if we have a smooth interpolation, preferably an analytical formula for f(T ) = χB2 (T, 0).

Being (3.2) inexact there is no point in tuning f(T ) too precisely to the lattice data, instead

we choose a simple sigmoid fit function: f(T ) = A+BT +Catan(D(T −E)) that describes

the gross features of the curve in the [120:300] MeV temperature interval. The resulting

χB2n(T, 0) functions we give later in figure 4 where we also compare this toy model to the

lattice result.

Although the toy model only incorporates the feature of a smooth χB2 (T, 0) and the

shifting of Tc with the chemical potential it correctly reproduces the oscillatory pattern of

the higher fluctuations.

At this point we use only the χB8 /χ
B
4 ratio to motivate a prior that we will introduce

in the next section to stabilize the µ̂B fit. We know that in the Hadron Resonance Gas

model this ratio is one. We must, however, expect also slightly higher values, that would
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<B>/µB

κ=0.02

simulated at

imaginary µB/T=2i

shifted µB/T=0 result

µB/T=0 result

T [MeV]

-8

-6

-4

-2

 0

 2

 4

 120  140  160  180  200  220  240

T [MeV]

toy model HRG

χ
B

8/χ
B

4

Figure 2. Toy model setup and its result for χB8 /χ
B
4 . In the left panel we observe that the directly

simulated χB1 (T, µ̂B)/µB at imaginary chemical potential can be approximately reproduced by

rescaling the µB = 0 result χB2 (T, 0), (see eq. (3.2)). The right panel shows a specific ratio of high

order fluctuations. The extraction of χB8 is stabilized by a prior bound to χB4 . With dark and light

bands we show the one and two σ regions of the prior distribution. The Hadron Resonance Gas

predicts 1 for this ratio, at high temperatures the Stefan-Boltzmann limit gives zero.

correspond to a signal from a nearby critical end point. The pattern of χB8 /χ
B
4 in the right

panel of figure 2 is slightly asymmetric. In this paper we define a prior with

χ8 = χ4(−1.25 + 2.75ξ) , (3.3)

where ξ is a stochastic variable with normal distribution.

The HRG prediction is χ2n/χ4 = 1, which is within the prior range. At high tempera-

tures higher order fluctuations quickly approach the Stefan-Boltzmann limit as it was seen

in HTL perturbation theory [41, 42] as well as on lattice [28, 43]. The Stefan-Boltzmann

limit is zero for χB2n if n ≥ 3. There is no reason to expect our toy model to work at high

temperatures, and indeed, the χB6 estimate in figure 2 converges to zero slower than the

HTL prediction in ref. [42].

3.3 Correlated fit with priors

We start with the analysis for χB2 (T ), χB4 (T ) and χB6 (T ). Our goal is to calculate these

quantities at zero chemical potential, using the imaginary chemical potential data up to

χB4 (T, µ̂B). In this work we extract these derivatives at a fixed temperature. Results for

different temperatures are obtained completely independently, an interpolation in tem-

perature is not necessary at any point. Thus, the error bars in our results plot will be

independent. The errors between the quantities χB2 (T ), χB4 (T ) and χB6 (T ) will be highly

correlated, though, since these are extracted through the same set of ensembles at the

given temperature. This correlation will be taken into account when combined quantities

are calculated, or when an extrapolation to real chemical potential is undertaken.

Thus we consider the ensembles at a fixed temperature T . For each value of imaginary

µB 6= 0 we determine χB1 , χB2 , χB3 and χB4 from simulation, while for µB = 0 only χB2 and

χB4 can be used, since χB1 and χB3 are odd functions of µB and therefore equal to zero.

– 6 –
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We make the ansatz for the pressure:

χB0 (µ̂B) = c0 + c2µ̂
2
B + c4µ̂

4
B + c6µ̂

6
B + c8µ̂

8
B + c10µ̂

10
B , (3.4)

where the Taylor expansion coefficients cn are related to the baryon number fluctuations

χBn by: n!cn = χBn . Our data do not allow for an independent determination of c8 and

c10. Nevertheless, in order to have some control over these terms we make assumption on

the higher order terms. In section 3.2 we have motivated and specified our choice for a

prior distribution of eq. (3.3) for χB8 = 8!c8. In the fit function we keep the terms up to

χB10 = 10!c10. Without this term the statistical errors on χB8 were clearly smaller, but the

fit would be less controlled. As the highest order in the function, the resulting χB10 probably

contains severe contamination from even higher order terms. For this reason, and since we

fit χB10 with large statistical errors we do not give results on that quantity. For simplicity,

we use the same prior distribution for χB10/χ
B
4 as for χB8 /χ

B
4 .

We can then rewrite our ansatz as

χB0 (µ̂B) = c0 + c2µ̂
2
B + c4µ̂

4
B + c6µ̂

6
B +

4!

8!
c4ε1µ̂

8
B +

4!

10!
c4ε2µ̂

10
B , (3.5)

where ε1 and ε2 are drawn randomly from a normal distribution with mean -1.25 and

variance 2.75. We use the same distribution for all temperatures. In effect, our c8 and c10
coefficients are stochastic variables. The used distribution for ε1,2 actually implements a

prior for χB8 and χB10.

For this ansatz we calculate the following derivatives, which are the actually simulated

lattice observables:

χB1 (µ̂B) = 2c2µ̂B + 4c4µ̂
3
B + 6c6µ̂

5
B +

4!

7!
c4ε1µ̂

7
B +

4!

9!
c4ε2µ̂

9
B (3.6)

χB2 (µ̂B) = 2c2 + 12c4µ̂
2
B + 30c6µ̂

4
B +

4!

6!
c4ε1µ̂

6
B +

4!

8!
c4ε2µ̂

8
B (3.7)

χB3 (µ̂B) = 24c4µ̂B + 120c6µ̂
3
B +

4!

5!
c4ε1µ̂

5
B +

4!

7!
c4ε2µ̂

7
B (3.8)

χB4 (µ̂B) = 24c4 + 360c6µ̂
2
B + c4ε1µ̂

4
B +

4!

6!
c4ε2µ̂

6
B. (3.9)

We perform a correlated fit for the four measured observables, thus obtaining the values

of c2, c4 and c6 for each temperature, and the corresponding χB2 , χB4 and χB6 . We repeat

the fit for 1000 random draws for ε1 and ε2. The result is weighted using the Akaike

Information Criterion [44]. Through these weights we get a posterior distribution from the

prior distribution. Our final estimate for χB8 represents this posterior distribution. These

results are shown in figure 3, together with an estimate of χB8 , related to χB4 by eq. (3.5).

Finally we show a comparison of these fit results to the toy model that we introduced

in section 3.2. We find a reasonable (though not complete) agreement with data. The toy

model correctly finds the zero crossings and acceptably approximates heights of the peaks

in the temperature dependence. (Note, that varying the interpolator in the toy model

will alter the peak heights of the resulting χB2n(T ) functions.) We emphasize that the toy

model assumed only the shift of the transition temperature with the chemical potential

– 7 –
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Figure 3. Results for χB2 , χB4 , χB6 and an estimate for χB8 as functions of the temperature, obtained

from the single-temperature analysis. We plot χB8 in green to point out that its determination is

guided by a prior, which is linked to the χB4 observable by eq. (3.5). The red curve in each panel

corresponds to the Hadron Resonance Gas (HRG) model result.

while keeping the strength of the transition constant. If this toy model is in agreement

with the lattice data, then the lattice data are also compatible with a scenario without a

critical end point.

3.4 Cross-correlators

So far we only considered derivatives with respect to the baryonic chemical potential. In

our previous, direct analysis in ref. [28], the µB-derivatives had larger errors than µQ−
or µS−derivatives. For µQ, the most noisy disconnected contributions come with smaller

prefactors, while for µS the disconnected contributions are small due to the heavier strange

mass. Our approach was designed to improve the µB-derivatives only. Therefore, the µS
and µQ derivatives have to be simulated directly and without the support from the fit that

we used in the µB direction. Our result on χQSjk improved only due to the increase in the

statistics since [28].

On the other hand, baryon-strange and baryon-charge mixed derivatives do benefit

from the imaginary µB data. We simulate various χB,Q,Si,j,k with the appropriate values of j

and k and all possible values of i so that i+ j+ k ≤ 4. For each group of fluctuations with

the same j and k we perform a fit analogous to the procedure described in section 3.3.

Let’s take the example of j = 1, k = 0. Our ansatz for cross-correlators is analogous

to eqs. (3.6)–(3.9):

χBS01 (µ̂B) = χBS11 µ̂B +
1

3!
χBS31 µ̂

3
B +

1

5!
χBS51 µ̂

5
B +

1

7!
χBS71 µ̂

7
B +

1

9!
χBS91 µ̂

9
B (3.10)

– 8 –
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Figure 4. Results for χB2 , χB4 , χB6 and an estimate for χB8 as functions of the temperature shown

together with the result of the toy model of section 3.2. The toy model reproduces much of the

features of the lattice result.

We truncated the expression at tenth order. The priors assume |χBS71 | . |χBS31 | and

|χBS91 | . |χBS31 |, as it is certainly true at high temperature and within the HRG model. The

prior distribution is wider than 1, we used the same mean and variance as in the channel

with no µS derivative.

When we use eq. (3.10) we take χS1 , χBS11 , χBS21 and χBS31 as correlated quartets for each

imaginary chemical potential and determine the three free coefficients of eq. (3.10). This

fitting procedure is repeated 1000 times with random χBS71 /χ
BS
31 and χBS91 /χ

BS
31 coefficients.

Again, using the Akaike weights we constrain the prior distribution. The resulting estimate

for χBS71 along with the fit coefficients are shown in figure 5. The posterior for χBS91 is not

only noisy, but it is probably heavily contaminated by the higher orders that we did not

account for.

The other channels with higher µS or µQ derivatives are obtained analogously. These

are plotted in appendix A.

3.5 Error analysis

For a reliable comparison between experimental measurements and theoretical calculations,

the error estimate is an important ingredient. Our statistical error is estimated through

the jackknife method. For our systematic error there are several sources. We determine

our systematic error by the histogram method described in [45], where each analysis is

weighted with the Akaike information criteria. We include the influence of the number

of points in the µB direction, by either including or ignoring the data from our highest

– 9 –



J
H
E
P
1
0
(
2
0
1
8
)
2
0
5

135 160 185 210
T/MeV

0.25

0.20

0.15

0.10

0.05

0.00

χBS11

135 160 185 210
T/MeV

0.06
0.05
0.04
0.03
0.02
0.01
0.00

χBS31

135 160 185 210
T/MeV

0.04
0.02
0.00
0.02
0.04
0.06
0.08
0.10

χBS51

135 160 185 210
T/MeV

0.3
0.2
0.1
0.0
0.1
0.2
0.3

χBS71

Figure 5. χBS11 , χ
BS
31 , χ

BS
51 and an estimate for χBS71 as functions of the temperature. The red

curves are the HRG model results.

value of µB. A very important source for our systematic error is the influence of the higher

order contributions in µB. This effect was estimated by adding the higher order terms with

pre-factors ε1 and ε2 as described in section 3.3. We consider 1000 different ε pairs and add

the different analyses to our histogram. The width of the histogram using Akaike weights

corresponding to the fit quality gives the systematic errors for the fit coefficients, and from

the same histogram we obtain the posterior distributions for ε1. The physical quantities

that are constrained only by the posterior distribution are plotted with green symbols.

These histograms are built independently for each number (j and k) of µS and µQ
derivatives. When calculating the systematics for the cumulant ratios (section 4) we need

to calculate different combinations of diagonal and non-diagonal fluctuations from the

available analyses. Though these fits (corresponding to the same temperature) are carried

out separately we keep track of the statistical correlation, by maintaining the jackknife

ensembles throughout the analysis. The correct propagation of systematic errors is a

more elaborate procedure. When χBSQijk coefficients are combined with different j, k pairs,

different histograms have to be combined. If we had only two variables to combine, each

of the 2000 first fit variants should be combined with each of the 2000 second fit variants

and use the product of the respective probability weights. Instead, we combine the fit

results by drawing ‘good’ fits by importance sampling from each histogram independently.

In this way, O(100) random combinations of χBSQijk results already give convergence for

each discussed quantity and its error bar. For the results in this paper we used 1000 such

random combinations. This procedure assumes that between different j, k pairs the prior

distribution is uncorrelated.
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4 Phenomenology at finite chemical potential

For a comparison with heavy ion collision experiments, the cumulants of the net-baryon dis-

tribution are very useful observables. The first four cumulants are the mean MB, the vari-

ance σ2B, the skewness SB and the kurtosis κB. By forming appropriate ratios, we can can-

cel out explicit volume factors. However, the measured distributions themselves may still

depend on the volume, which one should take into account when comparing to experiments.

Heavy ion collisions involving lead or gold atoms at µB > 0 correspond to the following

situation

〈nS〉 = 0 〈nQ〉 = 0.4〈nB〉 . (4.1)

For each T and µB pair, we have to first calculate µQ and µS that satisfy this condition. The

resulting µQ(µB) and µS(µB) functions, too, can be Taylor expandend [19, 20], introducing

qj =
1

j!

djµ̂Q
(dµ̂B)j

∣∣∣∣
µB=0

(4.2)

sj =
1

j!

djµ̂S
(dµ̂B)j

∣∣∣∣
µB=0

. (4.3)

We investigate three different ratios of cumulants:

MB

σ2B
=
χB1 (T, µ̂B)

χB2 (T, µ̂B)
= µ̂Br

B,1
12 + µ̂3Br

B,3
12 + . . . (4.4)

SBσ
3
B

MB
=
χB3 (T, µ̂B)

χB1 (T, µ̂B)
= rB,031 + µ̂2Br

B,2
31 + . . . (4.5)

κBσ
2
B =

χB4 (T, µ̂B)

χB2 (T, µ̂B)
= rB,042 + µ̂2Br

B,2
42 + µ̂4Br

B,4
42 + . . . (4.6)

The µB-dependence of the χBi (T, µ̂B) can again be written as a Taylor series:

χBQSi,j,k (µ̂B) = χBQSi,j,k (0) + µ̂B

[
χBQSi+1,j,k(0) + q1χ

BQS
i,j+1,k(0) + s1χ

BQS
i,j,k+1(0)

]
+

1

2
µ̂2B

[
χBQSi+2,j,k(0) + q21χ

BQS
i,j+2,k(0) + s21χ

BQS
i,j,k+2(0)

+ 2q1s1χ
BQS
i,j+1,k+1(0) + 2q1χ

BQS
i+1,j+1,k(0) + 2s1χ

BQS
i+1,j,k+1(0)

]
+ . . . . (4.7)

The χ coefficients that we determined in section 3 include derivatives up to sixth order,

and we have estimates for the eighth order, too. The fit coefficients corresponding to the

tenth order are likely to be contaminated by higher orders, that we did not include into

the ansatz. These χBQSijk coefficients, however, are given for j + k ≤ 4, which is the highest

order that we used in µQ and µS .
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Figure 6. Taylor expansion coefficients for MB

σ2
B

=
χB
1 (T,µ̂B)

χB
2 (T,µ̂B)

as functions of the temperature: rB,112

(left panel) and rB,312 (right panel).
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Figure 7. Taylor expansion coefficients for
SBσ

3
B

MB
=

χB
3 (T,µ̂B)

χB
1 (T,µ̂B)

as functions of the temperature: rB,031

(left panel) and rB,231 (right panel).

This list of coefficients allows us to calculate the rB,kij coefficients from equations (4.4),

(4.5) and (4.6). The results for the rB,kij coefficients are shown in figures 6, 7 and 8. We

confirm the observation from ref. [23] that the coefficient rB,242 has a similar temperature

dependence as rB,231 but it is ∼ 3 times larger in magnitude.

For higher order coefficients, higher order derivatives in µS and µQ are needed. The

direct simulations have a rapidly increasing error with the order of the derivative, and

very large statistics would be needed to improve our calculations at this point. Another

possibility would be to simulate new ensembles with finite µS and µQ and do a similar fit

as for the µB direction. This approach has been used in [27].

After calculating the Taylor coefficients for SBσ
3
B/MB and κBσ

2
B, we use these results

to extrapolate these quantities to finite chemical potential. They are shown in figure 9. In

the left panel, SBσ
3
B/MB is shown as a function of the chemical potential for different tem-

peratures. The Taylor expansion for this quantity is truncated at O(µ̂2B). The black points

in the figure are the experimental results from the STAR collaboration from an analysis

of cumulant ratios measured at mid-rapidity, |y| ≤ 0.5, including protons and anti-protons
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Figure 8. Taylor expansion coefficients for κBσ
2
B =

χB
4 (T,µ̂B)

χB
2 (T,µ̂B)

as functions of the temperature: rB,042

(left panel) rB,242 (middle panel), rB,442 (right panel). The latter is not obtained independently, but

by means of the prior ansatz (see text): for this reason, we plot it in green.
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Figure 9. SBσ
3
B/MB (left panel) and κBσ

2
B (right panel) extrapolated to finite chemical potential.

The left panel is extrapolated up to O(µ̂2
B). In the right panel, the darker bands correspond to the

extrapolation up to O(µ̂2
B), whereas the lighter bands also include the O(µ̂4

B) term.

with transverse momenta 0.4 GeV ≤ pt ≤ 2.0 GeV [46, 47]. The beam energies were trans-

lated to chemical potentials using the fitted formula of ref. [48]. Even if we do not quantita-

tively compare the lattice bands to the measurements to extract the freeze-out parameters,

as experimental higher order fluctuations might be affected by several effects of non-thermal

origin and our lattice results are not continuum extrapolated, we notice that the trend of

the data with increasing µB can be understood in terms of our Taylor expansion.

In the right panel, we show κBσ
2
B as a function of µB/T for different temperatures. The

darker bands correspond to the extrapolation up to O(µ̂2B), whereas the lighter bands also

include theO(µ̂4B) term. Also in this case, the black points are the experimental results from

the STAR collaboration with transverse momentum cut 0.4 GeV≤ pt ≤ 2.0 GeV [46, 47].

By comparing the two different truncations of the Taylor series we can conclude that, as

we increase the temperature, the range of applicability of our Taylor series decreases: while

at T = 150 MeV the two orders agree in the whole µB/T range shown in the figure, at

T = 160 MeV the central line of the next-to-next-to-leading order (NNLO) bends upwards
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and is not contained in the next-to-leading order (NLO) band. This behaviour reflects

the pattern in the Taylor coefficients of figure 8. Notice that up to T = 155 MeV rB,442

is consistent to zero, and already positive at 160 MeV or somewhat higher temperatures.

For temperatures where we have a small rB,442 coefficient the NLO result is satisfactory. To

make the NNLO prediction precise substantially more computer time would be needed.

5 Conclusions and outlook

In this manuscript, we have calculated several diagonal and non-diagonal fluctuations of

electric charge, baryon number and strangeness up to sixth-order, in a system of 2+1+1

quark flavors with physical quark masses, on a lattice with size 483 × 12. The analysis

has been performed simulating the lower order fluctuations at zero and imaginary chemical

potential µB, and extracting the higher order fluctuations as derivatives of the lower order

ones at µB = 0. The chemical potentials for electric charge and strangeness have both

been set to zero in the simulations. From these fluctuations, we have constructed ratios

of baryon number cumulants as functions of T and µB, by means of a Taylor series which

takes into account the experimental constraints 〈nS〉 = 0 and 〈nQ〉 = 0.4〈nB〉. These

ratios qualitatively explain the behavior observed in the experimental measurements by

the STAR collaboration as functions of the collision energy.

We focused on observables (baryon distribution, ratios of cumulants) that are less

sensitive to lattice artefacts. An obvious extension of our work will be the use of finer

lattices and a continuum extrapolation. The other extension is to use a two- or even

three-dimensional mapping of the space of the imaginary chemical potentials using non-

vanishing µS and µQ. That would not only improve the µS− and µQ−derivatives, but

would allow us to study the melting of states with various strangeness and electric charge

quantum numbers. Our first study in this direction using strangeness chemical potentials

was published in ref. [49].
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Figure 10. Results containing no electric charge derivative on the various correlators on our

483 × 12 lattice as functions of the temperature. Green data points denote our estimates for the

high orders, these were fitted using a prior distribution. The red curves are the HRG model results.

A Results for the correlators

In this appendix we present the non-diagonal fluctuations of conserved charges needed to

construct the cumulant ratios at finite chemical potential µB, satisfying the constraints

〈nS〉 = 0 and 〈nQ〉 = 0.4〈nB〉.
Like we did for the diagonal χBi , we simulate lower order fluctuations at finite imaginary

chemical potential and extract the higher order fluctuations as derivatives of the lower order

ones at µB = 0: in particular, we simulate various χB,Q,Si,j,k with the appropriate values of j

and k and all possible values for i so that

i+ j + k ≤ 4 , (A.1)

and extract the corresponding χB,Q,Si,j,k with i+ j + k ≤ 6 and an estimate for i+ j + k = 8

and sometimes even i + j + k = 10. By estimate (shown in green) we mean the posterior

distribution that we get for the two highest orders when using priors, as discussed in the

main text. In total we need 15 channels to obtain all the necessary terms.

In the following plots we show these results organized by the number of charge deriva-

tives (j) in figures 10–14. It is notoriously difficult to calculate charge correlators using
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Figure 11. Results containing one electric charge derivative on the various correlators on our

483 × 12 lattice as functions of the temperature. Green data points denote our estimates for the

high orders, these were fitted using a prior distribution. The red curves are the HRG model results.

staggered fermions [28]. Correlators that are not protected by a baryon derivative are

affected by significant discretization errors. It is understood in the HRG model context

that discretization errors mostly affect the contributions from pions and kaons. Staggered

lattice effects introduce the highest relative errors for the lightest mesons. Luckily, how-

ever, quantities with such discretization effects come with a small pre-factor into the final

formulas of eqs.˙ (4.4)–(4.6). If we had a complete isospin symmetry (factor 0.5 between

〈nQ〉 and 〈nB〉 in eq. (4.1)) then electric charge correlators would play no role at all in the

extrapolation of baryon fluctuations.
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Figure 12. Results containing two electric charge derivatives on the various correlators on our

483 × 12 lattice as functions of the temperature. Green data points denote our estimates for the

high orders, these were fitted using a prior distribution. The red curves are the HRG model

results. Charge correlators without baryon derivative (here χQS22 ) are expected to have significant

discretization errors.
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Figure 13. Results containing three electric charge derivatives on the various correlators on our

483 × 12 lattice as functions of the temperature. Green data points denote our estimates for the

high orders, these were fitted using a prior distribution. The red curves are the HRG model

results. Charge correlators without baryon derivative (here χQS31 ) are expected to have significant

discretization errors.
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Figure 14. χQ4 , χ
BQ
24 and estimate for χBQ44 as functions of the temperature. The quantity χQ4 has

severe cut-off effects on this lattice [28]. The red curves are the HRG model results.
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B Statistics and lattice details

In table 1 we give the number of analyzed configurations per ensemble. The simulation

parameters and the details of the analysis are given in ref. [28].

The determination of the µ derivatives follows the lines of refs. [7, 28]. We calculate

four quantities per configuration and per quark mass

Aj =
d

dµj
log(detMj)

1/4 =
1

4
trM−1j M ′j , (B.1)

Bj =
d2

(dµj)2
log(detMj)

1/4 =
1

4
tr
(
M ′′jM

−1
j −M

′
jM
−1
j M ′jM

−1
j

)
, (B.2)

Cj =
d3

(dµj)3
log(detMj)

1/4 =
1

4
tr
(
M ′jM

−1
j − 3M ′′jM

−1
j M ′jM

−1
j

+2M ′jM
−1
j M ′jM

−1
j M ′jM

−1
j

)
, (B.3)

Dj =
d4

(dµj)4
log(detMj)

1/4 =
1

4
tr
(
M ′′jM

−1
j − 4M ′jM

−1
j M ′jM

−1
j − 3M ′′jM

−1
j M ′′jM

−1
j

+12M ′′jM
−1
j M ′jM

−1
j M ′jM

−1
j

−6M ′jM
−1
j M ′jM

−1
j M ′jM

−1
j M ′jM

−1
j

)
. (B.4)

Here Mj is the fermion matrix corresponding to the j-th quark mass in the system. M ′

and M ′′ indicate the first and higher order derivatives with respect to the quark chemical

potential. For this simple staggered action higher order derivatives are equal to lower order

ones, M ′′′ = M ′ and M ′′′′ = M ′′ by construction. These traces are calculated using the

standard stochastic method, by calculating the effect of the matrices on random sources.

At finite (imaginary) chemical potentials we used 4× 256 Gaussian random sources for the

light quarks and 4 × 128 sources for the strange quarks. The analysis was accelerated by

calculating 256 eigenvectors of the Dirac operator first. These eigenvectors were then fed

into an Eig-CG algorithm.

Using the isospin symmetry (mu = md), the ABCD traces can be used to calculate

the χuds derivatives with the following formulas:

χuds200 = +〈Bu〉+ 〈A2
u〉 − 〈Au〉2 (B.5)

χuds110 = +〈A2
u〉 − 〈Au〉2 (B.6)

χuds101 = +〈AuAs〉 − 〈As〉〈Au〉 (B.7)

χuds300 = +〈Cu〉+ 3〈AuBu〉+ 〈A3
u〉 − 3〈Bu〉〈Au〉 − 3〈Au〉〈A2

u〉+ 2〈Au〉3 (B.8)

χuds210 = +〈AuBu〉+ 〈A3
u〉 − 〈Bu〉〈Au〉 − 3〈Au〉〈A3

u〉+ 2〈Au〉3 (B.9)

χuds120 = +〈AuBu〉+ 〈A3
u〉 − 〈Bu〉〈Au〉 − 3〈Au〉〈A2

u〉+ 2〈Au〉3 (B.10)

χuds111 = +〈AuAuAs〉 − 〈As〉〈A2
u〉 − 2〈Au〉〈AuAs〉+ 2〈As〉〈Au〉2 (B.11)
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χuds400 = +〈Du〉+ 3〈BuBu〉+ 4〈AuCu〉+ 6〈A2
uBu〉+ 〈A4

u〉
− 4〈Cu〉〈Au〉 − 3〈Bu〉2 − 6〈Bu〉〈A2

u〉 − 12〈Au〉〈AuBu〉
− 4〈Au〉〈A3

u〉 − 3〈AuAu〉〈A2
u〉+ 12〈Bu〉〈Au〉2

+ 12〈Au〉2〉〈A2
u〉 − 6〈Au〉4 (B.12)

χuds310 = +〈AuCu〉+ 3〈A2
uBu〉+ 〈A4

u〉 − 〈Cu〉〈Au〉 − 3〈Bu〉〈A2
u〉

− 6〈Au〉〈AuBu〉 − 4〈Au〉〈A3
u〉 − 3〈A2

u〉〈A2
u〉

+ 6〈Bu〉〈Au〉2 + 12〈Au〉〈Au〉〈A2
u〉 − 6〈Au〉4 (B.13)

χuds220 = +〈B2
u〉+ 2〈A2

uBu〉+ 〈A4
u〉 − 〈Bu〉2 − 2〈Bu〉〈A2

u〉
− 4〈Au〉〈AuBu〉 − 4〈Au〉〈A3

u〉 − 3〈A2
u〉〈A2

u〉
+ 4〈Bu〉〈Au〉〈Au〉+ 12〈Au〉〈Au〉〈A2

u〉 − 6〈Au〉4 (B.14)

χuds211 = +〈AuBuAs〉+ 〈A3
uAs〉 − 〈As〉〈AuBu〉 − 〈As〉〈A3

u〉 − 〈Bu〉〈AuAs〉 − 〈BuAs〉〈Au〉
− 3〈Au〉〈A2

uAs〉 − 3〈AuAs〉〈A2
u〉+ 2〈As〉〈Bu〉〈Au〉+ 6〈As〉〈Au〉〈A2

u〉
+ 6〈Au〉2〈AuAs〉 − 6〈As〉〈Au〉3 (B.15)

If the listed products of the A,B,C,D traces are calculated as products of the stochastic

estimators, a bias could be introduced. Thus, in products different random vectors have to

be used in each factor. Alternatively, the expectation value of the bias has to be subtracted.

The last step is to express the derivatives in terms of µB, µQ and µS in eq. (2.2) using

eqs. (2.1), which is a straightforward exercise.

C Data tables

For the reproducibility of this work we tabulate the raw data at two temperatures of this

study in tables 3–6. We have chosen one temperature below deconfinement (140 MeV) and

one above (170 MeV), near the peak of the higher order baryon fluctuations.

For T = 140 MeV we used the parameters: β = 3.7420, amud = 0.00185777, ams =

0.0519023 and amc = 0.615042. For T = 170 MeV we had β = 3.8236, amud = 0.00151761,

ams = 0.0420951 and amc = 0.498827. For a complete list of the simulation parameters

see ref. [28]. In all cases we used the ρ = 0.125 smearing parameters in four levels of stout

smearing in the fat links of the standard staggered action. For the gluon fields we employed

the tree-level improved Symanzik action.

In table 2 we illustrate the correlations between the mean baryon, electric charge and

strangeness. Black dots means 100% correlation, red dot stands for perfect anti-correlation.

The strong correlations can be understood by the relation

χB1 − 2χQ1 + χS1 = 0 (C.1)

which is exactly satisfied by our data. This relation follows from the isospin symmetric

setting of our simulations with mu = md and µu = µd for the u and d quarks.
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T [MeV] µ̂IB = 0 µ̂IB = 0.4 µ̂IB = 0.8 µ̂IB = 1.2 µ̂IB = 1.6 µ̂IB = 2.0 µ̂IB = 2.4 µ̂IB = 2.7

135 17871 1647 2680 4377 2375 3449 2622 2008

140 22624 1625 3583 2975 3499 5321 3129 3211

145 17195 2439 5255 4468 3191 2846 4959 4117

150 18429 2048 3404 10115 6450 5665 3211 3254

155 17494 1624 4735 4938 3911 7813 3670 3485

160 12688 1607 4459 4831 3382 3917 4831 4990

165 18472 1935 4976 8113 8466 4984 5235 4321

170 14417 1987 2704 8820 8053 8023 5916 3273

175 12018 2034 2006 4748 3878 11330 6178 5583

180 12446 2104 2089 5424 4514 6057 5910 4466

185 14184 2151 2138 3112 3086 5934 7733 3767

190 13741 1693 3395 4395 8140 10410 4201 3844

195 15013 1758 3643 5334 8420 5707 3884 4003

200 14974 2300 2262 5999 10709 5033 5496 4203

205 7788 2126 2125 5951 5873 8294 3087 4333

210 4014 1957 1949 12174 6649 3543 2999 3146

215 2506 1783 7056 2268 2244 1711 1674 2090

220 9172 1810 3548 4264 5498 1754 1717 2163

Table 1. Statistics of our simulations on the 483 × 12 lattice. We list the number of stored and

analyzed gauge configurations. These configurations were separated by ten Rational Hybrid Monte

Carlo updates.

T/MeV j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

140

170

Table 2. Visualization of the correlation matrix for χB1 , χQ1 and χS1 for different temperatures

and µ
(j)
B = iT jπ

8 for j ∈ {0, 1, 2, 3, 4, 5, 6, 7}. Black squares mean correlation, red squares mean

anti-correlation, grey and less bright red correspond to smaller correlations.
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obs j = 0 j = 1 j = 2 j = 3

χBQS100 - 0.018± 0.003 0.032± 0.001 0.044± 0.001

χBQS200 0.048± 0.001 0.047± 0.006 0.030± 0.002 0.018± 0.002

χBQS300 - 0.034± 0.025 0.039± 0.009 0.039± 0.010

χBQS400 0.052± 0.014 −0.001± 0.093 −0.043± 0.038 −0.017± 0.045

χBQS010 - 0.004± 0.001 0.009± 0.000 0.012± 0.000

χBQS110 0.013± 0.000 0.013± 0.002 0.008± 0.001 0.005± 0.001

χBQS210 - 0.007± 0.007 0.011± 0.003 0.012± 0.003

χBQS310 0.014± 0.005 −0.021± 0.048 0.009± 0.016 0.004± 0.020

χBQS020 0.244± 0.001 0.245± 0.003 0.230± 0.001 0.220± 0.001

χBQS120 - 0.018± 0.007 0.026± 0.002 0.039± 0.003

χBQS220 0.042± 0.003 0.034± 0.021 0.021± 0.009 0.015± 0.008

χBQS030 - 0.015± 0.006 0.022± 0.002 0.035± 0.002

χBQS130 0.037± 0.002 0.030± 0.014 0.026± 0.007 0.019± 0.007

χBQS040 0.295± 0.004 0.300± 0.030 0.268± 0.010 0.259± 0.011

χBQS001 - −0.009± 0.002 −0.015± 0.000 −0.020± 0.001

χBQS101 −0.022± 0.000 −0.021± 0.004 −0.014± 0.001 −0.008± 0.001

χBQS201 - −0.020± 0.012 −0.016± 0.004 −0.015± 0.004

χBQS301 −0.024± 0.006 −0.021± 0.048 0.009± 0.016 0.004± 0.020

χBQS002 0.136± 0.000 0.136± 0.003 0.125± 0.001 0.117± 0.001

χBQS102 - 0.022± 0.009 0.018± 0.003 0.024± 0.002

χBQS202 0.031± 0.003 0.035± 0.032 0.012± 0.010 0.000± 0.011

χBQS003 - −0.027± 0.009 −0.028± 0.002 −0.042± 0.002

χBQS103 −0.050± 0.002 −0.051± 0.027 −0.027± 0.008 −0.003± 0.007

χBQS004 0.197± 0.003 0.203± 0.025 0.162± 0.008 0.126± 0.008

χBQS011 0.057± 0.000 0.057± 0.001 0.055± 0.000 0.055± 0.000

χBQS111 - 0.001± 0.003 0.001± 0.001 0.004± 0.001

χBQS211 0.003± 0.002 0.007± 0.012 0.011± 0.004 0.002± 0.006

χBQS021 - −0.005± 0.004 −0.008± 0.001 −0.012± 0.001

χBQS121 −0.014± 0.001 −0.016± 0.011 −0.005± 0.003 −0.003± 0.003

χBQS012 - −0.003± 0.002 −0.005± 0.001 −0.009± 0.001

χBQS112 −0.009± 0.001 −0.008± 0.006 −0.008± 0.002 −0.001± 0.003

χBQS022 0.069± 0.001 0.076± 0.010 0.061± 0.002 0.060± 0.002

χBQS031 0.054± 0.001 0.057± 0.011 0.053± 0.003 0.056± 0.003

χBQS013 0.073± 0.001 0.076± 0.007 0.067± 0.002 0.062± 0.002

Table 3. Raw data at T = 140 MeV and µ
(j)
B = iT jπ

8 for j ∈ {0, 1, 2, 3}.
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obs j = 4 j = 5 j = 6 j = 7

χBQS100 0.047± 0.001 0.046± 0.001 0.035± 0.002 0.018± 0.001

χBQS200 0.002± 0.004 −0.015± 0.003 −0.042± 0.005 −0.041± 0.004

χBQS300 0.022± 0.016 0.028± 0.011 0.046± 0.023 0.007± 0.020

χBQS400 0.005± 0.070 −0.058± 0.065 −0.105± 0.113 −0.135± 0.113

χBQS010 0.013± 0.000 0.012± 0.000 0.009± 0.000 0.005± 0.000

χBQS110 0.001± 0.001 −0.005± 0.001 −0.011± 0.001 −0.012± 0.001

χBQS210 0.007± 0.004 0.006± 0.003 0.014± 0.007 0.001± 0.006

χBQS310 −0.000± 0.033 0.027± 0.026 0.053± 0.048 0.063± 0.048

χBQS020 0.204± 0.001 0.189± 0.001 0.176± 0.001 0.167± 0.001

χBQS120 0.036± 0.003 0.033± 0.002 0.031± 0.003 0.012± 0.003

χBQS220 0.005± 0.010 −0.021± 0.011 −0.044± 0.017 −0.048± 0.013

χBQS030 0.033± 0.002 0.031± 0.002 0.027± 0.003 0.012± 0.002

χBQS130 0.007± 0.007 −0.015± 0.008 −0.036± 0.011 −0.037± 0.009

χBQS040 0.223± 0.009 0.181± 0.007 0.159± 0.010 0.138± 0.010

χBQS001 −0.021± 0.001 −0.021± 0.001 −0.016± 0.001 −0.008± 0.001

χBQS101 −0.000± 0.002 0.006± 0.001 0.019± 0.002 0.018± 0.002

χBQS201 −0.007± 0.008 −0.015± 0.005 −0.018± 0.010 −0.006± 0.009

χBQS301 −0.000± 0.033 0.027± 0.026 0.053± 0.048 0.063± 0.048

χBQS002 0.105± 0.001 0.096± 0.001 0.083± 0.001 0.080± 0.001

χBQS102 0.020± 0.005 0.025± 0.003 0.022± 0.005 0.009± 0.005

χBQS202 −0.002± 0.018 −0.021± 0.013 −0.050± 0.026 −0.050± 0.021

χBQS003 −0.040± 0.003 −0.042± 0.002 −0.035± 0.003 −0.016± 0.003

χBQS103 0.004± 0.012 0.021± 0.009 0.057± 0.016 0.053± 0.011

χBQS004 0.099± 0.010 0.075± 0.008 0.030± 0.013 0.024± 0.009

χBQS011 0.052± 0.000 0.051± 0.000 0.051± 0.001 0.049± 0.001

χBQS111 0.007± 0.002 0.005± 0.001 0.002± 0.003 0.002± 0.003

χBQS211 −0.001± 0.009 0.003± 0.008 0.001± 0.013 0.007± 0.014

χBQS021 −0.010± 0.001 −0.010± 0.001 −0.009± 0.001 −0.004± 0.001

χBQS121 −0.000± 0.004 0.007± 0.003 0.014± 0.006 0.017± 0.005

χBQS012 −0.010± 0.001 −0.009± 0.001 −0.006± 0.001 −0.003± 0.001

χBQS112 0.001± 0.005 −0.000± 0.004 0.003± 0.006 0.002± 0.006

χBQS022 0.050± 0.003 0.043± 0.002 0.040± 0.003 0.033± 0.002

χBQS031 0.049± 0.003 0.050± 0.003 0.055± 0.004 0.051± 0.003

χBQS013 0.051± 0.003 0.048± 0.002 0.043± 0.004 0.039± 0.003

Table 4. Raw data at T = 140 MeV and µ
(j)
B = iT jπ

8 for j ∈ {4, 5, 6, 7}.
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obs j = 0 j = 1 j = 2 j = 3

χBQS100 - 0.067± 0.001 0.130± 0.002 0.181± 0.001

χBQS200 0.173± 0.001 0.163± 0.003 0.147± 0.004 0.112± 0.002

χBQS300 - 0.029± 0.011 0.079± 0.011 0.113± 0.009

χBQS400 0.069± 0.011 0.045± 0.045 0.096± 0.045 0.108± 0.039

χBQS010 - 0.011± 0.000 0.022± 0.000 0.031± 0.000

χBQS110 0.029± 0.000 0.027± 0.001 0.026± 0.001 0.022± 0.000

χBQS210 - 0.004± 0.002 0.012± 0.002 0.015± 0.002

χBQS310 0.007± 0.002 −0.058± 0.031 −0.054± 0.030 −0.055± 0.025

χBQS020 0.474± 0.001 0.471± 0.002 0.456± 0.002 0.434± 0.001

χBQS120 - 0.020± 0.003 0.048± 0.003 0.068± 0.002

χBQS220 0.049± 0.002 0.052± 0.009 0.061± 0.008 0.071± 0.007

χBQS030 - 0.011± 0.002 0.027± 0.002 0.038± 0.001

χBQS130 0.025± 0.001 0.029± 0.005 0.037± 0.005 0.045± 0.004

χBQS040 0.249± 0.004 0.260± 0.015 0.286± 0.015 0.302± 0.008

χBQS001 - −0.045± 0.001 −0.086± 0.001 −0.119± 0.001

χBQS101 −0.115± 0.001 −0.110± 0.002 −0.096± 0.003 −0.069± 0.002

χBQS201 - −0.020± 0.008 −0.055± 0.008 −0.082± 0.006

χBQS301 −0.055± 0.007 −0.058± 0.031 −0.054± 0.030 −0.055± 0.025

χBQS002 0.411± 0.001 0.405± 0.003 0.381± 0.004 0.339± 0.002

χBQS102 - 0.034± 0.008 0.083± 0.008 0.121± 0.005

χBQS202 0.093± 0.006 0.111± 0.029 0.083± 0.027 0.077± 0.020

χBQS003 - −0.071± 0.009 −0.160± 0.011 −0.226± 0.005

χBQS103 −0.195± 0.006 −0.214± 0.030 −0.166± 0.028 −0.142± 0.020

χBQS004 0.600± 0.008 0.605± 0.038 0.551± 0.034 0.486± 0.022

χBQS011 0.148± 0.000 0.148± 0.001 0.142± 0.001 0.135± 0.001

χBQS111 - 0.007± 0.001 0.014± 0.001 0.019± 0.001

χBQS211 0.019± 0.001 0.027± 0.003 0.014± 0.004 0.011± 0.004

χBQS021 - −0.013± 0.002 −0.029± 0.002 −0.042± 0.001

χBQS121 −0.034± 0.001 −0.035± 0.005 −0.034± 0.005 −0.035± 0.004

χBQS012 - −0.018± 0.001 −0.038± 0.002 −0.053± 0.001

χBQS112 −0.051± 0.001 −0.051± 0.003 −0.041± 0.003 −0.033± 0.003

χBQS022 0.129± 0.002 0.129± 0.008 0.135± 0.008 0.131± 0.004

χBQS031 0.083± 0.002 0.082± 0.005 0.089± 0.006 0.085± 0.003

χBQS013 0.203± 0.002 0.195± 0.006 0.193± 0.007 0.172± 0.003

Table 5. Raw data at T = 170 MeV and µ
(j)
B = iT jπ

8 for j ∈ {0, 1, 2, 3}.
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obs j = 4 j = 5 j = 6 j = 7

χBQS100 0.213± 0.001 0.225± 0.002 0.180± 0.003 0.109± 0.005

χBQS200 0.055± 0.004 −0.034± 0.008 −0.143± 0.012 −0.245± 0.021

χBQS300 0.180± 0.016 0.342± 0.057 0.334± 0.065 0.174± 0.168

χBQS400 0.167± 0.093 0.588± 0.408 −0.698± 0.415 0.223± 1.184

χBQS010 0.038± 0.000 0.041± 0.000 0.034± 0.001 0.021± 0.001

χBQS110 0.013± 0.001 −0.003± 0.001 −0.026± 0.002 −0.046± 0.004

χBQS210 0.029± 0.003 0.065± 0.011 0.071± 0.012 0.036± 0.032

χBQS310 −0.101± 0.064 −0.329± 0.244 0.478± 0.268 −0.135± 0.739

χBQS020 0.399± 0.001 0.359± 0.001 0.298± 0.001 0.257± 0.002

χBQS120 0.099± 0.003 0.135± 0.006 0.139± 0.006 0.094± 0.008

χBQS220 0.080± 0.013 0.119± 0.039 −0.045± 0.034 −0.174± 0.066

χBQS030 0.058± 0.001 0.080± 0.003 0.085± 0.003 0.059± 0.004

χBQS130 0.050± 0.006 0.075± 0.017 −0.012± 0.015 −0.121± 0.033

χBQS040 0.326± 0.009 0.354± 0.012 0.290± 0.010 0.184± 0.013

χBQS001 −0.137± 0.001 −0.143± 0.001 −0.112± 0.002 −0.067± 0.003

χBQS101 −0.030± 0.003 0.028± 0.006 0.091± 0.008 0.153± 0.013

χBQS201 −0.123± 0.011 −0.212± 0.036 −0.191± 0.043 −0.102± 0.104

χBQS301 −0.101± 0.064 −0.329± 0.244 0.478± 0.268 −0.135± 0.739

χBQS002 0.282± 0.003 0.214± 0.004 0.134± 0.005 0.070± 0.009

χBQS102 0.165± 0.009 0.228± 0.026 0.197± 0.029 0.118± 0.064

χBQS202 0.104± 0.050 0.213± 0.161 −0.362± 0.178 −0.043± 0.464

χBQS003 −0.287± 0.009 −0.340± 0.020 −0.286± 0.020 −0.179± 0.040

χBQS103 −0.131± 0.045 −0.126± 0.113 0.352± 0.123 0.258± 0.299

χBQS004 0.414± 0.045 0.268± 0.084 −0.212± 0.093 −0.302± 0.206

χBQS011 0.126± 0.001 0.121± 0.001 0.113± 0.002 0.112± 0.002

χBQS111 0.021± 0.002 0.008± 0.006 0.003± 0.008 0.008± 0.020

χBQS211 0.001± 0.008 −0.058± 0.043 0.058± 0.049 −0.089± 0.142

χBQS021 −0.057± 0.002 −0.074± 0.003 −0.071± 0.004 −0.047± 0.004

χBQS121 −0.039± 0.008 −0.049± 0.021 0.038± 0.020 0.084± 0.036

χBQS012 −0.061± 0.002 −0.056± 0.004 −0.044± 0.005 −0.030± 0.013

χBQS112 −0.014± 0.005 0.044± 0.025 −0.005± 0.033 0.107± 0.090

χBQS022 0.133± 0.006 0.129± 0.013 0.069± 0.011 0.039± 0.020

χBQS031 0.083± 0.004 0.069± 0.008 0.100± 0.010 0.133± 0.019

χBQS013 0.142± 0.005 0.071± 0.016 0.070± 0.022 −0.022± 0.056

Table 6. Raw data at T = 170 MeV and µ
(j)
B = iT jπ

8 for j ∈ {4, 5, 6, 7}.
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