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Abstract: Many cosmological models rely on large couplings of axions to gauge fields.

Examples include theories of magnetogenesis, inflation on a steep potential, chiral grav-

itational waves, and chromonatural inflation. Such theories require a mismatch between

the axion field range and the mass scale appearing in the aF F̃ coupling. This mismatch

suggests an underlying monodromy, with the axion winding around its fundamental period

a large number of times. We investigate the extent to which this integer can be explained

as a product of smaller integers in a UV completion: in the parlance of our times, can the

theory be “clockworked”? We argue that a clockwork construction producing a potential

µ4 cos( a
jFa

) for an axion of fundamental period Fa will obey the constraint µ < Fa. For

some applications, including chromonatural inflation with sub-Planckian field range, this

constraint obstructs a clockwork UV completion. Alternative routes to a large coupling

include fields of large charge (an approach limited by strong coupling) or kinetic mixing

(requiring a lighter axion). Our results suggest that completions of axion cosmologies that

explain the large parameter in the theory potentially alter the phenomenological predictions

of the model.
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1 Introduction: large couplings in axion cosmology

A large set of cosmological models rely on a (pseudo)scalar field coupled to an FF̃ term

for a gauge field or an RR̃ term for gravity. Applications include the generation of pri-

mordial magnetic fields [1–3]; dissipation allowing for inflation in steep potentials [4–6];

baryo- or leptogenesis [7]; chromonatural inflation [8–11]; production of chiral gravita-

tional waves during inflation [12–18]; preheating [19]; decreasing the abundance of QCD

axion dark matter [20, 21] and providing alternative dissipation mechanisms [22–24] in

relaxion cosmology [25].

Some of these theories are particularly interesting because they allow qualitatively new

phenomena compared to conventional theories. For instance, the usual manner in which in-

flation can produce a possibly observable tensor-to-scalar ratio is large-field inflation, that

is, if the inflaton field range is larger than the Planck scale. This is the so-called “Lyth

bound” [26]. Theories like chromonatural inflation can produce a large signal from chiral

primordial gravitational waves, even with a small field range, thus evading the Lyth bound.

The central element is the presence of gauge fields which are constantly replenished by the

rolling inflaton field. These gauge fields have tensor fluctuations which are not related to

scalar fluctuations in the same way as in usual slow-roll inflation. Another interesting result
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is that axion couplings to gauge fields, by providing a source of dissipation other than Hub-

ble friction, can allow inflation in steep potentials that fail the usual slow-roll criteria [4].

Both of these examples have heightened interest due to various “Swampland” conjec-

tures about what is possible in quantum gravity [27–29]. For example, theories of large-field

inflation run into tension with the failure of explicit searches for super-Planckian field ranges

in string theory [30–36], with the Weak Gravity Conjecture [28, 37–43], and with more gen-

eral Swampland arguments about difficulties with super-Planckian field ranges [29, 44–51].

These difficulties make chromonatural inflation particularly interesting as a theory that

can generate a large tensor signal while possibly evading such constraints. More recently,

some authors have speculated that there are no consistent de Sitter vacua in quantum

gravity [52–56] (also see [57, 58]). An even stronger statement has been suggested: there is

no region of the scalar potential in quantum gravity for which V > 0 and Mpl|∂φV |/V � 1,

putting tension on the slow-roll inflation paradigm [59, 60]. This makes inflating in steep

potentials through dissipation an even more interesting possibility, as it evades such hypo-

thetical (but speculative) Swampland bounds. For these reasons, it is very interesting to

consider the model-building of these theories in more detail, to assess how plausible UV

completions may be.

A common feature for the cosmological models mentioned above is an axion-gauge field

coupling that is parametrically large relative to the field range of the axion. An axion is a

periodic field, a ∼= a+ 2πFa with Fa being the fundamental period. A typical Lagrangian

in these models takes the form

L ⊃ µ4 cos

(
a

jFa

)
+ k

α

8π

a

Fa
FµνF̃

µν , (1.1)

where the first term is the effective potential of the axion generated (for example) by non-

perturbative dynamics of some confining gauge group with a confinement scale µ. The

coefficient j appears to violate this shift symmetry, but if it is an integer it can arise via

monodromy, i.e. a potential with multiple branches [61–63]. In the second term, Fµν is the

field strength of some other Abelian or non-Abelian gauge group, which will play different

roles depending on the model. The coefficient k must be an integer due to the axion shift

symmetry. The effective field range of the axion is then

fa ≡ jFa. (1.2)

Note that when gauge fields are canonically normalized, the presence of the factor of α = g2

4π

with g being the gauge coupling is required for consistency with the discrete shift symmetry

of the axion. Unsurprisingly, the same factor appears in the θ-term for the gauge theory.

Quite a few phenomenological applications in the cosmological models simply write the

axion-gauge field couplings as λ
fa
aFµνF̃

µν without explicitly writing the coupling strength.1

These applications typically require the dimensionless coefficient λ � 1. In our notation

in eq. (1.1), this requirement is translated to

kjα� 1. (1.3)

1Be aware of notation: some literature used α instead of λ to denote the overall axion-gauge field

coupling, but this α is not g2/(4π).
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This factor of α = g2/(4π) has not been emphasized in the literature of many cosmological

models. In perturbative models, α . 0.1 when the gauge coupling is ∼ 1. Sometimes there

are further constraints on the size of the gauge coupling and α has to be smaller. Taking

α into account, an enhanced axion-gauge field coupling usually requires a huge value for

k× j, which could be orders of magnitude larger than the number quoted in the literature.

While there are ways of getting enhanced couplings of axions to gauge fields [64, 65], these

mechanisms are subject to simple theoretical constraints. It is thus highly non-trivial

and interesting to investigate whether and how to get the large axion-gauge field coupling

needed for interesting cosmological dynamics.

We see from the discussion above that there are two enhancement factors, an enhanced

coupling k and an enhanced field range j. There are three possible types of mechanisms to

generate a large coupling between the compact axion field and gauge fields. The first two

enhance the coupling via increasing k, while the third enhances the field range.

• Inclusion of matter fields such as vector-like fermions with large charges under the

gauge group or large PQ charge;

• Kinetic mixing between multiple axions [66];

• Two axion Kim-Nilles-Peloso (KNP) alignment [67] or its generalization to models

with more than two axions (clockwork models [68, 69]).

In the QCD axion context, the three mechanisms and their qualitative enhancement factors

have been studied in ref. [65]. It is important to keep in mind that all the mechanisms are

subject to different theoretical constraints and may not generate arbitrarily large couplings.

In particular, we will argue that

Large charges⇒ k . α−1,

Clockwork⇒ j . fa/µ. (1.4)

The kinetic mixing case potentially evades the bound on k, but this requires a lighter axion

field to be present in the EFT. Together, these considerations can significantly constrain

the available options for UV completing an effective field theory of axions coupled to

gauge fields.

The models we study involve enhanced couplings of an axion-like particle to the gauge

field, which requires the presence of fermions charged under the gauge group close to the

scale suppressing the operator. The cosmology of these models additionally involves the

production of large gauge fields. An interesting possible consequence is that these large

gauge fields lead to non-perturbative instabilities via Schwinger pair-production of charged

fermions or non-Abelian gauge fields [23, 24, 70–74]. Clockwork theories of multiple axions

also have interesting networks of topological defects that can affect the cosmology [75]. A

detailed study of these phenomena is beyond the scope of this paper.

In section 2 we summarize the enhancement with mechanisms that rely on matter with

large charges or kinetic mixing, and the associated theoretical constraints. The mechanism

that could lead to the most significant enhancement is the clockwork mechanism. We will
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discuss the constraints on it and alignment model in detail in section 3. Section 4 discusses

large couplings in the Anber-Sorbo inflation model, which could be clockworked. Section 5

discusses the chromonatural inflation model, in which the necessary enhancement for the

axion-gauge field coupling is so large that even the clockwork mechanism (which is the

most efficient way to generate an exponentially large coupling) could not work unless the

inflaton field range is super-Planckian. We offer concluding remarks in section 6.

2 Mechanisms to generate large axion couplings

In this section, we will discuss issues generating large axion couplings to gauge fields via

a large value of k, which may be obtained by integrating out matter with large charges or

through kinetic mixing.

2.1 Vector-like matter with large charges

Let us consider the following interaction

kα

8πFa
aF F̃ (2.1)

Here, k is an anomaly coefficient that depends on the gauge and PQ charges (and the

number of flavors) of fermions integrated out at the scale Fa. As discussed in appendix

C of ref. [65], larger PQ charges qPQ require small fermion masses ∝ (Fa/Λ)qPQ , and it is

not possible to get a very large enhancement by increasing PQ charges alone. We will not

pursue the large PQ charge case further and assume the PQ charge is 1.

We briefly recall the problem with large gauge charges. We imagine that the axion

interaction is generated by Nf fermions Q as in the KSVZ axion model [76, 77]:

L =
NfI2(Q)α

4πFa
φF aµνF̃

a,µν (2.2)

where I2(Q) is the Dynkin index of the representation. However, requiring that the gauge

theory is perturbative at the scale of the PQ breaking requires

NfI2(Q)α . 1. (2.3)

Therefore, kα . 1.

In these models the fermions get a mass from the spontaneous breaking of the PQ

symmetry, so that mf . Fa.

2.2 Kinetic mixing

Kinetic mixing of two axions can contribute to enhanced couplings to a gauge group [20,

78, 79]. To review the basic mechanism, consider the following simplified Lagrangian where

the cosmologically evolving axion a kinetically mixes with a lighter axion b,

L =
1

2
(∂a)2 +

1

2
(∂b)2 + ε(∂µa)(∂µb) + µ4 cos

a

Fa
+

α

8πFb
bFµνa F̃ a,µν . (2.4)
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The axion a inherits the coupling

εFa
Fb

α

8πFa
aFµνa F̃ a,µν , (2.5)

so that for εFa/Fb = k � 1, the couplings of a can be enhanced.

However, we see that there is a coupling of axion b to the gauge bosons with a very

small value of Fb. Therefore, the price for this enhancement are states charged under the

gauge group which are much lighter than Fa. The presence of such very light charged

fermions can significantly alter the phenomenology, e.g. due to Schwinger pair production.

2.3 Non-compact fields

While most of the discussions in the paper will focus on the case of a compact axion field,

the issue of generating a large coupling can be studied more generally even beyond theories

of compact axions. For instance, let us consider the following theory without a fundamental

shift symmetry,

− 1

2
m2φ2 − c4

4!

m2

f2
φ4 +

kα

f
φF F̃ + · · · , (2.6)

with f being the field range of φ. The dimensionless coefficient c4 is order-one in general.

Now, suppose that we generate the φFF̃ coupling by integrating out a Dirac fermion

beginning with the renormalizable Lagrangian

mQQQ+ iyφQγ5Q. (2.7)

In this case, integrating out the fermion Q will generate an effective coupling of order

g2I2(Q)

16π2
arg(mQ + iyφ)FF̃ .

g2I2(Q)

16π2

φ

f
F F̃ , (2.8)

with I2(Q) the Dynkin index of the representation of Q under the gauge group. In the

second step we have assumed that mQ & yφ ∼ yf , since the value of φ contributes to the

mass of Q. Perturbativity of the theory requires that αI2(Q) . 1. As a result, we see

that again it is difficult to explain the large φFF̃ coupling relative to 1/f (with f the field

range) without a UV completion that contains more structure. This motivates thinking

about mechanisms like alignment or clockwork, which we will discuss more in detail below,

even though we have not assumed that φ is a fundamentally compact field. In particular,

here f was merely set by the range of values φ traverses, not by its period.

3 Theoretical constraints on alignment and clockwork mechanisms

In this section, we discuss a simple theoretical constraint on using the alignment or the

clockwork mechanism to generate a large axion coupling to gauge fields. The constraint is,

in terms of parameters in the effective Lagrangian of the axion given by eq. (1.1)

µ . Fa. (3.1)
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We want to emphasize the right hand side is the fundamental period of the axion, instead of

the effective field range, which could be significantly larger in monodromy models including

alignment and clockwork models. The constraint is rooted in the unitarity constraint on a

single axion, which will be described in section 3.1. Then we will prove it in the two-axion

alignment and multi-axion clockwork model.

3.1 Unitarity constraint on single axion model

Our argument relies fundamentally on the following claim: in any effective theory contain-

ing the potential for the single axion

V (a) = µ4

[
1− cos

(
a

fa

)]
, (3.2)

we must have µ . fa. This follows simply from perturbative unitarity. Expanding around

the minimum of the potential, we have

V (a) =
1

2

µ4

f2
a

a2 − 1

4!

µ4

f4
a

a4 +
1

6!

µ4

f6
a

a6 + · · · , (3.3)

so the low-energy amplitude for aa→ aa scattering behaves as

M≈
(
µ

fa

)4(
1− c

16π2

Λ2
UV

f2
a

+ · · ·
)
, (3.4)

with ΛUV an ultraviolet cutoff on loops computed with the effective Lagrangian and c

some scheme-dependent order-one constant. The first term is the tree-level amplitude, the

second comes from beginning with a six-point vertex and sewing up two lines to form a

1-loop diagram, and a series of additional terms appearing with further powers of ΛUV/f

will arise from higher-point couplings.

Unitarity requires that the amplitude M be bounded: specifically, the ` = 0 partial

wave amplitude a0 should satisfy |Re a0| < 1
2 . In perturbation theory, a0 ≈ −M16π . Thus,

in order for perturbation theory to be approximately reliable we must require(
µ

fa

)4

. 8π ⇒ µ . 2fa, (3.5)

ΛUV . 4πfa. (3.6)

This already places some constraints on scenarios discussed in the literature; for example,

the gauge-flation trajectory of [80] is discussed for a parameter point with µ = 4fa =

4× 10−2Mpl. In this case, treating the theory using the classical equations of motion in a

cosine potential is not expected to be valid, because unitarity requires large corrections to

answers computed perturbatively from the Lagrangian.

One could ask how the constraint µ < fa is enforced in UV completions; for example,

we can write a renormalizable theory breaking Peccei-Quinn symmetry at some scale fa
and with confinement at some other scale Λ, and a priori these appear to be independently

adjustable parameters. However, if one tries to build a model with µ � fa, one always
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finds that confinement has important effects on the PQ-breaking dynamics that ensure the

bound is respected. Simple examples illustrating this point are discussed in appendix A.

Let us pause here to discuss a small technical subtlety that in the end has no impact

on our arguments. Depending on how the cosine potential (3.2) is generated, there may

already be a monodromy present. For instance, confinement in an SU(n) Yang-Mills theory

is expected to generate a potential with n branches of the form n2E(θ/n), where E is a

function of period 2πn despite the fact that θ has fundamental period 2π [61, 62]. The

axion potential generated by confinement can be taken schematically to be of the form (3.2)

with µ4 ∼ n2Λ4
conf and fa = nFa, with Fa the fundamental axion period. However, we

are not interested in theories with unexplained, parametrically large n (requiring a large

number of fundamental fields and implying a UV cutoff .Mpl/n). We will focus on small-

n gauge groups and the possibility of generating monodromy through products of smaller

integers. As a result, we will suppress the factor of n and take the confinement potential to

be µ4 cos(a/F ), rather than µ4 cos(a/(nF )), below. Restoring factors of n will change our

final conclusion only by an order-one factor provided all the n’s are themselves order-one.

In particular, the main argument will rely on the statement that a potential of the form

µ4
i+1 cos

[
1

ni+1

(
Niai
Fi

+
ai+1

Fi+1

)]
(3.7)

serves to set ai+1 = −Niai
Fi+1

Fi
, a fact which is independent of the ni+1 factor.

3.2 Two-site alignment model

It is easiest to demonstrate the crucial constraint in eq. (3.1) using the simple two-site

alignment model that could enhance the axion coupling. Subsequent to the original work

of Kim, Nilles, and Peloso [67], such models have been studied extensively in e.g. [81–84].

The model is given by

L =
αs;1
8πF1

a1G1G̃1 +
αs;2
8π

(
Na1

F1
+
a2

F2

)
G2G̃2 +

α

8πF2
a2FF̃ , (3.8)

where G1, G2 are the field strengths of two heavy confining gauge groups. N > 1 is an

integer and is usually some group theoretical factor in a full model (one full model based

on KSVZ fermions could be found in ref. [65]). F is the field strength of a gauged U(1)

(which is not necessarily our electromagnetic U(1)). It is straightforward to generalize the

discussion for U(1) to that of a non-Abelian gauge field. αs;1 = g2
s;1/(4π), αs;2 = g2

s;2/(4π),

α = g2/(4π) are the coupling strengths of the two confining gauge groups and U(1) respec-

tively with gs;1, gs;2, g corresponding gauge couplings. Below the confinement scales, the

effective potential of the two axions is

V (a1, a2) = µ4
1 cos

(
a1

F1

)
+ µ4

2 cos

(
Na1

F1
+
a2

F2

)
. (3.9)

We need

µ1 < µ2 . F2. (3.10)
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The first inequality between the two confinement scales µ1 and µ2 is needed for enhancing

the light axion coupling to photons. If µ1 < µ2, the heavy axion is

Na1

F1
+
a2

F2
, (3.11)

up to a normalization factor. Integrating out the heavy axion by setting the heavy axion

field to be zero, we have the effective Lagrangian for the light axion, which is mostly a2:

L(a2) = µ4
1 cos

(
a2

NF2

)
+

α

8πF2
a2FF̃ . (3.12)

Mapping onto eq. (1.1), we have

µ = µ1, Fa = F2, j = N, fa = NF2, and k = 1. (3.13)

To get an enhanced axion-gauge field coupling, eq. (1.3) tells us that Nα� 1.

The second inequality between µ2 and F2 is due to the fact that otherwise, the axion

quartic coupling would be � 1 and violates perturbative unitarity, as discussed in the

previous section. Another way to understand it is that if µ2 > F2, then confinement would

break the PQ symmetry first, as discussed in examples in appendix A. The axion potential

is then modified and F2 in eq. (3.9) should be replaced by µ2. These two inequalities are

combined to give us the constraint in eq. (3.1), which in this case is simply µ1 < F2.

In this example, we can derive a separate and even stronger bound: µ1 < µ2 . F1/N ,

again following from unitarity using the second cosine term. If F1 ∼ F2, this is a much

stronger bound. In fact, this bound is weaker only when F1 > NF2 and we have already

introduced a large hierarchy of decay constants at the outset, so that alignment is not

helping. However, in the clockwork case below the integer N will be a smaller number and

there is little difference between the two bounds.

3.3 N-site clockwork

The argument for two-axion alignment model could be generalized to N -site clockwork

model. This could be mostly easily checked in the confinement tower model [65] (a super-

symmetric version of which appeared earlier in [68]; also see [85]). Consider n confining

gauge groups SU(ni) with field strengths labeled by Gi, i = 1, 2, · · ·n with a Lagrangian

L =

n−1∑
i=1

αs;i+1

8π

(
Niai
Fi

+
ai+1

Fi+1

)
Gi+1G̃i+1 +

αs;1
8πF1

a1G1G̃1 +
α

8πFn
anFF̃ , (3.14)

where Ni ≥ 1’s are integers. The potential of the n axions is given by

V (ai) =

n−1∑
i=1

µ4
i+1 cos

(
Niai
Fi

+
ai+1

Fi+1

)
+ µ4

1 cos

(
a1

F1

)
. (3.15)

Note that this potential holds in general clockwork models such as the original model based

on a number of scalars with particular quartic couplings.2

2In the original model, there are n complex scalars, φi, i = 1, 2, · · ·n with quartic couplings φ3
iφ

†
i+1 +h.c.

Every scalar obtains a vacuum expectation value 〈φi〉. Their angular modes become the axions with a

potential in eq. (3.15), in which all the Ni = 3 and Fi = 〈φi〉.
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To enhance the couplings of the lightest axion (which is mostly an) to photons, we need

µ1 < µ2,3,··· ,n, µn < Fn. (3.16)

After integrating out the heavy axions by setting

Niai
Fi

+
ai+1

Fi+1
= 0, i = 1, 2, · · ·n− 1, (3.17)

we have the effective Lagrangian of the lightest axion an,

Leff =
αs;1

8π
(∏n−1

i=1 Ni

)
Fn
anH1H̃1 +

α

8πFn
anFF̃ . (3.18)

Mapping onto eq. (1.1), we have

µ = µ1, Fa = Fn, j =
n−1∏
i=1

Ni, fa =

(
n−1∏
i=1

Ni

)
Fn, and k = 1. (3.19)

Again the inequalities in eq. (3.16) are reduced to eq. (3.1).

In this case we can derive slightly stronger bounds like µ < Fa/Nn−1, but if we take

the Ni to be order-one numbers this is only a modestly more stringent constraint.

Before moving on to our main examples, let us briefly remark on the original relaxion

model [25]. In this case the potential is of the form gM2φ+ g2φ2 + · · · , where g is a tiny

mass scale reflecting small breaking of the φ shift symmetry and M is a UV cutoff. This

is an expansion in φ/flarge where flarge ∼ M2/g. From this we read off that the analogue

of µ4 is gM2flarge ∼ M4. If we try to complete the model with clockwork to explain why

flarge � F , with F the scale appearing in the Λ(h)4 cos(φ/F ) term, then eq. (3.1) becomes

M < F . This constraint is respected in the models of [25]. We have not explored to what

extent this remains true in the large literature of variations on the model.

4 A clockworkable example: Anber-Sorbo inflation

In some theories, the constraint in eq. (3.1) will be a mild constraint. In others, it is a

much more difficult constraint to satisfy. An example of the latter case is chromonatural

inflation. In this section, we will go through a clockworkable example: the Anber-Sorbo

inflation model [4].

The Anber-Sorbo model is based on natural inflation with an axion-like particle being

the inflaton [86]. The usual natural inflation model needs the axion field range to be

super-Planckian to satisfy the slow-roll condition. What is new in the Anber-Sorbo model

is that a large axion-gauge field coupling leads to production of gauge bosons when the

axion rolls down the potential. The electromagnetic dissipation slows down the rolling and

relaxes the slow-roll constraint. As a result, the field range of the axion inflaton could be

sub-Planckian. Below we review the basics of the model and its predictions briefly.

The Lagrangian of the model is

L =
1

2
(∂a)2 +

N∑
i=1

1

4
F iµνF

µν;i + µ4 cos

(
a

fa

)
+

N∑
i=1

kjα

8π

a

fa
F iµνF̃

µν;i, (4.1)
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where the potential and interaction terms are the same as in eq. (1.1) by expressing Fa =

fa/j. The index i = 1, 2, · · · N labels the N U(1) gauge fields introduced in the model.

The large number of gauge fields is necessary to get the right amplitude of the two-point

function, as we discuss below. Again α = e2/(4π) here is the fine structure constant of the

gauged U(1)’s (note that in the original paper, α is used as the overall coupling equivalent

to kjα/(2π) here). We assume that the gauge couplings of all the U(1)’s are the same

without loss of generality. We also assume the couplings of axion to all the gauge fields

are the same as well. The key parameter that controls the tachyonic production of gauge

fields is ξ ≡ β ȧ
2faH

. In the slow-roll solution, it satisfies

ξ ≈ 2

π
log

(
ξ

14Mpl

(Nβ)1/4µ

)
, with β =

kjα

2π
, (4.2)

where O(1) . ξ . 20 and the reduced Planck scale Mpl = 2.4 × 1018 GeV. The total

number of e-folds is given by

Ne =
β

2ξ

∆a

fa
.
πβ

2ξ
, (4.3)

where ∆a is the range of variation of a during inflation, which is bounded to be . πfa.

The amplitude of the two-point power spectrum is given by [14]

∆2
R ≈

0.05

N ξ2
, (4.4)

and should match the observation 2.2 × 10−9 [87]. Since ξ is at most around 20,

N > 5.6× 104. In this model, the generation of photons during inflation sources chiral

gravitational waves. As a result, it adds an additional contribution to the tensor to scalar

ratio on top of the usual quantum fluctuations of gravitons [14]

r =
1

Pξ

2V

3π2M4
pl

+ 2.7× 102 ξ
4

β2

(
V ′fa
V

)2

,

= 5.2× 104 ξ
6

β
e−2πξ + 2.7× 102 ξ

4

β2
, (4.5)

where to get the second line, we approximate V ≈ µ4, V ′f ≈ V and express µ in terms of

ξ and β using eq. (4.2).

To get enough e-folds with Ne ≈ (50− 60) and to satisfy the observational constraint

r . 0.11 [87], we need a large enhancement of all the axion-photon couplings:

When ξ = 10, β & 5× 103 ⇒ kj & 5× 104

(
0.1

α

)
When ξ = 20, β & 2× 104 ⇒ kj & 2× 105

(
0.1

α

)
(4.6)

To obtain this large enhancement, we need to invoke the clockwork mechanism as described

in section 3.3. For instance, it could be realized in the confinement tower model with 10
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confining SU(3)’s and 10 axion-like particles (the lightest axion being the inflaton) when

ξ = 10. In this case, the fundamental period of the axion inflaton is

Fa =
fa
j

= 2× 10−5fa

( α

0.1

)
, (4.7)

where we take k = 1 without loss of generality. The confinement scale µ is given by,

µ = 14Mpl
ξ

(Nβ)1/4
e−πξ/2. (4.8)

Since it is exponentially sensitive to the order one parameter ξ, the constraint in eq. (3.1)

and sub-Planckian field range fa < Mpl could be satisfied simultaneously, for instance, when

ξ = 10, α = 0.1, β = 5×103 and fa = 1018 GeV, µ = 2.8×1011 GeV and Fa = 2×1013 GeV.

In short, the Anber-Sorbo model needs two types of large numbers: a) O(105) U(1)

gauge fields; b) each axion-gauge field coupling enhanced by at least O(105) which could

result from clockworking of O(10) axions. In addition to predicting chiral gravitational

waves, Anber-Sorbo model also predicts a non-Gaussianity f equil
NL = −1.3ξ, which is in the

range (5–30).3 This is consistent with current Planck constraint [90] and could be confirmed

or falsified at CMB stage 4 experiment. Finally, refs. [6, 91] also consider the possibility

that the large number of gauge fields produced during inflation lead to thermalization and

formation of a hot plasma. We stick to the original proposal of Anber and Sorbo and leave

the possibility of thermalization for future discussion.

5 Chromonatural inflation

Chromonatural inflation models feature an axion with a large coupling to gauge fields,

requiring a very large enhancement factor jk — much larger than the O(100) number

usually stated in the literature. The basic ingredients are an axion which has a potential

and a coupling to a non-Abelian gauge field:

L = −1

4
F aµνF

a,µν + µ4 cos

(
a

fa

)
+

kjα

8πfa
aF aµνF̃

a,µν (5.1)

For this simple analysis, we ignore the fact that we need to add a Higgs for consistency with

inflationary phenomenology [92]. We expect this to make order-one differences in allowed

parameters, but not to qualitatively change any conclusion.4 The original literature on

chromonatural inflation introduced a parameter λ ≡ kjα/π and argued that a modestly

large λ ∼ 100 was necessary for the mechanism to work. However, their benchmark model

invoked a tiny gauge coupling α ∼ 10−12, and hence (implicitly) a huge kj ∼ 1015. (This

3Possible large non-Gaussianity in inflation models with axion coupling to gauge fields have been studied

in refs. [88, 89]. Yet those analyses assume the back-reaction of the gauge field on the inflaton is negligible

and inflation potential is flat. Thus their derived constraint on the axion-gauge field coupling does not

apply to the Anber-Sorbo model.
4An alternative, more qualitatively different, approach is to introduce a separate inflaton field φ, treating

both the axion and the gauge field as spectators during inflation; see e.g. [18, 93, 94]. The constraints we

discuss should play a role in those models as well, but we will not consider them in detail here.
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has previously been pointed out, in passing, in [95].) We will now show that the clockwork

mechanism is not sufficient to explain this large number.

The gauge field is assumed to have a background,

F a0i = ∂t(ψ(t)a(t))δai , F aij = −gfaij(ψ(t)a(t))2 (5.2)

where a(t) refers to the scale factor. This classical background spontaneously breaks the

product of spatial rotations and internal gauge rotations to the diagonal, preserving a notion

of isotropy. Such inflationary backgrounds were first explored in the context of gauge-

flation [96], which resembles chromonatural inflation [97] but relies on higher dimension

operators instead of an axion field (and so is outside the scope of our discussion here). We

are interested in solutions where the energy density is dominated by the axion a, and it

has a slow roll solution supported by friction from the gauge field. A useful quantity to

parametrize the solutions is

w ≡
(

kjµ4

6π2Mpl
4

)1/3

. (5.3)

(This is approximately 1/mψ in the notation of [11, 15].) It turns out that for w > 1

fluctuations are unstable [11, 98] which will drastically change the phenomenology, so we

restrict to w . 1. The equations of motion imply that (approximately),

ψ

Mpl
≈ µ2

gwMpl
2

√
2/3 sin1/3 θ (5.4)

1

fa

da

dN
=

2π

kjα

(
w cos θ

sin1/3 θ
+

sin1/3 θ

w cos θ

)
(5.5)

with θ ≡ a/(2fa).
It follows that the number of e-folds in chromonatural inflation is given by

Ne(a0) =
kjα

π

∫ π/2

a0/2fa

dθ
1

w cos θ
sin1/3 θ

+ sin1/3 θ
w cos θ

.
3

2π
αkjw (5.6)

where we have used the fact that w . 1 to derive the final inequality. Our constraint

eq. (3.1) implies that jµ < fa, so that

αkjw = α

(
k4j4µ4

6π2Mpl
4

)1/3

< αk

(
kf4

a

6π2M4
pl

)1/3

.

(
k

6π2

)1/3

, (5.7)

where in the last step we have assumed a sub-Planckian field range fa .Mpl as well as the

perturbativity bound αk . 1.

Numerically, this requires that k be quite large:

k & 6π2

(
2πNe

3

)3

∼ 108(Ne/60)3. (5.8)
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Because the clockwork mechanism can explain a large j but not a large k, this immediately

implies that clockwork alone is not sufficient for a viable chromonatural inflation cosmology

(if we restrict to sub-Planckian field ranges). At the same time, the constraint kα . 1

implies that a large value of k is also not sufficient by itself: we would never attain λ & 1

by relying solely on k. Therefore, we conclude that we need both a clockwork mechanism

as well as (very) large charges in order to realize chromonatural inflation. The large value

of k could potentially arise from kinetic mixing with another, lighter axion, but in this case

one should check whether the additional light field has any important phenomenological

consequences. We will not consider this possibility in more detail here.

Inflationary phenomenology further restricts the allowed parameter space significantly.

The other constraints on this parameter space come from the size of the scalar perturba-

tions, the spectral tilt, and the slow-roll parameter. In the case of chromonatural inflation,

these have been calculated in some detail [9, 11, 15, 98, 99]. The scaling behavior of these

quantities is [11]

εH ∼ ηH ∼ 1− ns ∼
1

Ne
∼ 2π

3kjαw
(5.9)

∆2
R ∼

µ4

6εHMpl
4 ∼

µ4

6Mpl
4

3

2π
kjαw . (5.10)

We emphasize that these relations can get corrected by O(1) factors, especially once we

consider the Higgsed chromonatural model [92], but the overall scaling behavior should

still hold.

From these equations, we can immediately extract that the value of µ must be large:

µ ∼Mpl

(
∆2
R

Ne

)1/4

∼ 1016 GeV. (5.11)

As discussed in [95], this may superficially run afoul of the Weak Gravity Conjecture,

which motivates an ultraviolet cutoff at or below gMpl [28]. Nonetheless, this UV cutoff

may be of a mild form, associated with the existence of a tower of states charged under

the gauge theory [100–103]. This leads to a more stringent UV cutoff at or below g1/2Mpl,

with which chromonatural inflation is at best marginally compatible [95]. However, in the

context of clockwork completions (5.11) has an immediate, less conjectural, consequence.

The fundamental clockwork constraint (3.1) tells us that µ . fa/j . Mpl/j (where we

again assume a sub-Planckian field range), and hence

j .
Mpl

µ
∼ 102. (5.12)

This implies that (in the notation of the original references) the benchmark values of λ

are only marginally compatible with the clockwork mechanism, and compatibility with

this bound further requires us to choose k ∼ α−1 so that the theory is at or near strong

coupling. Notice, in particular, that our arguments require that k is several orders of

magnitude larger than j, so that clockwork alone falls dramatically short of explaining the

large coupling.
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0.004 0.006 0.008 0.010

5.× 10-10

1.× 10-9

5.× 10-9

1.× 10-8

Fa/Mpl

α

w > 1
μ
>
F
a

(k
α
> 1) &

(fa > M
pl )

k=5×107

k=2×108

k=109

Figure 1. Viable parameter space for chromonatural inflation. We assume the number of e-folds

of inflation, Ne = 60, and ∆2
R = 2.2 × 10−9 as well as other theoretically motivated constraints

discussed in the text. The red regions show the allowed parameter space for particular values of k.

The white region is the union of all such regions. The fact that large k is required indicates that

clockwork alone cannot explain the large coupling in chromonatural inflation.

The two inflationary constraints above can be used to eliminate µ and j, leaving

{α, Fa, k} as the free parameters.5 There are a number of inequalities that these parameters

should satisfy,

• kα < 1: from perturbativity of the gauge coupling

• w < 1: for stability of perturbations

• µ . Fa: as derived in equation (3.1)

• fa = Fa j < Mpl: avoiding large field excursions is one of the prime motivations of

the model

These constraints are shown in figure 1. (A further constraint, that j > 1, is satisfied

everywhere in the figure.) For a particular choice of k, the red triangles show the regions

allowed by the constraints above. The upper edge of the triangle corresponds to kα = 1,

whereas the sloping edge corresponds to fa = Mpl. The white region is the union of all

such regions. We see that the allowed range of parameters is roughly α ∈
(
10−10, 10−8

)
,

Fa
Mpl
∈ (0.004, 0.008), j ∈ (130, 260) and k ∈

(
107, 109

)
.

5Because we expect that a model compatible with data in detail will involve various changes to order

one factors, as in [92], we have simply taken the ∼ estimates in (5.10) to be equalities and have fixed the

number of e-folds of inflation Ne = 60. Our goal is to convey an order-of-magnitude sense of the constraints,

and the precise order-one factors appearing in our results should not be taken too seriously.

– 14 –



J
H
E
P
1
0
(
2
0
1
8
)
1
9
3

6 Conclusions

Large couplings of axion to gauge fields could lead to very interesting cosmology. In

particular, they may allow alternative realizations of slow-roll inflation with a steep inflaton

potential, as suggested by Anber-Sorbo and chromonatural inflation models. In this article,

we demonstrate that quite a few axion cosmology models, including Anber-Sorbo and

chromonatural models, actually require (significantly) larger axion-gauge field couplings

than quoted in the literature, taking into proper account of the presence of the gauge

coupling strength in the axion coupling when gauge fields are canonically normalized.

This observation imposes a highly non-trivial model-building challenge to axion cosmology:

can a large axion coupling to gauge fields arise in a UV completion without large input

parameters?

We focus on the two simplest possible methods: inclusion of matter with large charges

under the gauge group or PQ symmetry and the clockwork mechanism (equivalently, multi-

axion alignment) to significantly extend the effective axion field range beyond its funda-

mental period. We discuss simple theoretical constraints in either case: in the large charge

case, the strong coupling constraint requires the charge times the gauge coupling strength

to be around or below one while in the clockwork case, the confinement scale of the non-

perturbative dynamics generating the axion potential has to be below the fundamental

period of the axion field. These constraints obstruct the UV completion, point towards

different feasible parameter space, and may alter the phenomenological predictions.

Finally, we want to comment on possible future directions. In our study, we only use

simple parametric approximations for some of the observables. It could be worthwhile to

perform a more systematic analysis of the cosmological observables in the possible UV

completions. Another possible approach to enhance the axion coupling, the kinetic mixing

route, is largely unexplored in our paper. It will be interesting to pursue it further and

study the dynamics of the additional lighter axion that is needed in this approach.
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A How confining models ensure µ < fa

We have argued that any effective potential containing the cosine potential (3.2) requires

µ . fa. Here we elaborate on this point by showing how the inequality is enforced in some

simple examples. If we try to write down a model that will produce µ & fa, we will find that

confinement breaks the PQ symmetry and fa is larger than expected, consistent with this

bound. For example, consider the theory where our axion arises from the renormalizable
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Lagrangian

− λ
(
|φ|2 − 1

2
v2

PQ

)2

+
(
yφQQ̃+ h.c.

)
, (A.1)

with Q, Q̃ fermions charged in the fundamental and antifundamental representations of an

SU(N) gauge theory. At first glance, the axion decay constant fa is set by vPQ whereas the

scale µ that will appear in front of the cosine potential is determined by confinement, so

we can tune the two parameters independently. However, despite this freedom we cannot

attain µ � fa. Confinement produces a quark condensate 〈QQ̃〉 ≡ v3
conf , which is itself a

breaking of the PQ symmetry. In turn, this produces an effective tadpole for the scalar

field φ, potentially changing its vev. Ignoring radial fluctuations, we can work in terms of

two effective pseudoscalar fields a and η′:

φ 7→ 1√
2
fae

ia(x)/fa and QQ̃ = v3
confe

iη′(x)/fη′ . (A.2)

After confinement the effective potential for these fields is

V (a, η′) ≈
√

2yv3
conffa cos

(
a

fa
+

η′

fη′

)
+ Λ4

conf cos

(
η′

fη′

)
. (A.3)

First consider the limit where the tadpole term makes little difference in the vev of φ,

i.e. when fa ≈ vPQ. The condition for this to hold is that yv3
conf � λf3 . f3. In this case,

we have µ4 ∼ yv3
conffa � f4

a , in line with the bound above. On the other hand, it could be

that the tadpole term is very significant and that fa � vPQ. In this case the vev of φ is

determined primarily by the interplay between the quartic and tadpole terms, and hence

fa ∼
(y
λ

)1/3
vconf . (A.4)

If λ is small then this can still be the dominant PQ-breaking vev, but the effective potential

for the axion then scales as yv3
conffa ∼ λf4

a . f4
a , again in accord with the general bound.

Alternatively, we could consider a theory where the field φ dominantly has a PQ-

stabilizing mass term, i.e. the Lagrangian is

−m2 |φ|2 +
(
yφQQ̃+ h.c.

)
, (A.5)

and so PQ-breaking is entirely driven by confinement. In that case one has

fa ∼
yv3

conf

m2
. (A.6)

To achieve fa � µ we could attempt to take m � vconf . However, in that limit, we find

that the η′ becomes lighter than the axion, which has a mass

m2
a ∼ m2. (A.7)

As a result, we should integrate out the axion and view η′ as the dynamical field, rather

than the alternative.

In this way, we see that concrete models of Peccei-Quinn breaking beginning from

renormalizable theories will always respect the perturbative unitarity bounds that we have

discussed above.
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