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1 Introduction

Emergent symmetries are ubiquitous in quantum field theory (QFT):1 along renormaliza-

tion group (RG) flows, couplings that break certain symmetries are sometimes renormalized

to zero at long distance. The resulting infrared (IR) theory then has accidental symmetries

that are not present in the ultraviolet (UV) theory.2,3

Often, supersymmetry (SUSY) is one of these emergent symmetries. For example, in

three dimensions, one may potentially find accidental N = 1 SUSY in certain condensed

matter systems [6, 7] (see also [8] for a discussion of emergent N = 2 SUSY).

More generally, additional SUSY can emerge in RG flows that are already supersym-

metric. Instances of this phenomenon in three dimensions include the N = 3→ N = 6 (or

N = 8) enhancement in the ABJM flows starting from certain deformed super Yang-Mills

(SYM) theories in the UV [9] as well as N = 1→ N = 2 enhancement studied in other con-

texts [10, 11] (see also [12] for a recent discussion in the context of 3D N = 2 → N = 4).

In four dimensions, enhancement from N = 1 → N = 2 has also received considerable

attention recently [13–19].

In this note, we study SUSY enhancement along an infinite class of RG flows starting

from strongly interacting 4D N = 2 SCFTs labeled by integers (n, k) ≥ (2, 3),4 that do

not have known Lagrangians5 and ending at IR fixed points with thirty-two (Poincaré plus

1Throughout this note we use “emergent” symmetries and “accidental” symmetries interchangeably.
2In general, it is an interesting but difficult question to try to find constraints on the amount of accidental

symmetry (e.g., see [1–4] for a discussion in the context of certain classes of RG flows).
3Here we have in mind symmetries that act on local operators. One may generalize the concept of

emergent symmetry to include higher-form symmetries as well (e.g., see [5]).
4More precisely, as we will see below, these theories are specified by Young diagrams that are determined

by (n, k).
5These theories lack N = 2 Lagrangians because they have N = 2 chiral operators of non-integer scaling

dimension. Moreover, they do not have known UV Lagrangians in the sense of [13–19].
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special) supercharges.6 In particular, we provide evidence that these N = 2 SCFTs flow,

upon turning on “mass terms”7 and compactifying the theories on an S1 of radius r, to 3D

N = 8 SCFTs. These latter SCFTs can also be reached by turning on the gauge couplings

of u(n) 3D N = 8 SYM for arbitrary (n, k) ≥ (2, 3). In the case of (n, k) = (2, 3), we

provide arguments that the r →∞ limit of the flow is to a 4D theory with N = 4 SUSY.

While we believe it is likely that the r →∞ limits of these flows for any (n, k) ≥ (2, 3)

have 4D N = 4 SUSY (with a 3n complex dimensional moduli space) in the IR, we leave a

detailed study of this question and an analysis of the resulting spectra to future work [21].

One motivation for this note is simply to identify a space of theories in which SCFTs with

N = 4 SUSY in four dimensions may plausibly emerge somewhat more unconventionally.

We hope these constructions will shed light on the space of possible N = 4 theories (perhaps

even on the question of whether these theories are necessarily of SYM type).

The plan of this paper is as follows. In the next section we describe how our UV

theories are engineered starting from the AN−1 (2, 0) theory. We then discuss the case of

(n, k) = (2, 3) and motivate certain expectations for the corresponding RG flow from the

superconformal index discussion of [22]. We comment on the nature of the 4D IR fixed

point that emerges in the r → ∞ limit. Finally, we generalize our discussion to arbitrary

(n, k) ≥ (2, 3).

2 The UV starting points

Our particular UV 4D N = 2 SCFTs are obtained from certain twisted compactifications

of the AN−1 6D (2, 0) theory on a Riemann surface, C = CP1. A co-dimension two defect

intersects C at z =∞ giving rise to an irregular puncture at this point [23] (see also [24, 25]).

In our class of theories, C has no additional punctures.

One convenient way of studying certain aspects of the irregular puncture at z = ∞
and the resulting 4D theories is to first compactify the parent 6D theory on an S1. We

can then describe the irregular puncture in terms of the singular behavior of a twisted

element of the vector multiplet of the corresponding AN−1 5D maximal SYM theory —

the sl(N,C)-valued (1, 0)-form, Φzdz (sometimes called the “Higgs” field).8 Indeed, near

the irregular puncture, we find [23, 24]

Φz = z`−2T`−2 + z`−3T`−3 + · · ·+ T0 +
1

z
T−1 + · · · , (2.1)

where the second set of ellipses contain non-singular terms in the limit z →∞, and the Ti
are traceless N × N matrices. In the above equation, ` > 1 is an integer (the case ` = 1

describes a regular singularity and is not relevant to our discussion below; the case ` 6∈ Z
is also not relevant).

6Several examples of four-dimensional flows from N = 2→ N = 4 were studied at the level of Coulomb

branch geometries in [20].
7More accurately, these are deformations of the superpotential by dimension two holomorphic moment

maps in the same N = 2 multiplets as certain flavor symmetries.
8Φz is sl(N,C)-valued instead of su(N,C)-valued since it comes from Y 1 + iY 2 where Y 1 and Y 2 are

two adjoint scalars in the 5D SYM. It is a (1, 0)-form because of the twist.
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Combined with a gauge field on C, the configuration in (2.1) forms a solution to

Hitchin’s equations and describes the Higgs branch of the mirror of the S1 reduction of

our 4D theories of interest (the reduction of the 5D theory on C). Therefore, it describes

the Coulomb branch of the direct S1 reduction and also, via the base of the corresponding

fibration, the Coulomb branch of the 4D theory itself. For example, the Seiberg-Witten

curve of the 4D theory may be read off from the spectral curve [23, 24]

det(x− Φz) = 0 . (2.2)

In order for the description of the moduli space to not jump discontinuously as a

function of the parameters residing in the Ti, a sufficient condition on the Ti is that they

are regular9 semisimple (see [26] and references therein for a discussion in a closely related

context). In particular, this statement means that the Ti can be brought to the form

of diagonal matrices with non-degenerate eigenvalues. These singularities give rise to 4D

theories with Coulomb branch operators of non-integer scaling dimensions and generalize

the theories described in [27, 28].10

The above class of theories, while very broad, is (modulo some caveats we will discuss)

not closed under the natural SCFT operation of conformal gauging [30] or under the RG

flow. In fact, these SCFTs form a part of a much broader but still relatively poorly

understood class of theories called the “type III” theories [23] (these theories are expected

to exhibit various interesting phenomena; e.g., see [22, 31–33]).

To define the type III SCFTs, we relax the condition of regularity of the Ti. In this

case, the requirement of smoothness away from the origin of the moduli space implies

that [26]

L−1 ⊆ L0 ⊆ · · · ⊆ L`−2 , (2.3)

where the La are the Levi subalgebras associated with the Ti.
11 This restriction can be

conveniently described in terms of certain Young diagrams [23]

Ti ↔ Yi = [ni,1, ni,2, · · · , ni,ki ] , ni,a ≥ ni,a+1 ∈ Z>0 ,

ki∑
a=1

ni,a = N , (2.4)

where the columns of height ni,a represent the eigenvalue degeneracies of the Ti. The

condition (2.3) amounts to the statement that Young diagram i and Young diagram i− 1

are related by taking some number of columns (possibly zero) in diagram i and decomposing

each of them into columns in diagram i− 1.

In this picture, the T−1 matrix has a special status: it contains mass parameters (or,

equivalently, vevs for the corresponding background vector multiplets) of the theory. By

N = 2 SUSY, such mass parameters correspond to elements of the Cartan subalgebra

9Note that the puncture of C is still irregular!
10Just as in the case of regular singularities, irregular singularities may be enriched by the presence of

certain co-dimension one symmetry defects. Such a construction can lead to 4D SCFTs if there is also a

regular singularity present [29].
11Specifically, La is defined as the centralizer (in AN−1) of the Ti with a ≤ i ≤ ` − 2. Note that the

conditions in (2.3) are necessary but not sufficient to have a sensible SCFT.
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of the N = 2 flavor symmetry group. In particular, we see that the rank of the flavor

symmetry group, G, satisfies

rank(G) ≥ k−1 − 1 , (2.5)

where the inequality is saturated for cases in which all symmetries are visible in the Hitchin

system description (see the next section for an example with hidden symmetries).

As we will discuss below, one particular piece of progress in understanding type III

theories relevant to us in this note is the first computation of the superconformal index in

the non-regular case [22].12

In the remainder of this work, the particular theories we will be interested in have type

III singularities of the form

Y0,1 = [n, · · · , n] , Y−1 = [n, · · · , n, n− 1, 1] , (2.6)

where n ≥ 2, there are k0,1 = k ≥ 3 columns in Y0,1, and there are k−1 = k+1 ≥ 4 columns

in Y−1 (so that N = nk). We discuss the case of (n, k) = (2, 3) in the next section.

3 The (n, k) = (2, 3) case

In this section, we specialize to the UV N = 2 SCFT given by the Young diagrams

Y1 = Y0 = [2, 2, 2] , Y−1 = [2, 2, 1, 1] . (3.1)

This theory was originally described implicitly in [23]. However, the construction in [30]

makes it clear that, although such a type III non-regular theory might seem exotic, it

actually arises quite naturally when one uses more traditional SCFTs as building blocks.

Indeed, the setup in [30] starts by taking two copies of the isolated (A1, D4) SCFT,13

adding nine hypermultiplets, and conformally gauging a diagonal su(3) flavor symmetry.14

Then, as one dials the su(3) coupling to infinity, a dual weakly coupled description emerges

with a diagonal su(2) of an (A1, D4) theory and the so-called T3, 3
2

theory gauged. The T3, 3
2

theory is another name for the SCFT with Y0,1 = [2, 2, 2] and Y−1 = [2, 2, 1, 1].

The T3, 3
2

theory has su(2)2×su(3) flavor symmetry (of which a diagonal su(2) ⊂ su(2)2

is gauged in the above duality), although only an su(2)×su(3) symmetry is visible in (3.1)

(according to the analysis in [22], this theory splits into an interacting piece, TX , with

su(2) × su(3) flavor symmetry, and a free hypermultiplet with su(2) flavor symmetry).

More precisely, we see from (3.1) that k−1 = 4, and so the visible flavor symmetry has rank

three.

12The associated chiral algebra, in the sense of [34], was also determined in [22].
13This theory was discovered in [28] as a singular point on the Coulomb branch of N = 2 su(2) SQCD

with Nf = 3, but we follow the naming conventions of [35].
14Note that the resulting theory has Y−1,0,1 = [2, 2, 1, 1] and is non-regular type III even though the

various isolated SCFT building blocks are not: the hypermultiplet is described by Y−1,0,1 = [1, 1], while

(A1, D4) is described by Y−1,0,1 = [1, 1, 1]. As alluded to above, this discussion shows (modulo potential

dualities involving theories with one irregular singularity and a regular one) that the theories described by

regular semisimple Ti are not closed under conformal gauging.
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One remarkable feature of the duality described in [30] is that, even though the theory

in question is constructed from various strongly interacting non-Lagrangian building blocks

(the (A1, D4) and T3, 3
2

SCFTs), each of these building blocks has certain observables that

are closely related to the corresponding observables in free theories [22].15

In the case of the T3, 3
2

theory, the connection with free fields can be seen by examining

its Schur index.16 After removing a decoupled free hypermultiplet to obtain the TX SCFT

discussed above, we have the following Schur index [22]

I =

∞∑
λ=0

q
3
2
λP.E.

[
2q2

1− q
+ 2q − 2q1+λ

]
ch
su(2)
Rλ

(q, w)ch
su(3)
Rλ,λ

(q, z1, z2) , (3.2)

where λ is an integer, q is a superconformal fugacity, and w, z1,2 are flavor fugacities

for su(2) and su(3) respectively. In (3.2), ch
su(2)
Rλ

and ch
su(2)
Rλ

are characters for modules

of ŝu(2)−2 and ŝu(3)−3 affine Kac-Moody algebras at the crtitical level with primaries

transforming with Dynkin labels λ and (λ, λ) of su(2) and su(3) respectively. Finally,

“P.E.” stands for “plethystic exponential” and is defined as follows

P.E. [f(x1, · · · , xr)] ≡
∞∑
n=1

exp

(
1

n
f(xn1 , · · · , xnr )

)
. (3.3)

The formula in (3.2) is closely related to the index for 8 free half-hypermultiplets (the

so-called T2 theory [40])

IT2 =
∞∑
λ=0

q
λ
2 P.E.

[
2q2

1− q
+ 2q − 2q1+λ

]
ch
su(2)
Rλ

(q, x)ch
su(2)
Rλ

(q, y)ch
su(2)
Rλ

(q, z) , (3.4)

where x, y, z are fugacities for the su(2)3 ⊂ sp(4) flavor symmetry (the particular re-writing

of the T2 index above was suggested in [41]). Indeed, in both cases we sum over a “diagonal”

set of representations (of su(2)3 in the T2 case and of su(2) × su(3) in the TX case), and

the structure constants (the plethystic exponential factors) are identical.

The T2 theory has a natural connection with su(2) N = 4 SYM. Indeed, by diagonally

gauging an su(2) × su(2) factor we are left with su(2) N = 4 SYM and a decoupled free

hypermultiplet. Note that the remaining N = 2 su(2) flavor symmetry becomes part of

the su(4)R symmetry of the N = 4 theory.17 The deformation that connects T2 to N = 4

SYM is exactly marginal (although if we just want to get N = 4, then we should also turn

on a mass parameter for the hypermultiplet or else add a decoupled u(1) N = 2 vector

multiplet).

15Heuristically this connection can be anticipated by noting that the (A1, D4) theories play a role in the

duality of [30] that is reminiscent of the role played by hypermultiplets in the original duality of [36]. In

the case of the (A1, D4) SCFT (and its generalizations), this connection was further explored in [37].
16For an introduction to the Schur index, see [38, 39].
17Technically this is a diagonal flavor symmetry that acts both on the SYM theory and the decoupled

hyper. Note that the su(2) symmetry of the N = 4 factor has a Witten anomaly [42]: it has 3 doublets

charged under it (the corresponding holomorphic moment maps are
∑
aQ

aQa,
∑
a Q̃

aQ̃a,
∑
a Q̃

aQa). This

anomaly translates into the fact that, at generic points on the moduli space, we have a massless u(1) N = 4

theory: the singlet hypermultiplet is a doublet of su(2) and therefore also gives rise to a Witten anomaly.
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u(2) 3

Figure 1. The quiver corresponding to the S1 reduction of the T3, 32 SCFT [22]. Here the closed

loop attached to the gauge node denotes an adjoint hypermultiplet of u(2). This adjoint breaks

up into a 3 + 1 of su(2) ⊂ u(2), with the singlet corresponding to the free decoupled hyper in

T3, 32 = TX ⊕ hyper [22].

u(2) u(2)

u(2)

1

Figure 2. The quiver corresponding to the mirror of the S1 reduction of the T3, 32 theory [22, 23].

The Young diagrams describing the T3, 32 theory are Y1,0 = [2, 2, 2], Y−1 = [2, 2, 1, 1] [23].

The T3, 3
2

SCFT also has a connection to N = 4. For example, as in the case of su(2)

N = 4 SYM, the su(2) ⊂ su(4)R N = 2 flavor symmetry of the interacting piece (the

TX ⊂ T3, 3
2

theory) has a global Witten anomaly [22].18 More generally, it follows from

anomaly matching that any N = 4 theory (Lagrangian or not) with a rank one Coulomb

branch (by which we mean that the low energy theory consists of a massless U(1) N = 4

vector multiplet at generic points along the three-real-dimensional moduli space) must have

a non-vanishing Witten anomaly for the su(2) ⊂ su(4)R N = 2 symmetry.19

Another connection between the T3, 3
2

SCFT and N = 4 can be found by, instead of

introducing dynamical gauge fields (for su(2)× su(2)) as in the T2 case, introducing vevs

for background gauge fields (i.e., mass terms) for the su(3) symmetry. This statement

is most obvious by first considering the S1 reduction of the T3, 3
2

theory. At the level of

the index (3.2), this reduction is implemented by taking q → 1 (which corresponds to

taking the radius of the S1 ⊂ S1 × S3 factor in the index to zero) and throwing away

a flavor-independent divergent prefactor that encodes certain anomalies of the 4D theory

(see [43–47]). Performing this procedure, we showed in [22] that (3.2) reduces to the S3

partition function of the 3D theory in figure 1. This result confirms the rules conjectured

in [23], which produce the mirror quiver gauge theory in figure 2 (e.g., see [48]).

From figure 1, it is clear that if we turn on any superpotential mass term for the

fundamental flavors we will flow to an N = 8 SCFT that is the IR endpoint of the usual

N = 8 u(2) SYM flow.20 This theory is then the same as the dimensional reduction of the

u(2) 4D N = 4 theory.

18In the su(2) N = 4 case, this statement follows from the fact that the adjoint hypermultiplet transforms

as three doublets of the su(2) ⊂ su(4)R symmetry. By similar reasoning, there is a non-vanishing Witten

anomaly for this symmetry in su(2r) N = 4 theories.
19This statement generalizes for odd rank N = 4 theories (again without appealing to the existence of a

Lagrangian).
20It is also clear that the Witten anomaly of the 4D TX theory is reflected in the fact that there are three

doublets of the flavor su(2) arising from the adjoint hypermultiplet of su(2) ⊂ u(2).
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u(2)

Figure 3. The quiver describing the endpoint of the flow initiated by turning on generic su(3)

mass parameters in figure 1. We find a u(2) N = 8 theory (the u(1) piece becomes a direct sum of

a twisted hypermultiplet and a conventional hypermultiplet).

u(2) 1

Figure 4. The quiver corresponding to the IR endpoint of the RG flow from figure 1 after turning

on masses for two fundamental flavors (these are non-generic su(3) mass parameters in (3.5)). This

theory has accidental N = 8 supersymmetry in the IR as in figure 3 [49].

To see that we end up with 3D N = 8 for any value of the superpotential mass terms,

note that these mass terms are valued in the adjoint of su(3) and can be parameterized

as follows

m = diag(m1,m2,−m1 −m2) . (3.5)

Therefore, turning on generic m1,2 results in giving masses to all the fundamental flavors,

and we are left with the N = 8 quiver in figure 3. On the other hand, if we choose m1 6= 0

with m2 = 0, m1 = 0 with m2 6= 0, or m1,2 6= 0 with m1 + m2 = 0, we give mass to

two out of the three fundamental flavors and obtain the quiver in figure 4. However, as is

well-known (e.g., see [49]), this theory flows to the N = 8 quiver of figure 3 in the IR.

Combining the procedure of putting the theory on a circle with turning on su(3) mass

terms gives us our desired RG flow from sixteen to thirty-two supercharges (see figure 5 with

(n, k) = (2, 3)). Indeed, this procedure is unambiguous since the 4D su(3) holomorphic

moment maps get mapped to gauge-invariant bilinears of the 3D theory

µ1 →r→0 Q1Q̃
1 −Q3Q̃

3 , µ2 →r→0 Q2Q̃
2 −Q3Q̃

3 , (3.6)

where r is the S1 radius, and Q, Q̃ are fundamental flavors of u(2). In these expressions,

gauge indices have been contracted, and the remaining indices are su(3) flavor indices.

Moreover, since there are no non-perturbative N = 4-preserving deformations we can

contemplate that arise from putting the theory on a circle,21 and since our mass deformation

does not induce Chern-Simons terms in 3D, we expect the limit of reducing the theory on

a circle and turning on mass terms to commute.

3.1 The r → ∞ limit and (exotic?) 4D N = 4

Two natural questions arise from the above discussion:

• Is the IR of the r →∞ limit of the above RG flow (i.e., T IR
4d ) a 4D N = 4 SCFT?

21This situation is unlike the one considered in [50] for 4D N = 1 theories. Note that in our case, flavor

symmetries are all non-anomalous in both 4D and 3D due to the larger amount of SUSY.
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Figure 5. The RG flows described in this note, with T UV
4d the non-Lagrangian 4D N = 2 SCFT

described around (2.6). Horizontal arrows indicate superpotential deformations by holomorphic

moment maps / mass terms of su(k). Vertical arrows indicate S1 reductions from 4D to 3D. All

arrows preserve eight Poincaré supercharges. As described in the text, we expect this diagram to

commute.

• If T IR
4d has 4D N = 4 SUSY, is this theory u(2) SYM?

Note that the presence of a 3D Lagrangian does not immediately shed light on these

questions since, in principle, it is possible that the N = 8 SUSY is accidental in 3D.

Moreover, the existence of a 3D Lagrangian does not obviously imply a 4D Lagrangian.

Indeed, the T3, 3
2

theory does not have a Lagrangian even though the S1 reduction does (as

in figure 1).

One way to explore these questions is to construct the Seiberg-Witten curve for the

T3, 3
2

theory22 and define a scaling limit that produces the Seiberg-Witten curve of the IR

theory, T IR
4d (e.g., see [51] for a successful recent application of this technique).

The Seiberg-Witten curve corresponding to an SCFT describes the Coulomb branch

that one obtains by deforming the SCFT by relevant or marginal prepotential couplings,

mass parameters (i.e., background vector multiplets), and expectation values of N = 2

chiral operators. In general it is not clear whether a particular marginal or relevant param-

eter of the UV SCFT must necessarily appear in the curve, since the curve is an effective

description of the theory.23 However, all parameters appearing in the curve are of the type

just described.

To obtain the curve in the case of the T3, 3
2

theory, we start by writing the Higgs field

as in (2.1)

Φz = z diag(a1, a1, a2, a2,−a1 − a2,−a1 − a2) + diag(b1, b1, b2, b2,−b1 − b2,−b1 − b2)

+
1

z
diag(m1,m1,m2,m2,−m1 −m2 +m3,−m1 −m2 −m3)

+
1

z2
diag(c1, c2, c3, c4, c5,−c1 − c2 − c3 − c4 − c5) +O(z−3) , (3.7)

22By (2.2), the Seiberg-Witten curve for this theory is guaranteed to exist. In general, it is not clear

whether a given N = 2 SCFT must have such a curve.
23For example, in the case of the T3, 3

2
theory, there are actually two independent su(2) mass parameters

(since we have flavor symmetry su(2)2 × su(3)), but, as discussed in [22], only one appears in the curve

coming from (2.2). Note that this additional mass parameter might become visible through an alternate

construction of the curve that does not go through the particular Hitchin system we described above.
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where the degeneracies of the eigenvalues in each singular term correspond to the Young

diagrams in (3.1) (the non-singular pieces, starting with the ci, describe vevs of N = 2

chiral operators). In principle, since we are interested in studying the RG flow along the

top arrow in figure 5, we may turn off the su(2) mass parameter. At the level of (3.7),

this manoeuvre corresponds to setting m3 = 0. Indeed, we then see that the singular

sterms in (3.7) are subject to a natural action of the S3 Weyl group of su(3), which

acts via permutation of the degenerate two-by-two blocks.24 More precisely, this action

corresponds to the simultaneous S3 action on the 3-tuples

(a1, a2, a
′) , (b1, b2, b

′) , (m1,m2,m
′) , (3.8)

where a′ = −a1 − a2, b′ = −b1 − b2, and m′ = −m1 − m2. In what follows, we will set

m3 = 0.

To write the curve for the T3, 3
2

SCFT, it is convenient to first shift x and z by con-

stants25 so that the O(z0) matrix in (3.7) is of the form diag(0, 0, 0, 0, b, b). Now, plugging

this result into (2.2) yields

u2 +

(
(x− a1z)(x− a2z)(x+ (a1 + a2)z) +

M1

2
(x− a1z) +

M2

2
(x− a2z)

− b(x− a1z)(x− a2z)

)2

+ u1

(
− b(a1 − a2)(x− a1z)(x− a2z)

− (x− a1z)2(x− a2z)(a1 + 2a2) + (x− a1z)(x− a2z)2(2a1 + a2)

+
a1 − a2

2
(M1(x− a1z) +M2(x− a2z))

)
= 0 , (3.9)

where

M1 =− 2(a1 + 2a2)m2 , M2 = −2(2a1 + a2)m1 ,

u1 =− (2a1 + a2)(c1 + c2) + 2bm1 ,

u2 =(a1 − a2)2((2a1 + a2)c1 − bm1)((2a1 + a2)c2 − bm1) . (3.10)

In the above equations, u1 is the vev of the N = 2 chiral ring generator of dimension 3/2,

while u2 is the vev of the N = 2 chiral ring generator of dimension 3. The parameter b is

the relevant coupling of dimension 1/2. The dimensionless parameters, ai, are not physical

since they are absorbed by changing coordinates, x and z. The above curve transforms

homogenously (with the couplings and vevs acting as spurions) under the u(1)R scaling of

the UV SCFT.

To study the RG flow described by the top arrow in figure 5, we would like to turn

on some RG scale, m, in (3.9) and take m → ∞.26 We can make contact with a curve

24In particular, the curve we get from (2.2) will be invariant under this action.
25Note that these shifts affect the 1-form only by exact terms, and BPS masses are unchanged.
26Note that this method is a rather indirect way of studying the RG flow: we try to carve out the Coulomb

branch of T IR
4d as a subspace of the Coulomb branch of T UV

4d rather than considering the flow starting from

the UV SCFT and then deforming by δW ∼ m1µ1 +m2µ2 with zero vevs (the 3D picture of the RG flow

suggests that we should remain at the origin of the 4D Coulomb branch).

– 9 –
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resembling that of the su(2) N = 4 theory (we expect to have an additional N = 4 u(1)

decoupled) if we set

u1 = 0 , M1 = m, M2 = 0 , b = qm
1
2 ,

x− a1z = 2m−
1
2X , x− a2z = m

1
2Z , u2 = −Um . (3.11)

Here, X and Z act as good coordinates describing the curve of T IR
4d and do not scale with

m (they have scaling dimension one and zero respectively) while U is a dimension two vev.

We interpret some of the terms that are turned off as decoupling or becoming irrelevant

along the RG flow (although, as discussed below, additional quantities decouple). Keeping

only the leading terms in (3.9) as m→∞ and solving for X, we obtain

X2 =
U(

2(2a1+a2)
a1−a2 Z2 − 2qZ + 1

)2 . (3.12)

This equation is the su(2)N = 4 curve27 tuned to a cusp (i.e., a weak gauge coupling limit).

Indeed, although there is an apparently dimension zero parameter, q, arising in (3.11) (re-

flecting the fact that the dimension half coupling in the Hitchin system forms a dimen-

sionless combination with the square-root of the mass parameter), this naively marginal

parameter is irrelevant in the IR description given above.

Note that we may also exchange a1 ↔ a2 and M1 ↔M2 and obtain a similar limit of

the curve. Finally, we may also construct a closely related limit of the curve by taking the

linear combination (2a1 + a2)M1 + (a1 + 2a2)M2 to vanish.28

We have not been able to find a more general non-trivial scaling limit than the one

described above. In particular, we are not able to see the putative T IR
4d marginal deforma-

tion (away from the cusp) in the Seiberg-Witten description we have found. Note that if

T IR
4d has N = 4 SUSY, it necessarily possesses an exactly marginal deformation residing

in the stress-energy tensor multiplet (this statement follows from N = 4 SUSY and is not

related to the existence of an N = 4 Lagrangian). However, there may be several reasons

for the absence of this marginal direction in the Coulomb branch effective action:

• A radical option is that T IR
4d is an exotic 4D N = 4 theory without a Lagrangian

description. In a Lagrangian theory, we expect that W-boson masses will vary as

a function of the marginal gauge coupling (this statement follows from the Higgs

mechanism). These changes in mass are reflected in the periods of the curve, since

the W-bosons are BPS particles. On the other hand, as far as we are aware, there

is no argument that the most general exactly marginal parameter in an N = 2 or

N = 4 SCFT must appear in the IR effective action captured by the Seiberg-Witten

description. If the IR effective action is indeed given by (3.12), it means that the

exactly marginal parameter of the UV SCFT becomes irrelevant in the IR (as opposed

to being related to a marginal coupling in the IR). In this case, varying the exactly

marginal parameter may have a more profound effect on the non-BPS sector.

27By (3.11), the 1-form is (modulo exact terms) also the 1-form for su(2) N = 4 (up to a constant we

can tune).
28Said more invariantly, when we take the scaling limit in (3.11), Tr T 2

−1 →∞ and Tr T 3
−1 → 0.

– 10 –
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u(n) u(n)

u(n)

1

Figure 6. The quiver corresponding to the mirror of the S1 reduction of the type III AD theory

with Y1,0 = [n, n, n], Y−1 = [n, n, n− 1, 1] [23].

• A less radical option is that the exactly marginal parameter of T IR
4d is a standard gauge

coupling, but it is hidden in the flow from T3, 3
2
. This option is not implausible since

the existence of a conformal manifold is accidental in this case. If this possibility is

realized, then perhaps the marginal coupling becomes visible by choosing a different

UV starting point than T UV
4d .

• The most conservative option is simply that there is a more general scaling limit that

describes the curve of T IR
4d for all values of the exactly marginal parameter. In this

case, T IR
4d may again be a standard N = 4 Lagrangian theory.

We hope to conduct a more detailed study of these options using additional techniques [21].

In the next section we set this goal aside for now and present infinitely many generalizations

of the above discussion.

4 Generalizations

It is rather straightforward to generalize the above discussion to other values of n and

k. For example, we can take any n ≥ 2. T UV
4d is now described by the following Young

diagrams, which generalize (3.1)

Y1 = Y0 = [n, n, n] , Y−1 = [n, n, n− 1, 1] . (4.1)

Applying the discussion in [23], one can easily check that this theory has rank n with N = 2

chiral ring generators of scaling dimensions

∆ =

{
3

2
, 3 ,

9

2
, · · · , 3n

2

}
. (4.2)

Note that, as in N = 4, the scaling dimensions of chiral operators are integer multiples of

the dimension of the lowest dimensional chiral operator (although here, unlike in N = 4,

the scaling dimension of the lowest dimensional chiral operator is half-integer).29

In this case, the 3D mirror quiver generalizing figure 2 is given in figure 6 following

the rules in [23]. The mirror of this quiver (i.e., the direct S1 reduction) is the u(n) theory

with an adjoint hypermultiplet and three fundamental flavors as in figure 7 (e.g., see the

discussion in [48]).

29In fact, the scaling dimensions of the operators in (4.2) correspond to those of u(n) N = 4 SYM up to

an overall multiplication by 3/2.
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u(n) 3

Figure 7. The quiver corresponding to the S1 reduction of the type III AD theory with Y1,0 =

[n, n, n], Y−1 = [n, n, n − 1, 1]. The closed loop attached to the gauge node denotes an adjoint

hypermultiplet of u(n).

u(n)

Figure 8. The result of turning on generic su(3) masses in the quiver in figure 7.

u(n) 1

Figure 9. The result of turning on masses for two out of the three flavors in figure 8. Quantum

mechanically, this remaining fundamental flavor also gets a mass [49].

u(n) k

Figure 10. The quiver corresponding to the S1 reduction of the type III AD theory with Young

diagrams described in (4.3). The closed loop attached to the gauge node denotes an adjoint hyper-

multiplet of u(n).

We may then reproduce the discussion for n = 2 for general n ≥ 2 by turning on

masses for the three fundamental flavors in the S1 reduction. For generic masses, we end

up with the quiver in figure 8. For non-generic su(3) masses, we end up with the quiver

in figure 9, which, by the discussion in [49], flows to the 3D N = 8 quiver in figure 8.

By combining the procedure of S1 reduction with turning on masses, we again, as in the

more detailed discussion of the n = 2 case, get the commuting RG diagram of figure 5 with

accidental enhancement to thirty-two (Poincaré plus special) supercharges in the IR. We

again suspect (but have not proven) that the r →∞ limit of this flow has N = 4 SUSY.

Finally, note that we can have an even more general UV starting point given by

Y1,0 = [n, n, · · · , n] , Y−1 = [n, · · · , n, n− 1, 1] , (4.3)

where, as in (2.6), n ≥ 2, there are k ≥ 3 columns in Y0,1, and there are k+ 1 ≥ 4 columns

in Y−1 (so that N = nk, where we obtain our theory from the AN−1 (2, 0) theory). Here

the mirror looks as in figure 6, but now there is a k-sided polygon of u(n) nodes with

one node coupled to a fundamental flavor. The direct reduction of the theory is given in

figure 10. Just as in the previous cases, we may give masses to these k fundamental flavors

and flow to a theory with thirty-two (Poincaré plus special) supercharges, thus obtaining

the RG diagram in figure 5.
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5 Conclusions

In this note we have studied an infinite set of RG flows that start from 4D N = 2 SCFTs

that lack a Lagrangian description and end up, after turning on generalized mass terms,

flowing to theories that have thirty-two (Poincaré plus special) supercharges. We are able

to demonstrate this fact compellingly when we also compactify these theories on a circle

(and we have the flow diagram in figure 5).

We also gave some preliminary, but far from conclusive, arguments that these theories

flow to 4D N = 4 SCFTs (at least for (n, k) = (2, 3)) when we take the radius of the circle

to infinity. One important matching quantity was the Witten anomaly for the TX ⊂ T3, 3
2

SCFT. In [22], we wondered how to construct such Witten anomalous theories directly

in terms of punctured compactifications of the (2, 0) theory. Recently, there has been

progress on this topic [29, 52]. Moreover, the authors of [29] find an N = 4 theory starting

directly from an irregular singularity (and a regular singularity, both in the presence of a

co-dimension one defect). It would be interesting to see if their theory is related to T IR
4d in

the case of (n, k) = (2, 3).

We have also seen that the scaling limit we chose does not reproduce the standard

N = 4 curve, since the IR description seems tuned to a cusp. As discussed in section 3.1,

this result may have various causes ranging from the existence of an exotic N = 4 non-

Lagrangian theory to the presence of a hidden marginal direction or to the existence of a

more general scaling limit that describes the curve of T IR
4d . It would be interesting to find

out which of these options is realized [21].30
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[5] C. Córdova, T.T. Dumitrescu and K. Intriligator, Exploring 2-group global symmetries,

arXiv:1802.04790 [INSPIRE].

[6] L. Balents, M.P.A. Fisher and C. Nayak, Nodal liquid theory of the pseudo-gap phase of

high-Tc superconductors, Int. J. Mod. Phys. B 12 (1998) 1033 [cond-mat/9803086]

[INSPIRE].

[7] T. Grover, D.N. Sheng and A. Vishwanath, Emergent space-time supersymmetry at the

boundary of a topological phase, Science 344 (2014) 280 [arXiv:1301.7449] [INSPIRE].

[8] S.-S. Lee, Emergence of supersymmetry at a critical point of a lattice model, Phys. Rev. B 76

(2007) 075103 [cond-mat/0611658] [INSPIRE].

[9] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091

[arXiv:0806.1218] [INSPIRE].

[10] D. Gaiotto, Z. Komargodski and J. Wu, Curious aspects of three-dimensional N = 1 SCFTs,

JHEP 08 (2018) 004 [arXiv:1804.02018] [INSPIRE].

[11] F. Benini and S. Benvenuti, N = 1 QED in 2 + 1 dimensions: dualities and enhanced

symmetries, arXiv:1804.05707 [INSPIRE].

[12] D. Gang and M. Yamazaki, An appetizer for supersymmetry enhancement,

arXiv:1806.07714 [INSPIRE].

[13] A. Gadde, S.S. Razamat and B. Willett, “Lagrangian” for a non-lagrangian field theory with

N = 2 supersymmetry, Phys. Rev. Lett. 115 (2015) 171604 [arXiv:1505.05834] [INSPIRE].

[14] K. Maruyoshi and J. Song, Enhancement of supersymmetry via renormalization group flow

and the superconformal index, Phys. Rev. Lett. 118 (2017) 151602 [arXiv:1606.05632]

[INSPIRE].

[15] K. Maruyoshi and J. Song, N = 1 deformations and RG flows of N = 2 SCFTs, JHEP 02

(2017) 075 [arXiv:1607.04281] [INSPIRE].

[16] P. Agarwal, K. Maruyoshi and J. Song, N = 1 deformations and RG flows of N = 2 SCFTs,

part II: non-principal deformations, JHEP 12 (2016) 103 [arXiv:1610.05311] [INSPIRE].

[17] S. Benvenuti and S. Giacomelli, Lagrangians for generalized Argyres-Douglas theories, JHEP

10 (2017) 106 [arXiv:1707.05113] [INSPIRE].

[18] S. Giacomelli, RG flows with supersymmetry enhancement and geometric engineering, JHEP

06 (2018) 156 [arXiv:1710.06469] [INSPIRE].

[19] P. Agarwal, A. Sciarappa and J. Song, N = 1 Lagrangians for generalized Argyres-Douglas

theories, JHEP 10 (2017) 211 [arXiv:1707.04751] [INSPIRE].
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