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1 Introduction

The two-dimensional sigma model with the target space CPN−1 (the CPN−1-model [1–3])

has long been studied as a toy model for the four-dimensional Yang-Mills theory; both

theories are asymptotically free and has a dynamically-generated mass gap, for example.

Despite the similarities between the two, it has been long unclear if there could be more

direct and quantitative relations between the two. Is the CPN−1-model only a toy model?

Or could we use the CPN−1-model to actually solve the four-dimensional Yang-Mills theory,

e.g. for an analytical demonstration of confinement of the latter theory?1

A positive result in this direction has been recently given in the recent work of the

author and K. Yonekura [8]. As we will explain below, it was shown that a center-twisted

compactification of four-dimensional pure SU(N) Yang-Mills theory on a three-torus T 3 =

S1×T 2, when the size of the two-torus T 2 is small, gives rise to the two-dimensional CPN−1-

model2 on the residual circle S1, with a flavor-twisted boundary condition studied in [9].

As emphasized in [8] this provides a well-defined weakly-coupled setup with no notorious

IR problems (e.g. the Linde problem [10]). This means that we in principle have a hope

of analytically-continuing back to the flat space R4 — we first start in the weakly-coupled

region and then sum up the perturbative as well non-perturbative contributions into a well-

defined function (e.g. with the help of the Borel-Écalle resummation of the trans-series [11],

as applied to an infinite-dimensional setup), and then adiabatically/analytically continue

back to the flat R4 by smoothly changing the size of the torus.3

It would be, however, rather non-trivial to carry out this procedure in full generality,

and before venturing into the detailed computation one might wish to further check the

consistency of the result of [8], preferably in a non-perturbative manner.

1The relation between the two theories has been discussed in supersymmetric contexts, see e.g. [4–7].

Our focus here, however, is to study an honest non-supersymmetric theory where there is no protection

from supersymmetry.
2A care is needed since this CPN−1 does not have the standard Fubini-Study metric.
3This strategy of adiabatic continuation from compactification has a rather long history. The literature

is too vast to be covered in this short note, see [12–16] for early references in eighties and see [8] for more

references. Note that the novelty of the setup of [8] is to consider T 2 × S1 compactification where there is

a hierarchy between the sizes of T 2 and S1.
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The goal of this short note is to verify the consistency of this proposal by matching the

’t Hooft anomalies [19] of the two theories (in four and two dimensions). While the standard

anomaly is lost upon dimensional reduction due to contamination from high-energy states,

we can study the recently-found mixed ’t Hooft anomaly between time reversal and center

symmetry in four dimensions, present for the special value of the theta angle θ = π [17].

We find that this ’t Hooft anomaly, upon a twisted compactification on a three-torus T 3,

precisely reproduces to the ’t Hooft anomaly for a twisted compactification of the two-

dimensional CPN−1 model on a circle, as recently derived in [18].

2 From 4d to 2d

Let us first recapitulate the some of the crucial statements from [8]. Consider four-

dimensional pure SU(N) Yang-Mills theory on the geometry R×T 3
ABC = R×S1

A×S1
B×S1

C ,

with coordinates t, xA, xB, xC . We denote the circumference of the circles by LA, LB, LC ,

and we choose the periodicity of xA, xB, xC to be 1 (xA ∼ xA + 1 etc.).

In [8] the size of the circles are taken to be

LA, LB � LC . (2.1)

In this parameter region the Yang-Mills gauge field along the two-torus T 2
AB = S1

A × S1
B is

given by the flat connection on the two-torus, which is known to be parametrized by a point

of the complex projective space CPN−1 [20–22].4 After reduction along the two-torus T 2
AB

we find that the resulting two-dimensional theory on R×S1
A is given by the two-dimensional

CPN−1-model, where the theta angle of the four-dimensional theory is identified with that

of the two-dimensional theory. In this paper we denote the homogeneous coordinate of

CPN−1 as [z1, . . . , zN ] (i.e. [z1, . . . , zN ] ∼ [cz1, . . . , czN ] for c ∈ C×).

Now the crucial ingredient of [8] is to include a ZN -center symmetry twist in the

boundary conditions — we include ’t Hooft discrete magnetic flux [23] along the two-torus

T 2
BC = S1

B × S1
C .5 It was then shown that this reproduces the twisted boundary condition

of the two-dimensional theory along the residual circle S1
C , given by an element of the flavor

symmetry of the CPN−1-model;

Z(B)
N : [. . . , zk, . . . ]→

[
. . . , e

2πi
k zk, . . . ,

]
. (2.2)

In four-dimensional language, this ZN (zero-form) symmetry arises from the four-

dimensional ZN (one-form) center symmetry by compactification along the circle S1
B (and

hence the notation).6 Similarly, the four-dimensional ZN center symmetry compactified on

4The complex projective space CPN−1 arising from the moduli space of flat connections do not have

the canonical Fubini-Study metric, and in particular has singularities where new degrees of freedom of

W-bosons emerge. The analysis of [8], however, was done at the classical values of the flat connection which

are away from these singularities. Such an analysis was enough to demonstrate the existence of fractional

instantons and the dynamical recovery of the center symmetry. For this reason we expect that the subtlety

coming from the singularities of the CPN−1 does not affect the discrete anomalies discussed in this paper.
5Beaware that this is different from the other two-torus T 2

AB = S1
A × S1

B .
6The center symmetry is a one-form symmetry [25], and hence upon a circle compactification generates

a zero-form symmetry in addition to a one-form symmetry.
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the another cycle S1
A generates another zero-form global symmetry of the two-dimensional

symmetry. This is given by [8]

Z(A)
N : [z1, . . . , zN−1, zN ]→ [z2, . . . , zN−1, z1] . (2.3)

As we will see, this symmetry will play a crucial role in what follows.

3 Twisted compactification of ’t Hooft anomaly

Let us now come to the ’t Hooft anomalies.

As already mentioned above, the four-dimensional pure SU(N) Yang-Mills theory has

the ZN center one-form symmetry; we denote the corresponding two-form discrete ZN
gauge field as B. In addition the theory has a Z2 time-reversal symmetry T.

The results of [17] shows that the pure Yang-Mills theory with theta angle θ = π

has a mixed ’t Hooft anomaly between the center symmetry and the time-reversal sym-

metry. This means that the partition of the theory Z4d
θ=π[(A,B)] at theta angle θ = π,

regarded as a function of the background gauge fields A and B, is not invariant under the

time-reversal symmetry:

Z4d
θ=π[T · (A,B)] = Z4d

θ=π[(A,B)] exp

(
iN

4π

∫
B ∧B

)
. (3.1)

Let us next compactify the theory onto the geometry R × S(A)
1 × S(B)

1 × S(C)
1 . We

take the limit LA, LB, LC → 0, while still keep the hierarchy of scales as in (2.1). By

decomposing the two-form gauge field B into components, we find the decomposition

B = B
(1)
A dxA +B

(1)
B dxB +B

(1)
C dxC

+B
(0)
BCdx

B ∧ dxC +B
(0)
CAdx

C ∧ dxA +B
(0)
ABdx

A ∧ dxB ,
(3.2)

where B
(1)
A , B

(1)
B , B

(1)
C and B

(0)
BC , B

(0)
CA, B

(0)
AB are one-forms and zero-forms on the residual

R-direction, respectively, and none of them have any non-trivial dependence along the

three-torus T 3.

The one-forms B(1) and the zero-forms B(0) play the role of the ‘electric field’ and

‘magnetic field’ for the discrete ZN center symmetry. The electric objects are Wilson

lines (holonomies) around the non-trivial cycles of the three-torus. The magnetic gauge

field, on the other hand, represents the ’t Hooft magnetic flux along a two-torus [23, 24].

For example, the zero-form field B
(0)
BC represents the Aharanov-Bohm-type phase pene-

trating through the two-torus TBC = S1
B × S1

C , making the holonomies along S1
B and S1

C

non-commutative.

Let us substitute the decomposition (3.2) into the expression for the mixed

anomaly (3.1). After trivially integrating over the small three-torus directions, we find

that the mixed anomaly (3.1) now is expressed as an integral over the residual R-direction:

2iN

4π

∫
R

(
B

(1)
A B

(0)
BC +B

(1)
B B

(0)
CA +B

(1)
C B

(0)
AB

)
. (3.3)
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The expression appearing here is an analog of the Poynting vector of electromagnetism,

but now for the discrete ZN center symmetry.

To this point we have not used any information regarding the choice of the boundary

conditions. Recall from section 2 we turn on the ’t Hooft magnetic flux is turned on

along the two-torus T 2
BC = S1

B × S1
C directions, and not in other directions involving S1

A.

Moreover, the value of B
(0)
BC can be derived from the fact that we have one unit of the ’t

Hooft discrete magnetic flux [8]:

UCUB = e−
2πi
N UBUC , (3.4)

where UB and UC denotes the holonomy along the S1
B and S1

C .7 We thus obtain

B
(0)
BC = −2π

N
, B

(0)
CA = B

(0)
AB = 0 , (3.5)

and we arrive at the ’t Hooft anomaly

2iN

4π

∫
R
B

(1)
A

(
−2π

N

)
= −i

∫
R
B

(1)
A . (3.6)

In other words, under the time-reversal symmetry the one-dimensional partition function

Z1d at θ = π, as a function of the background gauge field B
(1)
A , transforms non-trivially as

Z1d
θ=π[T ·B(1)

A ] = Z1d
θ=π[B

(1)
A ] exp

(
−i
∫
R
B

(1)
A

)
. (3.7)

It turns out that this is exactly the ’t Hooft anomaly derived in [18], which discussed

the ZN -twisted circle compactification of the two-dimensional anomaly discussed in [26].

Indeed, recall that the one-form gauge field B
(1)
A (3.2) arises from the reduction of the

two-form field along the circle S1
A, and hence should be associated with the zero-form

global symmetry Z(A)
N . As we have seen before, this symmetry acts on the homogeneous

coordinates of CPN−1 by (2.3). This is nothing but the ZN ‘shift symmetry’ (denoted by

(ZN )S) in [18], and hence our result (3.6) coincides with (3.13) of [18]. This completes our

discussion of the twisted compactification of the ’t Hooft mixed anomalies.

4 Discussion

The result of this note proves that the vacua of the two theories, namely four-dimensional

pure SU(N) Yang-Mills theory on a center-twisted three-torus on the one hand, and two-

dimensional CPN−1 model on a flavor-twisted circle on the other, are constrained by the

same ’t Hooft anomaly. In particular we find that neither theory has a trivial vacuum.

It would be interesting to extend the analysis to four-dimensional Yang-Mills theory

coupled with matters, say with adjoint or fundamental/anti-fundamental matters.

Our results provides a rather non-trivial non-perturbative consistency check of the

proposal of [8], and make it even more plausible the optimistic scenario that the setup

7For gauge invariance under the twisted boundary condition a care is needed for the definition of UC .

Note that UC here is denoted by U ′C in [8].
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of [8] provides a right direction towards an analytic demonstration of the confinement and

the mass gap of the asymptotically-free pure Yang-Mills theory, the holy grail of the subject.

The finding of this note also supports the claim in [8] that four-dimensional pure Yang-

Mills theory with theta angle has N metastable vacua,8 as expected from the presence of

the N classical vacua in the CPN−1-model [8, 9, 29]. In addition to theoretical curiosity,

this has an interesting implication to the observability of the tensor modes in the recently-

proposed axion-type model of inflation [30, 31].
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