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1 Introduction

A unique feature of three spacetime dimensions (3D) is the existence of topologically mas-

sive Yang-Mills and gravity theories. These theories are obtained by augmenting the usual

Yang-Mills action or the gravitational action by a gauge-invariant topological mass term.

Such a mass term coincides with a Chern-Simons functional in the Yang-Mills case [1–5]

and with a Lorentz Chern-Simons term in the case of gravity [4, 5]. The Lorentz Chern-

Simons term is required to make the gravitational field possess nontrivial dynamics, for

the pure gravity action propagates no local degrees of freedom. The Lorentz Chern-Simons

term can be interpreted as the action for 3D conformal gravity [6, 7].1

Topologically massive gravity possesses supersymmetric extensions. In particular, N =

1 topologically massive supergravity was constructed in [10, 11]. Its topological mass term

is the supersymmetric extension of the gravitational Chern-Simons term, which coincides

with the action for N = 1 conformal supergravity [6]. Extended topologically massive

supergravity will be briefly discussed in section 7.

Topologically massive N = 1 supergravity, with or without a cosmological term, may

be linearised about a maximally supersymmetric solution. The resulting linearised actions

for the gravitino and the gravitational field contain higher derivatives. However, the genuine

massive states prove to obey first-order differential equations. This paper is devoted to the

description of higher-spin extensions of the linearised actions for topologically massive

gravity and N = 1 supergravity. In particular, for every (half-)integer spin n/2, where

n = 5, 6, . . . , we present a gauge-invariant higher-derivative action in Minkowski space

that propagates a single massive state of helicity +n/2 or −n/2 on the mass shell. The

action is of the form

Smassive = Smassless + SCS . (1.1)

Here Smassless denotes the 3D massless spin-n2 gauge action of the Fronsdal-Fang type [12,

13], with no propagating degrees of freedom. The second term in the right-hand side

of (1.1) is a conformal spin-n2 gauge action [14, 15] described by a Lagrangian of the

schematic form LCS ∝ ϕ(n)∂
n−1ϕ(n), where ϕ(n) stands for the conformal spin-n2 field. We

show that Smassive propagates a single massive state described by the equations (2.1). We

also present extensions of the actions introduced to anti-de Sitter (AdS) space, as well as

their N = 1 supersymmetric generalisations.

1The usual Einstein-Hilbert action for 3D gravity with a cosmological term can also be interpreted as

the Chern-Simons action for the anti-de Sitter group [8, 9].
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In the case of Minkowski space, our actions (1.1) are in fact contained, at the compo-

nent level, in the massive supersymmetric higher-spin models proposed in [16, 17]. However,

the analysis in [16, 17] was carried out mostly in terms of superfields so that the compo-

nent actions were not studied. All the massive higher-spin gauge models in AdS, which are

presented in this paper, are new.

This paper is organised as follows. In section 2 we review field realisations of the irre-

ducible massive spin-n2 representations (n = 2, 3 . . . ) of the 3D Poincaré and AdS groups.

We also review the structure of on-shell massive higher-spin superfields for both 3D N = 1

Poincaré and AdS supersymmetry. In section 3 we introduce, for any integer n ≥ 2,

a conformal spin-n2 gauge field h(n) = hα1...αn = h(α1...αn) and argue that it possesses a

Weyl primary descendant C(n) of dimension (1 + n
2 ) with the following properties: (i) C(n)

is of the schematic form ∇n−1h(n); (ii) C(n) is divergenceless and gauge invariant in an

arbitrary conformally flat space. These descendants C(n) are constructed in any confor-

mally flat space. Making use of the primary fields C(n), we propose Chern-Simons-type

actions S
(n)
CS ∝

∫
d3x e hα(n)Cα(n) which are Weyl and gauge invariant in any conformally

flat space, and which are higher-spin extensions of the linearised action for 3D conformal

gravity. These conformal higher-spin actions are then used to construct massive higher-spin

gauge theories in AdS, described by the actions (4.5a) and (4.5b). In section 4 we study

the dynamics of the flat-space counterparts to the gauge theories (4.5a) and (4.5b).

Sections 5 and 6 are devoted to supersymmetric extensions of the results presented in

sections 3 and 4. In section 5 we introduce conformal higher-spin gauge superfields Hα(n) in

curved N = 1 superspace. These conformal gauge superfields are argued to possess primary

descendants Wα(n) of dimension (1 + n
2 ) that are locally supersymmetric extensions of the

linearised higher-spin super-Cotton tensors [15, 17]. For any conformally flat superspace

background, the primary superfields Wα(n) are explicitly constructed, and are shown to

be gauge invariant and conserved. Making use of Hα(n) and Wα(n), we construct a higher-

spin extension of the action for linearised N = 1 conformal gravity, S(n)SCS[H(n)], which is

given by eq. (5.21). We employ S(n)SCS[H(n)] to construct massive higher-spin gauge actions

in N = 1 AdS superspace, given by eqs. (5.39a) and (5.39b). Section 6 describes the

component structure of the supersymmetric higher-spin theories introduced in section 5,

with the analysis being restricted to the flat-superspace case. Concluding comments and

discussion are given in section 7. The main body of the paper is accompanied by three

appendices. Appendix A describes our notation and conventions. Appendix B reviews

the Tyutin-Vasiliev action [18]. Appendix C provides two realisations for the higher-spin

Cotton tensor in Minkowski space, Cα(n), as a descendant of gauge-invariant field strengths

corresponding to two different higher-spin massless models.2

2 On-shell massive (super)fields

In this section we review the structure of irreducible massive higher-spin (super)fields in

Minkowski space and in anti-de Sitter space.

2A similar result in the N = 2 supersymmetric case was given in [16].
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2.1 Massive fields

We first recall the definition of on-shell massive fields in Minkowski space. Given a positive

integer n > 1, a massive field, φα1···αn = φ̄α1...αn = φ(α1···αn), is a real symmetric rank-n

spinor field which obeys the differential conditions [18] (see also [19])

∂βγφβγα1···αn−2 = 0 , (2.1a)

∂β(α1
φα2...αn)β = mσφα1...αn , σ = ±1 , (2.1b)

with m being the mass of the field. In the spinor case, n = 1, eq. (2.1a) is absent, and

the massive field is defined to obey the Dirac equation (2.1b). It is easy to see that (2.1a)

and (2.1b) imply the mass-shell equation(
2−m2

)
φα1···αn = 0 . (2.2)

In the spinor case, n = 1, eq. (2.2) follows from the Dirac equation (2.1b). The helicity of

φα(n) is λ = n
2σ, and the spin of φα(n) is n/2.

It should be remarked that the system of equations (2.1a) and (2.2) is equivalent to the

3D version of the Fierz-Pauli field equations [20]. The general solution to (2.1a) and (2.2)

is a superposition of two massive states of helicity +n
2 and −n

2 , respectively. Twenty years

ago, Tyutin and Vasiliev [18] constructed Lagrangian formulations for massive higher-spin

fields that lead to the equations (2.1a) and (2.1b) on the mass shell. Their actions did not

possess gauge invariance. In the present paper, we propose gauge-invariant formulations for

massive higher-spin fields in Minkowski space that lead to the equations (2.1a) and (2.1b)

on-shell.

In the case of AdS space, massive fields are defined to obey the following equations [21,

22] (see also [23])

∇βγφβγα1···αn−2 = 0 , (2.3a)

∇β(α1
φα2...αn)β = µφα1...αn , (2.3b)

for some real mass parameter µ. Equation (2.3b) implies that(
∇a∇a + 2(n+ 2)S2 − µ2

)
φα(n) = 0 , (2.4)

where the parameter S is related to the AdS curvature via eq. (3.46). Equation (2.4) can

be rewritten in terms of the quadratic Casimir operator of the 3D AdS group SO(2, 2),

Q := ∇a∇a − 2S2MγδMγδ,
[
Q,∇a

]
= 0 , (2.5)

with Mγδ the Lorentz generators, see appendix A.

Equations (2.3a) and (2.4) constitute the 3D AdS counterpart to the Fierz-Pauli field

equations. They describe a reducible representation of the AdS isometry group. Gauge-

invariant Lagrangian formulations for massive higher-spin fields in AdS, which lead to the

equations (2.3a) and (2.4) on the mass shell, were developed in [24–27], including N = 1
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supersymmetric extensions obtained by combining the bosonic and fermionic actions (on-

shell supersymmetry). The formulations given in [24–27] are based on Zinoviev’s gauge-

invariant approach [28] to describe massive higher-spin fields. In the present paper, we

propose different gauge-invariant formulations for massive higher-spin fields in AdS that

lead to the equations (2.3a) and (2.3b) on-shell.

2.2 Massive superfields

For n > 0, a massive superfield Tα(n) is defined to be a real symmetric rank-n spinor,

Tα1···αn = T̄α1...αn = T(α1···αn), which obeys the differential conditions [29] (see also [17])

DβTβα1···αn−1 = 0 =⇒ ∂βγTβγα1...αn−2 = 0 , (2.6a)

− i

2
D2Tα1...αn = mσTα1...αn , σ = ±1 . (2.6b)

Here D2 = DαDα, and Dα is the spinor covariant derivative of N = 1 Minkowski super-

space. It follows from (2.6a) that

− i

2
D2Tα1...αn = ∂β(α1

Tα2...αn)β , (2.7)

and thus Tα(n) is an on-shell superfield,

∂β(α1
Tα2...αn)β = mσTα1...αn , σ = ±1 . (2.8)

It follows from (2.6b) that3 (
2−m2

)
Tα(n) = 0 . (2.9)

For the superhelicity of Tα(n) we obtain

κ =
1

2

(
n+

1

2

)
σ . (2.10)

We define the superspin of Tα(n) to be n/2. The massive supermultiplet Tα(n) contains two

ordinary massive fields of the type (2.1), which are

φα1...αn := Tα1...αn |θ=0 , φα1...αn+1 := in+1D(α1
Tα2...αn+1)|θ=0 . (2.11)

Their helicity values are n
2σ and n+1

2 σ, respectively.

The off-shell gauge-invariant formulations for massive higher-spin N = 1 supermulti-

plets in Minkowski superspace, which lead to the equations (2.6a) and (2.6b) on the mass

shell, were constructed in [17].

In the case of N = 1 AdS supersymmetry, on-shell massive superfields are described

by the equations [29]

DβTα1···αn−1β = 0 , (2.12a)

− i

2
D2Tα1···αn = µTα1···αn , (2.12b)

3The equations (2.6a) and (2.9) are the N = 1 supersymmetric extension of the Fierz-Pauli equations.
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with µ a real mass parameter and D2 = DαDα. Here DA = (Da,Dα) are the covariant

derivatives of the N = 1 AdS superspace, see section 5 for the details. It can be shown that

− 1

4
D2D2 = DaDa − 2iSD2 + 2SDαβMαβ − 2S2MαβMαβ . (2.13)

This differential operator, which is the square of the operator in the left-hand side of (2.12b),

can be expressed via the quadratic Casimir operator4 of the 3D N = 1 AdS supergroup,

Q = −1

4
D2D2 + iSD2 ,

[
Q,DA

]
= 0 . (2.14)

It is worth pointing out that the left-hand side of (2.12b) can be rewritten as

− i

2
D2Tα1···αn = D(α1

βTα2···αn)β + (n+ 2)STα1···αn , (2.15)

where we have made use of (2.12a).

In this paper we propose off-shell gauge-invariant formulations for massive higher-spin

supermultiplets in N = 1 AdS superspace that lead to the equations (2.12a) and (2.12b)

on-shell.

3 Conformal higher-spin fields

The concept of conformal higher-spin field theory was introduced by Fradkin and Tseytlin

in four dimensions [32]. (Super)conformal higher-spin field theories in three dimensions

were discussed in [14, 33]. In this section, our starting points will be (i) the description

of conformal higher-spin gauge fields in Minkowski space given in [14, 15]; and (ii) the

approach advocated in [34].

3.1 Conformal gravity

The gravitational field may be described in terms of the torsion-free covariant derivatives

∇a = ea + ωa = ea
m∂m +

1

2
ωa

bcMbc , [∇a,∇b] =
1

2
Rab

cdMcd . (3.1)

Here Mbc = −Mcb denotes the Lorentz generators, ea
m the inverse vielbein, ea

mem
b = δa

b,

and ωa
bc the torsion-free Lorentz connection. Finally, Rab

cd is the Riemann curvature

tensor. In three dimensions, Rab
cd is determined by the Ricci tensor Rab := ηcdRcadb = Rba

and the scalar curvature R = ηabRab.

The Weyl tensor is identically zero in three dimensions, which means

Rabcd = ηacRbd − ηadRbc − ηbcRad + ηbdRac −
1

2
(ηacηbd − ηadηbc)R . (3.2)

4It is of interest to compare (2.14) with the quadratic Casimir operator of the 4D N = 1 AdS supergroup

(given by eq. (29) in [30]), which plays an important role in the quantisation [30] of the massless higher-spin

supermultiplets [31] in AdS4.
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The role of the Weyl tensor is played by the Cotton tensor Wabc = −Wbac, which is defined

in terms of the 3D Schouten tensor Pab = Rab − 1
4ηabR as follows

Wabc := ∇aPbc −∇bPac . (3.3)

Spacetime is conformally flat if and only if the Cotton tensor vanishes [35] (see [36] for a

modern proof). The algebraic properties of the Cotton tensor are

Wabc +Wbca +Wcab = 0 , Wab
b = 0 . (3.4)

They imply that Wab := 1
2εacdW

cd
b is symmetric and traceless,

Wba = Wab , W a
a = 0 . (3.5)

It is also divergenceless,

∇aWab = 0 , (3.6)

as a consequence of the Bianchi identity ∇bRab = 1
2∇aR.

The condition of vanishing torsion is invariant under Weyl (local scale) transformations

of the form

∇a → ∇′a = eσ
(
∇a +∇bσMba

)
, (3.7)

with the parameter σ(x) being completely arbitrary. In the infinitesimal case, the Weyl

transformation laws of Rab and R are

δσRab = 2σRab +∇a∇bσ + ηab2σ , δσR = 2σR+ 42σ , (3.8)

where 2 = ∇c∇c. The Cotton tensor is a Weyl primary field of weight +3,

δσWab = 3σWab . (3.9)

In what follows, we often convert every vector index into a pair of spinor ones using the

well-known correspondence: a three-vector Va can equivalently be realised as a symmetric

spinor Vαβ = Vβα. The relationship between Va and Vαβ is as follows:

Vαβ := (γa)αβVa = Vβα , Va = −1

2
(γa)

αβVαβ . (3.10)

Associated with the traceless part of the Ricci tensor, Rab− 1
3ηabR, and the Cotton tensor,

Wab, are the following completely symmetric rank-4 spinors:

Rαβγδ := (γa)αβ(γb)γδ

(
Rab −

1

3
ηabR

)
= R(αβγδ) , (3.11)

Wαβγδ := (γa)αβ(γb)γδWab = W(αβγδ) = ∇ρ(αRβγδ)ρ . (3.12)

The Weyl transformation of Rαβγδ is

δσRαβγδ = 2σRαβγδ +∇(αβ∇βγ)σ . (3.13)

– 6 –



J
H
E
P
1
0
(
2
0
1
8
)
1
6
0

3.2 Conformal gauge fields

A real tensor field hα(n) := hα1...αn = h(α1...αn) is said to be a conformal spin-n2 gauge field

if (i) it is Weyl primary of some weight dn,

δσhα(n) = dnσhα(n) ; (3.14)

and (ii) it is defined modulo gauge transformations of the form

δζhα(n) = ∇(α1α2
ζα3...αn) , (3.15)

with the real gauge parameter ζα(n−2) being also Weyl primary. These conditions uniquely

fix the Weyl weight of hα(n) to be

dn = 2− n

2
. (3.16)

Starting with hα(n) one can construct its descendant, Cα(n), defined uniquely, modulo

a normalisation, by the following the properties:

1. Cα(n) is of the form Ahα(n), where A is a linear differential operator involving the co-

variant derivatives, the curvature tensors Rα(4) and R and their covariant derivatives.

2. Cα(n) is Weyl primary of weight (1 + n/2),

δσCα(n) =
(

1 +
n

2

)
σCα(n) . (3.17)

3. The gauge variation of Cα(n) vanishes if the spacetime is conformally flat,

δζCα(n) = O
(
W(4)

)
, (3.18)

where W(4) is the Cotton tensor.

4. Cα(n) is divergenceless if the spacetime is conformally flat,

∇βγCβγα(n−2) = O
(
W(4)

)
. (3.19)

Here and in (3.18), O
(
W(4)

)
stands for contributions containing the Cotton tensor

and its covariant derivatives.

We now consider several examples. Given a conformal spin-1 gauge field hαβ = hβα,

δσhαβ = σhαβ , (3.20)

the required Weyl primary descendant is Cαβ = ∇γ(αhβ)γ and coincides with the gauge-

invariant field strength, Cab = ∇ahb −∇bha, of the one-form ha. This implies that Cα(2) is

conserved,

∇βγCβγ = 0 . (3.21)

Next consider a conformal spin- 32 gauge field hα(3) (i.e. conformal gravitino),

δσhα(3) =
1

2
σhα(3) . (3.22)

– 7 –
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The required Weyl primary descendant is

Cα(3) =
3

4
∇(α1

β1∇α2
β2hα3)β1β2 +

1

4
2hα(3) +

3

4
Rβ1β2(α1α2

hα3)
β1β2 − 1

16
Rhα(3) . (3.23)

Its gauge transformation is

δζCα(3) = −1

2
Wα(3)βζ

β . (3.24)

Computing its divergence gives

∇βγCβγα = −1

2
Wαβ(3)h

β(3) . (3.25)

Our last example is a conformal spin-2 gauge field hα(4) (i.e. conformal graviton),

δσhα(4) = 0 . (3.26)

The required Weyl primary descendant of hα(4) is

Cα(4) =
1

2
∇(α1

β1∇α2
β2∇α3

β3hα4)β(3) +
1

2
2∇(α1

β1hα2α3α4)β1 +
(
∇(α1

β1Rα2α3
β2β3

)
hα4)β(3)

+
1

12

(
∇(α1

β1R
)
hα2α3α4)β1 −

1

12
R∇(α1

β1hα2α3α4)β1 + 2Rβ1β2 (α1α2
∇α3

β3hα4)β(3)

− 3

4
Rβ1δ(α1α2

∇δβ2hα3α4)β(2) . (3.27)

Its gauge transformation is

δζCα(4) =
(
∇γδWγ(α1α2α3

)
ζα4)δ +

1

2

(
∇(α1α2

Wα3α4)
β(2)
)
ζβ(2) −Wγ1(α1α2α3

∇γ(2)ζα4)γ2

+
11

12
Wα(4)∇β(2)ζβ(2) +

1

2
W β

γ(α1α2
∇α3

γζα4)β . (3.28)

The divergence of Cα(4) may be shown to be

∇βγCβγα(2) = − 1

2

(
∇γ(α1

W γβ(3)
)
hα2)β(3) +

5

12

(
∇α(2)W β(4)

)
hβ(4) +Wα(2)

β(2)∇γ(2)hβ(2)γ(2)

− 3

2
Wγ1(α1

β(2)∇γ(2)hα2)γ2β(2) −
1

12
W β(4)∇α(2)hβ(4) . (3.29)

Suppose that the spacetime under consideration is conformally flat,

Wα(4) = 0 . (3.30)

Then the tensor Cα(n) is gauge invariant and conserved,

δζCα(n) = 0 , (3.31a)

∇βγCβγα(n−2) = 0 . (3.31b)

These properties and the Weyl transformation law (3.17) tell us that the action

S
(n)
CS [hα(n)] =

in

2bn/2c+1

∫
d3x e hα(n)Cα(n) , e−1 = det(ea

m) (3.32)

– 8 –
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is gauge and Weyl invariant,

δζS
(n)
CS [hα(n)] = 0 , δσS

(n)
CS [hα(n)] = 0 . (3.33)

Here bxc denotes the floor function; it coincides with the integer part of a real number x ≥ 0.

The above action is actually Weyl invariant in an arbitrary curved space. Condition (3.30)

is required to guarantee the gauge invariance of S
(n)
CS [hα(n)] for n > 2.

It follows from the Weyl transformation law (3.17) that∇βγCβγα(n−2) is a primary field,

δσ

(
∇βγCβγα(n−2)

)
=
(

2 +
n

2

)
σ∇βγCβγα(n−2) . (3.34)

This property means that the conservation equation (3.31b) is Weyl invariant.

3.3 Higher-spin Cotton tensor in Minkowski space

The linearised higher-spin Cotton tensor in Minkowski space will be denoted Cα(n)(h),

while the previous notation Cα(n)(h) will be reserved for curved spacetimes. For n ≥ 2,

Cα(n)(h) is given by the expression [15]

Cα(n)(h) :=
1

2n−1

bn/2c∑
j=0

(
n

2j + 1

)
2j∂(α1

β1 . . . ∂αn−2j−1
βn−2j−1hαn−2j ...αn)β1...βn−2j−1

.

(3.35)

It is a descendant of the conformal field hα(n) defined modulo gauge transformations of

the form

δhα(n) = ∂(α1α2
ζα3...αn) . (3.36)

The field strength is invariant under these gauge transformations,

δζCα(n) = 0 , (3.37)

and obeys the Bianchi identity

∂βγCβγα1...αn−2 = 0 . (3.38)

The higher-spin Chern-Simons action

S
(n)
CS

[
h(n)

]
=

in

2bn/2c+1

∫
d3xhα(n)Cα(n)(h) (3.39)

is conformal and invariant under (3.36).

In the case of even rank, n = 2s, with s = 1, 2, . . . , the field strength (3.35) can be

shown to coincide with the bosonic higher-spin Cotton tensor given originally by Pope and

Townsend [14]. It reduces to the linearised Cotton tensor for n = 4, and to the Maxwell

field strength for n = 2. The fermionic case, n = 2s+1, with s = 2, . . . , was not considered

in [14]. It was presented for the first time in [15].

It should be pointed out that the conformal spin-3 case, n = 6, was studied for the

first time in [37]. The spin-3/2 case, n = 3, was considered in [38]. The field strength Cα(3)
is the linearised version of the Cottino vector spinor [10, 39].
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The normalisation of Cα(n)(h) defined by (3.35) can be explained as follows. The gauge

freedom (3.36) allows us to impose a gauge condition

∂βγhβγα(n−2) = 0 . (3.40)

Under this gauge condition, the field strength (3.35), with s = 1, 2, . . . , takes the form

Cα(2s) = 2s−1∂β(α1
hα2...α2s)β = 2s−1∂βα1hα2...α2sβ , (3.41a)

Cα(2s+1) = 2shα(2s+1) , (3.41b)

as a consequence of the identity

bn/2c∑
j=0

(
n

2j + 1

)
= 2n−1 . (3.42)

The field strength (3.35) proves to be the general solution to the conservation equa-

tion (3.38). This result has recently been proved in [40] in the bosonic case, n = 2s, and

the proof given is quite nontrivial (see also [41]). An alternative proof, which is valid for

arbitrary integer n > 1 and is based on supersymmetry considerations, was given in [15].

3.4 Higher-spin Cotton tensor in conformally flat spaces

Now we are in a position to construct Cα(n) in a curved conformally flat spacetime M3.

Locally, the covariant derivatives ∇a of M3 are related to the flat-space ones by

∇a = eσ
(
∂a + ∂bσMba

)
, (3.43)

for some scale factor σ. The linearised higher-spin Cotton tensor Cα(n) inM3 is related to

the flat-space one, eq. (3.35), by the rule

Cα(n) = e(1+
n
2
)σCα(n) . (3.44)

The higher-spin gauge field hα(n) in M3 and its counterpart hα(n) in Minkowski space are

related to each other as

hα(n) = e(2−n/2)σhα(n) . (3.45)

In general, it is a difficult technical problem to express Cα(n) in terms of the covariant

derivatives ∇a and the gauge potential hα(n). As an example, let us consider the case of

AdS space, whose geometry is described by covariant derivatives satisfying the algebra

[
∇a,∇b

]
= −4S2Mab ⇐⇒

[
∇αβ ,∇γδ

]
= 4S2

(
εγ(αMβ)δ + εδ(αMβ)γ

)
. (3.46)
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Here the parameter S is related to the AdS scalar curvature as R = −24S2. The Cotton

tensor (3.44) for the cases n = 3, 4, 5 and 6 proves to be

Cα(3) =
1

22

(
3∇(α1

β1∇α2
β2hα3)β1β2 +Qhα(3) − 9S2hα(3)

)
, (3.47)

Cα(4) =
1

23

(
4∇(α1

β1∇α2
β2∇α3

β3hα4)β(3) + 4Q∇(α1

β1hα2α3α4)β1 − 80S2∇(α1

β1hα2α3α4)β1

)
,

(3.48)

Cα(5) =
1

24

(
5∇(α1

β1∇α2
β2∇α3

β3∇α4
β4hα5)β(4) + 10Q∇(α1

β1∇α2
β2hα3α4α5)β(2) +Q2hα(5)

− 330S2∇(α1

β1∇α2
β2hα3α4α5)β(2) − 82S2Qhα(5) + 1425S4hα(5)

)
, (3.49)

Cα(6) =
1

25

(
6∇(α1

β1∇α2
β2∇α3

β3∇α4
β4∇α5

β5hα6)β(5) + 20Q∇(α1

β1∇α2
β2∇α3

β3hα4α5α6)β(3)

+ 6Q2∇(α1

β1hα2...α6)β1 − 960S2∇(α1

β1∇α2
β2∇α3

β3hα4α5α6)β(3)

− 704S2Q∇(α1

β1hα2...α6)β1 + 18432S4∇(α1

β1hα2...α6)β1

)
, (3.50)

where Q is the quadratic Casimir of the 3D AdS group, SO(2, 2), given by eq. (2.5). Each

of the tensors Cα(n) given above can be written as Cα(n)(h(n)) = Ahα(n), where the linear

differential operator A is symmetric in the sense that∫
d3x e gα(n)Ahα(n) =

∫
d3x e hα(n)Agα(n) , (3.51)

for arbitrary prepotentials gα(n) and hα(n). This means that it suffices to prove one of the

two properties in (3.31), and then the second property follows.

4 Massive higher-spin actions in maximally symmetric spaces

The conformal higher-spin actions in conformally flat spaces, eq. (3.32), are formulated in

terms of the gauge fields hα(n). The same gauge field can be used to construct massless

Fronsdal-Fang-type actions [12, 13, 42, 43] in maximally symmetric spaces. Such actions

however, will involve not only hα(n) but also some compensators.

Here we describe these massless higher-spin gauge actions in AdS3 and then use them

to construct gauge-invariant models for massive higher-spin fields.

4.1 Massive higher-spin actions in AdS space

There are two types of the higher-spin massless actions, first-order and second-order ones.

Given an integer n ≥ 4, the first-order model is described by real fields hα(n), yα(n−2) and

yα(n−4) which are defined modulo gauge transformations of the form

δζhα(n) = ∇(α1α2
ζα3...αn) , (4.1a)

δζyα(n−2) =
1

n
∇β(α1

ζα2...αn−2)β + Sζα(n−2) , (4.1b)

δζyα(n−4) = ∇β(2)ζα(n−4)β(2) . (4.1c)
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The Fang-Fronsdal-type gauge-invariant action, S
(n)
FF = S

(n)
FF [h(n), y(n−2), y(n−4)], is

S
(n)
FF =

in

2dn/2e

∫
d3x e

{
hα(n−1)γ∇γδhδα(n−1) + 2(n− 2)yα(n−2)∇β(2)hα(n−2)β(2)

+ 4(n− 2)yα(n−3)γ∇γδyδα(n−3) + 2
n(n− 3)

(n− 1)
yα(n−4)∇β(2)yα(n−4)β(2)

− (n− 3)(n− 4)

(n− 1)(n− 2)
yα(n−5)γ∇γδyδα(n−5) + (n− 2)Shα(n)hα(n)

− 4n(n− 2)Syα(n−2)yα(n−2) −
n(n− 3)

(n− 1)
Syα(n−4)yα(n−4)

}
. (4.2)

Here dn/2e stands for the ceiling function, which is equal to s for n = 2s and s + 1 for

n = 2s+ 1, with s ≥ 0 an integer.

Given an integer n ≥ 4, the second-order model is described by real fields hα(n) and

yα(n−4) defined modulo gauge transformations of the form

δζhα(n) = ∇(α1α2
ζα3...αn) , (4.3a)

δζyα(n−4) =
n− 2

n− 1
∇β(2)ζα(n−4)β(2) . (4.3b)

The Fronsdal-type gauge-invariant action, S
(n)
F = S

(n)
F [h(n), y(n−4)], is

S
(n)
F =

in

2bn/2c+1

∫
d3x e

{
hα(n)2hα(n) −

n

4
∇γ(2)hγ(2)α(n−2)∇β(2)hα(n−2)β(2)

− n− 3

2
yα(n−4)∇β(2)∇γ(2)hα(n−4)β(2)γ(2) − n(n− 6)S2hα(n)hα(n)

− (n− 3)

n

[
2yα(n−4)2yα(n−4) − 2(n2 − 2n+ 4)S2yα(n−4)yα(n−4)

+
(n− 4)(n− 5)

4(n− 2)
∇γ(2)yγ(2)α(n−6)∇β(2)yβ(2)α(n−6)

]}
. (4.4)

Our action (4.2) is a unique gauge-invariant extension to AdS space of the flat-space

action given by Tyutin and Vasiliev [18], see appendix B for a review. When n is odd,

n = 2s+ 1, (4.2) is the unique gauge-invariant 3D counterpart to the Fang-Fronsdal action

in AdS4 [43].5 When n is even, n = 2s, our action (4.4) is the unique gauge-invariant

3D counterpart to the Fronsdal action in AdS4 [42]. The Fronsdal action [42] can also

be generalised to d-dimensional AdS backgrounds [51, 52]. Such an action in AdSd is

5It is worth pointing out that the Fang-Fronsdal action for a massless spin-(s + 1
2
) field [13] is also

described in terms of a triplet of fermionic gauge fields, Ψα(s+1)α̇(s), Ψα(s−1)α̇(s) and Ψα(s−1)α̇(s−2) and

their conjugates, if one makes use of the two-component spinor notation, see section 6.9 of [44]. More

generally, there exist bosonic and fermionic higher-spin triplet models in higher dimensions [45–49]. On-

shell supersymmetric formulations for the generalised triplets in diverse dimensions have recently been given

in [50].

– 12 –



J
H
E
P
1
0
(
2
0
1
8
)
1
6
0

formulated in terms of a symmetric double-traceless field and it is fixed by the condition

of gauge invariance.6

Separately, each of the gauge-invariant actions (3.32), (4.2) and (4.4) proves to describe

no propagating degrees of freedom. We claim that the following models

S
(2s+1)
massive = λS

(2s+1)
CS

[
h(2s+1)

]
+ µ2s−1S

(2s+1)
FF

[
h(2s+1), y(2s−1), y(2s−3)

]
(4.5a)

S
(2s)
massive = λS

(2s)
CS

[
h(2s)

]
+ µ2s−3S

(2s)
F

[
h(2s), y(2s−4)

]
(4.5b)

describe irreducible massive fields in AdS3. Here the parameter λ is dimensionless, while

µ has dimension of mass. Since we do not have a closed form expression for Cα(n) in AdS3,

for arbitrary n, our analysis below will be restricted to the case of Minkowski space, M3.

4.2 Massive higher-spin actions in Minkowski space: the fermionic case

In this section we study the dynamics of the flat-space counterparts to the gauge theo-

ries (4.5a) and (4.5b). In fact, the resulting flat-space actions are contained at the compo-

nent level in the massive supersymmetric higher-spin models proposed in [16, 17]. However,

the analysis in [16, 17] was carried out mostly in terms of superfields so that the component

actions were not studied in detail.

We first analyse the flat-space limit of the fermionic model (4.5a). It is described by

the action

S
(2s+1)
massive = λS

(2s+1)
CS

[
h(2s+1)

]
+ µ2s−1S

(2s+1)
FF

[
h(2s+1), y(2s−1), y(2s−3)

]
, (4.6)

where the massless sector is

S
(2s+1)
FF =

i

2

(
−1

2

)s ∫
d3x

{
hα(2s)γ∂γ

δhδα(2s) + 2(2s− 1)yα(2s−1)∂β(2)hα(2s−1)β(2)

+ 4(2s− 1)yα(2s−2)γ∂γ
δyδα(2s−2) +

2

s
(2s+ 1)(s− 1)yα(2s−3)∂β(2)yα(2s−3)β(2)

− (s− 1)(2s− 3)

s(2s− 1)
yα(2s−4)γ∂γ

δyδα(2s−4)

}
. (4.7)

The action (4.6) is invariant under the following gauge transformations:

δζhα(2s+1) = ∂(α1α2
ζα3...α2s+1) , (4.8a)

δζyα(2s−1) =
1

2s+ 1
∂β(α1

ζα2...α2s−1)β , (4.8b)

δζyα(2s−3) = ∂β(2)ζα(2s−3)β(2) . (4.8c)

The equations of motion corresponding to the model (4.6) are

0 = µ2s−1
(
∂β(α1

hα2...α2s+1)β − (2s− 1)∂(α1α2
yα3...α2s+1)

)
+ λCα(2s+1) , (4.9a)

0 = ∂β(2)hα(2s−1)β(2) + 4∂β(α1
yα2...α2s−1)β −

(s− 1)(2s+ 1)

s(2s− 1)
∂(α1α2

yα3...α2s−1) , (4.9b)

0 = (2s− 1)∂β(2)yα(2s−3)β(2) −
2s− 3

2s+ 1
∂β(α1

yα2...α2s−3)β . (4.9c)

6The dynamical equations for massless higher-spin fields in AdSd were studied by Metsaev [53–56]. For

alternative descriptions of massless higher-spin dynamics in AdSd, see [57, 58].
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We now demonstrate that the model (4.6) indeed describes an irreducible massive

spin-(s+ 1
2) field on the equations of motion. The gauge transformation (4.8c) tells us that

yα(2s−3) can be completely gauged away, that is, we are able to impose the gauge condition

yα(2s−3) = 0 . (4.10)

Then, the residual gauge freedom is described by ζα(2s−1) constrained by

∂β(2)ζα(2s−3)β(2) = 0 =⇒ ∂β(α1
ζα2...α2s−1)β = ∂βα1ζα2...α2s−1β . (4.11)

In the gauge (4.10), the equation of motion (4.9c) becomes the condition for yα(2s−1) to be

divergenceless,

∂β(2)yα(2s−3)β(2) = 0 =⇒ ∂β(α1
yα2...α2s−1)β = ∂βα1yα2...α2s−1β . (4.12)

Due to (4.12), the gauge transformation (4.8b) becomes

δζyα(2s−1) =
1

2s+ 1
∂βα1ζα2...α2s+1β . (4.13)

Since yα(2s−1) and ζα(2s−1) have the same functional type, we are able to completely gauge

away the yα(2s−1) field,

yα(2s−1) = 0 . (4.14)

In accordance with (4.13) and (4.14), the residual gauge freedom is described by the pa-

rameter ζα(2s−1) constrained by

∂βα1
ζα2...α2s−1β = 0 =⇒ 2ζα(2s−1) = 0 . (4.15)

In the gauge (4.14), the equation of motion (4.9b) tells us that hα(2s+1) is divergenceless,

∂β(2)hα(2s−1)β(2) = 0 =⇒ ∂β(α1
hα2...α2s+1)β = ∂βα1hα2...α2s+1β . (4.16)

So far the above analysis has been identical to that given in appendix B of [16] for the

massless model (4.7).

Due to (4.16), the Cotton tensor (3.35) reduces to the expression (3.41b). In the

gauge (4.14), the equation of motion (4.9a) becomes

µ2s−1∂βα1hα2...α2s+1β + λ2shα(2s+1) = 0 . (4.17)

This equation has two types of solutions, massless and massive ones,

∂βα1hα2...α2s+1β = 0 =⇒ 2hα(2s+1) = 0 ; (4.18a)

µ2s−1hα(2s+1) + λ2s−1∂βα1hα2...α2s+1β = 0 . (4.18b)

We point out that Ψα1...α2s+1 := ∂βα1hα2...α2s+1β is completely symmetric and divergence-

less, Ψα1...α2s+1 = Ψ(α1...α2s+1) and ∂βγΨβγα1...α2s−1 = 0.

Let us show that the massless solution (4.18a) is a pure gauge degree of freedom.

Since both the gauge field hα(2s+1) and the residual gauge parameter ζα(2s−1) are on-shell
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massless, it is useful to switch to momentum space, by replacing hα(2s+1)(x)→ hα(2s+1)(p)

and ζα(2s−1)(x)→ ζα(2s−1)(p), where the three-momentum pa is light-like, pαβpαβ = 0. For

a given three-momentum, we can choose a frame in which the only non-zero component of

pαβ = (p11, p12 = p21, p22) is p22 = p11. Then, the conditions pβα1hα2...α2s+1β(p) = 0 and

pβα1ζα2...α2s−1β(p) = 0 are equivalent to

hα(2s)2(p) = 0 , ζα(2s−2)2(p) = 0 . (4.19)

Thus the only non-zero components of hα(2s+1)(p) and ζα(2s−1)(p) are h1...1(p) and ζ1...1(p).

The residual gauge freedom, δh1...(p) ∝ p11ζ1...1, allows us to gauge away the field hα(2s+1)

completely.

Thus, it remains to analyse the general solution of the equation (4.18b), which implies(
22s−1 − (m2)2s−1

)
hα(2s+1) = 0 , m :=

∣∣∣ µ

λ1/(2s−1)

∣∣∣ . (4.20)

This equation in momentum space yields(
1−

(
−p2

m2

)2s−1)
hα(2s+1)(p) = 0 . (4.21)

Since the polynomial equation z2s−1 − 1 = 0 has only one real root, z = 1, the only real

solution to (4.21) is p2 = −m2, from which it follows that hα(2s+1) satisfies the ordinary

Klein-Gordon equation, (
2−m2

)
hα(2s+1) = 0 . (4.22)

Applying (4.22) to (4.17) reveals that hα(2s+1) satisfies the equation of motion correspond-

ing to a massive spin (s+ 1
2)-field with mass m and helicity σ(s+ 1

2),

∂βα1hα2...α2s+1β = σmhα(2s+1) , σ := −sign(µλ) . (4.23)

Finally, for completeness let us recall the proof of the fact that equation (4.23) describes

a single propagating degree of freedom. The field hα(2s+1) is on-shell with momentum

satisfying p2 = −m2, we can therefore transform equation (4.23) into momentum space

and boost into the rest frame where pa = (m, 0, 0) =⇒ p11 = p22 = 0, p12 = −p21 = m,

ihα(2s)1(p)− σhα(2s)2(p) = 0 . (4.24)

Due to the symmetry of the field hα(2s+1), equation (4.24) states that there is only a single

degree of freedom. Taking the independent field component to be h11...1(p) allows us to

express all other components in terms of it.

Along with the fermionic model (4.6), which corresponds to n = 2s + 1, we could

consider a bosonic one described by the action

S
(2s)
massive = λS

(2s)
CS

[
h(2s)

]
+ µ2s−2S

(2s)
FF

[
h(2s), y(2s−2), y(2s−4)

]
, (4.25)

which corresponds to n = 2s. Most of the above analysis would remain valid in this case

as well. However, in place of eq. (4.21) we would have(
1−

(
−p2

m2

)2s−2)
hα(2s)(p) = 0 . (4.26)
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This equation has both physical (p2 = −m2) and tachyonic (p2 = m2) solutions. Therefore,

the model (4.25) is unphysical. This may be interpreted as a consequence of the spin-

statistics theorem.

4.3 Massive higher-spin actions in Minkowski space: the bosonic case

Our next goal is to analyse the flat-space limit of the bosonic model (4.5b). It is described

by the action

S
(2s)
massive = λS

(2s)
CS

[
h(2s)

]
+ µ2s−3S

(2s)
F

[
h(2s), y(2s−4)

]
, (4.27)

where the second term is

S
(2s)
F =

1

2

(
−1

2

)s ∫
d3x

{
hα(2s)2hα(2s) −

s

2
∂γ(2)h

γ(2)α(2s−2)∂β(2)hα(2s−2)β(2)

− (2s− 3)

2s

[
syα(2s−4)∂β(2)∂γ(2)hα(2s−4)β(2)γ(2) + 2yα(2s−4)2yα(2s−4)

+
(s− 2)(2s− 5)

4(s− 1)
∂γ(2)y

γ(2)α(2s−6)∂β(2)yβ(2)α(2s−6)

]}
. (4.28)

The action (4.27) is invariant under the gauge transformations

δζhα(2s) = ∂(α1α2
ζα3...α2s) , (4.29a)

δζyα(2s−4) =
2s− 2

2s− 1
∂β(2)ζα(2s−4)β(2) . (4.29b)

The equations of motion corresponding to (4.27) are

0 = µ2s−3
(
2hα(2s) +

1

2
s∂β(2)∂(α1α2

hα3...α2s)β(2)+

− 1

4
(2s− 3)∂(α1α2

∂α3α4yα5...α2s)

)
+ λCα(2s) , (4.30a)

0 = ∂β(2)∂γ(2)hα(2s−4)β(2)γ(2) +
4

s
2yα(2s−4)+

− (s− 2)(2s− 5)

2s(s− 1)
∂β(2)∂(α1α2

yα3...α2s−4)β(2) . (4.30b)

We will now show that on-shell, the model S
(2s)
massive describes a massive spin-s field

which propagates a single degree of freedom. As follows from the gauge transforma-

tion (4.29b), it is possible to completely gauge away yα(2s−4),

yα(2s−4) = 0 . (4.31)

Then, the residual gauge freedom is described by a parameter ζα(2s−2) constrained by

∂β(2)ζα(2s−4)β(2) = 0 =⇒ ∂β(α1
ζα2...α2s−2)β = ∂βα1ζα2...α2s−2β . (4.32)

In the gauge (4.31), the equation of motion (4.30b) becomes

∂γ(2)∂β(2)hα(2s−4)β(2)γ(2) = 0 . (4.33)
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According to (4.29a), the divergence of hα(2s) transforms as

δζ

(
∂β(2)hα(2s−2)β(2)

)
= ∂β1β2∂(α1α2

ζα3...α2s−2β1β2) = −2

s
2ζα(2s−2) (4.34)

where we have made use of (4.32). Since ζα(2s−2) and ∂β(2)hα(2s−2)β(2) have the same

functional type, it is possible to completely gauge away the divergence of hα(2s),

∂β(2)hα(2s−2)β(2) = 0 =⇒ ∂β(α1
hα2...α2s)β = ∂βα1hα2...α2sβ . (4.35)

Under the gauge conditions imposed, there still remains some residual gauge freedom de-

scribed by a gauge parameter constrained by (4.32) and 2ζα(2s−2) = 0. So far the above

analysis has been identical to that given in appendix B of [16] for the massless model (4.28).

As a consequence of (4.35), the Cotton tensor (3.35) reduces to the simple form (3.41a).

Making use of the gauge conditions (4.31) and (4.35) in conjunction with eq. (3.41a), the

equation of motion (4.30a) becomes(
µ2s−3δβα1 + λ2s−2∂βα1

)
2hα2...α2sβ = 0 . (4.36)

This equation has two types of solutions, massless and massive ones,

2hα(2s) = 0 ; (4.37a)

µ2s−3hα(2s) + λ2s−2∂βα1hα2...α2sβ = 0 . (4.37b)

Let us show that the massless solution (4.37a) is a pure gauge degree of freedom.

Since both the gauge field hα(2s) and the gauge parameter ζα(2s−2) are on-shell massless, it

is useful to switch to momentum space by replacing hα(2s)(x)→ hα(2s)(p) and ζα(2s−2)(x)→
ζα(2s−2)(p), where the three-momentum pa is light-like, pαβpαβ = 0. As in the fermionic

case studied in the previous subsection, we can choose a frame in which the only non-zero

component of pαβ = (p11, p12 = p21, p22) is p22 = p11. In this frame, the equations (4.32)

and (4.35) are equivalent to

hα(2s−2)22(p) = 0 , ζα(2s−4)22(p) = 0 . (4.38)

These conditions tell us that the only non-zero components in this frame are h1...1(p),

h1...12(p) and ζ1...1(p), ζ1...12(p). However, the gauge transformation (4.29a) is equivalent

to δh1...1(p) ∝ ζ1...1(p) and δh1...12(p) ∝ ζ1...12(p), allowing us to completely gauge away the

hα(2s) field.

Let us turn to the other equation (4.37b), which implies(
22s−3 − (m2)2s−3

)
hα(2s) = 0 , m :=

∣∣∣ µ

λ1/(2s−3)

∣∣∣ . (4.39)

Here the mass parameter has the same form as in the fermionic case, eq. (4.20). Trans-

forming eq. (4.39) to momentum space gives(
1−

(
−p2

m2

)2s−3)
hα(2s)(p) = 0 . (4.40)
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In complete analogy with the fermionic case considered in the previous subsection, this

equation has the unique real solution p2 = −m2.

It follows that hα(2s) satisfies the Klein-Gordon equation,(
2−m2

)
hα(2s) = 0 . (4.41)

As a consequence, the equation of motion (4.37b) leads to

∂βα1
hα2...α2sβ = σmhα(2s) , σ := −sign(µλ) . (4.42)

Therefore hα(2s) is an irreducible on-shell massive field with mass m and helicity λ = σs.

Equation (4.42) implies that hα(2s) describes a single propagating degree of freedom.

5 Conformal higher-spin gauge superfields

Conformal higher-spin gauge superfields in N = 1 Minkowski superspace were introduced

in [15, 17], as a by-product of theN = 2 approach of [16]. In this section we start by general-

ising this concept to the case of N = 1 supergravity, building on the ideas advocated in [34].

5.1 Conformal supergravity

Consider a curved N = 1 superspace, M3|2, parametrised by local real coordinates zM =

(xm, θµ), with m = 0, 1, 2 and µ = 1, 2, of which xm are bosonic and θµ fermionic. We

introduce a basis of one-forms EA = (Ea, Eα) and its dual basis EA = (Ea, Eα),

EA = dzMEM
A , EA = EA

M∂M , (5.1)

which will be referred to as the supervielbein and its inverse, respectively. The superspace

structure group is SL(2,R), the double cover of the connected Lorentz group SO0(2, 1).

The covariant derivatives have the form:

DA = (Da,Dα) = EA + ΩA , (5.2)

where

ΩA =
1

2
ΩA

bcMbc = −ΩA
bMb =

1

2
ΩA

βγMβγ (5.3)

is the Lorentz connection.

The covariant derivatives are characterised by the graded commutation relations

[DA,DB} = TABCDC +
1

2
RABcdMcd , (5.4)

where TAB
C and RAB

cd are the torsion and curvature tensors, respectively. To describe

supergravity, the covariant derivatives have to obey certain torsion constraints [59] such

that the algebra (5.4) takes the form [60]

{Dα,Dβ} = 2iDαβ − 4iSMαβ , (5.5a)

[Da,Dβ ] = (γa)β
γ
[
SDγ + iCγδρM δρ

]
− 2

3

[
DβSδca − 2εab

c(γb)βγDγS
]
Mc , (5.5b)

[Da,Db] = εabc

{[
1

2
(γc)αβCαβγ −

2i

3
(γc)βγDβS

]
Dγ

+

[
1

2
(γc)αβ(γd)γδD(αCβγδ) +

(
2i

3
D2S + 4S2

)
ηcd
]
Md

}
. (5.5c)
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Here the scalar S and the symmetric spinor Cαβγ = C(αβγ) are real. The dimension-2

Bianchi identities imply that

DαCβγδ = D(αCβγδ) + εα(βDγδ)S =⇒ DγCαβγ =
4

3
DαβS . (5.6)

We use the notation D2 := DαDα.

The algebra of covariant derivatives is invariant under the following super-Weyl trans-

formations [61–63]

δσDα =
1

2
σDα +DβσMαβ , (5.7a)

δσDa = σDa +
i

2
(γa)

γδDγσDδ + εabcDbσM c , (5.7b)

with the parameter σ being a real unconstrained superfield, provided the torsion superfields

transform as

δσS = σS − i

4
D2σ , δσCαβγ =

3

2
σCαβγ −

i

2
D(αβDγ)σ . (5.8)

The N = 1 supersymmetric extension of the Cotton tensor (3.3) was constructed

in [64]. It is given by the expression

Wαβγ =

(
i

2
D2 + 4S

)
Cαβγ + iD(αβDγ)S . (5.9)

The super-Weyl transformation of Wαβγ proves to be

δσWαβγ =
5

2
σWαβγ . (5.10)

It can be shown [36] that the curved superspace is conformally flat if and only if Wαβγ = 0.

5.2 Conformal gauge superfields

A real tensor superfield Hα(n) is said to be a conformal gauge supermultiplet if (i) it is

super-Weyl primary of dimension (1 − n/2),

δσHα(n) =
(

1− n

2

)
σHα(n) ; (5.11)

and (ii) it is defined modulo gauge transformations of the form

δλHα(n) = inD(α1
λα2...αn) , (5.12)

with the gauge parameter λα(n−1) being real but otherwise unconstrained. The super-Weyl

weight of Hα(n), given by (1 − n/2), is uniquely fixed by requiring λα(n−1) and δλHα(n) to

be super-Weyl primary.

Starting with Hα(n) one can construct its descendant, Wα(n)(H), defined uniquely,

modulo a normalisation, by the following the properties:

1. Wα(n) is of the form AHα(n), where A is a linear differential operator involving DA,

the torsion tensors Cαβγ and S and their covariant derivatives.
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2. Wα(n) is super-Weyl primary of weight (1 + n/2),

δσWα(n) =
(

1 +
n

2

)
σWα(n) . (5.13)

3. The gauge variation of Wα(n) vanishes if the superspace is conformally flat,

δλWα(n) = O
(
W(3)

)
, (5.14)

where W(3) is the super-Cotton tensor (5.9).

4. Wα(n) is divergenceless if the superspace is conformally flat,

DβWβα(n−1) = O
(
W(3)

)
. (5.15)

Here O
(
W(3)

)
stands for contributions containing the super-Cotton tensor and its

covariant derivatives.

As a simple example, we consider a U(1) vector multiplet coupled to supergravity,

which corresponds to the n = 1 case. This multiplet is described by a real spinor prepo-

tential Hα which is super-Weyl primary of weight 1/2 and is defined modulo gauge trans-

formations δλHα = iDαλ, where the gauge parameter λ is an unconstrained real superfield.

The required super-Weyl primary descendant of weight 3/2 is given by

Wα = − i

2
DβDαHβ − 2SHα (5.16)

and proves to be gauge invariant,

δζWα = 0 . (5.17)

The field strength obeys the Bianchi identity

DαWα = 0 . (5.18)

For n > 1 the right-hand sides of (5.14) and (5.15) are non-vanishing.

Suppose that our background curved superspace M3|2 is conformally flat,

Wα(3) = 0 . (5.19)

Then the tensor superfield Wα(n) is gauge invariant and conserved,

δλWα(n) = 0 , (5.20a)

DβWβα(n−1) = 0 . (5.20b)

These properties and the super-Weyl transformation laws (5.11) and (5.13) imply that the

action7

S(n)SCS[H(n)] = − in

2bn/2c+1

∫
d3|2z E Hα(n)Wα(n)(H) , E−1 = Ber

(
EA

M
)

(5.21)

is gauge and super-Weyl invariant,

δλS
(n)
SCS

[
H(n)

]
= 0 , δσS

(n)
SCS

[
H(n)

]
= 0 . (5.22)

We now turn to constructing the linearised higher-spin super-Cotton tensors Wα(n) on such

a conformally flat superspace.

7The super-Weyl transformation of the superspace integration measure is δσE = −2σE.
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5.3 Higher-spin super-Cotton tensor in Minkowski superspace

In Minkowski superspace, M3|2, the higher-spin super-Cotton tensor [15, 17] is

Wα1...αn =

(
− i

2

)n
Dβ1Dα1 . . . D

βnDαnHβ1...βn = W(α1...αn) , (5.23)

with DA = (∂a, Dα) being the flat-superspace covariant derivatives. This tensor is invariant

under the gauge transformation

δHα1α2...αn = inD(α1
ζα2...αn) , (5.24)

and obeys the conservation identity

DβWβα1...αn−1 = 0 . (5.25)

The fact that Wα1...αn defined by (5.23) is completely symmetric, is a corollary of the

identities

DαDβDα = 0 =⇒ [DαDβ , DγDδ] = 0 . (5.26)

The normalisation in (5.23) is explained as follows. The gauge freedom (5.24) allows

us to impose a gauge condition

DβHβα(n−1) = 0 , (5.27)

under which the expression for the super-Cotton tensor simplifies,

DβHβα1...αn−1 = 0 =⇒ Wα(n) = ∂α1
β1 . . . ∂αn

βnHβ1...βn . (5.28a)

This result can be fine-tuned to

Wα(2s) = 2sHα(2s) , (5.28b)

Wα(2s+1) = 2s∂β(α1
Hα2...α2s+1)β = 2s∂βα1Hα2...α2s+1β , (5.28c)

where s > 0 is an integer.

For completeness, we also give another representation for the higher-spin super-Cotton

tensor derived in [15, 17]:

Wα1...αn :=
1

2n

bn/2c∑
j=0

{(
n

2j

)
2j∂(α1

β1 . . . ∂αn−2j
βn−2jHαn−2j+1...αn)β1...βn−2j

− i

2

(
n

2j + 1

)
D22j∂(α1

β1 . . . ∂αn−2j−1
βn−2j−1Hαn−2j ...αn)β1...βn−2j−1

}
. (5.29)

The following higher-spin action [15, 17]

S(n)SCS

[
H(n)

]
= − in

2bn/2c+1

∫
d3|2z Hα(n)Wα(n)(H) (5.30)

is N = 1 superconformal. It is clearly invariant under the gauge transformations (5.24).
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5.4 Higher-spin super-Cotton tensor in conformally flat superspaces

Consider a curved conformally flat superspace M3|2. Locally, its covariant derivatives DA
are related to the flat-space ones by

Dα = e
1
2
σ
(
Dα +DβσMαβ

)
, (5.31)

Da = eσ
(
∂a +

i

2
(γa)

αβDασDβ + ∂bσMba −
i

8
(γa)

αβ (Dγσ)DγσMαβ

)
, (5.32)

for some scale factor σ. In accordance with (5.13), the higher-spin super-Cotton tensor

Wα(n) inM3|2 is related to the flat-space one, eq. (5.23) or equivalently (5.29), by the rule

Wα(n) = e(1+
n
2
)σWα(n) . (5.33)

In general, it is a difficult technical problem to express Wα(n) in terms of the covariant

derivatives DA and the gauge prepotential Hα(n) = e(1−n/2)σHα(n). As an example, we

only give expressions for the supersymmetric photino Wα and Cottino Wα(2) tensors in

AdS superspace. The geometry of AdS3|2 is encoded in the following algebra of covariant

derivatives: {
Dα,Dβ

}
= 2iDαβ − 4iSMαβ , (5.34a)[

Dαβ ,Dγ
]

= −2Sεγ(αDβ) , (5.34b)[
Dαβ ,Dγδ

]
= 4S2

(
εγ(αMβ)δ + εδ(αMβ)γ

)
, (5.34c)

with the real parameter S being the same as in (3.46). The tensors Wα and Wα(2) are

expressed in terms of the operator

∆β
α := − i

2
DβDα − 2Sδβα , (5.35)

with the properties[
∆β1

α1 ,∆
β2
α2

]
= εα1α2S

(
Dβ1β2 − 2SMβ1β2

)
− εβ1β2S (Dα1α2 − 2SMα1α2) . (5.36)

These properties follow from the identity

DβDαDβ = 4iSDα =⇒ Dα∆β
α = 0 . (5.37)

The expressions for Wα and Wα(2) are:

Wα := ∆β
αHβ , (5.38a)

Wα1α2 = ∆β1
(α1

∆β2
α2)Hβ1β2 − 2S∆β

(α1
Hα2)β . (5.38b)

5.5 Massive supersymmetric higher-spin theories in AdS superspace

Massive supersymmetric higher-spin actions in AdS involve different massless sectors de-

pending on the value of superspin.

S(2s)massive = λS(2s)SCS

[
H(2s)

]
+ µ2s−1S(2s)FO

[
H(2s),Y(2s−2)

]
, (5.39a)

S(2s+1)
massive = λS(2s+1)

SCS

[
H(2s+1)

]
+ µ2s−1S(2s+1)

SO

[
H(2s+1),X(2s−2)

]
(5.39b)
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5.5.1 First-order massless actions

We introduce a gauge theory described by a reducible gauge superfield Hβ,α1...αn−1 =

Hβ,(α1...αn−1). This superfield is defined modulo gauge transformations of the form

δHβ,α1...αn−1 = inDβλα1...αn−1 . (5.40)

A supersymmetric gauge-invariant action of lowest order in derivatives is

S(n)FO =
in+1

2d(n+1)/2e

∫
d3|2z EHβ,α1...αn−1

(
DγDβ − 4iSδγβ

)
Hγ,α1...αn−1 . (5.41)

The gauge invariance of S(n)FO follows from the identity (5.37). Our action (5.41) is a higher-

spin AdS extension of the model for the massless gravitino multiplet (n = 2) in Minkowski

superspace proposed by Siegel [1] (see also [59]).

The gauge superfield Hβ,α1...αn−1 can be decomposed into irreducible SL(2,R)

superfields

Hβ,α1...αn−1 = Hβα1...αn−1 +
n−1∑
k=1

εβαkYα1...α̂k...αn−1 , (5.42)

where Hα(n) and Yα(n−2) are completely symmetric tensor superfields. Then the gauge

transformation (5.40) turns into

δHα(n) = inD(α1
λα2...αn) , (5.43a)

δYα(n−2) =
in

n
Dβλβα1...αn−2 . (5.43b)

The supersymmetric gauge-invariant action takes the form

S(n)FO =
in+1

2d(n+1)/2e

∫
d3|2z E

{
Hβα(n−1)DγDβHγα(n−1) + 2i(n− 1)Yα(n−2)DβγHβγα(n−2)

+(n− 1)
(
Yα(n−2)D2Yα(n−2) + (−1)n(n− 2)DβYβα(n−3)DγYγα(n−3)

)
−4Si

(
Hα(n)Hα(n) + n(n− 1)Yα(n−2)Yα(n−2)

)}
. (5.44)

When n is even, n = 2s, this action is the unique gauge-invariant AdS extension of the

massless integer superspin action of [17].

5.5.2 Second-order massless actions

The massless half-integer superspin action in AdS is

S(2s+1)
SO =

(
−1

2

)s ∫
d3|2z E

{
− i

2
Hα(2s+1)QHα(2s+1) −

i

8
DβHβα(2s)D2DγHγα(2s)

+
i

4
sDβγHβγα(2s−1)DρλHρλα(2s−1) −

1

2
(2s− 1)Xα(2s−2)DβγDδHβγδα(2s−2)

+
i

2
(2s− 1)

[
Xα(2s−2)D2Xα(2s−2) −

s− 1

s
DβXβα(2s−3)DγXγα(2s−3)

]
+isSHβα(2s)DβγHγα(2s) +

1

2
(s+ 1)SHα(2s+1)D2Hα(2s+1) (5.45)

+is(2s− 3)S2Hα(2s+1)Hα(2s+1) +
(2s− 1)

(
s2 − 3s− 2

)
s

SXα(2s−2)Xα(2s−2)

}
,
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where Q is the quadratic Casimir operator (2.14). One can express Q in the form

Q = DaDa − iSD2 + 2SDαβMαβ − 2S2MαβMαβ . (5.46)

The action (5.45) is invariant under the gauge transformations

δHα(2s+1) = iD(α1
λα2...α2s+1) , (5.47a)

δXα(2s−2) =
s

2s+ 1
Dβγλβγα1...α2s−2 . (5.47b)

The action (5.45) is the unique gauge-invariant AdS extension of the massless half-integer

superspin action of [17].

5.6 From AdS superspace to AdS space

To conclude this section, we briefly discuss the key aspects of component reduction for

supersymmetric field theories formulated in AdS superspace, AdS3|2. In general, the action

functional of such a theory is given by

S =

∫
d3|2z E L , (5.48)

where the Lagrangian L is a scalar superfield. In accordance with the general formalism

described in section 6.4 of [44], the isometry transformations of AdS3|2 are generated by

the Killing vector fields ξAEA which are defined to obey the master equation [65][
ξ +

1

2
ΛbcMbc,DA

]
= 0 , ξ := ξBDB = ξbDb + ξβDβ , (5.49)

for some Lorentz superfield parameter Λbc = −Λcb. An infinitesimal isometry transforma-

tion acts on a tensor superfield T as

δξT =

(
ξ +

1

2
ΛbcMbc

)
T . (5.50)

The action (5.48) is invariant under the isometry group of AdS3|2.

As shown in [65], the parameters in (5.49) obey the following Killing equations:

Dαξβ =
1

2
Λαβ + Sξαβ = Dβξα , (5.51a)

Dβξβα + 6iξα = 0 , DβΛβα + 12Siξα = 0 , (5.51b)

D(αξβγ) = 0 , D(αΛβγ) = 0 , (5.51c)

which imply

Daξb +Dbξa = 0 , (5.52a)

D2ξα − 12iSξα = 0 , (5.52b)

Dαβξβ + 2Sξα = 0 . (5.52c)
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Equation (5.52a) tells us that ξa is a Killing vector, while (5.52c) means that ξα is a

Killing spinor. The component form of the action (5.48) is computed using the formula

(see also [64])

S =
1

4

∫
d3x e

(
iD2 + 8S

)
L
∣∣ . (5.53)

Here and in what follows, the θ-independent component T |θ=0 of a superfield T (x, θ) will

simply be denoted T |. To complete the formalism of component reduction, we only need

the following relation (
DaT

)∣∣ = ∇aT | , (5.54)

where ∇a is the standard torsion-free covariant derivative of AdS space. Making use of the

AdS transformation law δξL = ξL in conjunction with the identities (5.51) and (5.52), one

may check that the action (5.53) is invariant under arbitrary isometry transformations of

the AdS superspace.

6 Supersymmetric higher-spin actions in components

In this section we will describe the component structure of the supersymmetric higher-spin

theories introduced in the previous section. Our analysis will be restricted to the flat-

superspace case. As in [17], the integration measure8 for N = 1 Minkowski superspace is

defined as follows: ∫
d3|2z L =

i

4

∫
d3xD2L

∣∣
θ=0

. (6.1)

6.1 Superconformal higher-spin action

We start by reducing the superconformal higher-spin action (5.30) to components. The

gauge freedom (5.24) can be used to impose a Wess-Zumino gauge

Hα1...αn | = 0 , DβHβα1...αn−1 | = 0 . (6.2)

In this gauge, there remain two independent component fields

hα1...αn+1 := in+1D(α1
Hα2...αn+1)

∣∣ , hα1...αn := − i

4
D2Hα1...αn

∣∣ . (6.3)

Due to the conservation equation (5.25), the higher-spin super-Cotton tensor (5.29) also

has two independent components, which we define as

Cα1...αn := Wα1...αn

∣∣ , Cα1...αn+1 := in+1D(α1
Wα2...αn+1)

∣∣ . (6.4)

The field strengths Cα(n) and Cα(n+1) are given in terms of the gauge potentials hα(n) and

hα(n+1), respectively, according to eq. (3.35). To prove this statement for Cα(n+1), one has

to use the identity (
n

2j

)
+

(
n

2j + 1

)
=

(
n+ 1

2j + 1

)
. (6.5)

8This definition implies that
∫

d3|2z V =
∫

d3xF , for any scalar superfield V (x, θ) = · · ·+ iθ2F (x).
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Reducing the action (5.30) to components gives

S(n)SCS

[
H(n)

]
= S

(n)
CS

[
h(n)

]
+ S

(n+1)
CS

[
h(n+1)

]
, (6.6)

where the conformal higher-spin action S
(n)
CS [h(n)] is defined by eq. (3.39).

In the gauge (6.2), the residual gauge freedom is characterised by the conditions

D(α1
λα2...αn)| = 0 , D2λα1...αn−1 | = −2i

n− 1

n+ 1
∂β(α1

λα2...αn−1)β | . (6.7)

At the component level, the remaining independent gauge transformations are generated

by ζα(n−1) ∝ λα(n−1)
∣∣ and ζα(n−2) ∝ inDβλβα(n−2)

∣∣.
6.2 Massless first-order model

We now turn to working out the component structure of the first-order model (5.44) in the

flat-superspace limit. In Minkowski superspace, the action can be written in the form

S(n)FO =
in+1

2d(n+1)/2e

∫
d3|2z

{
iHβα1...αn−1∂β

γHγα1...αn−1 +
1

2
Hα1...αnD2Hα1...αn

+2i(n− 1)Y α1...αn−2∂βγHβγα1...αn−2 + (n− 1)Y α1...αn−2D2Yα1...αn−2

+(−1)n(n− 1)(n− 2)DβY
βα1...αn−3DγYγα1...αn−3

}
. (6.8)

It is invariant under the gauge transformations

δHα1α2...αn = inD(α1
λα2...αn) , (6.9a)

δYα1...αn−2 =
in

n
Dβλβα1...αn−2 , (6.9b)

with the gauge parameter λα(n−1) being a real unconstrained superfield. When n is even,

n = 2s, the action (6.8) describes the massless integer superspin model of [17].

The gauge freedom allows us to choose a Wess-Zumino gauge

Hα1...αn | = 0 , DβHβα1...αn−1 | = 0 , Yα1...αn−2 | = 0 . (6.10)

Then, the residual gauge freedom is characterised by the conditions

Dα1λα2...αn | = 0 , D2λα1...αn−1 | = −2i
n− 1

n+ 1
∂β(α1

λα2...αn−1)β | . (6.11)

These conditions imply that there remains only one independent gauge parameter at the

component level. We define it as

ζα1...αn−1(x) := (−1)n+1λα1...αn−1 | . (6.12)

We define the component fields as

hα1...αn+1 := in+1D(α1
Hα2...αn+1)| , (6.13a)

hα1...αn := − i

4
D2Hα1...αn | , (6.13b)

yα1...αn−1 :=
in+1

2n
D(α1

Yα2...αn−1)| , yα1...αn−3 := in+1DβYβα1...αn−3 | , (6.13c)

Zα1...αn−2 :=
i

4
D2Yα1...αn−2 | . (6.13d)
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Their gauge transformation laws are

δhα1...αn+1 = ∂(α1α2
ζα3...αn+1) , (6.14a)

δyα1...αn−1 =
1

n+ 1
∂β(α1

ζα2...αn−1)β , (6.14b)

δyα1...αn−3 = ∂βγζβγα1...αn−3 , (6.14c)

δhα1...αn = 0 , (6.14d)

δZα1...αn−2 = 0 . (6.14e)

Direct calculations of the component action give

S(n)FO =
in

2dn/2e

∫
d3x

{
hα1...αnhα1...αn + Zα1...αn−2Zα1...αn−2

}
+

in+1

2d(n+1)/2e

∫
d3x

{
hβα1...αn∂β

γhγα1...αn + 2(n− 1)yα1...αn−1∂βγhβγα1...αn−1

+4(n− 1)yβα1...αn−2∂β
γyγα1...αn−2 +

2(n− 2)(n+ 1)

n
yα1...αn−3∂βγyβγα1...αn−3

−(n− 2)(n− 3)

n(n− 1)
yβα1...αn−4∂β

γhγα1...αn−4

}
. (6.15)

The fields hα(n) and Zα(n−2) appear in the action without derivatives. This action can be

rewritten in the form

S(n)FO =
in

2dn/2e

∫
d3x

{
hα(n)hα(n) + Zα(n−2)Zα(n−2)

}
+ S

(n+1)
FF [h(n+1), y(n−1), y(n−3)] ,

(6.16)

where S
(n+1)
FF is the flat-space version of (4.2), eg. (B.5), with n replaced by (n+ 1).

6.3 Massive integer superspin action

We are now prepared to read off the component form of a massive integer superspin action

that is obtained from (5.39a) in the flat-superspace limit,

S(2s)massive = λS(2s)SCS

[
H(2s)

]
+ µ2s−1S(2s)FO

[
H(2s), Y(2s−2)

]
. (6.17)

Choosing n = 2s in the component actions (6.6) and (6.16) gives

S(2s)massive = λS
(2s)
CS

[
h(2s)

]
+

1

2

(
−1

2

)s
µ2s−1

∫
d3xhα(2s)hα(2s)

+λS
(2s+1)
CS

[
h(2s+1)

]
+ µ2s−1S

(2s+1)
FF

[
h(2s+1), y(2s−1), y(2s−3)

]
+

1

2

(
−1

2

)s
µ2s−1

∫
d3xZα(2s−2)Zα(2s−2) . (6.18)

It is seen that the Zα(2s−2) field appears only in the third line of (6.18) and without

derivatives, and thus Zα(2s−2) is an auxiliary field. Next, the expression in the second line

of (6.18) constitutes the massive gauge-invariant spin-(s+ 1
2) action (4.6). The two terms
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in the first line of (6.18) involve the hα(2s) field. Unlike S
(2s)
CS [h(2s)], the second mass-like

term is not gauge invariant. However, the action

S̃
(2s)
massive = λS

(2s)
CS

[
h(2s)

]
+

1

2

(
−1

2

)s
µ2s−1

∫
d3xhα(2s)hα(2s) (6.19)

does describe a massive spin-s field on-shell. Indeed, the equation of motion is

λCα(2s) + µ2s−1hα(2s) = 0 . (6.20)

Since Cα(2s) is divergenceless, eq. (3.38), the equation of motion implies that hα(2s) is

divergenceless, eq. (4.35). As a consequence, Cα(2s) takes the simple form given by (3.41a),

and the above equation of motion turns into (compare with eq. (4.36))

λ2s−1∂βα1hα2...α2sβ + µ2s−1hα(2s) = 0 , (6.21)

which implies (
22s−1 −

(
m2
)2s−1)

hα(2s) = 0 , m :=
∣∣∣ µ

λ1/(2s−1)

∣∣∣ , (6.22)

and should be compared with (4.39). Since the polynomial equation z2s−1−1 = 0 has only

one real root, z = 1, we conclude that (6.22) leads to the Klein-Gordon equation (4.22).

As a result, the higher-derivative equation (6.21) reduces to the first-order one, eq. (4.23).

The above component analysis clearly demonstrates that the model (6.17) describes a

single massive supermultiplet subject to the equations (2.6a) and (2.6b) with n = 2s on

the mass shell. The superfield proof was provided in [17].

6.4 Massless second-order model

Finally we consider the massless half-integer superspin model describe by the action [17]

S(2s+1)
SO =

(
−1

2

)s ∫
d3|2z

{
− i

2
Hα(2s+1)2Hα(2s+1) −

i

8
DβH

βα(2s)D2DγHγα(2s)

+
i

4
s∂βγH

βγα(2s−1)∂ρλHρλα(2s−1) −
1

2
(2s− 1)Xα(2s−2)∂βγDδHβγδα(2s−2)

+
i

2
(2s− 1)

[
Xα(2s−2)D2Xα(2s−2) −

s− 1

s
DβX

βα(2s−3)DγXγα(2s−3)

]}
.

(6.23)

It is invariant under the following gauge transformations

δHα(2s+1) = iD(α1
λα2...α2s+1) , (6.24a)

δXα(2s−2) =
s

2s+ 1
∂βγλβγα1...α2s−2 . (6.24b)

The gauge freedom allows us to choose a Wess-Zumino gauge of the form

Hα(2s+1)

∣∣ = 0 , DβHβα(2s)

∣∣ = 0 . (6.25)
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To preserve these conditions, the residual gauge symmetry has to be constrained by

D(α1
λα2...α2s+1)

∣∣ = 0 , D2λα(2s)
∣∣ = − 2is

s+ 1
∂β(α1

λα2...α2s)β

∣∣ . (6.26)

Under the gauge conditions imposed, the independent component fields of Hα(2s+1) can be

chosen as

hα(2s+2) := −D(α1
Hα2...α2s+2)

∣∣ , hα(2s+1) :=
i

4
D2Hα(2s+1)

∣∣ . (6.27)

The remaining independent component parameters of λα(2s) can be chosen as

ζα(2s) := λα(2s)
∣∣ , ξα(2s−1) := −i

s

2s+ 1
Dβλβα(2s−1)

∣∣ . (6.28)

The gauge transformation laws of hα(2s+2) and hα(2s+1) can be shown to be

δζhα(2s+2) = ∂(α1α2
ζα3...α2s+2) , (6.29a)

δξhα(2s+1) = ∂(α1α2
ξα3...α2s+1) . (6.29b)

We now define the component fields of Xα(2s−2) as follows:

yα(2s−2) := 2Xα(2s−2)
∣∣ , (6.30a)

yα(2s−1) := − i

2
D(α1

Xα2...α2s−1)

∣∣ , yα(2s−3) := −iDβXβα(2s−3)
∣∣ , (6.30b)

Fα(2s−2) :=
i

4
Xα(2s−2)

∣∣ . (6.30c)

The gauge transformation laws of yα(2s−2), yα(2s−1) and yα(2s−3) are as follows:

δζyα(2s−2) =
2s

2s+ 1
∂βγζβγα(2s−2) , (6.31a)

δξyα(2s−1) =
1

2s+ 1
∂β(α1

ξα2...α2s−1)β , (6.31b)

δξyα(2s−3) = ∂βγξβγα(2s−3) . (6.31c)

In principle, we do not need to derive the gauge transformation of Fα(2s−2) since this field

turns out to be auxiliary.

The bosonic transformation laws (6.29a) and (6.31a) correspond to the mass-

less spin-(s + 1) action S
(2s+2)
F defined by eq. (4.28). The fermionic transformation

laws (6.29b), (6.31b) and (6.31c) correspond to the massless spin-(s + 1
2) action S

(2s+1)
FF

defined by eq. (4.7).
The component action follows from (6.23) by making use of the reduction rule (6.1).

Direct calculations lead to the following bosonic Lagrangian:

2(−2)s+1Lbos = hα(2s+2)2hα(2s+2) −
1

2
(s+ 1)∂γ(2)h

γ(2)α(2s)∂β(2)hα(2s)β(2)

−1

2
(2s− 1)yα(2s−2)∂β(2)∂γ(2)hα(2s−2)β(2)γ(2) −

(s+ 1)(2s− 1)

2s
yα(2s−4)2yα(2s−4)

−4s(2s− 1)

[
(s+ 1)Fα(2s−2)Fα(2s−2) −

s− 1

2s
Fα(2s−2)∂β(α1

yα2...α2s−2)β

]
.

(6.32)
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Eliminating the auxiliary field Fα(2s−2) leads to

2(−2)s+1Lbos = hα(2s+2)2hα(2s+2) −
1

2
(s+ 1)∂γ(2)h

γ(2)α(2s)∂β(2)hα(2s)β(2)

−1

2
(2s− 1)

[
yα(2s−2)∂β(2)∂γ(2)hα(2s−2)β(2)γ(2) +

2

s+ 1
yα(2s−2)2yα(2s−2)

+
(s− 1)(2s− 3)

4(s+ 1)
∂γ(2)y

γ(2)α(2s−4)∂β(2)yβ(2)α(2s−4)

]
. (6.33)

This Lagrangian corresponds to the massless spin-(s+1) action S
(2s+2)
F obtained from (4.28)

by the replacement s → s + 1. The fermionic sector of the component action proves to

coincide with the massless spin-(s+ 1
2) action, S

(2s+1)
FF [h(2s+1), y(2s−1), y(2s−3)].

6.5 Massive half-integer superspin action

We now have all of the ingredients at our disposal to read off the component form of the mas-

sive half-integer superspin action that is obtained from (5.39b) in the flat-superspace limit,

S(2s+1)
massive = λS(2s+1)

SCS

[
H(2s+1)

]
+ µ2s−1S(2s+1)

SO

[
H(2s+1), X(2s−2)

]
≈ λS

(2s+2)
CS

[
h(2s+2)

]
+ µ2s−1S

(2s+2)
F

[
h(2s+2), y(2s−2)

]
+λS

(2s+1)
CS

[
h(2s+1)

]
+ µ2s−1S

(2s+1)
FF

[
h(2s+1), y(2s−1), y(2s−3)

]
. (6.34)

Here the symbol ‘≈’ indicates that the auxiliary field has been eliminated.

The explicit structure of the component action (6.34) clearly demonstrates that the

model

S(2s+1)
massive = λS(2s+1)

SCS [H(2s+1)] + µ2s−1S(2s+1)
SO [H(2s+1), X(2s−2)] (6.35)

describes a single massive supermultiplet subject to the equations (2.6a) and (2.6b) with

n = 2s+ 1 on the mass shell. The superfield proof was provided in [17].

7 Concluding comments

All massive higher-spin theories in Minkowski space, which have been presented in this

paper, were extracted from off-shell supersymmetric field theories. As shown in section 6,

all the theories studied in section 4 are contained at the component level in the N = 1

supersymmetric massive higher-spin theories proposed in [17]. The latter models were

obtained from the N = 2 supersymmetric massive higher-spin theories of [16] by carrying

out the N = 2→ N = 1 superspace reduction. Furthermore, the off-shell structure of the

massless 3D N = 2 supersymmetric higher-spin actions of [16], which constitute one of the

two sectors of the N = 2 massive actions, were designed following the pattern of the gauge

off-shell formulations for massless 4D N = 1 higher-spin supermultiplets developed in the

early 1990s [66, 67].

Our supersymmetric massive higher-spin theories, which are formulated in AdS3|2 su-

perspace and are described by the actions (5.39a) and (5.39b), contain two different models
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for a massive integer-spin field in AdS at the component level. One of them is the gauge-

invariant model (4.5a). The second model is described by the action

S̃
(2s)
massive = λS

(2s)
CS

[
h(2s)

]
+

1

2

(
−1

2

)s
µ2s−1

∫
d3x e hα(2s)hα(2s) , (7.1)

which does not possess gauge invariance and which is the AdS uplift of the model (6.19).

The action (7.1) leads to the equation of motion

λCα(2s) + µ2s−1hα(2s) = 0 =⇒ ∇βγhβγα(2s−2) = 0 . (7.2)

The action (7.1) can be turned into a gauge-invariant one by making use of the Stückelberg

trick. An interesting feature of the model (7.1) is that it is well-defined in an arbitrary

conformally flat space.

The models (4.5b) and (7.1) are higher-spin analogues of the two well-known equivalent

models for a massive vector field (see [68, 69] and references therein) with Lagrangians

LT = −1

4
F abFab +

m

4
εabcVaFbc , Fab = ∂aVb − ∂bVa , (7.3a)

LSD =
1

2
fafa −

1

2m
εabcfa∂bfc . (7.3b)

New duality transformations were introduced in [15] for theories formulated in terms

of the linearised higher-spin Cotton tensors Cα(n) and their N = 1 supersymmetric coun-

terparts Wα(n). These duality transformations can readily be generalised to arbitrary

conformally flat backgrounds, with Cα(n) and Wα(n) replaced with Cα(n) and Wα(n), re-

spectively.

In the present paper, we have been unable to obtain closed-form expressions for Cα(n)
and Wα(n) in terms of the covariant derivatives of AdS (super)space for arbitrary n. These

are interesting open problems.

The field strengths Cα(n) and Wα(n) are the higher-spin extensions of the linearised

Cotton and super-Cotton tensors, respectively. The actions (3.32) and (5.21) are the

higher-spin extensions of the linearised actions for conformal gravity and supergravity,

respectively. An intriguing question is: do nonlinear higher-spin extensions exist? Within

the approach initiated in [70, 71], Linander and Nilsson [72] constructed the full nonlinear

spin-3 Cotton equation coupled to spin-2. They made use of the frame field description

and the Chern-Simons formulation for 3D (super)conformal field theory due to Fradkin

and Linetsky [33]. The construction of the nonlinear spin-3 Cotton tensor [72] requires

an elimination of certain auxiliary fields, a procedure that becomes extremely difficult for

s > 3. However, so far this is unexplored territory. There exist nonlinear formulations

for the massless spin-3 theory [73, 74], and the generalisation from s = 3 to s > 3 is

shown in [74] to be trivial within the formulation developed. These results indicate that

it is possible to construct a nonlinear topologically massive higher-spin field theory. The

fundamental results by Prokushkin and Vasiliev [75, 76] should be essential of course. Any

attempt to construct a supersymmetric interacting higher-spin theory should inevitably be

an extension of the conformal superspace approach [36, 77].
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It should be pointed out that the problem of constructing topologically massive higher-

spin theories was considered in [78, 79]. However, the nonlinear action proposed possesses

only a restricted gauge freedom in the presence of the Lagrange multiplier β that enforces

the torsion-free conditions on the spin connections. Alternative approaches are worth

pursuing.

So far we have discussed N = 1 topologically massive supergravity and its higher spin

extensions. The off-shell formulations for N -extended topologically massive supergravity

theories were presented in [80, 81] for N = 2, in [82] for N = 3, and in [82, 83] for the

N = 4 case. In all of these theories, the action functional is a sum of two terms, one

of which is the action for pure N -extended supergravity (Poincaré or anti-de Sitter) and

the other is the action for N -extended conformal supergravity. The off-shell actions for

N -extended supergravity theories in three dimensions were given in [59] for N = 1, [60, 84]

for N = 2 and [60] for the cases N = 3, 4. The off-shell actions for N -extended conformal

supergravity were given in [6] for N = 1, [85] for N = 2, [77] for N = 3, 4, 5, and in [86, 87]

for the N = 6 case. Refs. [77, 87] made use of the off-shell formulation for N -extended con-

formal supergravity proposed in [36]. The on-shell formulation for N -extended conformal

supergravity with N > 2 was given in [88]. On-shell approaches to N -extended topolog-

ically massive supergravity theories with 4 ≤ N ≤ 8 were presented in [89–93]. It would

be interesting to formulate topologically massive higher spin supermultiplets for N > 2.

Note added in proof: the equations (2.3) for massive fields in AdS3 may be realised as

equations of motion in the following model

S
(n)
massive[h(n)] =

in

2bn/2c+1

λ

µ

∫
d3x eCα(n)(h)

{
µδβα1 +∇βα1

}
hα2...αnβ ,

which is invariant under the gauge transformations (3.15) in AdS3. It is Cα(n)(h) which

plays the role of φα(n). The equations (2.12) for massive superfields in AdS3|2 may be

realised as equations of motion in the following model

S(n)massive[H(n)] = − in

2bn/2c+1

λ

µ

∫
d3|2z EWα(n)(H)

{
µ+

i

2
D2

}
Hα(n) ,

which is invariant under the gauge transformations (5.12) in AdS3|2. It is Wα(n)(H) which

plays the role of Tα(n). These models, which become (super)conformal in the µ→∞ limit,

may be viewed as generalisations of the flat-space bosonic constructions of [19, 94].
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A Notation and conventions

We follow the notation and conventions adopted in [60]. In particular, the Minkowski

metric is ηab = diag(−1, 1, 1). The spinor indices are raised and lowered using the SL(2,R)

invariant tensors

εαβ =

(
0 −1

1 0

)
, εαβ =

(
0 1

−1 0

)
, εαγεγβ = δαβ (A.1)

by the standard rule:

ψα = εαβψβ , ψα = εαβψ
β . (A.2)

We make use of real gamma-matrices, γa :=
(
(γa)α

β
)
, which obey the algebra

γaγb = ηab1 + εabcγ
c , (A.3)

where the Levi-Civita tensor is normalised as ε012 = −ε012 = 1. The completeness relation

for the gamma-matrices reads

(γa)αβ(γa)
ρσ = −

(
δραδ

σ
β + δσαδ

ρ
β

)
. (A.4)

Here the symmetric matrices (γa)
αβ and (γa)αβ are obtained from γa = (γa)α

β by the

rules (A.2). Some useful relations involving γ-matrices are

εabc(γ
b)αβ(γc)γδ = εγ(α(γa)β)δ + εδ(α(γa)β)γ , (A.5a)

tr[γaγbγcγd] = 2ηabηcd − 2ηacηdb + 2ηadηbc . (A.5b)

Given a three-vector xa, it can be equivalently described by a symmetric second-rank

spinor xαβ defined as

xαβ := (γa)αβxa = xβα , xa = −1

2
(γa)

αβxαβ . (A.6)

In the 3D case, an antisymmetric tensor Fab = −Fba is Hodge-dual to a three-vector Fa,

specifically

Fa =
1

2
εabcF

bc , Fab = −εabcF c . (A.7)

Then, the symmetric spinor Fαβ = Fβα, which is associated with Fa, can equivalently be

defined in terms of Fab:

Fαβ := (γa)αβFa =
1

2
(γa)αβεabcF

bc . (A.8)

These three algebraic objects, Fa, Fab and Fαβ , are in one-to-one correspondence to each

other, Fa ↔ Fab ↔ Fαβ . The corresponding inner products are related to each other as

follows:

− F aGa =
1

2
F abGab =

1

2
FαβGαβ . (A.9)

The Lorentz generators with two vector indices (Mab = −Mba), one vector index (Ma)

and two spinor indices (Mαβ = Mβα) are related to each other by the rules: Ma = 1
2εabcM

bc

and Mαβ = (γa)αβMa. These generators act on a vector Vc and a spinor Ψγ as follows:

MabVc = 2ηc[aVb] , MαβΨγ = εγ(αΨβ) . (A.10)
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B First-order higher-spin model

In this appendix we review the first-order higher-spin model in Minkowski space used by

Tyutin and Vasiliev [18] in their formulation for massive higher-spin fields. It is realised

in terms of a reducible field hb,α1...αn−2 = hb,(α1...αn−2) which is defined modulo gauge

transformations of the form

δhb,α1...αn−2 = ∂bξα1...αn−2 , ξα1...αn−2 = ξ(α1...αn−2) . (B.1)

The structure of this transformation implies that the following action

S
(n)
FF = − in

2bn/2c

∫
d3x εbcdhb,

α1...αn−2∂chd,α1...αn−2 (B.2)

is gauge invariant.

The field hβγ,α1...αn−2 := (γb)βγhb,α1...αn−2 contains three irreducible SL(2,R) fields

that we define as follows:

hα1...αn := h(α1α2,α3...αn) , (B.3a)

yα1...αn−2 :=
1

n
hβ(α1,α2...αn−2)β , (B.3b)

yα1...αn−4 := hβγ,βγα1...αn−4 . (B.3c)

In accordance with (B.1), the gauge transformation laws of these fields are

δhα1...αn = ∂(α1α2
ξα3...αn) , (B.4a)

δyα1...αn−2 =
1

n
∂β(α1

ξα2...αn−2)β , (B.4b)

δyα1...αn−4 = ∂βγξβγα1...αn−4 . (B.4c)

The action (B.2) turns into

S
(n)
FF =

in

2bn/2c+1

∫
d3x

{
hβα1...αn−1∂β

γhγα1...αn−1 + 2(n− 2)yα1...αn−2∂βγhβγα1...αn−2

+4(n− 2)yβα1...αn−3∂β
γyγα1...αn−3 + 2

n(n− 3)

n− 1
yα1...αn−4∂βγyβγα1...αn−4

−(n− 3)(n− 4)

(n− 1)(n− 2)
yβα1...αn−3∂β

γyγα1...αn−3

}
. (B.5)

This is the flat-space limit of the first-order action (4.2). When n is odd, n = 2s + 1,

the functional S
(2s+1)
FF coincides with plain 4D → 3D dimensional reduction of the Fang-

Fronsdal action [13].

C Higher-spin Cotton tensor as a descendent of gauge-invariant field

strengths

The Cotton tensor is defined in terms of the Ricci tensor according to (3.3). The latter

determines the equations of motion corresponding to the Einstein-Hilbert action. In this

appendix we show that analogous properties hold for the linearised higher-spin Cotton

tensor defined by eq. (3.35).
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C.1 The first-order case

We begin by demonstrating that the higher-spin Cotton tensor (3.35) is a descendant of

gauge-invariant field strengths which determine the equations of motion in the first-order

model (B.5). Associated with the dynamical variables hα(n), yα(n−2) and yα(n−4) are the

following gauge-invariant field strengths:

Fα(n) := ∂(α1

βhα2...αn)β − (n− 2)∂(α1α2
yα3...αn) , (C.1a)

Gα(n−2) := ∂β(2)hα(n−2)β(2) + 4∂(α1

βyα2...αn−2)β −
n(n− 3)

(n− 1)(n− 2)
∂(α1α2

yα3...αn−2) ,

(C.1b)

Hα(n−4) := (n− 2)∂β(2)yα(n−4)β(2) −
n− 4

n
∂(α1

βyα2...αn−4)β . (C.1c)

The equations of motion corresponding to (B.5) are the conditions that these field strengths

vanish. Furthermore, the gauge symmetry implies that Fα(n), Gα(n−2) and Hα(n−4) are

related to each other via the Noether identity

0 = ∂β(2)Fα(n−2)β(2) −
n− 2

n
∂(α1

βGα2...αn−2)β +
n(n− 3)

(n− 1)(n− 2)
∂(α1α2

Hα3...αn−2) . (C.2)

We claim that the Cotton tensor Cα(n)(h) may be expressed as Cα(n) = (A1F )α(n) +

(A2G)α(n) + (A3H)α(n), for some linear differential operators Ai of order n− 2. A suitable

ansatz for such an expression is

Cα(n) =

bn
2
c−1∑
j=0

aj�
j∂(α1

β1 · · · ∂αn−2j−2
βn−2j−2Fαn−2j−1...αn)β1...βn−2j−2

+

dn
2
e−2∑

k=0

bk�
k∂(α1

β1 · · · ∂αn−2k−3

βn−2k−3∂αn−2k−2αn−2k−1
Gαn−2k...αn)β1...βn−2k−3

(C.3)

+

bn
2
c−2∑
l=0

cl�
l∂(α1

β1 · · · ∂αn−2l−4

βn−2l−4∂αn−2l−3αn−2l−2

× ∂αn−2l−1αn−2l
Hαn−2l+1...αn)β1...βn−2l−4

for some coefficients aj , bk and cl. It may be shown that the values of these coefficients are

not unique and that there are bn2 c − 1 free parameters. For example, when n = 5 one may

show that the general solution is
a0
a1
b0
b1
c0

 =


1
2 + 18

5 c0
1
2 −

18
5 c0

9
80 −

36
25c0

3
80 −

18
25c0

c0

 .
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We may use this freedom to completely eliminate the bn2 c − 1 coefficients cl so that only

the field strengths Fα(n) and Gα(n−2) appear in (C.3). This fixes the solution uniquely to

aj =
1

2n−2
(n− 1)

(2j + 1)

(
n− 2

2j

)
for 0 ≤ j ≤

⌊
n

2

⌋
− 1 , (C.4a)

bk =
1

2n−1
(n− 2)2

n(2k + 1)

(
n− 3

2k

)
for 0 ≤ k ≤

⌈
n

2

⌉
− 2 , (C.4b)

cl = 0 for 0 ≤ l ≤
⌊
n

2

⌋
− 2 . (C.4c)

The fact that there are bn2 c−1 free parameters may be understood as a consequence of the

Noether identity (C.2). To see this, observe that, in principle, we may use (C.2) to replace

all occurrences of Hα(n−4) with Fα(n) and Gα(n−2) in the ansatz (C.3). There will then be

only two sets of independent coefficients, say ãj and b̃k, whose unique values coincide with

those of (C.4a) and (C.4b).

C.2 The second-order case

We now consider the flat-space version of the second-order model (4.4). It is described

by the real fields hα(n) and hα(n−4). Associated with these two fields are the following

gauge-invariant field strengths:

Fα(n) = �hα(n) +
n

4
∂β(2)∂(α1α2

hα3...αn)β(2) −
n− 3

4
∂(α1α2

∂α3α4yα5...αn) , (C.5a)

Gα(n−4) = ∂β(2)∂β(2)hα(n−4)β(4) +
8

n
�yα(n−4) −

(n− 4)(n− 5)

n(n− 2)
∂β(2)∂(α1α2

yα3...αn−4)β(2) .

(C.5b)

The equations of motion for the model are Fα(n) = 0 and Gα(n−4) = 0. The two field

strengths are related by the Noether identity

∂β(2)Fα(n−2)β(2) =
(n− 3)(n− 2)

4(n− 1)
∂(α1α2

Gα3...αn−2) . (C.6)

We claim that the Cotton tensor Cα(n)(h) may be written as Cα(n) = (A1F )α(n)+(A2G)α(n)
where the Ai are linear differential operators of order n− 3. A suitable ansatz for such an

expression is

Cα(n) =

dn
2
e−2∑
j=0

aj�
j∂(α1

β1 · · · ∂αn−2j−3
βn−2j−3Fαn−2j−2...αn)β1...βn−2j−3

(C.7)

+

dn
2
e−3∑

k=0

bk�
k∂(α1

β1 · · · ∂αn−2k−5

βn−2k−5

× ∂αn−2k−4αn−2k−3
∂αn−2k−2αn−2k−1

Gαn−2k...αn)β1...βn−2k−5
,
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for some coefficients aj and bk. It may be shown that the choice of these coefficients is not

unique, and that there are dn2 e − 2 free parameters. For example, when n = 6 one may

show that the general solution isa0a1
b0

 =

5
8 −

10
3 b0

3
8 + 10

3 b0
b0

 .

We can use this freedom to completely eliminate the dn2 e − 2 coefficients bk so that only

the top field strength, Fα(n), appears in (C.7). This gives the unique solution

aj = (j + 1)

(
n−3
2j

)(
2j+3
3

) n(n− 1)

3 · 2n−2
for 0 ≤ j ≤

⌈
n

2

⌉
− 2 , (C.8a)

bk = 0 for 0 ≤ k ≤
⌈
n

2

⌉
− 3 . (C.8b)
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