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ABSTRACT: We elaborate on conformal higher-spin gauge theory in three-dimensional (3D)
curved space. For any integer n > 2 we introduce a conformal spin-7 gauge field h(,) =
hay...a, (With n spinor indices) of dimension (2 —n/2) and argue that it possesses a Weyl
primary descendant C', of dimension (1+n/2). The latter proves to be divergenceless and
gauge invariant in any conformally flat space. Primary fields C(3) and C(4) coincide with
the linearised Cottino and Cotton tensors, respectively. Associated with C,) is a Chern-
Simons-type action that is both Weyl and gauge invariant in any conformally flat space.
These actions, which for n = 3 and n = 4 coincide with the linearised actions for conformal
gravitino and conformal gravity, respectively, are used to construct gauge-invariant models
for massive higher-spin fields in Minkowski and anti-de Sitter space. In the former case,
the higher-derivative equations of motion are shown to be equivalent to those first-order
equations which describe the irreducible unitary massive spin-4 representations of the 3D
Poincaré group. Finally, we develop N' = 1 supersymmetric extensions of the above results.
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1 Introduction

A unique feature of three spacetime dimensions (3D) is the existence of topologically mas-
sive Yang-Mills and gravity theories. These theories are obtained by augmenting the usual
Yang-Mills action or the gravitational action by a gauge-invariant topological mass term.
Such a mass term coincides with a Chern-Simons functional in the Yang-Mills case [1-5]
and with a Lorentz Chern-Simons term in the case of gravity [4, 5]. The Lorentz Chern-
Simons term is required to make the gravitational field possess nontrivial dynamics, for
the pure gravity action propagates no local degrees of freedom. The Lorentz Chern-Simons
term can be interpreted as the action for 3D conformal gravity [6, 7].!

Topologically massive gravity possesses supersymmetric extensions. In particular, N' =
1 topologically massive supergravity was constructed in [10, 11]. Its topological mass term
is the supersymmetric extension of the gravitational Chern-Simons term, which coincides
with the action for N' = 1 conformal supergravity [6]. Extended topologically massive
supergravity will be briefly discussed in section 7.

Topologically massive AN/ = 1 supergravity, with or without a cosmological term, may
be linearised about a maximally supersymmetric solution. The resulting linearised actions
for the gravitino and the gravitational field contain higher derivatives. However, the genuine
massive states prove to obey first-order differential equations. This paper is devoted to the
description of higher-spin extensions of the linearised actions for topologically massive
gravity and N’ = 1 supergravity. In particular, for every (half-)integer spin n/2, where
n = 5,6,..., we present a gauge-invariant higher-derivative action in Minkowski space
that propagates a single massive state of helicity +n/2 or —n/2 on the mass shell. The
action is of the form

Smassive = Omassless 1T SCS . (1'1)

Here Shassless denotes the 3D massless spin-5 gauge action of the Fronsdal-Fang type [12,
13], with no propagating degrees of freedom. The second term in the right-hand side
of (1.1) is a conformal spin-§ gauge action [14, 15] described by a Lagrangian of the
schematic form Lgg go(n)an_lgp(n), where ¢,y stands for the conformal spin-4 field. We
show that Spassive Propagates a single massive state described by the equations (2.1). We
also present extensions of the actions introduced to anti-de Sitter (AdS) space, as well as

their A/ = 1 supersymmetric generalisations.

The usual Einstein-Hilbert action for 3D gravity with a cosmological term can also be interpreted as
the Chern-Simons action for the anti-de Sitter group [8, 9].



In the case of Minkowski space, our actions (1.1) are in fact contained, at the compo-
nent level, in the massive supersymmetric higher-spin models proposed in [16, 17]. However,
the analysis in [16, 17] was carried out mostly in terms of superfields so that the compo-
nent actions were not studied. All the massive higher-spin gauge models in AdS, which are
presented in this paper, are new.

This paper is organised as follows. In section 2 we review field realisations of the irre-
ducible massive spin-§ representations (n = 2,3...) of the 3D Poincaré and AdS groups.
We also review the structure of on-shell massive higher-spin superfields for both 3D N =1
Poincaré and AdS supersymmetry. In section 3 we introduce, for any integer n > 2,
a conformal spin-§ gauge field b)) = bay..an = D(ay...a,) and argue that it possesses a
Weyl primary descendant €, of dimension (1 + §) with the following properties: (i) €,
is of the schematic form V”flb(n); (ii) €(n) is divergenceless and gauge invariant in an
arbitrary conformally flat space. These descendants €, are constructed in any confor-
mally flat space. Making use of the primary fields €, we propose Chern-Simons-type
actions ngs) x [ d3ze f)o‘(”)Ca(n) which are Weyl and gauge invariant in any conformally
flat space, and which are higher-spin extensions of the linearised action for 3D conformal
gravity. These conformal higher-spin actions are then used to construct massive higher-spin
gauge theories in AdS, described by the actions (4.5a) and (4.5b). In section 4 we study
the dynamics of the flat-space counterparts to the gauge theories (4.5a) and (4.5b).

Sections 5 and 6 are devoted to supersymmetric extensions of the results presented in
sections 3 and 4. In section 5 we introduce conformal higher-spin gauge superfields £(,) in
curved N/ = 1 superspace. These conformal gauge superfields are argued to possess primary
descendants 2,y of dimension (1 + 5) that are locally supersymmetric extensions of the
linearised higher-spin super-Cotton tensors [15, 17]. For any conformally flat superspace
background, the primary superfields 20,,) are explicitly constructed, and are shown to
be gauge invariant and conserved. Making use of ),(,) and 2, (,), we construct a higher-
spin extension of the action for linearised N' = 1 conformal gravity, S(S%)S [9(n)], which is
given by eq. (5.21). We employ S(S%)S [9(n)] to construct massive higher-spin gauge actions
in ' = 1 AdS superspace, given by eqgs. (5.39a) and (5.39b). Section 6 describes the
component structure of the supersymmetric higher-spin theories introduced in section 5,
with the analysis being restricted to the flat-superspace case. Concluding comments and
discussion are given in section 7. The main body of the paper is accompanied by three
appendices. Appendix A describes our notation and conventions. Appendix B reviews
the Tyutin-Vasiliev action [18]. Appendix C provides two realisations for the higher-spin
Cotton tensor in Minkowski space, C(y,), as a descendant of gauge-invariant field strengths
corresponding to two different higher-spin massless models.?

2 On-shell massive (super)fields

In this section we review the structure of irreducible massive higher-spin (super)fields in

Minkowski space and in anti-de Sitter space.

2A similar result in the A/ = 2 supersymmetric case was given in [16].



2.1 Massive fields

We first recall the definition of on-shell massive fields in Minkowski space. Given a positive
integer n > 1, a massive field, ¢a,..a,, = Pay..c, = P(ay--an)s 18 & Teal symmetric rank-n
spinor field which obeys the differential conditions [18] (see also [19])

657¢57a1-~an_2 = 07 (21&)
86(011 ¢a2...an)6 = m0¢a1...an s o==1, (21b)

with m being the mass of the field. In the spinor case, n = 1, eq. (2.1a) is absent, and
the massive field is defined to obey the Dirac equation (2.1b). It is easy to see that (2.1a)
and (2.1b) imply the mass-shell equation

(0 —m?) Payan =0 . (2:2)

In the spinor case, n = 1, eq. (2.2) follows from the Dirac equation (2.1b). The helicity of
ba(n) 18 A = 50, and the spin of ¢q () is n/2.

It should be remarked that the system of equations (2.1a) and (2.2) is equivalent to the
3D version of the Fierz-Pauli field equations [20]. The general solution to (2.1a) and (2.2)
is a superposition of two massive states of helicity +75 and —3, respectively. Twenty years
ago, Tyutin and Vasiliev [18] constructed Lagrangian formulations for massive higher-spin
fields that lead to the equations (2.1a) and (2.1b) on the mass shell. Their actions did not
possess gauge invariance. In the present paper, we propose gauge-invariant formulations for
massive higher-spin fields in Minkowski space that lead to the equations (2.1a) and (2.1b)
on-shell.

In the case of AdS space, massive fields are defined to obey the following equations [21,
22] (see also [23])

V/B7¢Bval__.an72 = 07 (23&)
vﬁ(algbag...an)ﬁ = /-Lgboq...an 3 (23b)

for some real mass parameter p. Equation (2.3b) implies that
(VOVa +2(n +2)8* — 1i?) don) =0, (2.4)

where the parameter S is related to the AdS curvature via eq. (3.46). Equation (2.4) can
be rewritten in terms of the quadratic Casimir operator of the 3D AdS group SO(2,2),

Q 1= VIV, — 282 M M., [Q.V,.] =0, (2.5)

with M,;s the Lorentz generators, see appendix A.

Equations (2.3a) and (2.4) constitute the 3D AdS counterpart to the Fierz-Pauli field
equations. They describe a reducible representation of the AdS isometry group. Gauge-
invariant Lagrangian formulations for massive higher-spin fields in AdS, which lead to the
equations (2.3a) and (2.4) on the mass shell, were developed in [24-27], including N = 1



supersymmetric extensions obtained by combining the bosonic and fermionic actions (on-
shell supersymmetry). The formulations given in [24-27] are based on Zinoviev’s gauge-
invariant approach [28] to describe massive higher-spin fields. In the present paper, we
propose different gauge-invariant formulations for massive higher-spin fields in AdS that
lead to the equations (2.3a) and (2.3b) on-shell.

2.2 Massive superfields

For n > 0, a massive superfield T,,) is defined to be a real symmetric rank-n spinor,

Toyan = Tay..an = T{ay.wa,)> Which obeys the differential conditions [29] (see also [17])
DBTBOQ"'Q”,1 = 0 . aﬁ,\/Tﬂ’YﬂéLnaan e O s (263)
—%DZTM,,,% = moTh,. o o=+l (2.6b)

Here D? = D®D,,, and D, is the spinor covariant derivative of A” = 1 Minkowski super-
space. It follows from (2.6a) that

i
- §D2T061---05n = 85(a1Ta2...an)Bv (27)

and thus T, is an on-shell superfield,
0”1 Tos..an)p = M0Tay ., o==+1. (2.8)
It follows from (2.6b) that?
(D — m2) Ta(n) =0. (29)
For the superhelicity of T,(,) we obtain

m_;<n+;>a. (2.10)

We define the superspin of T, to be n/2. The massive supermultiplet T'o(n) contains two
ordinary massive fields of the type (2.1), which are

¢a1...o¢n = Tal...an‘0:07 ¢a1...an+1 = in+1D(a1Ta2...an+1)|9=0 : (211)

Their helicity values are 5o and "THU, respectively.

The off-shell gauge-invariant formulations for massive higher-spin N’ = 1 supermulti-
plets in Minkowski superspace, which lead to the equations (2.6a) and (2.6b) on the mass
shell, were constructed in [17].

In the case of N' =1 AdS supersymmetry, on-shell massive superfields are described
by the equations [29]

DTy = 0, (2.12a)

i
—§D2Tal...an = T e vy, s (2.12b)

3The equations (2.6a) and (2.9) are the A" = 1 supersymmetric extension of the Fierz-Pauli equations.



with u a real mass parameter and D? = D*D,,. Here Dy = (D4, Dy) are the covariant
derivatives of the N = 1 AdS superspace, see section 5 for the details. It can be shown that

1
- ZD2D2 = DD, — 28D? + 28D’ M, 5 — 28 M*P M5 . (2.13)

This differential operator, which is the square of the operator in the left-hand side of (2.12b),
can be expressed via the quadratic Casimir operator? of the 3D A/ = 1 AdS supergroup,

1
Q= 72)21)2 +iSD?, [Q,Da] =0. (2.14)
It is worth pointing out that the left-hand side of (2.12b) can be rewritten as
i
_ §D2Ta1---an = D(alﬂTOQ“'an)B + (n+2)8Tuy - a (2.15)

where we have made use of (2.12a).

In this paper we propose off-shell gauge-invariant formulations for massive higher-spin
supermultiplets in A/ = 1 AdS superspace that lead to the equations (2.12a) and (2.12b)
on-shell.

3 Conformal higher-spin fields

The concept of conformal higher-spin field theory was introduced by Fradkin and Tseytlin
in four dimensions [32]. (Super)conformal higher-spin field theories in three dimensions
were discussed in [14, 33]. In this section, our starting points will be (i) the description
of conformal higher-spin gauge fields in Minkowski space given in [14, 15]; and (ii) the
approach advocated in [34].

3.1 Conformal gravity

The gravitational field may be described in terms of the torsion-free covariant derivatives

1 1
Va =€q tWwg = eamam + iwabchC7 [Va, Vb] = §RadeMcd . (3.1)
Here M. = —M_, denotes the Lorentz generators, e, the inverse vielbein, e, e’ = 84,

and w,® the torsion-free Lorentz connection. Finally, Rq°® is the Riemann curvature
tensor. In three dimensions, Ry,°? is determined by the Ricci tensor Rap := 7°Reqap = Rba
and the scalar curvature R = 1% Rg.

The Weyl tensor is identically zero in three dimensions, which means

1
Raped = nacRbd - nadec - nbcRad + Mpallac — §(nacnbd - nadﬂbc)R . (32)

Tt is of interest to compare (2.14) with the quadratic Casimir operator of the 4D N = 1 AdS supergroup
(given by eq. (29) in [30]), which plays an important role in the quantisation [30] of the massless higher-spin
supermultiplets [31] in AdSy.



The role of the Weyl tensor is played by the Cotton tensor Wyp. = —Wpge, which is defined
in terms of the 3D Schouten tensor P, = Rgp — %nabR as follows

Wape := VaPoo — Vi Pac . (3.3)

Spacetime is conformally flat if and only if the Cotton tensor vanishes [35] (see [36] for a
modern proof). The algebraic properties of the Cotton tensor are

Wabe + Woea + Wear =0, Wap’ =0 (34)
They imply that W, := %sachCdb is symmetric and traceless,
Whe = Wap, We% =0. (3.5)
It is also divergenceless,
VW =0, (3.6)

as a consequence of the Bianchi identity V?Ry, = %VGR.
The condition of vanishing torsion is invariant under Weyl (local scale) transformations
of the form
Ve o V, = (va n VbaMba) , (3.7)

with the parameter o(x) being completely arbitrary. In the infinitesimal case, the Weyl
transformation laws of Ry, and R are

O Rap = 20Ryp + Vo Vo + Neylo 0oR=20R+ 400, (38)
where O = V°V,.. The Cotton tensor is a Weyl primary field of weight 43,
O Wap = 3cWyy . (3.9)

In what follows, we often convert every vector index into a pair of spinor ones using the
well-known correspondence: a three-vector V, can equivalently be realised as a symmetric
spinor V3 = V4. The relationship between V; and V3 is as follows:

1

Vg = (1) agVa = Vsa V, = —5(%)0‘5%5 . (3.10)

Associated with the traceless part of the Ricci tensor, Ry, — %nabR, and the Cotton tensor,
Wap, are the following completely symmetric rank-4 spinors:

1
Ra675 = (’Ya)aﬂ(’)/b)'yﬁs <Rab - 3nabR> = R(aﬁ'yﬁ) ) (311)
Wagys = (1)as(Y)1sWab = Wiapre) = V(o Rore)p - (3.12)

The Weyl transformation of R,g4s is

O Ragys = 20 Rapys + VasVpy)o - (3.13)



3.2 Conformal gauge fields

A real tensor field by (n) = bay..an = B(ay...a,) 18 said to be a conformal spin-5 gauge field
if (i) it is Weyl primary of some weight d,,,

50[]04(71) = dnaha(n) ) (3.14)

and (ii) it is defined modulo gauge transformations of the form

5Cba(n) = v(a1a2Ca3...an) ) (315)

with the real gauge parameter (,(,—2) being also Weyl primary. These conditions uniquely

fix the Weyl weight of b, to be

dn:2—g. (3.16)

Starting with b, (,) one can construct its descendant, €,(,), defined uniquely, modulo
a normalisation, by the following the properties:

1. €4 (n) is of the form Ab,(,), where A is a linear differential operator involving the co-
variant derivatives, the curvature tensors R, 4) and R and their covariant derivatives.

2. €4(p) is Weyl primary of weight (1 +n/2),

boCaim = (145 ) 0€a(m - (3.17)

3. The gauge variation of €, vanishes if the spacetime is conformally flat,
0¢€an) = O (W(4)) , (3.18)
where Wy is the Cotton tensor.
4. €4y is divergenceless if the spacetime is conformally flat,
V€ am-2) =0 (W) - (3.19)

Here and in (3.18), O(W(4)) stands for contributions containing the Cotton tensor

and its covariant derivatives.

We now consider several examples. Given a conformal spin-1 gauge field b,z = bga,

5aha,3 = Uha,ﬁ > (320)

the required Weyl primary descendant is €,3 = V7(,bhg), and coincides with the gauge-
invariant field strength, €q, = Vb — Vb, of the one-form b,. This implies that €, ) is
conserved,

V¢4, =0. (3.21)

Next consider a conformal spin—% gauge field b, 3) (i.e. conformal gravitino),

1
5aha(3) = 50%(3) . (3.22)



The required Weyl primary descendant is

1
Q:a( 3) = 7v(a16 VOQ has BB T 7 Dba + RBLB2 a1a2ba3 T6Rba(3) : (3.23)
Its gauge transformation is
1
6c€o(3) = —§Wa(3)6CB : (3.24)
Computing its divergence gives
1
Vﬁ7€57a =3 a/g(g)f)’g(3) . (3.25)

Our last example is a conformal spin-2 gauge field b, 4y (i-e. conformal graviton),
doha@) =0 . (3.26)

The required Weyl primary descendant of b4 is

1
Cata) = 5 V(" Ve * Vas ®bas)s) + 5 DV<C,1 Bosasonss + (Vo™ Razas™™ ) o)
1
+ E (V( ﬁlR) ha2a3a4 7Rv []042043044 B1 + 2R5152 (ala?v‘mﬁgha‘l)ﬁ(?’)
3
— ZRﬂlé(amv%hawm(g) . (3.27)

Its gauge transformation is

1
5CQ:01(4) = (v’Y(;W’Y(CHOQOCS) Ca4)5 + 5 (v(a1a2Wa3a4)B(2)) CB(2) — W’Yl(ala2a3v’y(2)€-a4)72
11 1
- EWQ(4)V5(2)(5(2) + §Wﬁv(a1a2va3’yga4)ﬂ : (3.28)

The divergence of €,(4) may be shown to be

1 5
VICs00) = — §<VV(QIW75(3)> baz)s3) + 15 (Va(?)Wﬁ(4)) baa) + Wa@2)? @V g,

- ng( PO Db)r082) - %Wﬁ Va2 hs) - (3.29)
Suppose that the spacetime under consideration is conformally flat,
Wa@4 =0 (3.30)
Then the tensor €, is gauge invariant and conserved,

5¢Co(n) = 0, (3.31a)
V€5 0m2 =0 . (3.31Db)

These properties and the Weyl transformation law (3.17) tell us that the action

n i é a(n - m
Sés) [ha(n)] = W /ddxeh ( )Qa(n), € 1 = det(ea ) (332)



is gauge and Weyl invariant,
0cSdham) =0, 0,808 [Bagm] =0 . (3.33)

Here |z | denotes the floor function; it coincides with the integer part of a real number = > 0.
The above action is actually Weyl invariant in an arbitrary curved space. Condition (3.30)
is required to guarantee the gauge invariance of Sgg [ha(n)} for n > 2.

It follows from the Weyl transformation law (3.17) that Vﬁvﬁﬁw(n,g) is a primary field,

n
Oy (VB’YQ:&W(”,Q)) = (2 + §>UVBV€5W(W2) . (3.34)
This property means that the conservation equation (3.31b) is Weyl invariant.

3.3 Higher-spin Cotton tensor in Minkowski space

The linearised higher-spin Cotton tensor in Minkowski space will be denoted Cq)(h),
while the previous notation Qﬁa(n)(h) will be reserved for curved spacetimes. For n > 2,
Cany(h) is given by the expression [15]

[n/2]
1 n ; .
Ca(m)(h) := on—1 Z <2j + 1> Dja(alﬁl "‘aanfzj%ﬁ%%ilhan—2j--~an)51~--5n—2j—1 :
=0

(3.35)
It is a descendant of the conformal field hg(,) defined modulo gauge transformations of
the form

5ha(n) = a(CMlCMQCCMg...an) : (336)

The field strength is invariant under these gauge transformations,

0¢Can) =0, (3.37)
and obeys the Bianchi identity
0”7 Chra.am 5 =0 (3.38)
The higher-spin Chern-Simons action
(n) _ i" 3 a(n
Seg [hw] = IEVEIES /d z h* M C, y (h) (3.39)

is conformal and invariant under (3.36).

In the case of even rank, n = 2s, with s = 1,2,..., the field strength (3.35) can be
shown to coincide with the bosonic higher-spin Cotton tensor given originally by Pope and
Townsend [14]. It reduces to the linearised Cotton tensor for n = 4, and to the Maxwell
field strength for n = 2. The fermionic case, n = 2s+1, with s = 2, ..., was not considered
n [14]. It was presented for the first time in [15].

It should be pointed out that the conformal spin-3 case, n = 6, was studied for the
first time in [37]. The spin-3/2 case, n = 3, was considered in [38]. The field strength Cys)
is the linearised version of the Cottino vector spinor [10, 39].



The normalisation of Cy,,,)(h) defined by (3.35) can be explained as follows. The gauge
freedom (3.36) allows us to impose a gauge condition

0 hgra(m—2 =0 . (3.40)
Under this gauge condition, the field strength (3.35), with s = 1,2,..., takes the form

Ca(QS) = Ds*laﬁ(alhaz...ags)ﬂ = Ds*laﬁoqhag..‘agsﬂ, (3413)
C’04(25-1—1) = Dsha(25+1)7 (341b)

as a consequence of the identity

2
__on—1
> <2j N 1> = (3.42)

J=0

The field strength (3.35) proves to be the general solution to the conservation equa-
tion (3.38). This result has recently been proved in [40] in the bosonic case, n = 2s, and
the proof given is quite nontrivial (see also [41]). An alternative proof, which is valid for
arbitrary integer n > 1 and is based on supersymmetry considerations, was given in [15].

3.4 Higher-spin Cotton tensor in conformally flat spaces

Now we are in a position to construct €,,) in a curved conformally flat spacetime M3,
Locally, the covariant derivatives V, of M? are related to the flat-space ones by

Vo = e (aa + 8b0Mba) : (3.43)

for some scale factor o. The linearised higher-spin Cotton tensor €, in M?3 is related to
the flat-space one, eq. (3.35), by the rule

Comy = e1T2)7C 0 (3.44)

The higher-spin gauge field b, ,) in M?3 and its counterpart ha(n) in Minkowski space are
related to each other as

ha(n) = e(2in/2)gha(n) . (345)

In general, it is a difficult technical problem to express €, in terms of the covariant
derivatives V, and the gauge potential h,(,). As an example, let us consider the case of
AdS space, whose geometry is described by covariant derivatives satisfying the algebra

[Va, Vb} = —482Mab < [Vaﬁ, VW(S] = 48? (6W(QM5)5 + 65(aM5)7) . (3.46)

~10 -



Here the parameter S is related to the AdS scalar curvature as R = —24S2. The Cotton
tensor (3.44) for the cases n = 3,4,5 and 6 proves to be

1
Q:oc(3) = 272 <3v(a161va252 hag)ﬁlﬁg =+ Qha(i’)) - 982ba(3)> s (347)
1

Ca(a) =

23 <4V(a151 VOQBQV%Bs ha4)5(3) + 4QV(a151ha2a3a4)51 - 8082v(04151 hazasa4)ﬁl> ’

(3.48)

1
Cos) = o1 <5v(a151va252va3ﬁ3va4ﬁ4ha5)6(4) + 100V (0, "'V, P Bagasas)s@) + Q70as)
— 33082V, "'V,,7h — 825208 ,5) + 142554 (3.49)
(a1 a2 azagas)B(2) a(5) a(b) | :

1 .
Qa(G) _ 275 <6v(a151 Va252va353va4ﬂ4va5ﬂa hag)ﬁ(S) + 2OQV(alﬂlva262 va3636a4a5a6)6(3)
+ 6Q2V(alﬂlho¢2...ag)ﬁ1 - 96082v(a161 Vazﬁzvagﬁghm;ag)ag)ﬁ(?))

— 7045%OV (0, Doy a1 + 1843284v(mﬂ1h%,aﬁ)ﬁl) , (3.50)

where Q is the quadratic Casimir of the 3D AdS group, SO(2,2), given by eq. (2.5). Each
of the tensors €, given above can be written as €y, (h(n)) = Abg(n), Where the linear
differential operator A is symmetric in the sense that

/d3x ego‘(”)Aha(n) = /d3:v e f)a(”)Aga(n) , (3.51)

for arbitrary prepotentials g,(,) and bu(,). This means that it suffices to prove one of the
two properties in (3.31), and then the second property follows.

4 Massive higher-spin actions in maximally symmetric spaces

The conformal higher-spin actions in conformally flat spaces, eq. (3.32), are formulated in
terms of the gauge fields b,(,). The same gauge field can be used to construct massless
Fronsdal-Fang-type actions [12, 13, 42, 43] in maximally symmetric spaces. Such actions
however, will involve not only b,(,) but also some compensators.

Here we describe these massless higher-spin gauge actions in AdSs and then use them
to construct gauge-invariant models for massive higher-spin fields.

4.1 Massive higher-spin actions in AdS space

There are two types of the higher-spin massless actions, first-order and second-order ones.
Given an integer n > 4, the first-order model is described by real fields o (), Da(n—2) and
Da(n—4) Which are defined modulo gauge transformations of the form

5Cba(n) = V(oalochag...an)a (41&)

1
6Cna(n—2) = Evﬁ(al Cozz...oan_g)ﬁ + SCa(n—Z) ) (41b)
ScVa(n—a) = VPP Cotn a2 - (4.1c)

- 11 -



The Fang-Fronsdal-type gauge-invariant action, Sg%) = SénF) B(n)» V(n—2)s D(n—a), 18

1

St = 7o /dgx e {ha(”l)'yvvahaa(nn +2(n — 29IV 50

2[n

a(n— n(n —3 a(n—
+4(n — 29IV s + 2(; — 1)) VD s
- (n - 3)(” - 4) a(n—5)yw ¢ _ a(n)
(n — 1)(n — 2) ) v’y Y5a(n—5) + (n 2)Sh ha(n)
_ —9S a(n—2) - n(n — 3)8 a(n—4)
dn(n —2)8y Da(n—2) Tho1) ) Da(n—4a) ( - (4.2)

Here [n/2] stands for the ceiling function, which is equal to s for n = 2s and s + 1 for
n = 2s+ 1, with s > 0 an integer.

Given an integer n > 4, the second-order model is described by real fields b, ,) and
Da(n—4) defined modulo gauge transformations of the form

5Cha(n) = v(alongag...an)v (433‘)
n—2
O¢Va(n-1) = —— 1v6(2)<a(n—4),8(2) : (4.3b)

The Fronsdal-type gauge-invariant action, Sén) = Sén) [Bn)s D(n—a)], is

i’n

(n) _ 3 aln n 2)a(n—2 2

n—3 a(n— a(n
- TU ( 4)v6(2)v7(2)ha(n74)6(2)'y(2) - n(n - 6)S2b ( )ha(n)

(n—3)

- T [20(3((71—4)[“)&(”_4) - 2(n2 —2n+ 4)82‘)@(”_4)‘)&(71—4)

n—4)(n—2>5 n—
(4(’”)(_2))V7(2)U7(2)a( 6)v6(2)05(2)a(n—6)]}' (4.4)

Our action (4.2) is a unique gauge-invariant extension to AdS space of the flat-space
action given by Tyutin and Vasiliev [18], see appendix B for a review. When n is odd,
n = 2s+1, (4.2) is the unique gauge-invariant 3D counterpart to the Fang-Fronsdal action
in AdS, [43].> When n is even, n = 2s, our action (4.4) is the unique gauge-invariant
3D counterpart to the Fronsdal action in AdSs [42]. The Fronsdal action [42] can also
be generalised to d-dimensional AdS backgrounds [51, 52]. Such an action in AdS, is

°Tt is worth pointing out that the Fang-Fronsdal action for a massless spin-(s -+ %) field [13] is also
described in terms of a triplet of fermionic gauge fields, Vo (s+1)a(s), Ya(s—1)a(s) and ¥o(s_1)a(s—2) and
their conjugates, if one makes use of the two-component spinor notation, see section 6.9 of [44]. More
generally, there exist bosonic and fermionic higher-spin triplet models in higher dimensions [45-49]. On-
shell supersymmetric formulations for the generalised triplets in diverse dimensions have recently been given
in [50].
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formulated in terms of a symmetric double-traceless field and it is fixed by the condition
of gauge invariance.%

Separately, each of the gauge-invariant actions (3.32), (4.2) and (4.4) proves to describe
no propagating degrees of freedom. We claim that the following models

S = ASG T [bagsny] + 127 S5 [Basat) st Dzs—s)] (4.52)

S = /\5((325) [h2s)] + M25735§28) [B(28)> 9 (25-1)) (4.5b)

massive
describe irreducible massive fields in AdS3. Here the parameter A\ is dimensionless, while
p has dimension of mass. Since we do not have a closed form expression for €, in AdSs,
for arbitrary n, our analysis below will be restricted to the case of Minkowski space, M?.

4.2 Massive higher-spin actions in Minkowski space: the fermionic case

In this section we study the dynamics of the flat-space counterparts to the gauge theo-
ries (4.5a) and (4.5b). In fact, the resulting flat-space actions are contained at the compo-
nent level in the massive supersymmetric higher-spin models proposed in [16, 17]. However,
the analysis in [16, 17] was carried out mostly in terms of superfields so that the component
actions were not studied in detail.

We first analyse the flat-space limit of the fermionic model (4.5a). It is described by
the action

Sl )\S(CQSSH) [hsiny] + MQS*lSﬁfH) [P2s+1), Y(2s—1)s Y(25-3)] > (4.6)

massive

where the massless sector is

S i 1 ° a(2s a(2s—
Sptt) = B <—2> /dgl’ {h C0,  hsa(as) + 2(25 — 1)y V0P D00 1y509)

_ 2 o(2s—
+4(2s — 1)y~ 2)’Y8’y6y6a(25—2) + ;(28 +1)(s — 1)y 3)56(2)%(25—3)5(2)

(S — 1)(23 — 3) a(2s—4 6
- Wy ( )737 Ysa(2s—4) ( - (4.7)
The action (4.6) is invariant under the following gauge transformations:
5Cha(23+1) = a(alaggag...a25+1)7 (483‘)
1

5Cya(2s—1) = 25 + laﬁ(alglg‘..azs,l)ﬁa (48b)
S¢Ya(as—3) = 7P oas—3)8(2) - (4.8¢c)

The equations of motion corresponding to the model (4.6) are
0= lu25—1 (8/3(041}%42...04254_1)5 — (28 - 1)6(061042%3_,_@28“)) + /\Ca(23+1) , (4.9&)

(s—1)(2s+1)
0= 0" Phyos-1)52) +40° (01 Yos..cms 118 — Wa(alOQyO@maQs—l)’ (4.9b)

2s —3
2

0= (25— 1)d™ )ya(2873)5(2) e 13ﬂ(a1ya2...ags_3)ﬁ : (4.9¢)

6The dynamical equations for massless higher-spin fields in AdS, were studied by Metsaev [53-56]. For
alternative descriptions of massless higher-spin dynamics in AdSg4, see [57, 58].
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We now demonstrate that the model (4.6) indeed describes an irreducible massive
spin-(s + %) field on the equations of motion. The gauge transformation (4.8¢c) tells us that
Ya(2s—3) Can be completely gauged away, that is, we are able to impose the gauge condition

Yo(25-3) = 0. (4.10)

Then, the residual gauge freedom is described by (,(25—1) constrained by

aﬁ(Q)Ca(2873)ﬂ(2) = O :> 8ﬁ(a1<a2...a25_1)ﬁ = aﬂalcaz...ags,lﬁ . (411)
In the gauge (4.10), the equation of motion (4.9c) becomes the condition for yq2,—1) to be
divergenceless,

8/8(2)3/04(2573),8(2) =0 = aﬂ(alyag...ags_l)ﬁ = 8/Ba1ya2...a23_1ﬁ . (412)

Due to (4.12), the gauge transformation (4.8b) becomes

1

5Cya(2371) = maﬁalgaz...agyrlﬁ . (4.13)

Since Yo(2s—1) and (y(25—1) have the same functional type, we are able to completely gauge
away the yq(o,—1) field,
Ya(2s—1) = 0. (414)

In accordance with (4.13) and (4.14), the residual gauge freedom is described by the pa-
rameter (q(25—1) constrained by

aﬁalgag...a%_lﬁ =0 = DCa(Qs—l) =0. (415)
In the gauge (4.14), the equation of motion (4.9b) tells us that hg(gs41) is divergenceless,
65(2)h0(25—1)5(2) =0 = aﬂ(alha2-~-a2s+l)ﬁ = aﬁalhoéz---tmsﬂﬁ : (4.16)

So far the above analysis has been identical to that given in appendix B of [16] for the
massless model (4.7).

Due to (4.16), the Cotton tensor (3.35) reduces to the expression (3.41b). In the
gauge (4.14), the equation of motion (4.9a) becomes

”QS_laBalhocz---ast,B + ADSha(Zs—l—l) =0. (4.17)
This equation has two types of solutions, massless and massive ones,

arhay. 0z 8 =0 =  DOhgasyn) =0 (4.18a)
stjlha(ls#l) + ADSilaﬁalhaz--.astB =0. (4'18b)
We point out that Wy, .a,,,, = 9% o1 hy...con, 418 is completely symmetric and divergence-

o...02541) and 867\]}&7&1“&2371 =0.
Let us show that the massless solution (4.18a) is a pure gauge degree of freedom.

].eSS7 \Ilal,..a23+1 = \II(

Since both the gauge field hy(2541) and the residual gauge parameter (,25—1) are on-shell
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massless, it is useful to switch to momentum space, by replacing hq(2s41)(z) — ha(23+1)(p)
and (u(25-1) (%) = Ca(25—1)(p), Where the three-momentum p® is light-like, p*Ppas = 0. For
a given three-momentum, we can choose a frame in which the only non-zero component of
p*P = (p*, p'? = p?',p??) is p*2 = p11. Then, the conditions pﬁalhag...a25+1ﬁ(p) =0 and
pﬂa1§a2_._a25715(p) = 0 are equivalent to

ha(25)2(p) =0, Coz(Zs—Q)?(p) =0. (419)

Thus the only non-zero components of hqo441)(p) and (o 2s—1)(p) are h1_1(p) and ¢1.1(p).
The residual gauge freedom, dhy. (p) o< p11C1..1, allows us to gauge away the field hq (244 1)
completely.

Thus, it remains to analyse the general solution of the equation (4.18b), which implies

(525—1 - (m2)2s—1)ha(28+1) —0, m:= ‘%‘ . (4.20)

This equation in momentum space yields

) 2s5—1
(1—(nf;) )ha@sm(p):o. (421)

2s=1 _ 1 = 0 has only one real root, z = 1, the only real

Since the polynomial equation z
solution to (4.21) is p? = —m?, from which it follows that he(2s41) satisfies the ordinary
Klein-Gordon equation,

(O = m?) hagast1) =0 . (4.22)

Applying (4.22) to (4.17) reveals that h,(o.41) satisfies the equation of motion correspond-
ing to a massive spin (s + 3)-field with mass m and helicity o(s + 3),

aﬁalh%_%ﬂﬁ = omhy(2s41) 5 o = —sign(pA) . (4.23)

Finally, for completeness let us recall the proof of the fact that equation (4.23) describes
a single propagating degree of freedom. The field hy(2s41) is on-shell with momentum

2

satisfying p? = —m?, we can therefore transform equation (4.23) into momentum space

and boost into the rest frame where p® = (m,0,0) = p'y =p?s =0, pla = —p*; =m,

iha(Qs)l(p) - Uha(Qs)Q(p) =0. (4'24)

Due to the symmetry of the field h,(2,11), equation (4.24) states that there is only a single
degree of freedom. Taking the independent field component to be hii._1(p) allows us to
express all other components in terms of it.

Along with the fermionic model (4.6), which corresponds to n = 2s + 1, we could
consider a bosonic one described by the action

Sr(jass)sive = )\S(Csz) [h(ZS)} + /'628_251221?8) [h(Qs)vy(Qs—Q)v y(25—4)] ’ (425)

which corresponds to n = 2s. Most of the above analysis would remain valid in this case
as well. However, in place of eq. (4.21) we would have

2 25—2
(1—( Wf) )ha@s)(p):o. (4.26)
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This equation has both physical (p?> = —m?) and tachyonic (p? = m?) solutions. Therefore,
the model (4.25) is unphysical. This may be interpreted as a consequence of the spin-
statistics theorem.

4.3 Massive higher-spin actions in Minkowski space: the bosonic case

Our next goal is to analyse the flat-space limit of the bosonic model (4.5b). It is described
by the action
2s 2s s— 2s
S ve = ASG) [hiae)] + 1273 Thias) yasen)] » (4.27)

massive

where the second term is

s 1/-1\° a(2s S (25—
S = 2<2> / d3x{h B)Bha (a0 = 503 h" D@0 ha a0)pe)

25 —3 _ (2e
— (23) [Sya(Qs 4)36(2)37(2)%(23—4)5(2)7(2) 12y (2 4)Dya(25—4)

(s=2)(2s-5),

T T oy 22C5-082) 5(2)a(25_6)” , (4.28)

The action (4.27) is invariant under the gauge transformations

5Cha(2$) = a(OllCVQCO(g...azS)? (4,293,)
2s — 2
Scta(zs—1) = 510" Plazs-a)s(2) - (4.29b)

The equations of motion corresponding to (4.27) are

. 1

1

4(28 — 3)8(a1a2803a4ya5...a23)> + )\Ca(gs) , (4.30a)

4
0= 65(2)8’7(2)}%(2874)&(2)7(2) + gmya(2sf4)+

(s — 2)(2s - 5)
B W86(2)3(&1@1/@3...%74)/3(2) : (4.30b)

S(QS)

massive describes a massive spin-s field

We will now show that on-shell, the model
which propagates a single degree of freedom. As follows from the gauge transforma-
tion (4.29b), it is possible to completely gauge away yq(25—4),

Ya(2s—4) = 0. (431)
Then, the residual gauge freedom is described by a parameter (,(25—2) constrained by
86(2)@1(25_4)5(2) =0 = 86(014042---012572)5 = aﬁalgaz---azs—ﬁ' (4.32)
In the gauge (4.31), the equation of motion (4.30b) becomes

37(2)85(2)ha(2574)5(2)7(2) =0. (433)
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According to (4.29a), the divergence of h (o) transforms as

2
5( (8/8(2)}"01(2572),8(2)) = 8/81/828(a1a24a3...a2‘9_2,31ﬂ2) = _EDCa(2sf2) (434)

where we have made use of (4.32). Since (q(25—2) and 85(2)ha(2572)5(2) have the same
functional type, it is possible to completely gauge away the divergence of hq oy,

86(2)h0¢(23—2)ﬂ(2) =0 = aﬁ(alhazmazs)ﬁ = aﬁalh@---wsﬂ . (4.35)

Under the gauge conditions imposed, there still remains some residual gauge freedom de-
scribed by a gauge parameter constrained by (4.32) and OCa(2s—2) = 0. So far the above
analysis has been identical to that given in appendix B of [16] for the massless model (4.28).

As a consequence of (4.35), the Cotton tensor (3.35) reduces to the simple form (3.41a).
Making use of the gauge conditions (4.31) and (4.35) in conjunction with eq. (3.41a), the
equation of motion (4.30a) becomes

(u%*i”aﬂm v ADHaﬁal) Ohey..an.8 =0 - (4.36)
This equation has two types of solutions, massless and massive ones,

Dha(2s) =0; (4.373)
,u2s_3ha(28) + ADS_28BQ1 hotz---OQsB =0. (4.37b)

Let us show that the massless solution (4.37a) is a pure gauge degree of freedom.
Since both the gauge field h,(2) and the gauge parameter (,(2,_2) are on-shell massless, it
is useful to switch to momentum space by replacing hq25) (%) — ho(2s)(p) and (o(25—2)(z) —
Ca(2s—2)(p), where the three-momentum p® is light-like, paﬁpa[g = 0. As in the fermionic
case studied in the previous subsection, we can choose a frame in which the only non-zero
component of p®? = (p'!, p!? = p2! p??) is p?> = py;. In this frame, the equations (4.32)
and (4.35) are equivalent to

ha(2s—2)22(p) = 0, Ca(2s—4)22(p) =0 . (4.38)

These conditions tell us that the only non-zero components in this frame are hi_1(p),
hi.12(p) and (1. 1(p), C1..12(p). However, the gauge transformation (4.29a) is equivalent
to 6h1.1(p) x (1..1(p) and dh1. 12(p) x (1..12(p), allowing us to completely gauge away the
ha(gs) field.

Let us turn to the other equation (4.37b), which implies

<D2s—3 _ (m2)2s—3> ha(23) =0, m = (439)

el

Here the mass parameter has the same form as in the fermionic case, eq. (4.20). Trans-
forming eq. (4.39) to momentum space gives

2N 253
(1—(17{;) )ha@s)(p):o. (4.40)
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In complete analogy with the fermionic case considered in the previous subsection, this
equation has the unique real solution p? = —m?.

It follows that hgo4) satisfies the Klein-Gordon equation,
(O =m?) hops =0 (4.41)
As a consequence, the equation of motion (4.37b) leads to
Gﬁalhazma%g = omhq(2s) » o = —sign(pA) . (4.42)

Therefore hg(o4) is an irreducible on-shell massive field with mass m and helicity A = os.
Equation (4.42) implies that hq (o) describes a single propagating degree of freedom.

5 Conformal higher-spin gauge superfields

Conformal higher-spin gauge superfields in /' = 1 Minkowski superspace were introduced
in [15, 17], as a by-product of the A' = 2 approach of [16]. In this section we start by general-
ising this concept to the case of N' = 1 supergravity, building on the ideas advocated in [34].

5.1 Conformal supergravity

Consider a curved A/ = 1 superspace, M312, parametrised by local real coordinates zM =

(™, 0"), with m = 0,1,2 and p = 1,2, of which ™ are bosonic and ¢* fermionic. We
introduce a basis of one-forms E4 = (E* E®) and its dual basis F4 = (E,, E,),

EA =dMENA, Ea=FEAMoy, (5.1)

which will be referred to as the supervielbein and its inverse, respectively. The superspace
structure group is SL(2,R), the double cover of the connected Lorentz group SOg(2,1).
The covariant derivatives have the form:

DA:(DG,'DQ):EA—FQA, (5.2)

where 1 1
Oy = 59 AP My = —QA°M;, = 5Q AP Mg, (5.3)

is the Lorentz connection.

The covariant derivatives are characterised by the graded commutation relations
1
(D4, D} = Tap“ Do + 5 Rap“ Mea, (5.4)

where T45¢ and Rap® are the torsion and curvature tensors, respectively. To describe
supergravity, the covariant derivatives have to obey certain torsion constraints [59] such
that the algebra (5.4) takes the form [60]

{Da,Dg} = QiDag — 4i8Ma5 y (5.5&)
. 2
[Da Dl = (va)s” | SDy +iCy5pM* | = = | D535 = 220°(1")5,D7S| M, (5.5b)
Y apfy 2 . By
[Daapb] = Eabc 5(7 )oz,BC - 3(7 ) D,BS D“/
1 c\afB (,d\yo 2i 2 2 cd
+ 5(7 ) (Y) Do Cys) + gD S+48% || My p . (5.5¢)
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Here the scalar S and the symmetric spinor Cug, = C(qg,) are real. The dimension-2
Bianchi identities imply that

4
DQCW; = 'D(acfg,w;) + Ea(/g'D,y(;)S - DVCQB,Y = g’DagS . (5.6)

We use the notation D? := DD,,.
The algebra of covariant derivatives is invariant under the following super-Weyl trans-
formations [61-63]

1
05Da = 50Da + DPoM,p, (5.7a)
5.D, = oD, + %(’VG)V(S'DWU'D(; + e DPoMC, (5.7b)

with the parameter ¢ being a real unconstrained superfield, provided the torsion superfields
transform as

i
~DaD-0 - (5.8)

0SS =08 — ZD o, 06Capy = iacam ~ 3

The N' = 1 supersymmetric extension of the Cotton tensor (3.3) was constructed
in [64]. It is given by the expression

Wasy = <;D2 + 45) Capy +1DasD)S - (5.9)
The super-Weyl transformation of W,z proves to be
5
docWapy = iaWag,y . (5.10)

It can be shown [36] that the curved superspace is conformally flat if and only if Weg, = 0.

5.2 Conformal gauge superfields
A real tensor superfield $,(,) is said to be a conformal gauge supermultiplet if (i) it is

super-Weyl primary of dimension (1 —n/2),
5o Ban) = (1 _ g) 0Ha(m) ; (5.11)
and (ii) it is defined modulo gauge transformations of the form
Do) = 1"Dia; Aas...an) » (5.12)

with the gauge parameter A,(,_1) being real but otherwise unconstrained. The super-Weyl
weight of $4(,), given by (1 —n/2), is uniquely fixed by requiring A\y(,—1) and IxHa(n) to
be super-Weyl primary.

Starting with $),(,) one can construct its descendant, 2,,)($), defined uniquely,
modulo a normalisation, by the following the properties:

1. W,y is of the form A, (), where A is a linear differential operator involving D4,
the torsion tensors C,g, and S and their covariant derivatives.
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2. W,y is super-Weyl primary of weight (1 + n/2),
n
(5(,21]@(”) = (1 + 5) aQBa(n) . (5.13)

3. The gauge variation of 2, vanishes if the superspace is conformally flat,
A Wam) =0 W) 5 (5.14)
where W3y is the super-Cotton tensor (5.9).

4. W, () is divergenceless if the superspace is conformally flat,
D Wsa(n-1) =0 W) - (5.15)

Here O(W(g)) stands for contributions containing the super-Cotton tensor and its
covariant derivatives.

As a simple example, we consider a U(1) vector multiplet coupled to supergravity,
which corresponds to the n = 1 case. This multiplet is described by a real spinor prepo-
tential £, which is super-Weyl primary of weight 1/2 and is defined modulo gauge trans-
formations 0)$)o = iDy A, where the gauge parameter A is an unconstrained real superfield.
The required super-Weyl primary descendant of weight 3/2 is given by

2, = _%Dﬁpagﬁ — 259, (5.16)
and proves to be gauge invariant,
0¢Weo =0 . (5.17)
The field strength obeys the Bianchi identity
DY, =0 . (5.18)

For n > 1 the right-hand sides of (5.14) and (5.15) are non-vanishing.
Suppose that our background curved superspace M3 g conformally flat,

W) =0 . (5.19)
Then the tensor superfield W, is gauge invariant and conserved,
N\Wam) =0, (5.20a)
DPWe -1y = 0. (5.20b)
These properties and the super-Weyl transformation laws (5.11) and (5.13) imply that the
action”
S m] = —M% /d32zE55a(")2Ua(n)(ﬁ), E-'=Ber (E4M)  (5.21)

is gauge and super-Weyl invariant,
58505 [9m] =0, 3555 [Hm] =0 (5.22)

We now turn to constructing the linearised higher-spin super-Cotton tensors 2, on such
a conformally flat superspace.

"The super-Weyl transformation of the superspace integration measure is , E = —20 F.
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5.3 Higher-spin super-Cotton tensor in Minkowski superspace
In Minkowski superspace, M®2, the higher-spin super-Cotton tensor [15, 17] is
i

n
Wal...an = <_2> D/BlDal cee DﬁnDanHﬁL..ﬁn = W(al...an) ) (5'23)

with D4 = (0, Do) being the flat-superspace covariant derivatives. This tensor is invariant
under the gauge transformation

5Ha1a2...o¢n = inD(al Cag.,.an) ) (524)

and obeys the conservation identity
Dﬁwﬂal...an,1 =0. (525)

The fact that Wy, 4, defined by (5.23) is completely symmetric, is a corollary of the
identities
DaDﬁDa =0 = [DQDB, D7D5] =0. (5.26)

The normalisation in (5.23) is explained as follows. The gauge freedom (5.24) allows
us to impose a gauge condition
DPHgono1) =0, (5.27)

under which the expression for the super-Cotton tensor simplifies,
DPHgayany =0 = Wam) =00, ... 00, Hp, .5, - (5.28a)
This result can be fine-tuned to

Wa(Qs) = DsHa(25)7 (528b)
Wa2s1) = 0°0° (o, H 5 =00 Hay anei15 (5.28¢)

1 as..a2s41)

where s > 0 is an integer.
For completeness, we also give another representation for the higher-spin super-Cotton
tensor derived in [15, 17]:

1 [n/2] n ‘
Way..an = on { <2j> D]a(oqﬁl s 8%7%6"_2] Han—2j+1---an)ﬁ1---l3n—2j
Jj=0

1 n o N
_5 <2J N 1)D Dja(ozlﬂl . aan72j716 25 1Han—2j---06n)ﬁl--ﬂn—2j—1} . (529)

The following higher-spin action [15, 17]

i’n

88 [Hw) = 557 / 022 HOIW, o () (5.30)

is N' = 1 superconformal. It is clearly invariant under the gauge transformations (5.24).
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5.4 Higher-spin super-Cotton tensor in conformally flat superspaces

Consider a curved conformally flat superspace M?3I2. Locally, its covariant derivatives Dy
are related to the flat-space ones by

D, = €37 (Da n DﬁaMcw) : (5.31)

i i
D, = € <8a + i(va)aBDaUDg + 0o My, — g(’ya)aﬁ (Do) DWUMQB) , (5.32)
for some scale factor o. In accordance with (5.13), the higher-spin super-Cotton tensor
W, (n) in M2 is related to the flat-space one, eq. (5.23) or equivalently (5.29), by the rule
Qna(n) = e(1+%)UWa(n) . (5.33)

In general, it is a difficult technical problem to express 2, in terms of the covariant
derivatives Dy and the gauge prepotential £,y = ell=n/ Q)UHa(n). As an example, we
only give expressions for the supersymmetric photino 2, and Cottino 2,9) tensors in
AdS superspace. The geometry of AdS?? is encoded in the following algebra of covariant

derivatives:
{Da,Dg} = 2iDyp — 4iSM,p, (5.34a)
[Dag, Dy] = —28e,(aDp), (5.34b)
[Daﬁapvﬁ} = 45 (Ev(aMﬁ)é + 55(04MB)7) y (5.34c)

with the real parameter S being the same as in (3.46). The tensors 20, and 20,y are
expressed in terms of the operator

AP, = —%DBDQ —286°,, (5.35)
with the properties
[Mlm, Aﬁz’az} = foy,S (135152 - 25M5152) — PBE Doy — 28Muray) . (5.36)
These properties follow from the identity
DD,Ds = 4SD, = DA, =0. (5.37)
The expressions for W, and W, (o) are:

W, = AP, 95, (5.38a)
Waiay = A (0, A, 95,8, — 2SA° (4, H0s)5 - (5.38b)
5.5 Massive supersymmetric higher-spin theories in AdS superspace

Massive supersymmetric higher-spin actions in AdS involve different massless sectors de-
pending on the value of superspin.

Sgj,isive = )\Sggé [‘6(25)] + MQS?lS%‘Q(;) [5(25)723(2372)] ) (5393)
S e = AS5ea Y [9srny)] + 12718 [Hasi1), X2 (5.39b)
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5.5.1 First-order massless actions

We introduce a gauge theory described by a reducible gauge superfield Hg oy, .0, 1 =
Hp,(ar...an_r)- LThis superfield is defined modulo gauge transformations of the form

57{57a1~-~an—1 = in,D,B)‘quanfl . (5'40)
A supersymmetric gauge-invariant action of lowest order in derivatives is
(n) int 312 Ba1...om—1 [ Tyy F Q8
S40 = sy | AP EHY (DD — 41887 5) Hoyascns - (5.41)

The gauge invariance of Sgg follows from the identity (5.37). Our action (5.41) is a higher-
spin AdS extension of the model for the massless gravitino multiplet (n = 2) in Minkowski
superspace proposed by Siegel [1] (see also [59]).

The gauge superfield Hgq,. ., , can be decomposed into irreducible SL(2,R)
superfields

n—1

Hﬁ,al---an—l = ﬁﬁau-o&n—l + Z eﬁak@al---dk---an—l 5 (5'42)
k=1

where $4(,) and 9, (,—2) are completely symmetric tensor superfields. Then the gauge
transformation (5.40) turns into

09amn) = 1"Dia; Aas...an) s (5.43a)
0Da(n-2) = —D’Xgay..an_s - (5.43b)
The supersymmetric gauge-invariant action takes the form
S0 = 2((27:1/21 / 42 B {950 DD D8 001) + 20 — DY DD 50000
(1= 1) (D0 g + (<1)" (0 = 2)DpD P TIDIY, o))

~A8i(5°M By +nln = DY 5)) |- (5.44)

When n is even, n = 2s, this action is the unique gauge-invariant AdS extension of the
massless integer superspin action of [17].

5.5.2 Second-order massless actions

The massless half-integer superspin action in AdS is
1\° i i
S(SQOS+1) = (2) /d3|2ZE{ — 557)a(2s+1)@ﬁa(23+1) - gDBﬁ'Ba(2S)D2DV~67a(2$)

i _ 1 _
_{_ZSDE’YﬁB’Ya(zS I)Dp)\f-)p)\a(Qs—l) - 5(25 - 1)%04(28 2)D6’YD6'ﬁﬂ’y(§a(28—2)

i _ s—1 (25—
+§(2$ - 1) |:%a(23 2)D2xa(2372) - s Dﬁfﬁ (2 3),Z)’y%’yoz(255‘»):|
1
+HisSHCIDETH 0 00) + 5(3 +1)SH*CHIDG o (5.45)
(25 — 1) (s* = 3s — 2)

His(2s — 3)8%H° NG 5040 + SX “(25_2)Xa<2s—2>} :

S
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where Q is the quadratic Casimir operator (2.14). One can express Q in the form
Q = DD, —iSD? + 28D’ M5 — 28*M** M, . (5.46)

The action (5.45) is invariant under the gauge transformations

09a(2s+1) = 1D(ay Aas...azes1) (5.47a)
S
0Xa(25-2) = mpﬁ TAByar..azes - (5.47b)

The action (5.45) is the unique gauge-invariant AdS extension of the massless half-integer

superspin action of [17].

5.6 From AdS superspace to AdS space

To conclude this section, we briefly discuss the key aspects of component reduction for
supersymmetric field theories formulated in AdS superspace, AdS®/2. In general, the action

functional of such a theory is given by
S = /d3|2zE£, (5.48)
where the Lagrangian L is a scalar superfield. In accordance with the general formalism

described in section 6.4 of [44], the isometry transformations of AdS?3? are generated by
the Killing vector fields ¢4 E4 which are defined to obey the master equation [65]

1
£+ 5AbCMbc, DA} =0, ¢ :=¢BDp = €Dy + °Dg, (5.49)

for some Lorentz superfield parameter A* = —A®. An infinitesimal isometry transforma-
tion acts on a tensor superfield T as

1
5¢T = <g + 2Abchc> T. (5.50)

The action (5.48) is invariant under the isometry group of AdS3I2.
As shown in [65], the parameters in (5.49) obey the following Killing equations:

1
Dagp = 5hap + Stap = Dpla, (5.51a)
D™ +6i€* =0, DyAP 4+128i€” =0, (5.51b)
Dagpy) =0, DAgy) =0, (5.51c)

which imply
Da&p + Dréa = 0, (5.52a)
D€, —12i8¢, = 0, (5.52b)
Dop’ + 286, = 0. (5.52¢)
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Equation (5.52a) tells us that &, is a Killing vector, while (5.52c) means that &, is a
Killing spinor. The component form of the action (5.48) is computed using the formula
(see also [64])

S = i/d%e (iD* +88) L] . (5.53)

Here and in what follows, the #-independent component T'|g—y of a superfield T'(x, §) will
simply be denoted T'|. To complete the formalism of component reduction, we only need
the following relation

(DT)| = VT, (5.54)

where V, is the standard torsion-free covariant derivative of AdS space. Making use of the
AdS transformation law 6¢£ = £ in conjunction with the identities (5.51) and (5.52), one
may check that the action (5.53) is invariant under arbitrary isometry transformations of
the AdS superspace.

6 Supersymmetric higher-spin actions in components

In this section we will describe the component structure of the supersymmetric higher-spin
theories introduced in the previous section. Our analysis will be restricted to the flat-
superspace case. As in [17], the integration measure® for ' = 1 Minkowski superspace is

3|2 i 3 2
/dzL:4/de Ll,_, - (6.1)

6.1 Superconformal higher-spin action

defined as follows:

We start by reducing the superconformal higher-spin action (5.30) to components. The
gauge freedom (5.24) can be used to impose a Wess-Zumino gauge

Hal...an’ = 07 DﬁHﬁal...an_1’ =0. (62)

In this gauge, there remain two independent component fields

. i
hal...anJrl = 1n+1D(a1Ha hal...an = _ZDzHal...an‘ . (63)

2---Oén+1)‘ )

Due to the conservation equation (5.25), the higher-spin super-Cotton tensor (5.29) also
has two independent components, which we define as

Ca..an = Way..om| Cal..van+1 = in+1D(a1Wa2.,.an+1)‘ . (64)

The field strengths Cy(,,) and Cy(,41) are given in terms of the gauge potentials () and
ha(ny1), respectively, according to eq. (3.35). To prove this statement for Ca(n+1), one has

(3) *(oh0) = (55) 6

8This definition implies that fd?"zz v=/_ d3z F, for any scalar superfield V(z,0) = - -- + i0?F(z).

to use the identity
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Reducing the action (5.30) to components gives
(n) _ o) (n+1)
Sscs [Hm] = Scs [ham] +Scs™ [Pan)] (6.6)
where the conformal higher-spin action S((jns) [h(n)] is defined by eq. (3.39).

In the gauge (6.2), the residual gauge freedom is characterised by the conditions

n—1
nt 185(Q1A02".an_1),3’ . (67)

At the component level, the remaining independent gauge transformations are generated
by Coa(n—l) X )‘a(n—l)‘ and Coa(n—?) X inDﬁAﬁa(n—Z)}'

D(al)\o@man)’ =0, D2)‘a1...anf1‘ = —2i

6.2 Massless first-order model

We now turn to working out the component structure of the first-order model (5.44) in the
flat-superspace limit. In Minkowski superspace, the action can be written in the form
S(") _ i+l d3|2 -H,Boal...an_la TH 1 aq...0n 12

FO ™ 2[(n+1)/2] / o {1 B Hyon.om 1+ 2H D Hal...om

F2i(n — Y20 gy + (= DYDY

+(=1)"(n —1)(n — 2)D3Yﬁa1“'”‘”SDWYWI.,,%_S} : (6.8)

It is invariant under the gauge transformations
0Hayas..an = 1"Day Aas...an) » (6.9a)
Yoy an o = %Dﬂxﬁalman,m (6.9b)

with the gauge parameter A,(,—1) being a real unconstrained superfield. When n is even,
n = 2s, the action (6.8) describes the massless integer superspin model of [17].
The gauge freedom allows us to choose a Wess-Zumino gauge

HOél--.Ofn| =0, DBHBa1...an71| =0, Yal---()énfg‘ =0. (6.10)
Then, the residual gauge freedom is characterised by the conditions
n—1
n—+1 B(alAOéz...ocn,l)m . (6.11)

These conditions imply that there remains only one independent gauge parameter at the

Dal)‘a2~~~an| =0, D2)\oz1...an_1| = —2i

component level. We define it as

Conan 1 (€)= (=1)" M Nay a4 | - (6.12)
We define the component fields as
hoi.any1 *= in+1D(alHa2man+1)| ) (6.13a)
i

hal...an = _ZDQHal...an|a (613b)

iTL+1 1
Yaq...ap—1 = %D(QIYOQ”.an_lﬂ , Yoq...0m—5 ‘= "D Yﬁal--.anﬂ%’? (6.13C)

i

Zoy oz = 7 Doy an s - (6.13d)
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Their gauge transformation laws are

6ha1~~~an+1 = 6(010424-043...0471_._1)) (614&)
1

Oar.ant = 770" @160z 00 1) (6.14D)

6ya1...an_3 = 8ﬂ7<ﬂva1...an,3 ’ (6.14C)

ohay..an =0, (6.14d)

5Za1.‘.an_2 =0. (6146)

Direct calculations of the component action give

n i" ai...on Q1...Otpy—
S%\O) = Wl/dgx{h 1 hOél---Oln + VAR QZal._an72}

in+1 - o
MG /d% {hﬁ 0 har ., + 20 = DY 0 g

2An =2 +1)

—|—4(’I’L - 1)y6a1'..an72aﬁvy’ya1...an_2 + al"'a"73367

yﬁ'yoq...ocn,g

n—2)(n—3) g4, .an_
_(n(n)(_l))yﬁ e 485‘%%1,“%4} . (6.15)

The fields hy(n) and Z,(,—9) appear in the action without derivatives. This action can be
rewritten in the form

(n) _ i" 3 a(n a(n—2 (n+1)
SFO = W /d z {h ( )ha(n) +7Z ( )Za(an)} + SFF [h(nJrl)a y(n71)7y(n73)] )

(6.16)
where S’g}?ﬂ) is the flat-space version of (4.2), eg. (B.5), with n replaced by (n + 1).

6.3 Massive integer superspin action

We are now prepared to read off the component form of a massive integer superspin action
that is obtained from (5.39a) in the flat-superspace limit,

SE o = ASE) [Hipg] + 12 'SE) [Hing), Yios—s)] - (6.17)

massive

Choosing n = 2s in the component actions (6.6) and (6.16) gives

S S 1\* 5— a(2s
Sr(iagsive = )\S(CQS) [h(25)} t 5 <_2> /1'2 1 /d3$h . )ho‘(ZS)
+ASea Y [h2s1y] + prmlspR Y [P2s+1)> Y(2s—1)s Y(25—3))]

1 1 ° s— a(2s—
+5 (—2) 12 1/d3xZ @52 Z (25-2) - (6.18)

It is seen that the Z,(o,_2) field appears only in the third line of (6.18) and without
derivatives, and thus Z,(a,_9) is an auxiliary field. Next, the expression in the second line
of (6.18) constitutes the massive gauge-invariant spin-(s + 3) action (4.6). The two terms
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in the first line of (6.18) involve the hy (o) field. Unlike Sgss) [h(24)]; the second mass-like
term is not gauge invariant. However, the action

52 e = ASE) (o] + 5 (_1) MZH/ & b haga,) (6.19)

massive 2 2
does describe a massive spin-s field on-shell. Indeed, the equation of motion is
)\CQ(ZS) + Mzs*lha(Qs) =0. (620)

Since Cy2s) is divergenceless, eq. (3.38), the equation of motion implies that he (o is
divergenceless, eq. (4.35). As a consequence, Ca(2s) takes the simple form given by (3.41a),
and the above equation of motion turns into (compare with eq. (4.36))

AD* 0% Ry anyp + B2 has) = 0, (6.21)

which implies

25—1 2)2s—1 o I
and should be compared with (4.39). Since the polynomial equation 22*~! —1 = 0 has only

one real root, z = 1, we conclude that (6.22) leads to the Klein-Gordon equation (4.22).
As a result, the higher-derivative equation (6.21) reduces to the first-order one, eq. (4.23).

The above component analysis clearly demonstrates that the model (6.17) describes a
single massive supermultiplet subject to the equations (2.6a) and (2.6b) with n = 2s on
the mass shell. The superfield proof was provided in [17].

6.4 Massless second-order model

Finally we consider the massless half-integer superspin model describe by the action [17]
2541 1\° i i
SééJr ) _ <_2> /d3|22{ _ 5Ha(zsﬂ)DHQ(%H) _ gDBHBoz(zs)DQDWHW(QS)

i _ 1 _
+ZS%HW<2S VOP H s 2s—1) — 5 (25— 1) X290 D Hy 5005-2)

i a(2s— s—1 a(2s—
+5(25 1) [X Q=2 D2X 050y — DgXx P 3U)'YX,W(QSE.,)] } :
(6.23)
It is invariant under the following gauge transformations
6HO¢(28+1) = iD(Oél)\QQ...Ot23+1) ) (6243)
S
60X o(25-2) = 5o 1857)\57%“&2572 . (6.24b)
The gauge freedom allows us to choose a Wess-Zumino gauge of the form

Hyzsrn)| =0, DPHgapag] =0 (6.25)
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To preserve these conditions, the residual gauge symmetry has to be constrained by

2is

D(a1>\a2...a23+1)‘ =0, DQ}‘a(?s)} = _8 T 186(041)‘042...@25)6’ : (626)
Under the gauge conditions imposed, the independent component fields of H(2541) can be
chosen as
i
ha(25+2) = _D(alHag...a25+2)| ) ha(2s+1) = ZDQHa(Qs—&-l)} . (627)

The remaining independent component parameters of A,(2,) can be chosen as

s
s+1

The gauge transformation laws of h(2s12) and hq(2s41) can be shown to be

Ca(2s) = )‘a(2s)‘ ) 504(23—1) = *12 Dﬂ)‘ﬁa@s—l)‘ . (628)

6Cha(2s+2) = 8(041042(&3.‘.0425#2)7 (6293‘)
5§ho¢(25+1) = 8(a1a2£a3...a23+1) . (629b)

We now define the component fields of X ,_2) as follows:

Ya(25—2) = 2Xo¢(2572) ) (630&)
i .
Ya(2s-1) = _§D(a1Xa2...ags,1)}7 Ya(25-3) = _IDIBXBQ(st?)) ) (630b)
i
Foz(2sf2) = ZXa(2372)‘ . (630C)
The gauge transformation laws of y,(25-2), Ya(2s—1) and Ya(25—3) are as follows:
2s
5(2/04(28—2) = 25 + 18ﬁ,yg,3704(25—2)7 (6318,)
1
5§y0¢(28—1) = 28"‘ 135(0415042...0125,1)5’ (631b)
5§ya(28—3) = 6’8755704(28_3) . (6310)

In principle, we do not need to derive the gauge transformation of F,o5_) since this field
turns out to be auxiliary.

The bosonic transformation laws (6.29a) and (6.31a) correspond to the mass-
less spin-(s + 1) action SI(;QSH) defined by eq. (4.28). The fermionic transformation
laws (6.29b), (6.31b) and (6.31c) correspond to the massless spin-(s + %) action ngﬂ)
defined by eq. (4.7).

The component action follows from (6.23) by making use of the reduction rule (6.1).
Direct calculations lead to the following bosonic Lagrangian:

1
2(—2)S+1Lbos — ha(25+2)\jha(25+2) - 5(5 + 1)87(2)h7(2)a(25)35(2)ha(2s)5(2)

(s +1)(25 — 1)

1 (03 S—
—5(2s = 1)y =295 b 542y p(2)v(2) — 9%

ya(28_4)Dya(2sf4)
. s—1 2
—4s(2s—1) (s + 1)Fa(2“’ 2)Fa(25—2) iy Fo 2)8[3(04131&2_”&%_2)5 .

(6.32)

~ 99 —



Eliminating the auxiliary field Fi,(o,_5) leads to

1
2(—2) M Lios = A 0N 0519y — = (5 + 1)) L TH*CDV0P DD 5500

2
1 a(25-2) 9B(2) g(2) 2 a(2s-2)4
—5(28 -1y ha(2s—2)82)7(2) + 1Y Yo(25—2)
s—1)(2s—3 e
M87(2)yv(2) (2 4)86(2)3/6(2)04(25—4) _ (6.33)

This Lagrangian corresponds to the massless spin-(s+1) action S§2S+2) obtained from (4.28)
by the replacement s — s + 1. The fermionic sector of the component action proves to

coincide with the massless spin-(s + %) action, S}(TQI;SH)[}L(%H), Y(2s—1)5 Y(25—3)]-

6.5 Massive half-integer superspin action

We now have all of the ingredients at our disposal to read off the component form of the mas-
sive half-integer superspin action that is obtained from (5.39b) in the flat-superspace limit,

Sﬁ:;gge = )\Sgég—l) [H(2s+1)] + NQS_lSéQ(Ss+1) [H(25+1)>X(2s—2)]
~ )\Sgég = [h(25+2)] + M23_1S§2s+2) [h(2s+2)vy(2s—2)]

+)\Sé32§+1) [hsiny] + MQS_ngFSH) [P2s+1)> Yas—1)s Y2s—3)] - (6.34)

Here the symbol ‘~’ indicates that the auxiliary field has been eliminated.
The explicit structure of the component action (6.34) clearly demonstrates that the
model
2s+1 2s+1 S— 2s+1
st — ASécsT )[H(23+1)] + 1P 1§éo+ )[H(2s+1)7X(23—2)] (6.35)

massive

describes a single massive supermultiplet subject to the equations (2.6a) and (2.6b) with
n = 2s + 1 on the mass shell. The superfield proof was provided in [17].

7 Concluding comments

All massive higher-spin theories in Minkowski space, which have been presented in this
paper, were extracted from off-shell supersymmetric field theories. As shown in section 6,
all the theories studied in section 4 are contained at the component level in the N' = 1
supersymmetric massive higher-spin theories proposed in [17]. The latter models were
obtained from the N' = 2 supersymmetric massive higher-spin theories of [16] by carrying
out the N/ = 2 — N = 1 superspace reduction. Furthermore, the off-shell structure of the
massless 3D A = 2 supersymmetric higher-spin actions of [16], which constitute one of the
two sectors of the N/ = 2 massive actions, were designed following the pattern of the gauge
off-shell formulations for massless 4D A = 1 higher-spin supermultiplets developed in the
early 1990s [66, 67].

Our supersymmetric massive higher-spin theories, which are formulated in AdS312 su-
perspace and are described by the actions (5.39a) and (5.39b), contain two different models
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for a massive integer-spin field in AdS at the component level. One of them is the gauge-
invariant model (4.5a). The second model is described by the action

o(2s S 1 1 ° S— a(2s
Sr(fas)sive = ASgS) [h(25)] + 5 <_2) MQ 1 /dgl'e[') ¢ )ba(23)7 (71)

which does not possess gauge invariance and which is the AdS uplift of the model (6.19).
The action (7.1) leads to the equation of motion

)‘Ca(%) + :LLQS_lha(Zs) =0 = vﬁyhﬂwa(%—% =0. (72)

The action (7.1) can be turned into a gauge-invariant one by making use of the Stiickelberg
trick. An interesting feature of the model (7.1) is that it is well-defined in an arbitrary
conformally flat space.

The models (4.5b) and (7.1) are higher-spin analogues of the two well-known equivalent
models for a massive vector field (see [68, 69] and references therein) with Lagrangians

1
£T = —ZFCLbFab + %gabCVanc 3 Fab — aa% - 8bVa 5 (733)
Lsp = 21 fa— e f,0,f (7.3b)
Sb = 2 “ 2m€ atble '

New duality transformations were introduced in [15] for theories formulated in terms
of the linearised higher-spin Cotton tensors Cy ) and their N = 1 supersymmetric coun-
terparts Wy (). These duality transformations can readily be generalised to arbitrary
conformally flat backgrounds, with Cf,) and Wy, replaced with €,y and Wy, re-
spectively.

In the present paper, we have been unable to obtain closed-form expressions for €,
and 20, (,,) in terms of the covariant derivatives of AdS (super)space for arbitrary n. These
are interesting open problems.

The field strengths €,,) and Wy, are the higher-spin extensions of the linearised
Cotton and super-Cotton tensors, respectively. The actions (3.32) and (5.21) are the
higher-spin extensions of the linearised actions for conformal gravity and supergravity,
respectively. An intriguing question is: do nonlinear higher-spin extensions exist? Within
the approach initiated in [70, 71], Linander and Nilsson [72] constructed the full nonlinear
spin-3 Cotton equation coupled to spin-2. They made use of the frame field description
and the Chern-Simons formulation for 3D (super)conformal field theory due to Fradkin
and Linetsky [33]. The construction of the nonlinear spin-3 Cotton tensor [72] requires
an elimination of certain auxiliary fields, a procedure that becomes extremely difficult for
s > 3. However, so far this is unexplored territory. There exist nonlinear formulations
for the massless spin-3 theory [73, 74], and the generalisation from s = 3 to s > 3 is
shown in [74] to be trivial within the formulation developed. These results indicate that
it is possible to construct a nonlinear topologically massive higher-spin field theory. The
fundamental results by Prokushkin and Vasiliev [75, 76] should be essential of course. Any
attempt to construct a supersymmetric interacting higher-spin theory should inevitably be
an extension of the conformal superspace approach [36, 77].
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It should be pointed out that the problem of constructing topologically massive higher-
spin theories was considered in [78, 79]. However, the nonlinear action proposed possesses
only a restricted gauge freedom in the presence of the Lagrange multiplier 5 that enforces
the torsion-free conditions on the spin connections. Alternative approaches are worth
pursuing.

So far we have discussed N/ = 1 topologically massive supergravity and its higher spin
extensions. The off-shell formulations for N-extended topologically massive supergravity
theories were presented in [80, 81] for N' = 2, in [82] for N' = 3, and in [82, 83] for the
N = 4 case. In all of these theories, the action functional is a sum of two terms, one
of which is the action for pure N-extended supergravity (Poincaré or anti-de Sitter) and
the other is the action for N-extended conformal supergravity. The off-shell actions for
N-extended supergravity theories in three dimensions were given in [59] for N' = 1, [60, 84]
for N' =2 and [60] for the cases N' = 3, 4. The off-shell actions for N-extended conformal
supergravity were given in [6] for N' = 1, [85] for N = 2, [77] for N' = 3, 4, 5, and in [86, 87]
for the N' = 6 case. Refs. [77, 87] made use of the off-shell formulation for N-extended con-
formal supergravity proposed in [36]. The on-shell formulation for N -extended conformal
supergravity with A/ > 2 was given in [88]. On-shell approaches to N-extended topolog-
ically massive supergravity theories with 4 < N < 8 were presented in [89-93]. It would
be interesting to formulate topologically massive higher spin supermultiplets for N' > 2.

Note added in proof: the equations (2.3) for massive fields in AdS3 may be realised as
equations of motion in the following model

Sr(na?ssive[b(n)] = Wﬂ/d%e@ ( )(h){wﬂal + Vﬁal}f)aQ...anﬂ :

which is invariant under the gauge transformations (3.15) in AdSz. It is €4, (h) which
plays the role of ¢(,). The equations (2.12) for massive superfields in AdS?P2 may be
realised as equations of motion in the following model

(n) _ i" A 3|2 a(n i 2
Smassive[ﬁ(")] - _QLH/QJ-HM/d 2z B )(ﬁ){ﬂ'f'ZD }5304(71) )

which is invariant under the gauge transformations (5.12) in AdS31. It is W (n) ($H) which
plays the role of Tj, (). These models, which become (super)conformal in the p — oo limit,
may be viewed as generalisations of the flat-space bosonic constructions of [19, 94].
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A Notation and conventions

We follow the notation and conventions adopted in [60]. In particular, the Minkowski
metric is 14, = diag(—1,1,1). The spinor indices are raised and lowered using the SL(2, R)
invariant tensors

0 -1 0 1
= O‘B: ary — J«
0 (1 0 > o <—1 0) B i

by the standard rule:

W =g, o =cap)” (A.2)

We make use of real gamma-matrices, 7, := ((’ya)aﬁ ), which obey the algebra
Ya Vb = 7//ab]1 + Eabc’Yca (A?))
where the Levi-Civita tensor is normalised as €12 = —gg12 = 1. The completeness relation

for the gamma-matrices reads

(1%)as(70)" = — (8565 + 0255 . (A1)
Here the symmetric matrices (7,)* and (7,)as are obtained from v, = (74)o” by the
rules (A.2). Some useful relations involving -matrices are

Eabc('yb)aﬁ('yc)'yé = 57(0[(7&)5)5 + 56(01(7&)5)7 ) (A'5a)
tr['ya'Yb'Yc'Yd] = 277ab77cd - 277ac77db + 277ad77bc . (A5b)

Given a three-vector x4, it can be equivalently described by a symmetric second-rank
spinor z,g defined as

1
Tag = (7")apTa = Ta Ty = —E(Va)a6$a,8 . (A.6)
In the 3D case, an antisymmetric tensor F,;, = —Fp, is Hodge-dual to a three-vector F,,
specifically
1
F, = ggachbC, Fuy = —capcFC . (A7)

Then, the symmetric spinor Fy, 3 = Fjg,, which is associated with Fj,, can equivalently be
defined in terms of Fp:

a 1 4 ¢
Faﬁ = (7 )aBFa = 5(7 )aﬁEachb . (AS)

These three algebraic objects, F,, F,, and Fi,3, are in one-to-one correspondence to each

other, F, <+ Fy, <+ F,3. The corresponding inner products are related to each other as
follows:

FOG, = SFG,, = 2 FofG A9

- a — 5 ab — 5 af - ( . )

The Lorentz generators with two vector indices (Mg, = —Mp,), one vector index (M,)
and two spinor indices (Myg = Mp, ) are related to each other by the rules: M, = %aabcM be
and M,z = (7*)apM,y. These generators act on a vector V, and a spinor ¥, as follows:

Mab‘/c = 2"70[a%] y Mag‘l/,y = 87(0(‘1/,3) . (AlO)
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B First-order higher-spin model

In this appendix we review the first-order higher-spin model in Minkowski space used by
Tyutin and Vasiliev [18] in their formulation for massive higher-spin fields. It is realised
in terms of a reducible field hp ;.05 = Ry (ay...an_) Which is defined modulo gauge
transformations of the form

5hb,a1...an,2 = 8b€a1...o¢n_2 5 fal...an_g = g(al...an,g) . (B'l)

The structure of this transformation implies that the following action
in

(n) _
SrE = ~ 9ln/2]

/de "y 120 hg 0. ans (B.2)

is gauge invariant.
The field hgyar.an o = (’yl’)mhbmm%f2 contains three irreducible SL(2,R) fields
that we define as follows:

hay..on == h(a1a27a3man), (B.3a)
Yor..om_ ‘= %hﬁ(alm...an,Q)ﬁ, (B.3b)
Yaroan—s = NV 801 s - (B.3¢)
In accordance with (B.1), the gauge transformation laws of these fields are
6hay..an = Oarasbas...an) s (B.4a)
arans = 0 s 0 (B.4b)
Sar.ns = 0" Epr0n s (B.4c)
The action (B.2) turns into
Sg%) - 2Lni/ZJ+1 /d3x {hﬁaln.%laﬁwhvay..anq +2(n = 2)y* 20 hg 0, o
+A(n = 2)y7 95 0, e,y + QMZJW“"“@B "Ypyar..an-a
e = R

This is the flat-space limit of the first-order action (4.2). When n is odd, n = 2s + 1,
the functional ng“) coincides with plain 4D — 3D dimensional reduction of the Fang-

Fronsdal action [13].

C Higher-spin Cotton tensor as a descendent of gauge-invariant field
strengths

The Cotton tensor is defined in terms of the Ricci tensor according to (3.3). The latter
determines the equations of motion corresponding to the Einstein-Hilbert action. In this
appendix we show that analogous properties hold for the linearised higher-spin Cotton
tensor defined by eq. (3.35).
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C.1 The first-order case

We begin by demonstrating that the higher-spin Cotton tensor (3.35) is a descendant of
gauge-invariant field strengths which determine the equations of motion in the first-order
model (B.5). Associated with the dynamical variables ha(n)s Ya(n—2) and Ya(n—4) are the
following gauge-invariant field strengths:

Fa(n) = a(alﬁhag...an)ﬁ - (n - 2)a(a1a2ya3...o¢n) ’ (Cla)
) 2 n(n — 3)
Ga(n—2) = 8/8( )ha(n—2)5(2) + 48(a1ﬁya2...o¢n_2),8 - ma(alazya;g,..an_g) )
(C.1b)
H = (n — 2)0°®@ ", C
an—4) = (0= 2)0"yam-2)82) = = e Yaz..on )8 - (C.1c)

The equations of motion corresponding to (B.5) are the conditions that these field strengths
vanish. Furthermore, the gauge symmetry implies that F(,), Gam—2) and Hg(,—g) are
related to each other via the Noether identity

L n(n — 3)
5 A S
8(&1 Gag...an—Q)ﬁ + (n - 1)(” - 2)

0= 8/8(2)5104(1172)ﬁ(2) - a(alagHag...an_g) . (Cz)

We claim that the Cotton tensor Cy(y,)(h) may be expressed as Cy(n) = (A1F )a(n) +
(A2G)o(n) + (A3H ) (n), for some linear differential operators A; of order n — 2. A suitable
ansatz for such an expression is

|

-1

0|3
—

Bn—2j—2
9 F

Op—2j—1-Qn)B1...0n—2j—2

(]

LLJ’Dja(alﬁl tee 8

Qp—25—

Ca(n) =

<.
3 ©

[2}72

k o
+ Z b1 a(alﬁl”'aocn_zk_sﬂ 2 3804n—2k—2an—2k—1Gan72k-~~an)ﬁl--~ﬁn72k73
k=0
(C.3)

[5]-2
+ Z Cll:’la(ozlﬁ1 o '8an—2l—4ﬂn72l748an—2l—3an72172
=0

X 0

Oy 21— 10n—21 Han—21+1---an)ﬁ1---ﬁn—zz—4

for some coefficients a;, b, and ¢;. It may be shown that the values of these coefficients are

not unique and that there are |5 | — 1 free parameters. For example, when n = 5 one may

show that the general solution is

agp %—i— %C

ay %— %Co
b() = 8%:0 - %Co
by 30 — 350
€o Co
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We may use this freedom to completely eliminate the [§] — 1 coefficients ¢; so that only
the field strengths Fi,(,) and G (,—2) appear in (C.3). This fixes the solution uniquely to

1 (n—1) (n—2 , n
= <ji<|=|= ,
aj 2"—2(2j+1)< 2j> for 0<j5< {2J 1, (C.4a)
1 (n—2)?2 (n-3 n
= Y <k<|=|- ,
bk 2"—1n(2k+1)< o ) for 0 <k < {2—‘ 2, (C.4Db)
n
=0 for OSZS{2J—2. (C.4c)

The fact that there are |5 | — 1 free parameters may be understood as a consequence of the
Noether identity (C.2). To see this, observe that, in principle, we may use (C.2) to replace
all occurrences of H(,—4) With Fy(,) and G, (,—2) in the ansatz (C.3). There will then be
only two sets of independent coefficients, say a; and by, whose unique values coincide with
those of (C.4a) and (C.4b).

C.2 The second-order case

We now consider the flat-space version of the second-order model (4.4). It is described
by the real fields hq(,) and hq(,—4). Associated with these two fields are the following
gauge-invariant field strengths:

n n—3
Fa(n) = |:lhcu(n) + 185(2)8(011&2 hag...an)6(2) - Ta(a1a28043044ya5...an) ’ (0'53)
8 (n—4)(n—5)
2) 9B(2 2
Gapna) =D Dh, . pp) + EDya(nfll) - Waﬁ( )O(ar s Yors.com_2)B(2) -

(C.5b)

The equations of motion for the model are F,,) = 0 and G,(,—4) = 0. The two field
strengths are related by the Noether identity

(n—3)(n—2)

8(041042Ga3.‘.01n,2) N (CG)
We claim that the Cotton tensor Cy(,)(h) may be written as Cy(n) = (ALF)q(n) +(A2G)a(n)
where the A; are linear differential operators of order n — 3. A suitable ansatz for such an

expression is

[31-2
Ca(n) = Z aj[]]a(alﬂl e aOén—Qj—SBn72j73Fanfzjfg...ocn)ﬁl...,3”,2j73 (07)
7=0
[51-3
+ kaka(alﬁl . aan,2k,55n72k75
k=0
X 0, 19) G

Qp—2k—40n—2k—3Y0n ok 20 2k 1T Ap_ok...an)B1...Bn—2k—5 *
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for some coefficients a; and by. It may be shown that the choice of these coefficients is not
unique, and that there are [5] — 2 free parameters. For example, when n = 6 one may
show that the general solution is

5 10
aq 3 ?bo

3 10
ar ) =1s + §50
bo bo

We can use this freedom to completely eliminate the [§] — 2 coefficients by so that only
the top field strength, F,,,, appears in (C.7). This gives the unique solution

(") n(n —1)

a;j=(j+1) (23‘3+3) 3.9n—2

for 0<j< Fﬂ —2, (C.8a)

by =0 for 0<k < Bw ~3. (C.8b)
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