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1 Introduction

Recent developments on integrability ofN = 4 SYM opened the way to impressive results in

the context of scattering amplitudes. In particular, using a new powerful duality symmetry

in momentum space, the complete calculation of all tree level amplitudes as well as up to

fourth order loops in perturbation theory were accomplished [1]. Complemented with

results from strong coupling promoted by the AdS/CFT conjecture gave rise to a new

duality between Wilson loops and scattering amplitudes that drastically simplifies the

calculation of the corresponding amplitudes.

In this context, the authors of [2] raised the interesting question about the possibility of

constructing a consistent relativistic quantum field theory that preserves the analogous of

the Runge-Lenz (RL) vector of the Kepler potential in classical mechanics. The surprising

answer to this question is that it is indeed possible and that theory is N = 4 SYM processed

by a Higgs mechanism that gives mass to some scalars in the field content of that theory.

In turn, this interesting result was used to study the relativistic spectrum of the non-BPS

two-body bound state of a higgsed N = 4 SYM theory in the limit when one particle mass,

the “proton” mass, goes to infinity. It is possible to address this problem in the context

of large N limit of SYM using integrability techniques and dual conformal symmetry.

To find the spectrum we can use a duality relation between the anomalous dimension of

the CFT (Wilson loops with a cusp) and the angular momentum, plus a quantization

condition [2]. This interesting relation was also used to explore the meson spectrum and

to compare it with the corresponding spectrum obtained using string theory in the context

of AdS/CFT [3].
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The results presented in [2] were worked out using numerical methods. Analytic re-

sults that confirmed the numerical approach were obtained in [4]. The same two body

bound-state spectrum can also be addressed using relativistic quantum mechanics with an

enhanced symmetry [5].

Our aim in this letter is to construct explicitly the analogous of the RL vector in

the relativistic setup and analyze some of its consequences. We present the infinitesimal

relativistic transformation generated by this new RL vector and compare the results with

the approach followed in [2]. Later on, we will also argue that this relativistic RL vector

can be used, as in classical mechanics, to make explicit the hidden SO(4) symmetry of the

hydrogen atom and to calculate the corresponding relativistic spectrum for this relativistic

hydrogen-like atom. Our results for this spectrum confirm previous analyses using different

approaches [5, 6]. Next, we construct a new relativistic Kustaanheimo-Stiefel (KS) duality

between different central potentials. Using this duality transformation we show that the

relativistic spectrum of the hydrogen-like atom in 3 dimensions is related to relativistic

harmonic oscillator spectrum in 4 dimensions. Our results again confirm previous analy-

ses where the spectrum of the relativistic harmonic oscillator has been constructed from

scratch [7].

At first sight, the existence of a relativistic RL vector is a nonsense. It is well known

that the orbits of a relativistic particle minimally coupled to a Kepler scalar central po-

tential are open rosettes, and, consequently, the associated symmetry of the classical non-

relativistic problem is broken. The relativistic non-degenerated problem possesses less

symmetry. So, relativistic effects break the symmetry algebra generated by the angular

momentum and the RL vector. That means that the RL vector is not a conserved quantity

in the relativistic realm. Nevertheless, it is still possible to restore the SO(4) symmetry

in the relativistic context if we allow for a non-minimal coupling of the particle with the

scalar field. This observation is central to our work. This non-minimal coupling is widely

used in the context of a modified Dirac equation with enhanced symmetry algebras in the

theory of nuclear spectrum [8].

We restrict ourselves to stationary problems, so we choose a time direction in

Minkowski spacetime. Additionally, we select a Lorentz frame where the electromagnetic

vector potential has the form Aµ = (V (r), 0, 0, 0), breaking the manifest Lorentz symmetry.

Here r is just a spatial coordinate, so the symmetry is reduced from SO(3, 1) to SO(3).

Then, using the non-minimal coupling, we will enhance our symmetry to SO(4). It is clear

that we can not have SO(3, 1) and SO(4) in the same description, then our approach keeps

only SO(4). Of course, a good question is if we can have SO(4, 1) or, even better, the com-

plete conformal symmetry SO(4, 2) by adding more degrees of freedom. Diverse proposals

around these problems have been presented in recent literature (see for example [9]).

2 Reduction from N = 4 Super Yang-Mills to a non-minimally coupled

scalar field

To describe our model we present explicitly the procedure to reduce N = 4 SYM [10, 11]

to a non-minimally coupled scalar field theory [5]. Our interest here is to explicitly show
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the emergence of a scalar field theory with SO(4) symmetry from N = 4 SYM [12] and

check the consistency conditions that follow from the equations of motion. This scalar

field theory was previously considered in [5]. To undertake this task we consider only the

bosonic sector of N = 4 SYM which has the following Lagrangian density

L = Tr







−1

4
FµνFµν −

1

2

6
∑

i=1

DµΦiD
µΦi +

g2

4

6
∑

i,j=1

[Φi,Φj ]
2







. (2.1)

Here the six scalar fields are N ×N traceless hermitian matrices in the adjoint repre-

sentation of SU(N). The action of the covariant derivative on a generic field W is given by

DµW = ∂µW − ig[Aµ,W ], (2.2)

where under a gauge transformation U the matrix gauge field Aµ and the scalar fields Φi

transform as

Φi → UΦiU
†, Aµ → UAµU

† − i

g
(∂µU)U †. (2.3)

The resulting equations of motion are [11]

DµF
νµ = ig

6
∑

i=1

[Φi, D
νΦi], (2.4)

DµD
µΦi = g2

6
∑

j=1

[Φj,[Φj ,Φi]]. (2.5)

For simplicity, we choose to work with the group SU(2), following [13]. Therefore, the

fields will be expressible in terms of the Pauli matrices τa as

Φi = Φa
i

τa

2
=

1

2

(

Φ0
i Φ−

i

Φ+
i −Φ0

i

)

, Aµ = Aa
µ

τa

2
=

1

2

(

A3
µ A1

µ − iA2
µ

A1
µ + iA2

µ −A3
µ

)

, (2.6)

where Φ±
i = Φ1

i ± iΦ2
i . We now introduce the spontaneous symmetry breaking by giving a

vacuum expectation value v to Φ1 [5, 13, 14]

Φ1 =
1

2

(

Φ0
1 + v 0

0 −Φ0
1 − v

)

, (2.7)

and taking the other fields as

Φ2 =
1

2

(

0 Φ−
2

Φ+
2 0

)

, Φi = 0, i = 3, 4, 5, 6; Aµ = Aa
µ

τa

2
=

1

2

(

A3
µ 0

0 −A3
µ

)

. (2.8)

We switched off the charged components A1
µ, A

2
µ of the connection field Aµ.

Now the Lagrangian (2.1) is

L = −1

8
FµνFµν −

1

4
∂µΦ

−
2 ∂

µΦ+
2 − 1

4
∂µΦ

0
1∂

µΦ0
1 +

ig

4
Aµ(Φ2−∂µΦ

+
2 − Φ2+∂µΦ

−
2 )

− g2

2
Φ2−Φ

+
2 AµA

µ − g2

4
(Φ0

1 + v)2Φ2−Φ
+
2 . (2.9)
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Here Fµν = ∂µAν − ∂νAµ and we have identified A3
µ = Aµ. A crucial step here is to

implement a constraint

Φ0
1 + α/r = 0, (2.10)

into the Lagrangian (2.9). Bellow we will see why this contraint is crucial in our con-

struction. After the strong implementation of this contraint into the Lagrangian (2.9) we

obtain1

L = −1

8
FµνFµν −

1

4
∂µΦ

−
2 ∂

µΦ+
2 +

ig

4
Aµ(Φ2−∂µΦ

+
2 − Φ2+∂µΦ

−
2 )

− g2

4

(

−α

r
+ v

)2
Φ2−Φ

+
2 (2.11)

up to boundary term. The field content of our theory is reduced to one vector field Aµ and

a complex scalar Φ2.

The equation of motion for the scalar field Φ−
2 is

∂µ∂
µΦ−

2 − ig(∂µA
µ)Φ−

2 − 2igAµ∂
µΦ−

2 − g2AµA
µΦ−

2 − g2
(

v − α

r

)2
Φ−
2 . (2.12)

Of course an analogous equation of motion can be obtained for the complex conjugate

Φ+
2 that we will not need here. Denoting Φ−

2 = φ and taking the Coulomb potential

Aµ = (−α/r,0) with g = 1,2 the equation (2.12) becomes

∂µ∂
µφ− 2iAµ∂µφ−AµAµφ−

(

m− α

r

)2
φ = 0, (2.13)

where the vacuum expectation value of Φ1 is the mass m of the scalar field φ. The scalar

field equation (2.13) that comes from N = 4 SYM scalar couplings and the Higgs mech-

anism with the constraint (2.10) just presented will be central to our work. Among the

crucial interesting properties of (2.13) is that the non-minimal coupling m → (m − α/r)

induced by the Higgs mechanism and the constraint Φ0
1 = −α/r cancels out the quadratic

term coming from the minimal coupling (introduced through the covariant derivative),

enhancing the symmetry of the resulting field theory from SO(3) to SO(4).

The Lagrangian (2.11) can be rewritten in terms of the fields φ, φ∗, Aµ as

L = −1

4
FµνFµν −

1

2
(Dµφ)

∗(Dµφ)− 1

2

(

m− α

r

)2
φ∗φ, (2.14)

and recognize this Lagrangian as the scalar electrodynamics with modified mass. Here the

covariant derivative is Dµ = ∂µ − iAµ. The equations of motion for Aν are

− ∂µ∂
µAν + ∂ν(∂ ·A) = i

2
(φ∂νφ∗ − φ∗∂νφ)−Aν |φ|2. (2.15)

The application of the divergence to (2.15) reveals that the conserved current is

Jν =
i

2
(φ∂νφ∗ − φ∗∂νφ)−Aν |φ|2. (2.16)

1This constraint can be interpreted as a second class constraint in Dirac sense.
2Which is equivalent to absorbing the coupling constant into α.
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This means that the density ρ is

ρ =
i

2
(φ∗∂tφ− φ∂tφ

∗) +
α

r
|φ|2, (2.17)

taking in account that Aµ = (−α
r ,0). From other hand the implementation of this Coulomb

potential in the equation of motion (2.15) gives

∇2
(α

r

)

=
i

2
(φ∗∂tφ− φ∂tφ

∗) +
α

r
|φ|2, (2.18)

which imply

ρ = ∇2
(α

r

)

(2.19)

as expected, or
∫

ρd3r = −4πα. (2.20)

In this way, we have checked that our prescriptions are entirely consistent. Even though

the mass of the associated scalar electrodynamics is replaced by the non minimal coupling

m → (m− α/r) the associated charge of the scalar field is the expected one.

3 Relativistic particle and Runge-Lenz vector

In this section we will show that the field equation (2.13) has an enhanced symmetry

SO(4). For that end we start from the construction of the relativistic particle of mass

m implementing the standard minimal coupling to a scalar potential followed by a non-

minimal prescription suggested by equation (2.13). Then we will construct the analogous of

the RL vector for this particle. This relativistic RL vector is the generator of the enhanced

SO(4) symmetry.

The standard formulation of a relativistic particle minimally coupled to a background

electromagnetic field Aµ starts from the action

S = −mc

∫

dτ

√

−ηµν
dxµ

dτ

dxν

dτ
+

1

c

∫

dτAµ
dxµ

dτ
, (3.1)

where ηµν = diag (−,+,+,+) and α is the coupling constant. The canonical momenta

pµ =
∂L

∂ẋµ
=

mc ηµν ẋ
ν

√

−ηαβ
dxα

dτ
dxβ

dτ

+
1

c
Aµ, (3.2)

imply the quadratic constraint (associated to reparametrization invariance)

ηµν
(

pµ − 1

c
Aµ

)(

pν −
1

c
Aν

)

+m2c2 = 0, (3.3)

that leads naturally to the Klein-Gordon (KG) equation upon the identification pµ → −i~∂µ

[

ηµν
(

−i~∂µ − 1

c
Aµ

)(

−i~∂ν −
1

c
Aν

)

+m2c2
]

φ = 0. (3.4)
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In the particular case of a Coulomb field A0 = α/r,Ai = 0 and working in units such

that ~ = 1, c = 1, the equation above reads
[

(

−i∂t −
α

r

)2
+∇2 −m2

]

φ(x) = 0. (3.5)

The corresponding stationary spectrum with energy E that comes from this equation is the

usual relativistic spectrum of the KG equation with the external Coulomb potential [5, 15]

Eℓ,n = m

[

1 +

(

α

n+
√

(ℓ+ 1/2)2 − α2 − (ℓ+ 1/2)

)]−1/2

,

where we can see that the well known degeneracy of the associated non-relativistic spectrum

is broken. Apparently, in the relativistic case, we can not construct the conserved RL vector

associated with the above degeneracy of the spectrum. A crucial observation is that the

SO(4) symmetry (of the non-relativistic spectrum) is broken by the quadratic term α2/r2

that comes from the minimal coupling to the Coulomb potential in the KG equation (3.4).

The classical stationary problem with conserved angular momentum ℓ and energy

E = −p0 is

(E − V )2 − (p2r + ℓ2/r2)− E2
0 = 0,

where E0 ≡ m. The solutions for bounded orbits are rosettes [16] in contrast with the non-

relativistic problem where the orbits are ellipses [17]. As a consequence, the corresponding

RL vector is not conserved in the relativistic theory described by the Lagrangian (3.1).

To see that it is possible to retain the degeneracy of the non-relativistic spectrum in

the relativistic case we will follow our motivation from (2.13), introducing a non-minimal

coupling given by the substitution

m −→ m− α

r
. (3.6)

This new coupling restores the degeneracy of the associated non-relativistic dynamics and

as a consequence a new relativistic symmetry emerges. The action (3.1) is now

S =

∫

dτ

[

−m

√

−
(

1− α

rm

)2
ηµν ẋν ẋµ +

α

r
ẋ0

]

. (3.7)

This action corresponds to a relativistic particle interacting with a Coulomb background

in a curved space given by a conformally flat metric

ηµν →
(

1− α

rm

)2
ηµν . (3.8)

The associated constraint (3.3) is now

p20 −
2α

r
p0 − ~p2 −m2 +

2αm

r
= 0. (3.9)

Considering the classical stationary problem, using the non-minimal replacement (3.6)

to remove the anomaly, and denoting A0 = −V we have

E2
0 → (E0 + V )2

– 6 –
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and the modified KG equation reads

E2 − E2
0 − 2V (E0 + E)− (p2r + ℓ2/r2) = 0

or

(E + E0)

(

E − E0 − 2V − 1

(E + E0)
(p2r + ℓ2/r2)

)

= 0,

where ℓ is the conserved angular momentum. An equivalent way to write this result is

(E − E0)− 2V − 1

(E + E0)
(p2r + ℓ2/r2) = 0,

where we observe that the relativistic problem is reduced to a Schrödinger like problem. If

we want to obtain the associated non-relativistic (NR) problem just replace3

(E − E0) → ENR

and
1

(E + E0)
→ 1

2m
.

It is also true that starting from the non-relativistic problem we can obtain the relativistic

one just reading the same replacements from right to left.

The hydrogen like spectrum that arises from this modified KG equation (2.13) recovers

the full degeneracy of the non-relativistic case [5]

En = m

(

1− 2α2

n2 + α2

)

.

As a consequence, it is now possible to construct a relativistic analogue of the RL vector.

Using as a model the non-relativistic construction [17] we find

d

dτ

[

~p× ~L+ α (p0 −m)
~x

r

]

= 0, (3.10)

where ~L is the angular momentum that generates the corresponding SO(3) algebra. The

relativistic generalization of the Runge-Lenz vector is then

~K = ~p× ~L− (m− p0)
α~x

r
, (3.11)

or
~K = ~p× ~L− (E0 + E)

α~x

r
. (3.12)

So we recover the conservation of the RL vector and the orbits are closed ellipses. The

vector ~K enhances the symmetry from SO(3) to SO(4), and in this way we have shown

that the non-minimal coupling induced by (3.6) or the transformation to a conformally flat

space in (3.8) allows us to recover the SO(4) symmetry in the relativistic case.

Now, taking the non-relativistic limit of the RL vector we obtain

~KNR = ~p× ~L− 2αm
~x

r
, (3.13)

which is the usual RL vector with a coupling constant that is twice larger.

3E = m√
1−v2

, then in the NR limit E = E0 +mv2/2, or E − E0 → ENR. Also, from E2 − E2
0 = p2 and

then (E + E0)(E − E0) = p2, we have ENR = p2/(E + E0) and consequently 1/(E + E0) → 1

2m
.

– 7 –



J
H
E
P
1
0
(
2
0
1
8
)
1
5
3

Remarks.

a) A curious feature about this non-minimal coupling is that the NR effective potential

has a factor of 2 as compared with the usual NR formulation.

b) To every NR (relativistic) observable we can associate a relativistic (NR) observable

with the replacement 2m ↔ E + E0, ENR ↔ E − E0.

c) Notice that the substitution (3.6) has a critical point when rc = α
m . At this point

the mass term in the Lagrangian (2.14) is zero. The kinetic term of the particle La-

grangian (3.7) is also zero because the conformal factor of the Minkowski metric tends

to zero. This can be contrasted with the behaviour of a relativistic particle in the

limit m → 0. Hence, starting with the equivalent description of the Lagrangian (3.7)

in terms of the einbein e

S =

∫

dτ

(

ẋµẋ
µ

2e
− e

2

(

m− α

r

)2
+

α

r
ẋ0

)

, (3.14)

we can see that in the limit r → rc the only term that remains is

S =

∫

dτ

(

ẋµẋ
µ

2e
+mẋ0

)

, (3.15)

the last term being just a total derivative reflecting the fact that p0 is defined up to

a constant shift p0 → m− ẋ0/e. This theory is consistent with (2.13) but with Aµ =

(−m,0) corresponding to a KG equation with zero mass term minimally coupled to

a constant potential.

d) A central argument given here is that the unusual coupling (3.6) comes from the scalar

sector of N = 4 SYM theory with an appropriately adjusted Higgs mechanism as

presented in section 2. This construction is based on a powerful conformal field theory

which has very interesting integrability properties. Due to the hidden symmetry that

lies under the replacement (3.6) that reveals the existence of the relativistic RL

vector (3.12), the N = 4 SYM theory is sometimes dubbed as the hydrogen atom

quantum field theory [18].

4 The relativistic SO(4) algebra using the relativistic RL vector

The aim of this section is twofold. On one hand we will construct the infinitesimal Noether

symmetries generated by the relativistic RL vector and observe that this symmetry is not

an SO(4) rotation but it is neither a conformal symmetry. A deeper analysis is needed

to compare the symmetry obtained here with the symmetry in the dual momentum space

presented in [2]. As a spinoff we show that the relativistic orbit can be reconstructed using

the relativistic RL vector.

On the other hand we will describe the complete SO(4) algebra generated by the

angular momentum and the new relativistic RL vector. We will restrict ourselves to the

stationary problem with relativistic energy E. In a second step we will recover from this

– 8 –
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algebra the correct relativistic spectrum of the corresponding hydrogen like atom in the

two body bound state.

From equation (3.9) and solving for p0

p0 = −α

r
±

√

α2

r2
+ ~p 2 +m2 − 2mα

r
, (4.1)

we construct the energy function or equivalently the associated relativistic Hamiltonian

H = −p0 = E. (4.2)

In this form, we confirm that p0 is a constant of motion and in consequence invariant under

the transformations generated by the Runge-Lenz vector,

δp0 =
{

p0, ǫiK
i
}

= 0. (4.3)

The infinitesimal transformations associated with ri and the canonical momenta pi are

(setting again c = 1)

δri =
{

ri, ǫjK
j
}

= 2(ǫ · r)pi − ri(ǫ · p)− (r · p)ǫi,

δpi =
{

pi, ǫjK
j
}

= −(~p )2ǫi + (~p · ~ǫ )pi + α (p0 −m)
~ǫ · ~x
r3

xi − α (p0 −m)
ǫi
r
,

or

δpi = −(~p )2ǫi + (~p · ~ǫ )pi − α (E + E0)

(

~ǫ · ~x
r3

xi −
ǫi
r

)

.

The Runge-Lenz vector also acts on the magnitud r as

δr =
{√

xlxl, ǫiK
i
}

=
(~p · ~x ) (~x · ~ǫ )

r
− (~ǫ · ~p )r. (4.4)

These infinitesimal symmetries do not correspond exactly with the symmetry transforma-

tions previously written in [2]. The reason for this mismatch and its possible consequences

is an open problem that we will leave for a future work. A crucial difference is that in

the approach given in [2] the symmetry transformation acts in a dual momentum space

(dual conformal transformation) that is appropriate to reveal the symmetries of scattering

amplitudes in SYM theory.

We observe that the analogous procedure to obtain the classical non relativistic orbit

of the Kepler problem can be implemented also in the relativistic case. If we take the dot

product of the RL vector with ~x, we obtain

~K · ~x = Kr cos θ =
(

~p× ~L
)

· ~x− α (E0 + E)
~x · ~x
r

, (4.5)

or
L2

r (E0 + E)α
=

K cos θ

α (E0 + E)
+ 1, (4.6)

that is, the equation of a conic with eccentricity

ε =
K

α (E0 + E)
. (4.7)

– 9 –
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Here, we notice that under the substitution of (E0 + E) → 2m we recover that NR result

of [17].

The complete spectrum can also be constructed from the relativistic SO(4) algebra

generalizing the NR result as presented in [9, 19]. Let us start from a simple redefinition

of the relativistic RL vector (3.12)

~A =
2

E +m
~K =

1

E +m
(~p× ~L− ~L× ~p )− 2α

~r

r
,

for a bounded orbit with energy E. We know from our previous calculation that

[ ~A,H] = 0, ~L · ~A = ~A · ~L

and

A2 = 4

(

α2 +
E −m

E +m
(1 + L2)

)

. (4.8)

The corresponding relativistic algebra closes as

[Li, Lj ] = iεijkLk,

[Ai, Lj ] = iεijkAk,

[Ai, Aj ] = −4i

(

E −m

E +m

)

εijkLk.

Defining

[Ni, Nj ] = iεijkNk, [Mi,Mj ] = iεijkMk,

and
~N =

1

2
(~L+ ~A′), ~M =

1

2
(~L− ~A′)

it is easy to show the original algebra splits into the product of two SO(3) algebras

[Ni, Nj ] = iεijkNk, [Mi,Mj ] = iεijkMk,

with the constraint

N2 = M2. (4.9)

The operator

N2 +M2

will have the eigenvalues 2ℓ(ℓ + 1) with ℓ = 0, 1, 2 . . . (2 times the square of the angular

momentum eigenvalues) because of the constraint (4.9). On the other hand

1

2
(N2 +M2) =

1

2

[

L2 − E +m

4(E −m)
A2

]

= − E +m

2(E −m)
α2 − 1

2

where we used (4.8). So, we have for the relativistic spectrum

n2 = −E +m

E −m
α2 . (4.10)

This is the correct relativistic spectrum reported in [5] and reproduced here with n = 2ℓ+1.
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5 Relativistic KS duality

The KS dictionary can be constructed from the NR case (see for example [20]). Starting

from a potential of the form V = krβ and introducing a change of variable r → R
2

β+2 , the

integral for the orbit [17] for the variable R has the same form as the original orbit integral

for r if we define

V = −(E − E0)R
−

2β

β+2

as the new potential, and the new energy by

E − E0 = −2k.

A crucial difference from the NR case is the factor of 2 in the new energy definition. Also

the new angle of the orbit in the relation r(θ) → R(Θ) must be rescaled by a factor,

Θ = ((β + 2)/2)θ.

Just as a consistency condition we also need the identification

E + E0 → E + E0

that is not present in the NR limit because the original NR KS transformation maps

problems with the same mass by definition. We note that E − E0 and E + E0 play very

different roles in the relativistic KS mapping. While E − E0 is a coupling constant in the

new problem, E + E0 plays the role of the mass parameter. Of course, we are restricting

the mapping in such a way that the rest energies are equal (because the mass of the new

and old problems is the same as in the NR KS transformation).

The new problem is then

(E − E0)− 2V(R)− 1

(E + E0)
(p2R + ℓ2/R2) = 0 .

A simple comparison with the original problem

(E − E0)− 2V − 1

(E + E0)
(p2r + ℓ2/r2) = 0

reveal that the structure of the old and the new problems is exactly the same. The crucial

difference between this equation and the original one worked out in [16] is the non-minimal

coupling (3.6).

6 KS and the relativistic equivalent Schrödinger equation (RSE)

Accordingly with the previous section, we define the radial part of the relativistic

Schrödinger equation (RSE) in d dimensions as
(

− 1

(E +m)

(

d2

dr2
+

(d− 1)

r

d

dr
− ℓ(ℓ+ d− 2)

r2

)

+ 2V (r)− (E −m)

)

R(r) = 0. (6.1)

V (r) is a central potential defined as V (r) = Krβ. By the change of variable

r = ρ2/(β+2), (6.2)
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the Schrödinger equation becomes
(

− 1

(E +m)

(

d2

dρ2
+

(β + 2(d− 1))

(β + 2)ρ

d

dρ
− ℓ(ℓ+ d− 2)

ρ2

(

2

β + 2

)2
)

(6.3)

−
(

2

β + 2

)2

ρ
−2β

β+2 (E −m) + 2

(

2

β + 2

)2

K

)

R̃(ρ) = 0,

where R̃(ρ) = R(r(ρ)). Now use the following dictionary (duality) to associate the relevant

quantities that define the RSE, E,K, d, ℓ to a new set of quantities that parametrize a new

system E ,V , D,L.
The dimension4 maps to a new dimension D

D =
2(β + d)

β + 2
. (6.4)

The energy E of the new stationary RSE is related with the coupling constant of the old

potential V = Krβ by

E −m = −2

(

2

β + 2

)2

K. (6.5)

In the same way the new angular momentum L,5 is related with the old angular momentum

ℓ by

L =
2

β + 2
ℓ. (6.6)

Finally the new potential V is related with the old energy E by

V = −1

2
(E −m)

(

2

β + 2

)2

ρ
−

2β

β+2 . (6.7)

A crucial observation is the identification

E +m → E +m, (6.8)

that follow as a consistency condition. Using this dictionary the new RSE

(

− 1

E +m

(

d2

dρ2
+

(D − 1)

ρ

d

dρ
− L(L+D − 2)

ρ2

)

+ 2V(ρ)− (E −m)

)

R̃(ρ) = 0 (6.9)

acquires the same form as the original one but with dimension D, angular momentum L,
energy E and potential V(ρ) given by (6.4)–(6.7) and the identification (6.8).

Notice that we can not map every solution of the old stationary problem into a station-

ary solution of the new problem by this duality. We can only map every bounded stationary

solution of the old problem into a bounded stationary solution of the new problem.

We will use this dictionary for the case of the hydrogen atom β = −1 in d = 3. In

that case, the new problem is the isotropic harmonic oscillator in D = 4 and angular

momenta L = 2ℓ.
4The case d = 2 (conformal point) deserves special attention. See [21] for details.
5Here we are restricting ourselves to the case of integer new dimension D and integer new momenta L.
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The energy spectrum of the relativistic hydrogen atom is [5, 6]

(2n+ 2ℓ+ 2)
√
m− E − 2α

√
E +m = 0,

and from here we have

E = m

(

1− 2α2

N2 + α2

)

,

with N = n+ ℓ+ 1. According to our dictionary the new potential is

V = −2(E −m)ρ2,

so the new coupling constant of the corresponding oscillator is k = 2(E −m).

On the other hand, the energy spectrum of the relativistic oscillator in D = 4 arising

from the dictionary reads

E −m = 2(4n+ 2L+ 4)

√

E −m

E +m
.

This is the energy spectrum of a D = 4 relativistic oscillator with potential V . It can be

compared with the result given in [7]

E −m = 2(4n+ 2L+ 4)

√

k

2(E +m)
,

for a particle of mass m in a potential V = kr2. This matches precisely with our result.

So we conclude that the relativistic KS transformation relates the relativistic harmonic

oscillator in 4 dimensions with the relativistic Coulomb potential in 3 dimensions. This

example shows the power of the relativistic KS transformation constructed here to relate

different potentials.

7 Relativistic spectrum from cusp anomalous dimension

An interesting calculation of the non-relativistic spectrum of the hydrogen atom from

perturbation theory in N = 4 SYM was presented in [2]. The starting point is SYM and the

relativistic symmetry associated with the RL vector. Nevertheless, the explicit computation

of the binding energy spectrum of the bound state results in the non-relativistic well-known

formula for the hydrogen-like spectrum. Here we will extend the result presented in [2] to

the full relativistic case.

Our starting point is an enhanced formula for the energy of the bound state in terms

of the cusp angle. Taking into account only the binding energy we define

(Eb
n −m) = (Eb

n +m)

(

sin
φn

2
− 1

)

,

where Eb
n is the relativistic binding energy of the bound state and φn the corresponding

cusp (scattering) angle. The quantization condition is

Γcusp(φn) = −n,

where Γcusp is the cusp anomalous dimension and n and integer.
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From the other hand, Γcusp has been computed for weak ’t Hooft coupling λ ≪ 1 and

the result is

Γcusp(φn) = − λ

8π2
φn tan

φn

2
.

Since λ is small the scattering is small φ ≈ π − δ, with

δ ≈ λ

4πn
.

The solution for the binding energy is

(Eb
n −m) =

δ2

8
(Eb

n +m) =
λ2

128π2n2
(Eb

n +m). (7.1)

The full relativistic spectrum is

E − 2m = Eb,

where we have subtracted the threshold energy 2m and Eb is given by (7.1). This result

matches the computed relativistic spectrum given in [5] and reproduced here using different

approaches. Notice that the dependence in λ2 is consistent with the expectation that√
λ ∼ e [22, 23] and the fact that the hydrogen energy spectrum goes like e4.

We remark that the computation presented in [2] is entirely consistent. In the weak

coupling (small λ) and large angular momentum (n ≫ 1) the approximation to leading

order for the tiny effect E − 2m is the NR spectrum. We have presented here the pertur-

bative (still weak coupling) relativistic spectrum for the total binding energy. This result

could be confirmed by the E − J Chew-Frautschi plot for different values of λ in the weak

coupling case (J ≫ 1, E ∼ 2m).

As a final comment notice the interesting relation between the stereographic projection

(small circles on the sphere to large circles on the plane) related by the RL symmetry (as

presented for example in [9]), and the duality between static quarks on S3×R and dynamical

quarks in the plane [24–26] as compared with the classical duality between the free particle

in S3 with the Kepler problem in R4 [9]. This observation needs further analysis that we

will not address here.
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