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1 Introduction

The pure spinor formalism is a super-Poincaré covariant formalism [1–3] (for review,

see [4–9]) of superstrings. This feature allows for an efficient way of computing the scatter-

ing amplitudes [3, 10–15] making computations simpler. The equivalence between the pure

spinor and the other superstring formalisms has been verified in many examples [16–18].

As in the Ramond-Neveu-Schwarz (RNS) formalism, the scattering amplitudes in the

pure spinor formalism also involve computing worldsheet correlation functions of uninte-

grated as well as integrated vertex operators. However, unlike the RNS formalism, the

gauge fixed worldsheet action in the pure spinor formalism does not arise from the gauge

fixing of a reparametrization invariant action. Due to this, there is no elementary b ghost

in the pure spinor formalism. This makes the relation between the unintegrated and the

integrated vertex operators in the pure spinor formalism less direct. So, even though the

computation of amplitudes are easier to carry out in pure spinor formalism, the construc-

tion of the vertex operators (integrated as well as unintegrated) are considerably more

involved as compared to the RNS formalism (see e.g., [19, 20]). In this paper, we propose

an ansatz for the integrated vertex and explicitly show that it satisfies the relevant BRST
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condition demonstrating that it is the correct integrated vertex operator. We shall also give

the arguments as to how to arrive at the ansatz. This paper gives an explicit construction

of the integrated vertex for the first massive states in open superstrings. The same method

can also be used for the construction of the massive integrated as well as unintegrated

vertex operators in the pure spinor formalism.

Restricting to the open strings for simplicity, the vertex operators in pure spinor for-

malism in ten dimensional flat spacetime are constructed in the super-Poincaré covariant

manner using N = 1 superfields. In particular, to construct the unintegrated vertex oper-

ator V for the states at mass level n, i.e. for m2 = n
α′ , one first needs to construct “basis

elements” with ghost number 1 and conformal weight n using the world sheet pure spinor

fields. These basis elements1 are then multiplied with an arbitrary 10 dimensional N = 1

superfield. The unintegrated vertex operator is the most general linear combination of such

objects. The superfields appearing in this unintegrated vertex operator are fixed using the

on-shell condition QV = 0, where Q is the BRST operator of the theory. The integrated

vertex operator U can then be determined using the relationQU = ∂RV where the subscript

R in the right hand side denotes the fact that the derivative is taken along the real axis.

For the massless states, both the unintegrated as well as the integrated vertex operators

are explicitly known. This allows us to calculate tree as well as loop amplitudes involving

massless states in the pure spinor formalism. In this paper, we shall focus on the first

massive states. The open string spectrum at first massive level comprises of 128 bosonic

and 128 fermionic degrees of freedom. These states form a massive spin 2 supermultiplet of

10 dimensional N = 1 supersymmetry. The 128 fermionic degrees of freedom are encoded

in a spin 3/2 field ψmα. On the other hand, the 128 bosonic degrees of freedom are encoded

in a 3-form field bmnp carrying 84 degrees of freedom and a symmetric traceless field gmn

carrying 44 degrees of freedom (see, e.g. [21]).

To describe the first massive states in a super-Poincaré covariant manner, we intro-

duce three basic superfields Ψmα, Bmnp and Gmn whose theta independent components are

ψmα, bmnp and gmn respectively. The higher theta components of these superfields contain

the same physical fields in a more involved manner [22]. The unintegrated vertex operator

describing these states was constructed in [23] and its theta expansion was done in [22].

The superfields appearing in this vertex operator can be expressed in terms of the basic

superfields Gmn, Bmnp or Ψmα.

In this paper, our goal will be to construct the integrated form of the vertex operator

for the first massive states. We shall use the defining relation QU = ∂RV for this purpose.

As we shall see, the superfields appearing in U can also be expressed in terms of the basic

superfields Ψmα, Bmnp and Gmn.

Rest of the paper is organized as follows. In section 2, we briefly review some of the

elements of the pure spinor formalism and the first massive unintegrated vertex operator

which are used in our analysis. In section 3, we give our general strategy and the main

results of this paper. The equations (3.1) and (3.2) are our main equations which give

1We shall refer to the products of worldsheet pure spinor variables which appear in the vertex operators,

multiplied by some superfield, as basis elements. So, e.g., ∂θβλα in equation (2.20) will be referred as basis

element which multiplies the superfield Bαβ .
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the first massive integrated vertex operator in terms of the basic superfields Bmnp, Gmn

and Ψmα. In section 4, we give the details of our construction following the strategy

given in section 3. Finally, we conclude with discussion in section 5. While our ansatz

once verified to be a solution does not require any further justification, we summarize the

chain of reasoning in appendix A that led us to our proposed ansatz. Even though the

solution does not depend on how we arrive at this ansatz, the arguments presented in

the appendix A are nonetheless of value since they imply that one can replicate the same

method quite readily for all higher massive states.

2 Review of some pure spinor elements

In this section, we briefly recall some of the results of the minimal pure spinor formalism

and the first massive states which will be needed in our analysis. We shall also describe

some results regarding open strings which will be needed in this paper.

2.1 Some pure spinor results

We start by recalling some results about the open string world-sheet theory in the pure

spinor formalism. We shall follow the conventions used in [22]. The open string world-sheet

CFT in the pure spinor formalism in flat spacetime is described by the action

S =
1

πα′

∫

UHP

d2z

(

1

2
∂Xm∂̄Xm + pLα∂̄θ

α
L − wL

α ∂̄λ
α
L + pRα∂θ

α
R − wR

α ∂λ
α
R

)

(2.1)

where, m = 0, 1, , · · · , 9 and α = 1, · · · , 16. Further, we use the acronym UHP and LHP

for upper and lower half of the complex plane. The L and R denote the left and right

moving fields respectively on the world-sheet which will be related through the boundary

conditions. All the worldsheet fields Xm, pLα, w
L
α , θ

α
L and λα

L and the corresponding right

moving fields (with script R) are function of both (z, z̄) off-shell. However, on making use

of the equations of motion, namely

∂̄∂Xm(z, z̄) = 0

∂̄θαL(z, z̄) = 0 , ∂θαR(z, z̄) = 0 , ∂̄pLα(z, z̄) = 0 , ∂pRα (z, z̄) = 0 (2.2)

∂̄λα
L(z, z̄) = 0 , ∂λα

R(z, z̄) = 0 , ∂̄wL
α(z, z̄) = 0 , ∂wR

α (z, z̄) = 0,

we find that the fields with subscript L and R become holomorphic and anti-holomorphic

respectively. The Xm fields satisfy the harmonic equation and hence it can be written

as sum of holomorphic and anti-holomorphic fields. This means that ∂Xm and ∂̄Xm are

holomorphic and anti-holomorphic respectively. Besides the above equations of motion, we

have to impose appropriate boundary conditions. These boundary conditions for the open

strings are

∂Xm(z, z̄) = ∂̄Xm(z̄, z)

θαL(z, z̄) = θαR(z̄, z)

pLα(z, z̄) = pRα (z̄, z) , at z = z̄ (2.3)

λα
L(z, z̄) = λα

R(z̄, z)

wL
α(z, z̄) = wR

α (z̄, z)

– 3 –
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Taking these boundary conditions into account and using the action (2.1), we can derive

various OPEs. The OPE between the various matter sector fields can be worked out to be

∂Xm(z, z̄)∂Xn(w, w̄) = −
α′ηmn

2(z − w)2
+ · · ·

pLα(z, z̄)θ
β
L(w, w̄) =

α′

2

δ β
α

z − w
+ · · · (2.4)

pRα (z̄, z)θ
β
R(w̄, w) =

α′

2

δ β
α

z̄ − w̄
+ · · ·

It is cumbersome to work with both left and right moving fields and impose the boundary

conditions each time. Fortunately, using the “doubling trick”, we can combine the left and

right moving fields into a single field. The left and right moving fields considered so far

are defined only in the upper half plane with their values agreeing on the real axis. Using

the doubling trick, we construct a field defined in the whole complex plane. Moreover,

this requires only the boundary conditions and not the on-shell conditions following from

the equations of motion. For example, the boundary condition (2.3) allows us to combine

θαL(z, z̄) and θαR(z̄, z) into a single field as

θα(z, z̄) ≡

{

θαL(z, z̄) for z ∈ UHP

θαR(z̄, z) for z ∈ LHP
(2.5)

We can similarly define pα, wα and λα in the whole complex plane. Furthermore, all of the

holomorphically factorized quantities such as the vertex operators and the stress tensor

can be defined in a similar manner. The θα as defined in (2.5) is holomorphic in the whole

complex plane. It is instructive to see this explicitly. For this, we need to show that

∂̄θα = 0 for z ∈ C. For z ∈ UHP , we have

∂̄θα(z, z̄)|UHP = ∂̄θαL(z, z̄) = 0, (2.6)

by virtue of equation of motion for θαL. On the other hand, for z ∈ LHP , we have

∂̄θα(z, z̄)|LHP = ∂̄θαR(z̄, z) = 0 (2.7)

where, we have used the fact that the equation of motion for θαR(z̄, z) in (2.2) implies that

it is independent of the first argument. This completes the proof that θα(z) is indeed a

holomorphic function in the whole complex plane. Identical proofs can also be given for

other fields or their derivatives. Moreover, the OPEs involving θαL,R and pL,Rα which follow

from (2.4) can be combined into a single OPE as

pα(z)θ
β(w) =

α′

2

δ β
α

z − w
+ · · · (2.8)

From now on, we shall work with the fields defined using the doubling trick. However,

one can always go back to the expressions involving the original fields using equation (2.5)

and similar relations for other fields. The worldsheet fields pα, wα, θ
α and λα carry the

conformal weights 1, 1, 0, 0 respectively. The field λα satisfies the pure spinor constraint

λαγmαβλ
β = 0 (2.9)
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The γm in above equation are the 16× 16 gamma matrices. The antisymmetrized product

of these gamma matrices are referred as forms. So, e.g., γαβmnp is called 3-form and so on.

The field λα and wβ carry the ghost numbers 1 and −1 respectively. All other world-

sheet fields carry the 0 ghost number. Due to the pure spinor constraint, the worldsheet

field wα only appears in the following gauge invariant2 combinations

Nmn =
1

2
wα(γ

mn)αβλ
β , J = wαλ

α (2.10)

All the components of these variables are not independent. This fact is captured by the

following non-trivial constraint between the currents Nmn and J [23]

: Nmnλα : (z)(γm)αβ −
1

2
: Jλα : (z)(γn)αβ − α′γnαβ∂λ

α(z) = 0 (2.11)

Two other important supersymmetric invariant combinations of the theory are given by

dα = pα −
1

2
γmαβθ

β∂Xm −
1

8
γmαβγmσδθ

βθσ∂θδ

Πm = ∂Xm +
1

2
γmαβθ

α∂θβ (2.12)

The BRST operator of the theory is given in terms of λα and dα to be3

Q =

∮

dz λα(z)dα(z) (2.13)

The OPE between various worldsheet operators is given by4

dα(z)dβ(w) = −
α′γmαβ

2(z − w)
Πm(w) + · · · , dα(z)Π

m(w) =
α′γmαβ

2(z − w)
∂θβ(w) + · · ·

dα(z)V (w) =
α′

2(z − w)
DαV (w) + · · · , Πm(z)V (w) = −

α′

(z − w)
∂mV (w) + · · ·

Πm(z)Πn(w) = −
α′ηmn

2(z − w)2
+ · · · , Nmn(z)λα(w) =

α′(γmn)αβ
4(z − w)

λβ(w) + · · ·

J(z)J(w) = −
(α′)2

(z − w)2
+ · · · , J(z)λα(w) =

α′

2(z − w)
λα(w) + · · ·

Nmn(z)Npq(w) = −
3(α′)2

2(z − w)2
ηm[qηp]n −

α′

(z − w)

(

ηp[nNm]q − ηq[nNm]p
)

+ · · · (2.14)

In the above OPEs, ∂m is the derivative with respect to the spacetime coordinate Xm, ∂ is

the derivative with respect to the world-sheet coordinate, V denotes an arbitrary superfield

and Dα is the supercovariant derivative given by

Dα ≡ ∂α + γmαβθ
β∂m (2.15)

2Here by gauge invariance, we mean invariance under wα → wα + Λm(γmλ)α.
3Having holomorphic fields defined in the whole complex plane using doubling trick means that we can

use the closed contour integrals
∮

in the usual manner even for the open string.
4Note the minus sign in front of the single pole in NmnNpq OPE. There is a typo regarding this sign

in [23]. We thank Nathan Berkovits for confirming this.
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This supercovariant derivative satisfies the identity

{Dα, Dβ} = 2(γm)αβ∂m =⇒ (γm)αβDαDβ =
1

16
∂m (2.16)

The matter and the ghost stress energy tensors of the theory are given by

Tm = −
1

α′
: ΠmΠm : −

2

α′
: dα∂θ

α : , Tg =
2

α′
wα∂λ

α (2.17)

The total stress tensor T is given by the sum of Tm and Tg.
5 The Lorentz current

Nmn is a primary operator with respect to the stress energy tensor. This follows due to

the OPE

Tg(z)N
mn(w) =

Nmn(w)

(z − w)2
+

∂Nmn(w)

z − w
+ · · · (2.18)

and the fact that the matter and the ghost sector fields do not have any non trivial OPE

between them.

After briefly reviewing the basics, we now turn to the first massive unintegrated vertex

operator [22, 23]. There are 128 fermionic and 128 bosonic degrees of freedom at the first

massive level of the open string spectrum. The fermionic degrees of freedom are contained

in a spin-3/2 field ψmα whereas the bosonic degrees of freedom are contained in a traceless

symmetric tensor gmn and a 3-form field bmnp. These fields are demanded to satisfy

∂mψmα = 0 ; γmαβψmβ = 0 ; ∂mbmnp = 0 ; ηmngmn = 0 ; ∂mgmn = 0

(2.19)

These constraints ensure that the number of independent components in the fields ψmβ,

bmnp and gmn are 128, 84 and 44 respectively. These fields form a massive spin-2 supermul-

tiplet in 10 dimensions. To describe the system in a supersymmetric invariant manner, we

introduce basic superfields Ψmα, Bmnp and Gmn whose theta independent components are

ψmα, bmnp and gmn respectively. The higher components of these basic superfields contain

the same physical fields in a more involved manner.

At the first mass level, the unintegrated vertex operator of the open string is given

by [23]

V =: ∂θβλαBαβ : + : dβλ
αCβ

α : + : ΠmλαHmα : + : NmnλαFαmn : (2.20)

where, the superfields appearing in the above expression are given in terms of the basic

superfields Bmnp and Ψmα to be [23]

Hsα =
3

7
(γmn) β

α DβBmns = −72Ψsα , Cmnpq =
1

2
∂[mBnpq] ,

Fαmn =
1

8

(

7∂[mHn]α + ∂q(γq[m) β
α Hn]β

)

(2.21)

5It is possible to express the ghost stress tensor Tg in terms of the currents Nmn and J (see, e.g., [5]).

However, we shall not need this expression. For our purposes, equation (2.18) is sufficient.
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The normal ordering : : is defined as

: AB : (z) ≡
1

2πi

∮

z

dw

w − z
A(w)B(z) (2.22)

where, A and B are any two operators and the contour surrounds the point z.

The basic superfields at the first massive level, namely, Bmnp,Ψmα and Gmn satisfy

the superspace equations6 [22]

DαGsm = 16 ∂p(γp(sΨm))α (2.23)

DαBmnp = 12(γ[mnΨp])α − 24α′∂t∂[m(γ|t|nΨp])α (2.24)

DαΨsβ =
1

16
Gsmγmαβ +

1

24
∂mBnps(γ

mnp)αβ −
1

144
∂mBnpq(γsmnpq)αβ (2.25)

and the constraints

(γm)αβΨmβ = 0 ; ∂mΨmβ = 0 ; ∂mBmnp = 0 ; ∂mGmn = 0 ; ηmnGmn = 0

(2.26)

2.2 Some results regarding open strings

For the open strings, the vertex operators live on the boundary, i.e., on the real axis in the

complex plane. This means that in the BRST equation QU = ∂RV , the derivative in the

right hand side is along the real axis (represented by the subscript R. For comparing the

left and right hand side of this equation, we shall need to express the partial derivative in

the right hand side to derivative with respect to the world-sheet fields Xm and θα. For

this, we first convert the derivative along the real axis into the holomorphic derivative as

follows. If x denotes the coordinate along the real axis, then the derivative of an arbitrary

function f along the real axis can be written as7

∂Rf =
∂f

∂x
=

(

∂z

∂x

∂f

∂z
+

∂z̄

∂x

∂f

∂z̄

)

∣

∣

∣

z̄=z
=

(

∂f

∂z
+

∂f

∂z̄

)

∣

∣

∣

z̄=z
(2.27)

Now, for the open strings, the left and right moving fields living on the world-sheet are

identified along the real axis as in (2.3). Thus, any function along the real axis (such as the

vertex operator) can be expressed only in terms of either left moving or right moving fields

(or the fields defined using the doubling trick as in (2.5)). Working with the left moving

fields, we can use the chain rule to write

∂f

∂z
=

∂f

∂Xm

∂Xm

∂z
+

∂f

∂θαL

∂θαL
∂z

,
∂f

∂z̄
=

∂f

∂Xm

∂Xm

∂z̄
+

∂f

∂θαL

∂θαL
∂z̄

(2.28)

Using the equation of motion for pLα, namely, ∂̄θαL = 0 and the above equations, we obtain

∂Rf =
∂f

∂Xm

∂Xm

∂z
+

∂f

∂Xm

∂Xm

∂z̄

∣

∣

∣

z̄=z
+

∂f

∂θαL

∂θαL
∂z

= 2
∂f

∂Xm

∂Xm

∂z
+

∂f

∂θαL

∂θαL
∂z

(2.29)

6To go from position to momentum space and vice versa, we use the convention ∂m → ikm and

km → −i∂m. We shall do calculations mostly in the momentum space but express the final result in

the position space using this rule.
7We define z = x+ iy and z̄ = x− iy with x, y ∈ R.
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Now, for the left moving fields, the SUSY momenta and the supercovariant derivatives are

given by

Πm
L = ∂Xm +

1

2
γmαβθ

α
L∂θ

β
L , DL

α =
∂

∂θαL
+ γmαβθ

β
L∂m (2.30)

Using these, we obtain

∂Rf = 2Πm
L ∂mf + ∂θαLD

L
αf (2.31)

If we had worked with the right moving fields, instead of the above equation, we would

have obtained

∂Rf = 2Πm
R∂mf + ∂̄θαRD

R
α f (2.32)

where, Πm
R and DR

α are given by definitions similar to (2.30) but with θαL and ∂ replaced

by θαR and ∂̄ respectively.

Since we are on the real axis, we can replace the left moving variables of (2.31) or the

right moving variables of (2.32) in terms of fields defined on the whole complex plane using

the doubling trick. Doing this, we obtain

∂Rf = 2Πm∂mf + ∂θαDαf (2.33)

where Πm and Dα are given in (2.12) and (2.15) respectively.

We shall make use of the identity (2.33) while computing the right hand side of the

BRST equation QU = ∂RV . Moreover, throughout the draft, the world-sheet derivatives ∂

will denote the holomorphic derivative. In the places where it is derivative along the real

axis (e.g., the right hand side of QU = ∂RV ), it can be easily converted to the holomorphic

derivative using the identity (2.27).

3 General strategy and the main result

The integrated massive vertex U is constructed following a series of steps which can be

summarized quite succinctly. In this section, we give the general strategy as a series of

steps while the subsequent section will provide the details of these steps. First let us state

our goal clearly. All vertex operators (integrated or unintegrated) are schematically of the

form ÔA, where Ô is a worldsheet operator of appropriate conformal weight and ghost

number constructed out of (Πm, dα, ∂θ
α, Nmn, J, λα) and their worldsheet derivatives and

A is a superfield whose tensor-spinor structure is such that ÔA is Lorentz invariant. As

mentioned in footnote 1, the operators Ô will be referred as basis elements. We know the

expression of the unintegrated vertex (2.20) in terms of the superfields which describe the

massive supermultiplet (i.e. any one of Ψsα, Bmnp or Gmn). Our goal is to find U in terms

of the same superfields describing the massive multiplet such that it satisfies QU = ∂RV .

– 8 –
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The steps for the construction of the first massive vertex operator U are as follows:

• Step 1. Write all possible worldsheet operators with conformal weight 2 and ghost

number zero using Πm, dα, ∂θ
α, Nmn, J, λα, noting that worldsheet derivative (de-

noted by ∂) can increase the weight of any operator on worldsheet by 1. Contract

each of these operators by an arbitrary superfield with appropriate index structure to

obtain a Lorentz invariant combination. The most general U is the sum of all these

possible terms.

• Step 2. Compute QU using the OPEs given in (2.14). Also compute the worldsheet

derivative ∂RV of the unintegrated vertex operator.

• Step 3. The pure spinor constraint (2.9) and the OPEs (2.14) imply several non

trivial identities relating a specific subset of the basis operators of a given conformal

weight and ghost number. List all such identities and express them in the form I = 0.

• Step 4. To take into account the constraint identities, introduce Lagrange multipliers

and set up the equation QU − ∂RV − IK = 0 (where K denotes the Lagrange

multiplier). The inclusion of I ensures that all operator basis constructed in step

1 now can be treated as linearly independent. Instead of introducing the Lagrange

multipliers, one can also directly eliminate some basis operators in favor of others.

• Step 5. Express each of the arbitrary superfields in U as a generic linear combination

of Ψmα, Bmnp and Gmn and their space time derivatives. The correct number of terms

in each ansatz can be determined by using the representation theory of SO(9) which

is the little group for the massive states in 10 dimensions. The number of times

Ψmα, Bmnp and Gmn will appear in a given ansatz is same as the number of 128, 84

and 44 representations of SO(9) respectively in the superfield. This can be figured

out by analyzing the index structure of the superfield in the rest frame.

• Step 6. Substitute the ansatz of step 5 in the equations obtained in step 4. These

lead to a set of linear algebraic equations for the unknown co-efficients appearing in

the ansatz.

• Step 7. Solve these linear equations. Plugging the solutions back allows us to express

U completely in terms of the superfields that describe the massive supermultiplet.

Following this procedure, the final form of the first massive integrated vertex operator is

obtained to be

U = : ΠmΠnFmn : + : ΠmdαF
α

m : + : Πm∂θαGmα : + : ΠmNpqFmpq :

+ : dαdβK
αβ : + : dα∂θ

βFα
β : + : dαN

mnGα
mn : + : ∂θα∂θβHαβ :

+ : ∂θαNmnHmnα : + : NmnNpqGmnpq : (3.1)
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where, the superfields appearing in (3.1) are given in position space by

Fmn = −
18

α′
Gmn , F α

m =
288

α′
(γr)αβ∂rΨmβ , Gmα = −

432

α′
Ψmα

Fmpq =
12

(α′)2
Bmpq −

36

α′
∂[pGq]m , Kαβ = −

1

(α′)2
γαβmnpB

mnp

Fα
β = −

4

α′
(γmnpq)α β∂mBnpq , Gα

mn =
48

(α′)2
γασ[mΨn]σ +

192

α′
γασr ∂r∂[mΨn]σ

Hαβ =
2

α′
γmnp
αβ Bmnp , Hmnα = −

576

α′
∂[mΨn]α −

144

α′
∂q(γq[m) σ

α Ψn]σ

Gmnpq =
4

(α′)2
∂[mBn]pq +

4

(α′)2
∂[pBq]mn −

12

α′
∂[p∂[mGn]q] (3.2)

It can be explicitly verified that the integrated vertex operator constructed here is a primary

operator with respect to the stress energy tensor of the theory.8 The 3rd and the 4th order

poles of the OPE between the total stress tensor T and the vertex operator U given in (3.1)

vanish identically for the solution given in (3.2) on using the conditions (2.26). The full

computation, on using the expression of the matter stress tensor given in (2.17) and the

OPE between Tg and Nmn given in (2.18), gives

T (z)U(w) =
2U(w)

(z − w)2
+

∂U(w)

z − w
+ · · · (3.3)

which confirms that the integrated vertex operator U is a world-sheet primary operator of

conformal weight 2 with respect to the stress energy tensor.

4 Details of the derivation

In this section, we give the details of the procedure outlined in the previous section. To

construct the integrated vertex operator for the massive states, we start by noting that the

relation between the integrated and unintegrated vertex operator is given by

QU(z) = ∂RV (z) =⇒
1

2πi

∮

z

dw λα(w)dα(w)U(z) = ∂RV (z) (4.1)

We shall derive the integrated vertex by first writing down the most general form of the

integrated vertex in terms of arbitrary superfields and then use the above equation to

determine these superfields.

4.1 Ingredients of equation of motion

As mentioned earlier, the integrated vertex operator describing the physical states at mass

level n, i.e., m2 = n
α′ is constructed out of objects with ghost number 0 and conformal

dimension n + 1. These Lorentz and SUSY invariant objects are constructed using the

pure spinor variables Πm, ∂θα, dα, λ
α, J and Nmn. Moreover, as argued in appendix A.1,

we can choose the integrated vertex to be independnet of the λ̄λ factors. Consequently,

8We thank Nathan Berkovits for raising this issue.
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the most general integrated vertex operator at first massive level (n = 1) of the open string

can be written as9

U =: ∂2θαCα : + : ∂ΠmCm : + : ∂dαE
α : + : (∂J)C : + : ∂NmnCmn :

+ : ΠmΠnFmn : + : ΠmdαF
α

m : + : ΠmNpqFmpq : + : ΠmJFm : + : Πm∂θαGmα :

+ : dαdβK
αβ : + : dαN

mnGα
mn : + : dαJF

α : + : dα∂θ
βFα

β :

+ : NmnNpqGmnpq : + : NmnJPmn : + : Nmn∂θαHmnα :

+ : JJH : + : J∂θαHα : + : ∂θα∂θβHαβ : (4.2)

The terms in the first line involve derivatives of fields to produce objects of conformal

weight 2. The terms in the last 4 lines involve products of fields with conformal weights 1

to produce objects of conformal weight 2. Note that the superfields contain the expansion

in θα. Hence, there are no explicit θα dependent terms in the above expression.

To set up the equation of motion (4.1), we now need to compute QU . Before stating the

result, we note that the superfields appearing in (4.2) must be expressible in terms of the

basic superfields Bmnp, Gmn and Ψmα. Moreover, we shall argue below that the superfields

whose theta independent components can’t contain the physical fields bmnp, gmn and ψmα

must be zero. These superfields are Cα, Cm, Eα, C, Cmn, Fm, Fα, Pmn, H and Hα. Keeping

this in mind, the action of the BRST operator Q on the 10 non zero terms of (4.2) can be

computed to be10

1. ΠmΠnFmn

Q (: ΠmΠnFmn :) =
α′

2

[

: ΠmΠnλαDαFmn : + : Πm(γnαβ)∂θ
βλα

(

Fmn + Fnm

)

:

]

2. ΠmdαF
α

m

Q
(

: ΠmdβF
β

m :
)

= −
α′

2

[

: Πmdβλ
αDαF

β
m : + : dβ(γ

m
ασ)∂θ

σλαF β
m :

+ : Πm(γnαβ)Πnλ
αF β

m :
]

−
1

2

(

α′

2

)2

∂2λαγmασF
σ

m

+
(α′)2

2
: Πm(γnαβ)∂λ

α∂nF
β

m :

9Inside a normal ordering, the order of the operators matters if they have non trivial OPE between

them (see e.g., chapter 6 of [24] ). Hence, for comparing various expressions (e.g., l.h.s. and r.h.s. of

QU = ∂RV ), we need to have the same ordering of the world-sheet operators inside normal ordering.

However, during the intermediate stages of the calculation, the operators may not occur in the same order

and we need to bring them in a given fixed order. We shall use the following convention for the ordering

of the world-sheet operators from left to right if more than one of them appear inside normal ordering :

Πm, dα, ∂θ
α, Nmn, J, λα. If the operators in some terms are not in this order, we shall bring them in this

order using OPEs. An example of this is given in equation (4.7).
10These computations were also checked using the Mathematica package OPEDefs [25].
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3. ΠmNpqFmpq

Q(: ΠmNpqFmpq :) =
α′

2

[

: ΠmNpqλαDαFmpq : + : ∂θσNpq(γmασ)λ
αFmpq :

]

−
α′

4
:Πmdα(γ

pq)αβλ
βFmpq :−

1

2

(

α′

2

)2

: Πm∂λβ(γpq)αβDαFmpq :

−
1

2

(

α′

2

)2
[

∂2θσλβγmασ(γ
pq)αβFmpq+∂θσ∂λβγmασ(γ

pq)αβFmpq

]

4. Πm∂θβGmβ

Q
(

: Πm∂θβGmβ :
)

= −
α′

2
: Πm∂θβλαDαGmβ : +

α′

2
: ∂θσ∂θβλαγmασGmβ : +

α′

2
: Πm∂λβGmβ :

5. dαdβK
αβ

Q
(

: dαdβK
αβ :

)

=
α′

2
: dσdβλ

αDαK
σβ :−

α′

2
:Πmdβ(x)λ

αγmασ
[

Kσβ(z)−Kβσ
]

:

+
α′2

2
: dβ∂λ

αγmασ∂m
[

Kσβ−Kβσ
]

: +

(

α′

2

)2

∂θδ∂λαγmβδγ
m
ασK

σβ

+

(

α′

2

)2

: γnσρ∂
2θρ(x)λα(z)γnαβK

σβ

6. dβN
mnGβ

mn

Q
(

: dβN
mnGβ

mn :
)

=
α′

2

[

− : dβN
mnλαDαG

β
mn : − : ΠpNmnλαγpαβG

β
mn : +α′ : Nmn∂λαγpαβ∂

pGβ
mn :

+
α′

4
(γpγ

mn)βσ

(

: ∂ΠpλσGβ
mn+ : Πp∂λσGβ

mn : −
α′

2
: ∂2λσ∂pGβ

mn :
)

+
(γmn)ασ

2

(

: dβdαλ
σGβ

mn : (z) +
α′

2
: dβ∂λ

σDαG
β
mn :

)

]

(4.3)

7. dβ∂θ
δF

β
δ

Q
(

: dβ∂θ
δF β

δ :
)

=
α′

2

[

: dβ∂θ
δλαDαF

β
δ : − : dβ∂λ

αF β
α :

]

−
α′

2
: Πm∂θδλαγmαβF

β
δ :

+
(α′)2

2
: ∂θδ∂λαγmαβ∂mF β

δ :

– 12 –
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8. NmnNpqGmnpq

Q(:NmnNpqGmnpq :)

=

(

α′

4

)2[ 8

α′
:NmnNpqλαDαGmnpq :−

4

α′
: dαN

pqλβ(γmn)αβGmnpq :

−2 :Npq∂λβ(γmn)αβDαGmnpq : +(γmnγpq)αβ

(

: ∂dαλ
βGmnpq : + : dα∂λ

βGmnpq :
)

−
4

α′
: dαN

mnλβ(γpq)αβGmnpq :−2 :Nmn∂λβ(γpq)αβDαGmnpq :

+
α′

4

(

∂2λβDα(γ
mnγpq)αβGmnpq

)

]

(4.4)

9. Nmn∂θβHmnβ

Q
(

: ∂θβNmnHmnβ :
)

=
α′

2

[

− : ∂θβNmnλαDαHmnβ : + : Nmn∂λβHmnβ : −
α′

8
: ∂2λα(γmn)βαHmnβ :

−
1

2
: dα∂θ

βλσ(γmn)ασHmnβ : +
α′

4
: ∂θβ∂λσ(γmn)ασDαHmnβ :

]

(z) (4.5)

10. ∂θβ∂θδHβδ

Q
(

: ∂θβ∂θδHβδ :
)

=
α′

2

[

: ∂θβ∂θδλαDαHβδ : − : ∂θβ∂λδ
(

Hβδ −Hδβ

)

:
]

The BRST equation of motion also involves the world-sheet derivative of the uninte-

grated vertex operator, namely, ∂RV . Making use of the equation (2.20) and the operator

identity (2.33), we obtain

∂RV =: ∂θβ∂λαBαβ : + : Πm∂λαHmα : + : ∂2θαλβ
(

Bβα + α′γmσα∂mCσ
β

)

:

+ : ∂θβ∂θδλαDδBαβ : + : Πm∂θβλα
(

2∂mBαβ +DβHmα

)

: + : ∂dβλ
αCβ

α :

+ : dβ∂λ
αCβ

α : + : dβ∂θ
σλαDσC

β
α : + : 2Πmdβλ

α∂mCβ
α : + : ∂ΠmλαHmα :

+ : 2ΠmΠnλα∂nHmα : + : ∂NmnλαFαmn : + : Nmn∂λαFαmn :

+ : ∂θβNmnλαDβFαmn : + : 2ΠpNmnλα∂p Fαmn : (4.6)

where, we have used

: 2dβΠ
mλα∂mCβ

α : =: 2Πmdβλ
α∂mCβ

α : +α′ : γmβσ∂
2θσλα∂mCβ

α : (4.7)

We now need to equate QU and ∂RV . A convenient way to do this is to compare the

same basis elements in both sides. For the conformal weight 2 and ghost number 1 pure
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spinor objects (which appear in QU and ∂RV ), naively, we have following 26 basis elements

ΠmΠnλα , Πmdαλ
β , Πm∂θβλγ , ΠmJλα , ΠmNnpλα , ∂Πmλα , Πm∂λα

dαdβλ
γ , dα∂θ

βλγ , dαJλ
α , dαN

mnλα , ∂dαλ
β , dα∂λ

β

∂θα∂θβλγ , ∂θαJλβ , ∂θαNmnλα , ∂2θαλβ , ∂θα∂λβ

NmnNpqλα , NmnJλα , ∂Nmnλα , Nmn∂λα

JJλα , ∂Jλα , J∂λα

∂2λα (4.8)

As mentioned earlier, all of these basis elements are not independent. There are non

trivial relations among some of these bases. We turn to these constraint relations between

the basis elements in the next subsection.

4.2 Constraint identities

As mentioned in section 2, due to pure spinor constraint, the Lorentz current Nmn and the

ghost current J satisfy the identity [23]

: Nmnλα : (z)(γm)αβ −
1

2
: Jλα : (z)(γn)αβ − α′γnαβ∂λ

α(z) = 0 (4.9)

This constraint is relevant if one is interested in the quantities involving conformal weight 1

and ghost number 1. However, in the expressions for QU and ∂RV , we encounter quantities

with conformal weight 2 and ghost number 1. For this case, there are several identities

which can be obtained from the above identity (2.11) by taking the OPE of this with the

objects of conformal weight 1 and demanding the normal order terms in the OPE to vanish

(the pole terms of the OPE vanish automatically as expected). Since the derivative and

the normal ordering commute, the world-sheet derivative of (4.9) also gives a constraint.

We list these constraint identities below.

(I1)
n
β ≡: NmnJλα : (γm)αβ −

1

2
: JJλα : (γn)αβ − α′ : J∂λα : γnαβ = 0 (4.10)

(I2)
mnq
β ≡: NmnNpqλα : (γp)αβ −

1

2
: NmnJλα : (γq)αβ − α′ : Nmn∂λα : γqαβ = 0 (4.11)

(I3)
n
σβ ≡: dσN

mnλα : (γm)αβ −
1

2
: dσJλ

α : (γn)αβ − α′ : dσ∂λ
α : γnαβ = 0 (4.12)

(I4)
pn
β ≡: ΠpNmnλα : (γm)αβ −

1

2
: ΠpJλα : (γn)αβ − α′ : Πp∂λα : γnαβ = 0 (4.13)

(I5)
σn
β ≡: ∂θσNmnλα : (γm)αβ −

1

2
: ∂θσJλα : (γn)αβ − α′ : ∂θσ∂λα : γnαβ = 0 (4.14)

The above 5 identities follow from taking the OPE of (4.9) with the object of conformal

weight one, namely J,Nmn, dσ,Π
p and ∂θσ respectively. The identity which can be obtained

by taking the derivative of (4.9) is given by

(I6)
n
β ≡: ∂Nmnλα : (γm)αβ+ : Nmn∂λα : (γm)αβ −

1

2
: ∂Jλα : (γn)αβ −

1

2
: J∂λα : (γn)αβ

− α′γnαβ∂
2λα = 0 (4.15)
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Apart from these, there are two more constraint identities which follow from the OPEs

given in section 2. The OPE of dα with dβ implies

: dαdβ : + : dβdα : +
α′

2
∂Πt(γt)αβ = 0 (4.16)

Similarly, the OPE of Nmn with Npq implies

: NmnNpq : − : NpqNmn := −
α′

2

[

ηnp∂Nmq − ηnq∂Nmp − ηmp∂Nnq + ηmq∂Nnp
]

(4.17)

One way to think about these two identities is to note that we are working with a given

ordering of the pure spinor variables inside the normal ordering. However, for : dαdβ : and

: NmnNpq :, there is no preferred ordering. The above two identities (4.16) and (4.17) are

a reflection of this fact.11

For later purpose, we multiply (4.16) with 5-form γαβmnpqr to obtain

γαβmnpqr

(

: dαdβ : + : dβdα : +
α′

2
∂Πt(γt)αβ

)

= 0 =⇒ γαβmnpqr : dαdβ := 0 (4.18)

where, we have used the fact that the trace of product of 5-form and 1-form is zero and

the 5-form is symmetric in its spinor indices.

For solving the equations of motion, we shall need to take into account all of these

constraint relations between the pure spinor variables.

4.3 Setting up the equations

We shall now equate QU and ∂RV and solve the resulting equations of motion. As men-

tioned earlier, a convenient way to do this is to equate the terms with the same basis

elements taking into account the constraint identities given above.

To take into account the constraint identities, we have two options - eliminate some

basis in terms of others or introduce Lagrange multipliers. We shall make use of both of

these options. We shall use the elimination method for taking care of (4.16) and (4.17)

constraints. More specifically, we shall eliminate the basis involving ∂Πm in favour of the

basis involving dαdβ and similarly we shall eliminate the anti-symmetric part of the basis

involving NmnNpq (in simultaneous m ↔ p and n ↔ q exchange) in the favor of basis

involving ∂Nmn. On the other hand, we shall introduce Lagrange multipliers for the six

constraints (4.10)–(4.15) which follow from the pure spinor constraint and involve the pure

spinor ghost. This means that we add a very specific zero to QU = ∂RV equation so that

we have

QU = ∂RV +
6

∑

a=1

IaKa (4.19)

11Note that there are OPE between Πm and Πn as well as between J and J . However, no pure spinor

fields appear in these OPE and hence they do not lead to any non trivial constraint between basis elements.
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The IaKa involve contraction of the six identities (4.10)–(4.15) with appropriate Lagrange

multiplier superfields. We denote these arbitrary superfields by Ki (i = 1, · · · 6). Thus,

6
∑

a=1

IaKa ≡ (I1)
n
β(K1)

β
n + (I2)

mnq
β (K2)

β
mnq + (I3)

n
σβ(K3)

σβ
n + (I4)

pn
β (K4)

β
pn

+ (I5)
σn
β (K5)

β
σn + (I6)

n
β(K6)

β
n (4.20)

The Lagrange multiplier superfields Ki will also be determined in terms of the basic su-

perfields Bmnp, Gmn and Ψmα as we shall see.

We can now write down the equations of motion. Using equations (4.20), (4.10)–(4.15)

and the expressions of QU and ∂RV , we obtain the following equations after comparing

the same basis elements in both sides of (4.19)

1. ΠmΠnλα

α′

2

[

DαFmn − γnαβF
β

m

]

= 2∂nHmα

2. Πm∂θβλα

α′

2

[

γnαβ(Fmn + Fnm)−DαGmβ−γmαδF
δ
β

]

= 2∂mBαβ +DβHmα

3. dα∂θ
βλσ

α′

2

[

−γmσβF
α

m +DσF
α
β −

1

2
(γmn)ασHmnβ

]

= DβC
α
σ

4. Πmdβλ
α

α′

2

[

−DαF
β

m −
1

2
(γpq)βαFmpq − γmασ

(

Kσβ −Kβσ
)

]

= 2∂mCβ
α

5. ∂θα∂θβλσ

α′

2

[

γmσ[αGmβ] +DσHαβ

]

= D[βB|σ|α]

6. ∂Πmλα

(α′)2

8
(γmγpq)βαG

β
pq = Hmα

7. dαdβλ
σ

α′

2

[

DσK
αβ +

1

2
(γmn)βσG

α
mn

]

= 0
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8. ∂2θβλα

α′

2

[

−
α′

4
γmβσ(γ

pq)σαFmpq +
α′

2
γmδβγmασK

δσ

]

= Bαβ + α′γmσβ∂mCσ
α

9. ΠmNpqλα

α′

2

[

DαFmpq − γmαβG
β
pq

]

= 2∂mFαpq + (γ[p)αβ(K4)
β

|m|q]

10. ΠmJλα

0 = −
1

2
γqαβ(K4)

β
mq

11. Πm∂λα

α′

2

[

α′γnαβ∂nF
β

m −
α′

4
(γpq)βαDβFmpq +Gmα +

α′

4
(γmγpq)βαG

β
pq

]

= Hmα − α′γqαβ(K4)
β
mq

12. ∂θαNmnλβ

α′

2

[

γpαβFpmn −DβHmnα

]

= DαFβmn + (γ[m)βσ(K5)
σ
αn]

13. ∂θαJλβ

0 = −
1

2
γnβσ(K5)

σ
αn

14. ∂θα∂λβ

α′

2

[

−
α′

4
γmασ(γ

pq)σβFmpq+
α′

2
γmδαγmβσK

σδ+α′γmβσ∂mF σ
α+

α′

4
(γmn)σβDσHmnα−2Hαβ

]

=Bβα−α′γnβσ(K5)
σ
αn

15. ∂2λα

α′

2

[

−
α′

4
γmαβF

β
m −

(α′)2

8
(γmγpq)βα∂

mGβ
pq+

α′2

32
(γmnγpq)βαDβGmnpq−

α′

8
(γmn)βαHmnβ

]

=−α′γnαβ(K6)
β
n

16. ∂Jλα

0 = −
1

2
γnαβ(K6)

β
n

17. J∂λα

0 = −α′γnαβ(K1)
β
n −

1

2
γnαβ(K6)

β
n

– 17 –



J
H
E
P
1
0
(
2
0
1
8
)
1
4
7

18. JJλα

0 = −
1

2
γnαβ(K1)

β
n

19. ∂dαλ
β

(α′)2

16
(γmnγpq)αβGmnpq = Cα

β

20. dαN
mnλβ

α′

2

[

−DβG
α
mn −

1

2
(γpq)αβ

(

Gmnpq +Gpqmn

)

]

= (γ[m)βσ(K3)
σα
n]

21. dαJλ
β

0 = −
1

2
γnβσ(K3)

σα
n

22. dα∂λ
β

α′

2

[

α′γnβσ(∂nK
σα − ∂nK

ασ) +
α′

4
(γmn)σβDσG

α
mn − Fα

β +
α′

8
(γmnγpq)αβGmnpq

]

= Cα
β − α′γnβσ(K3)

σα
n

23. Nmn∂λα

α′

2

[

α′γpαβ∂
pGβ

mn −
α′

4
(γpq)βαDβ

(

Gmnpq +Gpqmn

)

+Hmnα

]

= Fαmn − α′γqαβ(K2)
β
mnq + (γ[m)αβ(K6)

β

n]

24. JNmnλα

0 = (γ[m)αβ(K1)
β

n] −
1

2
γqαβ(K2)

β
mnq

25. ∂Nmnλα

0 = Fαmn + (γ[m)αβ(K6)
β

n]

26. NmnNpqλα

α′

2

[

DαGmnpq

]

= (γ[p)αβ(K2)
β

|mn|q]

We have not yet taken into account the constraints imposed by (4.16) and (4.17) on the

basis elements. We do this now and first consider (4.16) which will relate 6th and the

7th equations of the above 26 equations. Eliminating ∂Πm in 6th equation in favor of
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dαdβ using (4.16) and combining it with the 7th equation gives following equation for the

coefficient of dαdβλ
σ

α′

2

[

DσK
αβ −

1

2
(γmn)ασG

β
mn −

36

(α′)2
γαβm Ψm

σ

]

= 0 (4.21)

Next, we consider (4.17) which relates the basis involving ∂Nmn with the anti symmetric

part of the basis involving NmnNpq. This will relate 25th and the 26th equations. We first

seperate the symmetric and the anti symmetric parts of NmnNpq of 26th equation and

then combine the anti symmetric part with 25th equation using (4.17).

The anti symmetric part of QU − ∂RV −
∑

i Ii side of the 26th equation is given by

1

2
:
(

NmnNpq −NpqNmn
)

λα

[

α′

2
DαGmnpq − (γp)αβ(K2)

β
mnq

]

:

= −
α′

2
∂Nmnλα

[

α′ηpqDαGmpqn + (γp)αβ(K2)
β
pmn − ηpq(γm)αβ(K2)

β
npq

]

where, we have used equation (4.17) in going from the first to second line.

Combining this with the 25th equation and demanding the coefficient of ∂Nmnλα to

vanish gives the following equation

α′

2

[

−α′ηpqDαG[m|pq|n]−(γp)αβ(K2)
β

p[mn]+ηpq(γ[m)αβ(K2)
β

n]pq

]

−Fαmn−(γ[m)αβ(K6)
β

n]=0

(4.22)

On the other hand, the symmetric part of QU − ∂RV −
∑

i Ii side of the 26th equation is

given by

1

2
:
(

NmnNpq +NpqNmn
)

λα

[

α′

2
DαGmnpq − (γp)αβ(K2)

β
mnq

]

:

=
1

2
: NmnNpqλα

[

α′

2

(

DαGmnpq +DαGpqmn

)

−(γp)αβ(K2)
β
mnq − (γm)αβ(K2)

β
pqn

]

:

Demanding the coefficient of NmnNpqλα to vanish gives the following equation

α′

2

(

DαGmnpq +DαGpqmn

)

−(γ[p)αβ(K2)
β

|mn|q] − (γ[m)αβ(K2)
β

|pq|n] = 0 (4.23)

Our goal now is to find the superfields (and Lagrange multipliers) which satisfy the 26

equations listed earlier (except 5, 6, 25 and 26) and (4.21), (4.22) and (4.23). If our

superfields satisfy these equations, then they will automatically satisfy the BRST equation

of motion QU = ∂RV .

4.4 The ansatz for various superfields

The equations of motion arising from QU = ∂RV , in general, are very complicated due to

the presence of gamma matrices and the super covariant derivatives. A direct approach

based on comparing the different theta components of the superfields soon becomes messy

and intractable. Due to this reason, we shall follow an alternative approach in which we
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directly propose an ansatz for the superfields and verify that they indeed satisfy the equa-

tions given in the previous section. These ansatz follow from the requirement of Lorentz

invariance, equations of motion given in (2.23)–(2.26) and demanding that the superfields

appearing in the integrated vertex should be expressible in terms of the 3 basic superfields

Bmnp, Gmn and Ψmα. This allows us to work with the full covariant superfields instead

of working with their theta components as required by the presence of super covariant

derivatives. More details about how to arrive at these ansatz in given in appendix A.

Our proposed ansatz for expressing various superfields appearing in the integrated

vertex in terms of the 3 basic superfields Bmnp, Gmn and Ψmα and a set of unknown

constant co-efficients are as follows

Cα = Cm = Eα = C = Cmn = Fm = Fα = Pmn = H = Hα = 0

Fmn = f1Gmn , Gmα = g1Ψmα

Kαβ = a γαβmnpB
mnp , Hαβ = h1γ

mnp
αβ Bmnp

Fα
β = f5(γ

mnpq)α βkmBnpq , Fα
m = f2k

r(γr)
αβΨmβ

Fmpq = f3Gm[pkq] + f4Bmpq , Gβ
pq = g2γ

βσ

[p Ψq]σ + g3k
rγβσr k[pΨq]σ

Hmnα = h2 k[mΨn]α + h3k
q(γq[m) σ

α Ψn]σ

Gmnpq = g4k[mBn]pq + g5k[pBq]mn + g6k[mGn][pkq] + g7 η[m[pGq]n] (4.24)

We also need similar ansatz for the Lagrange multipliers in terms of the basic superfields.

We propose

(K1)
α
m = c1k

r(γr)
αβΨmβ

(K2)
α
mnq = c2k[mγαβ

n] Ψqβ + c3kqγ
αβ

[mΨn]β + c4γ
αβ
q k[mΨn]β + c5k

rγαβrmnΨqβ + c6k
rγαβ

rq[mΨn]β

+ c7k
rkqγ

αβ
r k[mΨn]β + c8k

rγαβr ηq[mΨn]β

(K3)
αβ
m = c9Gmn(γ

n)αβ + c10kmBstu(γ
stu)αβ + c11ksBtum(γstu)αβ + c12ksBtuv(γ

stuv
m )αβ

(K4)
α
mn = c13(γn)

αβΨmβ + c14(γm)αβΨnβ + c15k
rkm(γr)

αβΨnβ + c16k
rkn(γr)

αβΨmβ

(K5)
α
βm = c17kpGqm(γpq)αβ + c18Bmpq(γ

pq)αβ + c19Bpqr(γ
pqr

m )αβ + c20kmkpBqrs(γ
pqrs)αβ

(K6)
α
m = c21k

r(γr)
αβΨmβ (4.25)

Our job has now reduced to finding the unknown coefficients appearing in above ansatz.

If we put these ansatz for the superfields in the equation of motion given above, we shall

obtain a system of linear algebraic equations for the unknown coefficients which are much

easier to solve. However, before doing this, we shall now see that there are some restriction

on some of the coefficients which follow from the constraint identities given earlier and also

directly from pure spinor condition.

We start by noting that the superfieldGmnpq appears in the expression of the integrated

vertex operator as NmnNpqGmnpq. We want to find the consequence of the identity (4.17)

on Gmnpq. For this, we consider the quantity (NmnNpq − NpqNmn)Gmnpq. Using the

identity (4.17) and the ansatz for Gmnpq given in (4.24), we find that the right hand side
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of the identity (4.17) vanishes identically after contraction with Gmnpq and hence

: (NmnNpq −NpqNmn)Gmnpq : = 0 =⇒ : NmnNpq(Gmnpq −Gpqmn) : = 0 (4.26)

This shows that Gmnpq is symmetric under the exchange of simultaneous m ↔ p and n ↔ q

indices. Now, the last two terms in the expression of Gmnpq are already consistent with

this property. However, this is not the case with the first two terms for which the tensor

structures multiplying the coefficients g4 and g5 get exchanged. Thus, for Gmnpq to be

symmetric under the exchange of m ↔ p and n ↔ q indices, we must have

g4 = g5 (4.27)

Next, we show that the term involving g7 in the Gmnpq superfield vanishes identically.

For this, we first note that the term involving g7 appears in the integrated vertex operator as

g7N
mnNpqηmpGqn = −g7N

mnNnqGmq (4.28)

Using the definition of Nmn, we obtain classically

NmnNnqGmq =
1

4
wαwσ(γ

mn)αβ(γ
nq)σρλ

βλρGmq

The right hand side vanishes after using the fierz relation (which follows from the pure

spinor condition)

λβλρ =
1

32× 5!
(λγstuvwλ)γ

βρ
stuvw , (4.29)

the identities involving the product of gamma matrices and the symmetry and tracelessness

properties of Gmq. We shall now show that this holds true even at the quantum level. The

normal ordering piece which arises at quantum level is given by the right hand side of the

identity (4.17) contracted with ηnp. So that the quantum version of the classical equation

NmnNpqηnpGmq = 0 is given by

: NmnNpqηnpGmq := c :
[

ηnp∂Nmq − ηnq∂Nmp − ηmp∂Nnq + ηmq∂Nnp
]

ηnpGmq : (4.30)

where c is an arbitrary coefficient which needs to be determined. But, a little algebra shows

that the right hand side is proportional to : ∂NmqGmq : which is zero identically (since

Nmq is anti symmetric whereas Gmq is symmetric in their indices). This means that the

term involving g7 vanishes identically even at the quantum level. Hence, g7 does not enter

in our equations of motion and thus we can drop this term from the expression of Gmnpq

given in (4.24).

Next, we consider the Lagrange multipliers. The first constraint identity I1 is given by

: NmnJλα(γm)αβ(K1)
β
n : −

1

2
: JJλα(γn)αβ(K1)

β
n : −α′ : J∂λαγnαβ(K1)

β
n := 0 (4.31)

Using the expression of (K1)
β
n given in (4.25), we find that the last two terms in the left

hand side of the above expression vanish identically and the equation reduces to

c1k
r : NmnJλα(γm)αβ(γr)

βσΨnσ := 0 (4.32)
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Again following the similar steps as described after equation (4.28) and noting that J and

Nmn have trivial OPE, we find that this equation is identically satisfied and hence c1 does

not enter into our equations of motion. Thus, we can drop (K1)
β
n from the equations given

in the previous subsection.

Finally, we consider the term involving c9 in the Lagrange multiplier (K3)
αβ
n . After

contracting (I3)
n
αβ with the term involving c9 of (K3)

αβ
n , we find that the last two terms

of the constraint identity I3 vanish identically whereas the first term vanishes by using

the similar argument as given below equation (4.28). Thus, we can also drop the term

involving c9 from our equation of motions.

We are now ready to solve the equations of motion and determine the unknown coef-

ficients appearing in the superfields.

4.5 Solving for unknown coefficients

To determine the unknown coefficients in superfields, we put (4.24) and (4.25) in the

equations of motion given in subsection 4.3 and analyze them one by one. Some of the

equations will determine the unknown coefficients while others will be satisfied identically.

The Mathematica package GAMMA is very helpful for doing these calculations [26].

The first five equations12 of the previous subsection give13

f1 = −
18

α′
, f2 =

288i

α′
, f3 =

36i

α′
, f4 =

12

(α′)2
, f5 = −

4i

α′

h1 =
2

α′
, h2 = −

576i

α′
, h3 = −

144i

α′
, a = −

1

(α′)2

g1 = −
432

α′
(4.33)

Next, we contract the combined 6th and 7th equation (4.21) with γpαβ and γpqrαβ and

use (4.24) to find

g2 =
48

(α′)2
, g3 = −

192

α′
(4.34)

Multiplying with a 5-form γpqrstαβ does not give any new information due to (4.18).

The equation 8 gives

f4 =
4

(α′)2
− 8a

which is identically satisfied by the values of f4 and a given in equation (4.33). Next,

using (4.33), the 9th equation determines

c13 =
24

α′
, c14 = −

24

α′
, c15 = −30 , c16 = 192 (4.35)

12To extract the information from the 3rd equation, it is convenient to contract it with 1-form, 3-form

and 5-forms. This gives rise to 3 different equations which determine f2, f5, h2 and h3. Similarly, g1 and h1

can be determined from the 5th equation by contracting it with the 3-form.
13In general, some of the coefficients appearing in the superfields are determined by more than one

equations. But, their values always agree. This also shows the consistency of the equations with our ansatz.
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The equation 10 gives

10c13 + 2c14 −
1

α′
c16 = 0

Similarly, equation 11 gives

−
if2α

′

2
+−11iα′f3 − 21(α′)2f4 +

g1α
′

2
− 2(α′)2g2 +

α′g3
4

= −72− α′

(

10c13 + 2c14 −
1

α′
c16

)

Both of these equations are identically satisfied by (4.33) and (4.35).

Next, the 12th equation gives

c17 =
63i

16
, c18 =

3

8α′
, c19 = −

9

16α′
, c20 = −

57

16
(4.36)

Using (4.36) and (4.33), the equations resulting from 13th and 14th equations, namely,

c18 + 7c19 −
c20
α′

= 0

and

a(α′)2 −
f4(α

′)2

8
+

if5α

2
+

iα′

32

(

h2
3

− h3

)

− h1α
′ = −1 + α′

(

c18 + 7c19 −
c20
α′

)

are identically satisfied.

Further, the equations 15, 16, 17 and 18 are identically satisfied by the ansatz in (4.24)

and (4.25) without putting any restriction on the coefficients.

Next, the 19th equation on using (4.27) gives

g4 = g5 =
4i

(α′)2
(4.37)

Similarly, on dropping the terms involving g7 and c9 as discussed in the previous subsection

and using equation (4.37), the 20th equation gives

g6 = −
12

α′
, c10 =

i

α′
, c11 = 0 , c12 = −

i

6α′
(4.38)

Next, using equations (4.33), (4.37) and (4.38), the equations resulting from 21st and

22nd equations, namely

c10 − c11 + 6c12 = 0 (4.39)

and,

ia(α′)2 +
iα′

48

(

g2α
′ +

g3
2

)

−
f5α

′

2
+

(α′)2

16
(g4 + g5) =

i

2
− α′

(

c10 − c11 + 6c12

)

are identically satisfied.
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Finally, the 23rd, 24th equations along with (4.22) and (4.23) determine the Lagrange

multiplier superfields (K2)
β
mnp and (K6)

β
m. On dropping the terms involving g7 and the

Lagrange multiplier (K1)
β
n from these equations as discussed in the previous subsection

and using the other coefficients determined so far, these 4 equations give

c2 = −
96i

5α′
, c3 = −

72i

5α′
, c4 =

72i

5α′
, c5 =

8i

5α′

c6 = −
8i

5α′
, c7 = 96i , c8 =

24i

5α′
, c21 = −9i (4.40)

We have now determined all the coefficients appearing in the ansatz for superfields and

the Lagrange multipliers. We have also exhausted all the equations of motion. With these

coefficients, the BRST equation of motion QU = ∂RV is now identically satisfied. This

establishes that our ansatz for various superfields with the values of coefficients determined

in this section indeed gives the correct integrated vertex for the first massive states. The

final expression of the integrated vertex operator U including the numerical coefficients in

the ansatz is given in equations (3.1) and (3.2).

5 Conclusion

We have constructed the integrated form of the first massive vertex operator of open strings

in the pure spinor formalism. Since the vertex operator is solely expressed in terms of the

superfields Bmnp, Gmn and Ψmα, using the theta expansion results given in [22], one can

readily obtain the theta expansion of the integrated vertex in terms of only the physical

fields bmnp, gmn and ψmα. This, therefore, demonstrates that the integrated vertex operator

thus constructed is in terms of the physical degrees of freedom only.

This construction can also be used to obtain the first massive integrated vertex op-

erator in the Heterotic string. For this, one simply need to take the tensor product of

the vertex operator constructed here with the anti-holomorphic integrated vertex of the

bosonic string. However some normalisation factors need to be accounted for while going

to closed superstrings from open superstrings.

Previously, with only the unintegrated form of the massive vertex being known, the

possible scattering amplitudes involving massless and first massive states that could be

explicitly computed, were severely restricted. Knowing the integrated vertex now enables

one to compute any amplitude upto two loop order involving arbitrary number of the

massless and first massive states in the pure spinor formalism.14 The results of some

amplitude calculations involving massive states will be reported in the future [29].

The pure spinor constraints as well as the OPEs imply that the basic worldsheet op-

erators satisfy non-linear constraints. This fact leads to several subtleties. In particular,

it implies non-trivial identities which a subset of all worldsheet operators at a given con-

formal weight and ghost number will satisfy. We showed how to take into account all such

constraints systematically in section 4.2. This line of reasoning was based on its successful

14It is the understanding of the authors that at present there are no unanimous consensus on computing

full multiloop amplitudes in pure spinor formalism. But, also see [10, 27, 28].
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role in determining the unintegrated vertex [23] and is now further strengthened by the

successful construction of the integrated form of the vertex. These evidences therefore

suggest that we have indeed adopted the correct way of incorporating the effect of all such

constraints at higher mass levels.

The general strategy outlined in section 3 and the method given in appendix A.2 for

writing the ansatz do not explicitly or implicitly depend on the conformal weight and

ghost number for which we eventually employed it. It is also to be noted that an identical

strategy can be applied to construct even unintegrated vertex for any massive state, the

only difference being the equation that one now needs to solve is QV = 0. This leads

us to conjecture that our strategy is very general and can be successfully implemented to

determine integrated as well as unintegrated form of vertex operators for all higher massive

states in pure spinor formalism. We plan to explicitly test this in future works [30].
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A Motivating the ansatz

A.1 The polynomial dependance of vertex operators on the pure spinor ghost

field

In writing the most general form of the integrated vertex in equation (4.2), we assumed

that it does not depend upon the λ̄λ factors. In this appendix, we justify this assumption.

First we recall that the integrated vertex U can also be determined by integrating the b

ghost around the unintegrated vertex V , i.e.,

U(z) =

∮

dw

2πi
b(w)V (z) (A.1)

In the pure spinor formalism, the b ghost is a composite operator which involves different

powers of λ̄λ in the denominator [3]. So, naively, one might expect that the integrated

vertex will also involve different powers of λ̄λ in denominator. However, it is possible to

work in a gauge in which the vertex operators are independent of the λ̄λ terms. To see
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this, we recall from the RNS formalism that the massive states also appear in the OPEs of

the massless vertex operators. This allows us, in principle, to construct the massive vertex

operators from the knowledge of the massless vertex operators. More specifically for open

strings, this construction, pointed out to the authors by Nathan Berkovits, goes as follows.

If V1, V2 are unintegrated and U1, U2 are integrated massless vertex operators respectively,

then we have

QU1 = ∂RV1 and QU2 = ∂RV2 (A.2)

We now take the contour integral of U1 around the integrand of U2 and define

U3(z) ≡

∮

dw

2πi
U1(w)U2(z) (A.3)

Acting on this with the BRST operator Q and using (A.2), we obtain

QU3 =

∮

dw

2πi
U1(w)QU2(z) =

∮

dw

2πi
U1(w)∂zV2(z) ≡ ∂zV3 (A.4)

where,

V3(z) ≡

∮

dw

2πi
U1(w)V2(z) (A.5)

and in the first equality in (A.4), we have used the fact that
∮

dw ∂RV1(w) is zero.

Now, if we choose the momentum k1 and k2 of U1 and U2 to satisfy

(k1 + k2)
2 = 2k1 · k2 ≡ (k3)

2 = −m2 = −
n

α′
(A.6)

then, by construction, the V3 and U3 will be unintegrated and integrated massive vertex

operators respectively of open string states at mass level n.

One might ask how do we know that the U3 and V3 as defined in (A.3) and (A.5) do not

vanish. To answer this question, we recall that the OPE of two massless vertex operators

necessarily contain the massive vertex operators (this is necessary for the consistency of

the theory and is well known from the RNS formalism). Now, the integrated vertices U1

and U2 have conformal weight one. Hence, by dimensional analysis, it is easy to see that

the integrand involving the integrated massive vertex operator can only appear at the first

order pole in (A.3) and hence its contour integral can’t vanish. By a similar argument, we

see that V3 as defined in (A.5) can’t vanish.

Since the massless vertices can be chosen to be independent of λ̄λ in denominator [1],

this construction shows that the massive vertices can also be constructed without using

the λ̄λ in the denominator. Moreover, since the massless vertices do not involve JJ and

∂J terms, the above construction also shows why JJ and ∂J terms do not appear in the

massive vertices. In appendix A.2, we give another argument for this based on group theory.
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A.2 General form of the superfields

In this appendix, we give the method for writing down the ansatz (4.24) and (4.25) for the

massive superfields which appear in the vertex operators and Lagrange multipliers. The

same method can be very easily generalized for the construction of any massive vertex

operator in the pure spinor formalism.

We start by arguing that the superfields appearing in the integrated vertex operator

must be expressible in terms of the basic superfields Bmnp, Gmn and Ψmα. This follows

because as shown in [22, 23], the superfields appearing in the full set of superspace equations

of motion can be expressed solely in terms of any of the basic superfields Ψmα, Bmnp or

Gmn. Thus, the vertex operators should be expressible entirely in terms of any of these

basic superfields.15 For the unintegrated vertex operator (2.20), this can be seen using

equations (2.21) and (2.23)–(2.26). From this, it is also clear that if we want to express

the entire vertex operator in terms of only one or two basic superfield, we need to use the

supercovariant derivative. However, if we use all the 3 superfields, then we can avoid the use

of supercovariant derivatives (since the supercovariant derivative of the basic superfields

can be expressed in terms of the basic superfields without supercovariant derivative using

equations (2.23)–(2.26)).

We shall make use of all the 3 basic superfields Bmnp, Gmn and Ψmα. Thus, due to

equations (2.23)–(2.26), the relation between the superfields in integrated vertex operator

and these basic superfields can be expressed without using the super covariant derivative.

Moreover, whatever be the functional form of these superfields, the Lorentz invariance

implies that they can only involve 3 basic superfields, the momentum vector, the space-

time metric ηmn and the gamma matrices. Thus, the functional dependence of all the

superfields in the momentum space is

Superfields in U = f(Bmnp, Gmn,Ψmα, km, ηmn,Gamma Matrices)

Our goal now is to determine these functions. This can be done by making use of the

group representation theory. To see this, we note that the physical degrees of freedom

(encoded in the fields ψmα, bmnp and gmn) should match on both sides at each order in

the theta expansion of the above equation. Moreover, since the right hand side does not

involve supercovariant derivative, it follows that we can equate the coefficients in the theta

expansion of the superfield in the left hand side at a given order with the coefficient at

the same order in the theta expansion of the right hand side.16 Since the right hand side

involve only the basic superfields Ψmα, Bmnp and Gmn, it follows that any given order theta

component of the superfield in the left side is related to the same order theta component

of the basic superfields Ψmα, Bmnp and Gmn. We now focus on the theta independent

component. Using above argument, it follows that the theta independent components

15This is similar to the case of the massless vertices. The massless vertices are also expressed entirely in

terms of the superfields which appear in the N = 1 super Yang Mills equations of motion in 10 dimensions.
16Note that if we have a superspace equation of the form Sα = DαT , then the ℓth order component of

the superfield Sα will be related to (ℓ−1)th and (ℓ+1)th order components of the superfield T . However, if

we have an equation of the form Sα = Rα, then the ℓth order component of Sα will be related to ℓth order

component of Rα.
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of the superfields in the left hand side must be expressible in terms of only the theta

independent components of the basic superfields Bmnp, Gmn and Ψmα, namely bmnp, gmn

and ψmα.
17

Thus, for the theta independent components of the superfields in the integrated vertex,

our problem has reduced to finding the correct physical degrees of freedom and to express

them in terms of bmnp, gmn and ψmα. The covariant expression for the full superfield can

then be obtained by replacing bmnp, gmn and ψmα by Bmnp, Gmn and Ψmα respectively.

The validity of this procedure can be justified by the fact that it gives an operator U

which satisfies the correct BRST equation QU = ∂RV . Once we have an operator U which

satisfies this equation, we are guaranteed that it is the correct integrated vertex irrespective

of how we arrive at it.

Now, the correct degrees of freedom in the theta independent components of the super-

fields can be obtained by looking at their index structure and using the group theory. In the

rest frame, the physical fields bmnp, gmn and ψmα form the 84, 44 and 128 representations

of the little group SO(9). Thus, to determine the correct physical degrees of freedom in the

theta independent components of the superfields, we need to find the number of 84, 44

and 128 representations of SO(9) in their theta independent components in the rest frame.

We shall illustrate this method by some examples now. First, consider the superfield

Cmn in (4.2). Since, it is anti symmetric in its indicesm and n, its only non zero components

in the rest frame can be C0a and Cab. These can only form 9 and 36 representation of SO(9)

and hence can’t contain the physical massive fields. Thus, Cmn must be zero. Similarly,

all the superfields whose theta independent components cannot form the 84, 44 or 128

representations of SO(9), must be zero. Next, we consider the superfield Gβ
mn. Since, it is

also anti symmetric in its vector indices m and n, going to the rest frame, we find that its

non zero components can only be Gβ
0a and Gβ

ab. Our goal is to look for representations of

SO(9) corresponding to the physical states. Now, the index structure of Gβ
0a implies that its

theta independent component forms the product representation 16×9 which contains one

128. Similarly, Gβ
ab contains one 128. This means that the theta independent component

of Gβ
mn should contain two representations of 128 and hence there should be two terms

involving Ψmα in the expansion of Gβ
mn in terms of the basic fields Bmnp, Gmn and Ψmα.

After finding the correct number of terms, the next step is to write down the form of Gβ
mn

so that it has two terms involving Ψmα. Taking into account the on shell conditions (2.26),

we find

Gβ
pq = g2γ

βσ

[p Ψq]σ + g3k
rγβσr k[pΨq]σ (A.7)

where g2 and g3 are some unknown coefficients which need to be determined.

17This is not true for the massless states. One reason for this is that given a differential equation of

the form DαS = Bα (where S and Bα are some superfields encoding the information about the massless

states), one can’t invert this to write an expression for S in terms of some differential operator acting on

Bα since k2 = 0 for the massless states. This is unlike the massive states where we can always invert this

kind of equations.
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