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1 Introduction

The pure spinor formalism is a super-Poincaré covariant formalism [1-3] (for review,
see [4-9]) of superstrings. This feature allows for an efficient way of computing the scatter-
ing amplitudes [3, 10-15] making computations simpler. The equivalence between the pure
spinor and the other superstring formalisms has been verified in many examples [16-18].
As in the Ramond-Neveu-Schwarz (RNS) formalism, the scattering amplitudes in the
pure spinor formalism also involve computing worldsheet correlation functions of uninte-
grated as well as integrated vertex operators. However, unlike the RNS formalism, the
gauge fixed worldsheet action in the pure spinor formalism does not arise from the gauge
fixing of a reparametrization invariant action. Due to this, there is no elementary b ghost
in the pure spinor formalism. This makes the relation between the unintegrated and the
integrated vertex operators in the pure spinor formalism less direct. So, even though the
computation of amplitudes are easier to carry out in pure spinor formalism, the construc-
tion of the vertex operators (integrated as well as unintegrated) are considerably more
involved as compared to the RNS formalism (see e.g., [19, 20]). In this paper, we propose
an ansatz for the integrated vertex and explicitly show that it satisfies the relevant BRST



condition demonstrating that it is the correct integrated vertex operator. We shall also give
the arguments as to how to arrive at the ansatz. This paper gives an explicit construction
of the integrated vertex for the first massive states in open superstrings. The same method
can also be used for the construction of the massive integrated as well as unintegrated
vertex operators in the pure spinor formalism.

Restricting to the open strings for simplicity, the vertex operators in pure spinor for-
malism in ten dimensional flat spacetime are constructed in the super-Poincaré covariant
manner using N = 1 superfields. In particular, to construct the unintegrated vertex oper-
ator V for the states at mass level n, i.e. for m? = -7, one first needs to construct “basis
elements” with ghost number 1 and conformal weight n using the world sheet pure spinor
fields. These basis elements® are then multiplied with an arbitrary 10 dimensional N = 1
superfield. The unintegrated vertex operator is the most general linear combination of such
objects. The superfields appearing in this unintegrated vertex operator are fixed using the
on-shell condition QV = 0, where @ is the BRST operator of the theory. The integrated
vertex operator U can then be determined using the relation QU = 0rV where the subscript
R in the right hand side denotes the fact that the derivative is taken along the real axis.

For the massless states, both the unintegrated as well as the integrated vertex operators
are explicitly known. This allows us to calculate tree as well as loop amplitudes involving
massless states in the pure spinor formalism. In this paper, we shall focus on the first
massive states. The open string spectrum at first massive level comprises of 128 bosonic
and 128 fermionic degrees of freedom. These states form a massive spin 2 supermultiplet of
10 dimensional N' = 1 supersymmetry. The 128 fermionic degrees of freedom are encoded
in a spin 3/2 field ¢, On the other hand, the 128 bosonic degrees of freedom are encoded
in a 3-form field by, carrying 84 degrees of freedom and a symmetric traceless field gy,
carrying 44 degrees of freedom (see, e.g. [21]).

To describe the first massive states in a super-Poincaré covariant manner, we intro-
duce three basic superfields W,,,q, Bynnp and Gy, whose theta independent components are
Ymas bmnp and gy, respectively. The higher theta components of these superfields contain
the same physical fields in a more involved manner [22]. The unintegrated vertex operator
describing these states was constructed in [23] and its theta expansion was done in [22].
The superfields appearing in this vertex operator can be expressed in terms of the basic
superfields Gy, Binnp or ¥ina.

In this paper, our goal will be to construct the integrated form of the vertex operator
for the first massive states. We shall use the defining relation QU = dg V" for this purpose.
As we shall see, the superfields appearing in U can also be expressed in terms of the basic
superfields V.0, Brinp and G,

Rest of the paper is organized as follows. In section 2, we briefly review some of the
elements of the pure spinor formalism and the first massive unintegrated vertex operator
which are used in our analysis. In section 3, we give our general strategy and the main
results of this paper. The equations (3.1) and (3.2) are our main equations which give

"'We shall refer to the products of worldsheet pure spinor variables which appear in the vertex operators,
multiplied by some superfield, as basis elements. So, e.g., 90 \* in equation (2.20) will be referred as basis
element which multiplies the superfield Bg.



the first massive integrated vertex operator in terms of the basic superfields Bynnp, Gmn
and V,,,. In section 4, we give the details of our construction following the strategy
given in section 3. Finally, we conclude with discussion in section 5. While our ansatz
once verified to be a solution does not require any further justification, we summarize the
chain of reasoning in appendix A that led us to our proposed ansatz. Even though the
solution does not depend on how we arrive at this ansatz, the arguments presented in
the appendix A are nonetheless of value since they imply that one can replicate the same
method quite readily for all higher massive states.

2 Review of some pure spinor elements

In this section, we briefly recall some of the results of the minimal pure spinor formalism
and the first massive states which will be needed in our analysis. We shall also describe
some results regarding open strings which will be needed in this paper.

2.1 Some pure spinor results

We start by recalling some results about the open string world-sheet theory in the pure
spinor formalism. We shall follow the conventions used in [22]. The open string world-sheet
CFT in the pure spinor formalism in flat spacetime is described by the action

1 1 = = =
S=— /U . d?z <aXmaXm + pLoee — wkorg + pRoeg — wf}aAaR> (2.1)
where, m =0,1,,--- ,9and o = 1,--- ,16. Further, we use the acronym UHP and LHP

for upper and lower half of the complex plane. The L and R denote the left and right
moving fields respectively on the world-sheet which will be related through the boundary
conditions. All the worldsheet fields X™, pZ, wk, 07 and A} and the corresponding right
moving fields (with script R) are function of both (z, Z) off-shell. However, on making use
of the equations of motion, namely

JOX™(2,2) = 0

90%(2,2) =0,  00%(z,2) =0,  Ipk(z,2)=0,  opl(z,z2)=0  (22)
0N} (z,2) =0, ONg(2z,2) =0, dwk(z,z)=0, owli(z,z) =0,

we find that the fields with subscript L and R become holomorphic and anti-holomorphic
respectively. The X™ fields satisfy the harmonic equation and hence it can be written
as sum of holomorphic and anti-holomorphic fields. This means that 0X™ and 0X™ are
holomorphic and anti-holomorphic respectively. Besides the above equations of motion, we
have to impose appropriate boundary conditions. These boundary conditions for the open
strings are

0X™(2,2) = 0X™(%, 2)
0% (z,2) = 0%(z, 2)
pE(2,2) =pli(z,2), atz=12% (2.3)
AL(2,2) = AR(Z,2)
wh(z,2) = wl(z, 2)



Taking these boundary conditions into account and using the action (2.1), we can derive
various OPEs. The OPE between the various matter sector fields can be worked out to be

OX™ (5, 20X (w, @) = -0
Z, w,w) = 2z —w)?
~ oA 8
Pe(z2)0 (w,m) = T (2.4)
_ _ o 6,°
Pe (2. 2w, w) = 5

It is cumbersome to work with both left and right moving fields and impose the boundary
conditions each time. Fortunately, using the “doubling trick”, we can combine the left and
right moving fields into a single field. The left and right moving fields considered so far
are defined only in the upper half plane with their values agreeing on the real axis. Using
the doubling trick, we construct a field defined in the whole complex plane. Moreover,
this requires only the boundary conditions and not the on-shell conditions following from
the equations of motion. For example, the boundary condition (2.3) allows us to combine
0% (2, 2) and 0%(Z, z) into a single field as

09z 2) 0¢(z,2) for ze UHP 2.5)
2,Z) = .
0%(%,2) for z€ LHP

We can similarly define pq, w, and A in the whole complex plane. Furthermore, all of the
holomorphically factorized quantities such as the vertex operators and the stress tensor
can be defined in a similar manner. The 6 as defined in (2.5) is holomorphic in the whole
complex plane. It is instructive to see this explicitly. For this, we need to show that

00% =0 for z € C. For z € UHP, we have
90%(2,2)|lugp = 00%(2,2) = 0, (2.6)
by virtue of equation of motion for 6¢. On the other hand, for » € LH P, we have
00%(z,2)|Lup = 00%(2,2) = 0 (2.7)

where, we have used the fact that the equation of motion for 6%(Z, z) in (2.2) implies that
it is independent of the first argument. This completes the proof that 6%(z) is indeed a
holomorphic function in the whole complex plane. Identical proofs can also be given for
other fields or their derivatives. Moreover, the OPEs involving 67 p and p® which follow
from (2.4) can be combined into a single OPE as
o 60

Pa(2)0” (w) = T —w (2.8)
From now on, we shall work with the fields defined using the doubling trick. However,
one can always go back to the expressions involving the original fields using equation (2.5)
and similar relations for other fields. The worldsheet fields pq, wq, 0% and A carry the
conformal weights 1, 1,0, 0 respectively. The field A* satisfies the pure spinor constraint

AN =0 (2.9)



The 4™ in above equation are the 16 x 16 gamma matrices. The antisymmetrized product
of these gamma matrices are referred as forms. So, e.g., vfﬁp is called 3-form and so on.

The field A* and wg carry the ghost numbers 1 and —1 respectively. All other world-
sheet fields carry the 0 ghost number. Due to the pure spinor constraint, the worldsheet
field w,, only appears in the following gauge invariant? combinations

1
N — Qwa(/ymn)aﬁ)‘ﬂ , J = wa A\ (210)

All the components of these variables are not independent. This fact is captured by the
following non-trivial constraint between the currents N,,, and J [23]

NN L (2) (Y — 5 2 IA : (2) (7o — 720N (2) = O (2.11)
Two other important supersymmetric invariant combinations of the theory are given by
1 1
doc = P = 570" 0Xom — SValyYmas?0700°
1
=9X™ + 57;”50‘1605 (2.12)
The BRST operator of the theory is given in terms of A% and d,, to be?

Q= fdz A4 (2)da(2) (2.13)

The OPE between various worldsheet operators is given by*

o)) = —5 M) 4o oI () = 5 08 ) +
V() = g DV ) e, V() = - 0"V w) +
7 ()11 (w) = —m+m , N ()N (w) = a((z )) 2 (w) +
a)? o
J(Z)J(w)—(z(_zu)Q—i---- , J(z))\“(w):m)\a(w)+~-
mn Dq _ 3(0/)2 mlq, . pln o p[n arm|q q[ln arm|p
N ()N (w)——m L) _(z—w)<n[N] —n[N}>+--- (2.14)

In the above OPEs, 0,, is the derivative with respect to the spacetime coordinate X™, 9 is
the derivative with respect to the world-sheet coordinate, V' denotes an arbitrary superfield
and D, is the supercovariant derivative given by

Do = 0o + 050" O (2.15)

2Here by gauge invariance, we mean invariance under we — Wa + A" (YmA)a.

3Having holomorphic fields defined in the whole complex plane using doubling trick means that we can
use the closed contour integrals ¢ in the usual manner even for the open string.

“Note the minus sign in front of the single pole in N™™"N?? OPE. There is a typo regarding this sign
n [23]. We thank Nathan Berkovits for confirming this.



This supercovariant derivative satisfies the identity
1
{Daa Dﬁ} = 2(7m)a68m - (Vm)aﬂDaD,B = Eam (2'16)

The matter and the ghost stress energy tensors of the theory are given by

1 2 2
T =—— Myt == :de00% ., Ty = —wa,d\* (2.17)
o (6] [0

The total stress tensor 71" is given by the sum of T}, and Tg.5 The Lorentz current

N™" is a primary operator with respect to the stress energy tensor. This follows due to
the OPE

B - S8 O o

and the fact that the matter and the ghost sector fields do not have any non trivial OPE
between them.

After briefly reviewing the basics, we now turn to the first massive unintegrated vertex
operator [22, 23]. There are 128 fermionic and 128 bosonic degrees of freedom at the first
massive level of the open string spectrum. The fermionic degrees of freedom are contained
in a spin-3/2 field v, whereas the bosonic degrees of freedom are contained in a traceless
symmetric tensor g,,, and a 3-form field b,,,;,. These fields are demanded to satisfy

8m1/}ma =0 ; Vmaﬁwmﬁ =0 ; ambmnp =0 ; nmngmn =0 ; amgmn =0
(2.19)

These constraints ensure that the number of independent components in the fields 1,3,
bmnp and gy are 128,84 and 44 respectively. These fields form a massive spin-2 supermul-
tiplet in 10 dimensions. To describe the system in a supersymmetric invariant manner, we
introduce basic superfields Vo, Bynnp and G, whose theta independent components are
Ymas bmnp and gy, respectively. The higher components of these basic superfields contain
the same physical fields in a more involved manner.

At the first mass level, the unintegrated vertex operator of the open string is given

by [23]
V =1 900° X" Bug : + 1 dgA*C? 4 i TN Hyp : A+ 2 N A Fp - (2.20)

where, the superfields appearing in the above expression are given in terms of the basic
superfields B,y and ¥, to be [23]

3 1
Hq = *(an)aﬁDﬂans = —T72U,, 5 Cmnpq = *a[mBnpq] 5
7 2

1
Fomn = S (78[mHn}a + 0" (Vyim)o” H 5) (2.21)

°It is possible to express the ghost stress tensor Ty in terms of the currents N™" and J (see, e.g., [5]).
However, we shall not need this expression. For our purposes, equation (2.18) is sufficient.



The normal ordering : : is defined as

CAB: () = — ]{ WA w)B(2) (2.22)

C2mi J,w—=z
where, A and B are any two operators and the contour surrounds the point z.

The basic superfields at the first massive level, namely, Bp,np, Vima and Gy, satisfy
the superspace equations® [22]

DaGm =16 8 (7 ¥, )a (2.23)
DaBunp = 12(Ypmn¥p))a — 2406/ 0" 0 (Yt1n V) a (2.24)
1 1 1
Da\I’s = 7-Usm o a1 mBn S mnp af T T4, " prP smnpq)a 2.2

and the constraints

(Vm)aﬁ\ymﬁ =0 ; 8m\1}m6 =0 ; amanp =0 ; 0" Gmn =0 ; nmnGmn =0
(2.26)

2.2 Some results regarding open strings

For the open strings, the vertex operators live on the boundary, i.e., on the real axis in the
complex plane. This means that in the BRST equation QU = 9rV, the derivative in the
right hand side is along the real axis (represented by the subscript R. For comparing the
left and right hand side of this equation, we shall need to express the partial derivative in
the right hand side to derivative with respect to the world-sheet fields X™ and 6“. For
this, we first convert the derivative along the real axis into the holomorphic derivative as

function f along the real axis can be written as

follows. If & denotes the coordinate along the real axis, then the derivative of an arbitrary
of 0z0f 0zof
%= =5 (ama e

(2.27)

Z=Z

7
_(0f | of
o s (a * a)

Now, for the open strings, the left and right moving fields living on the world-sheet are

identified along the real axis as in (2.3). Thus, any function along the real axis (such as the
vertex operator) can be expressed only in terms of either left moving or right moving fields
(or the fields defined using the doubling trick as in (2.5)). Working with the left moving
fields, we can use the chain rule to write
g: of OXm+8f89% g: of aXm+8f89%
dz  0X™ 9z  00¢ 9z’ 0z 0X™ 9z  90% 0z

(2.28)

Using the equation of motion for p%, namely, 50% = 0 and the above equations, we obtain
of oxm of oXm Of 007

oxXm 0z oX™m 0z lz=- 00¢ 0z
af ox™  oOf 00%

oX™m 0z 00¢ 0z

Orf =

=2

(2.29)

5To go from position to momentum space and vice versa, we use the convention 8, — ik, and
km — —i0m. We shall do calculations mostly in the momentum space but express the final result in
the position space using this rule.

"We define z = z + 4y and Z = z — iy with z,y € R.



Now, for the left moving fields, the SUSY momenta and the supercovariant derivatives are

given by
m m 1 m paqnB L 9 m nB
L — aX -+ fq/aﬁQLaQL y Da = e =+ "}’algeLam (230)
2 00¢
Using these, we obtain
Orf = 21T O f + 005 DL f (2.31)

If we had worked with the right moving fields, instead of the above equation, we would
have obtained

Orf = 21RO f + 00%DEf (2.32)

where, II? and D are given by definitions similar to (2.30) but with ¢ and 9 replaced
by 0% and 0 respectively.

Since we are on the real axis, we can replace the left moving variables of (2.31) or the
right moving variables of (2.32) in terms of fields defined on the whole complex plane using
the doubling trick. Doing this, we obtain

O f = 211" f + 0% Dy f (2.33)

where II" and D,, are given in (2.12) and (2.15) respectively.

We shall make use of the identity (2.33) while computing the right hand side of the
BRST equation QU = 9g V. Moreover, throughout the draft, the world-sheet derivatives 9
will denote the holomorphic derivative. In the places where it is derivative along the real
axis (e.g., the right hand side of QU = 0r V), it can be easily converted to the holomorphic
derivative using the identity (2.27).

3 General strategy and the main result

The integrated massive vertex U is constructed following a series of steps which can be
summarized quite succinctly. In this section, we give the general strategy as a series of
steps while the subsequent section will provide the details of these steps. First let us state
our goal clearly. All vertex operators (integrated or unintegrated) are schematically of the
form OA, where O is a worldsheet operator of appropriate conformal weight and ghost
number constructed out of (II"™, d,, 0%, N™" J, A%) and their worldsheet derivatives and
A is a superfield whose tensor-spinor structure is such that OA is Lorentz invariant. As
mentioned in footnote 1, the operators O will be referred as basis elements. We know the
expression of the unintegrated vertex (2.20) in terms of the superfields which describe the
massive supermultiplet (i.e. any one of Wyq, Bppp or Gpyy). Our goal is to find U in terms
of the same superfields describing the massive multiplet such that it satisfies QU = OrV'.



The steps for the construction of the first massive vertex operator U are as follows:

e Step 1. Write all possible worldsheet operators with conformal weight 2 and ghost
number zero using 11", d,, 06% N™" J A\* noting that worldsheet derivative (de-
noted by 0) can increase the weight of any operator on worldsheet by 1. Contract
each of these operators by an arbitrary superfield with appropriate index structure to
obtain a Lorentz invariant combination. The most general U is the sum of all these
possible terms.

e Step 2. Compute QU using the OPEs given in (2.14). Also compute the worldsheet
derivative Og V' of the unintegrated vertex operator.

e Step 3. The pure spinor constraint (2.9) and the OPEs (2.14) imply several non
trivial identities relating a specific subset of the basis operators of a given conformal
weight and ghost number. List all such identities and express them in the form I = 0.

e Step 4. To take into account the constraint identities, introduce Lagrange multipliers
and set up the equation QU — OrV — IK = 0 (where K denotes the Lagrange
multiplier). The inclusion of I ensures that all operator basis constructed in step
1 now can be treated as linearly independent. Instead of introducing the Lagrange
multipliers, one can also directly eliminate some basis operators in favor of others.

e Step 5. Express each of the arbitrary superfields in U as a generic linear combination
of ¥ys Brnp and G, and their space time derivatives. The correct number of terms
in each ansatz can be determined by using the representation theory of SO(9) which
is the little group for the massive states in 10 dimensions. The number of times
Vo, Bimnp and Gy, will appear in a given ansatz is same as the number of 128, 84
and 44 representations of SO(9) respectively in the superfield. This can be figured
out by analyzing the index structure of the superfield in the rest frame.

e Step 6. Substitute the ansatz of step 5 in the equations obtained in step 4. These
lead to a set of linear algebraic equations for the unknown co-efficients appearing in
the ansatz.

e Step 7. Solve these linear equations. Plugging the solutions back allows us to express
U completely in terms of the superfields that describe the massive supermultiplet.

Following this procedure, the final form of the first massive integrated vertex operator is
obtained to be

U= :T"I"Fp,: + :IMd.F,>: + 1IM00Gpe : + I NP, :
+ :dadﬁKo‘ﬁ: + :dQOQﬂF%: + 1 do NG, 0+ :806“8051‘[&/3:
+ 100N Hyppo o + - N NPIG 0 (3.1)



where, the superfields appearing in (3.1) are given in position space by

Fon = —;—%Gmn, Fo = ?w)a%quﬁ, Gma = —%2\1/%

Frpg = (01/2)23qu - %a[qu}m7 K=~ (al’)2 7%%1) e

Fog = —%(vm"p"%aml?npq, G = éiﬂﬁi%p + %vﬁ"@’@[m‘l’n]a

Hop = %’Yglﬁanmnpa Hina = —50%6 O ¥nja — %aq(’m[m)a"‘l’n]o
Gimnpg = (j)Qa[mBnlpq + (Ojf)z%Bqlmn - f;?%a[m%q] (3.2)

It can be explicitly verified that the integrated vertex operator constructed here is a primary
operator with respect to the stress energy tensor of the theory.® The 3rd and the 4th order
poles of the OPE between the total stress tensor 7" and the vertex operator U given in (3.1)
vanish identically for the solution given in (3.2) on using the conditions (2.26). The full
computation, on using the expression of the matter stress tensor given in (2.17) and the
OPE between Ty, and N™" given in (2.18), gives

2U (w oU (w
(), W) ,

T(2)U(w) = (3.3)

(z —w) z—w

which confirms that the integrated vertex operator U is a world-sheet primary operator of
conformal weight 2 with respect to the stress energy tensor.

4 Details of the derivation

In this section, we give the details of the procedure outlined in the previous section. To
construct the integrated vertex operator for the massive states, we start by noting that the
relation between the integrated and unintegrated vertex operator is given by

1
QU (z) = 0rV (2) = o dw \*(w)do(w)U(z) = 0V (2) (4.1)
i J,
We shall derive the integrated vertex by first writing down the most general form of the
integrated vertex in terms of arbitrary superfields and then use the above equation to
determine these superfields.

4.1 Ingredients of equation of motion

As mentioned earlier, the integrated vertex operator describing the physical states at mass
level n, ie., m? = + is constructed out of objects with ghost number 0 and conformal
dimension n + 1. These Lorentz and SUSY invariant objects are constructed using the
pure spinor variables I, 90%, d,, A%, J and N™". Moreover, as argued in appendix A.l,

we can choose the integrated vertex to be independnet of the A\ factors. Consequently,

8We thank Nathan Berkovits for raising this issue.

,10,



the most general integrated vertex operator at first massive level (n = 1) of the open string

can be written as®

U=:0%Cy: +:00"Cyy : + : ddoE* : 4+ : (0J)C : + : IN™Cppy :

M Fryy o + Ao FY o 4 T NPUE g« + I T Fyy o+ T 000G
tdadgK  +  do NG, 4 1 do JFY s+ 0 da00PFOG

NTUNPUIGpg t + N T Pyt + - N 00" Hypp

CJJH :+: JO0%H, : + : 90°00° H,p - (4.2)

+ 4+ o+ o+

The terms in the first line involve derivatives of fields to produce objects of conformal
weight 2. The terms in the last 4 lines involve products of fields with conformal weights 1
to produce objects of conformal weight 2. Note that the superfields contain the expansion
in 0%. Hence, there are no explicit #% dependent terms in the above expression.

To set up the equation of motion (4.1), we now need to compute QU. Before stating the
result, we note that the superfields appearing in (4.2) must be expressible in terms of the
basic superfields By,pnp, Gymn and ¥,,,. Moreover, we shall argue below that the superfields
whose theta independent components can’t contain the physical fields by,pnp, Gmn and ¥4
must be zero. These superfields are Cy, Cy,, EY, C, Coppy Fin, FY, Py, H and H,,. Keeping
this in mind, the action of the BRST operator @) on the 10 non zero terms of (4.2) can be
computed to be!?

1. II"II" Fon

/
Q (: IIMI"Fy, ) = ‘;[ TN Do F =+ TT7(4724)06° A (an+an):}
2. II™dF, *

/
Q (: ™dgF,} :) - —%[: ™dgA* Do F,P : + : dg(7™)00°\F, P -

1 /a"\?
+ I () ILAE, 1 |- 5 (2> PPN F, 0
(of)?

2

+ : Hm(’ygﬁ)a)\aﬁnFmﬂ :

9Inside a normal ordering, the order of the operators matters if they have non trivial OPE between
them (see e.g., chapter 6 of [24] ). Hence, for comparing various expressions (e.g., L.h.s. and r.h.s. of
QU = 0rV), we need to have the same ordering of the world-sheet operators inside normal ordering.
However, during the intermediate stages of the calculation, the operators may not occur in the same order
and we need to bring them in a given fixed order. We shall use the following convention for the ordering
of the world-sheet operators from left to right if more than one of them appear inside normal ordering :
o™, de,00% N™" J, A%, If the operators in some terms are not in this order, we shall bring them in this
order using OPEs. An example of this is given in equation (4.7).

"These computations were also checked using the Mathematica package OPEDefs [25].
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3. TI™ NPIF,,p,
I NPIN Doy Frgg - + £ 087 NPy )X Fongg

' m « 1 a/ ? m «
10 da(’}/pq) B)‘ﬁFmpq : —5 <2> (10 8)\5(’ypq) ﬁDocFmpq:

m a/
Q (I NPIE,,,. ) = 5[

(ST

O/ ? a m (8% o m (0%
<2> [829 /\ﬁ’Yaa(’qu) ﬂFmpq+89 a)‘B’Yao('qu) BFmpq}

4. TI™OOP G

/

0 (: 1™ 905 Gl :)
/ /
—%;HmaeﬁAaDaGmB: + % £ 007 00° Ny Gy + + % TTMON Gl -

5. deds KB

/ /
Q (: dpdg K°P ;) - %  dpdsA\® Do K7P —% TLydg (2) A% [K78 () — K] -
0/2 a/ 2
+ 5 1 dgON Y Om (K% —KPo) (2) 00" ON Y5V 7P

o\ 2
+ (2> :'ymp(?QH'”(x))\a(z)fyZﬁK"ﬂ

6. dgN™GS,

Q(: dsN™Gh,, )
/
% {— tdgN™NYD LGP — T TIPN™ N, 5GE bl s N ON 0 50P G,

o o o
+ Z(ypym")gg( O Gl TN G, 2 = 2 PTG )

mn\o /
+ @2)0< L dada NGB (2) + % L dgdNDLGE, - )] (4.3)
7. dgdO°FP;
/ /
Q (:ds00F3 2) = T [ dgdON"DaFy s — 1 dpONF, 1| =5 s 00 X Yy

(o)?

. daya.m B .
s 0P ON O P
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8. N™"NPIG o
QN NPIG g )

0/28 mn aTpq \ & 4 g \B(Hmnya
= — J:N N )\DaGmnpq:—a:daN A (v )BGmnpq:

4
=2 NPON (4% DaGlranpg : +(1™"97)% (: 000N Grung : + : daOX Gl )
4 mn « mn e
— g : daN )\B(’}/pq) ﬁGmnpq :—2:N 8)‘18(’)/17(1) BDOéGmnpq :
a, mn «
+ 5 (PN Daly ) ﬂamnpq)} (4.4)

9. N™"96P H,np

0 (: OOPN™ H, 5 :)
«

/ /
=3 [— L 00PN N Dy Hypg =+ N™ N Hyps —% O (™Y H s

1 /
— 5 dad0P X7 (Y™™ Hypnp - —i—az 2 00PN (v"™™)Y Doy Hyp - ] (2) (4.5)

10. 86P96° Hzs

/
Q (: 69B806H55 :> — %[:895895AaDaH66 L= 8968)\5(H55 — H5,B) 2:|

The BRST equation of motion also involves the world-sheet derivative of the uninte-
grated vertex operator, namely, Og V. Making use of the equation (2.20) and the operator
identity (2.33), we obtain

OV =: 8058)\6‘3045 C TTMON Hppe . + 2 0209N\ (Bga + a"yﬁﬂmC”ﬂ) :

1 90P00°\*DsBog : + : TM00° A\ (20,,Bog + DgHong) : + : 0dgA\*CP,

L dgON*CP i + 1 dgdO° N Dy CP : 4 2™ d A0, CF 4 2 O™ A H e,
2P A0 Hope : + : ON™ " A Fopn = + - NTOXNFon

L 00PN N Dg Fo = + 2 2PN XD,y Fy, - (4.6)

+ + + +

where, we have used
: 2dgII™ A9, CP, + =: 2T dg A0, O+ 40 YL 0?07 X0, CF, - (4.7)

We now need to equate QU and OrV. A convenient way to do this is to compare the
same basis elements in both sides. For the conformal weight 2 and ghost number 1 pure
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spinor objects (which appear in QU and 0r V'), naively, we have following 26 basis elements

™I, T™d A, TImo0°PAY | TIMJAY , TIMNTPAY | AII™ A, IO
dadg\Y , do@0°XT | dod N, do NN | ddo N | dodN?
D0“90PNY | 9O TNP | 9NN | §20°N5 | 99“ONP
N™INPING NI GNP - NTRINY
JINE, QTN | JOX*
D2\ (4.8)

As mentioned earlier, all of these basis elements are not independent. There are non
trivial relations among some of these bases. We turn to these constraint relations between
the basis elements in the next subsection.

4.2 Constraint identities

As mentioned in section 2, due to pure spinor constraint, the Lorentz current N™" and the
ghost current J satisfy the identity [23]

N (2) (s — g # TN (2)(7" s — 50N () = 0 (4.9)

This constraint is relevant if one is interested in the quantities involving conformal weight 1
and ghost number 1. However, in the expressions for QU and 0g V', we encounter quantities
with conformal weight 2 and ghost number 1. For this case, there are several identities
which can be obtained from the above identity (2.11) by taking the OPE of this with the
objects of conformal weight 1 and demanding the normal order terms in the OPE to vanish
(the pole terms of the OPE vanish automatically as expected). Since the derivative and
the normal ordering commute, the world-sheet derivative of (4.9) also gives a constraint.
We list these constraint identities below.

(1) =2 N™JA : () o — % LTINS (e — @ JONY 4l = 0 (4.10)
(I2)g"" =: N NPIN 2 (Yp)ap — % P NTIAY D (Y)ap — @' i NTTONY 1l =0 (4.11)
()5 = doN™" A : (s — 3 oA (") — 0+ dpdN" g =0 (4.12)
(14)’;" = IIPN™" XY (Ym)ap — % CIPIAY (7 )ap — o TIPOX Yap =0 (4.13)

(I5)5" = 90° N2\ : () as — % LO0° TNt (Y)ap — o 1 DTONT 45 =0 (4.14)

The above 5 identities follow from taking the OPE of (4.9) with the object of conformal
weight one, namely J, N d,, I and 007 respectively. The identity which can be obtained
by taking the derivative of (4.9) is given by
(I6)5 =: ON™" X" : (Ym)apt+ : N™"OX 1 (Ym)ap — 5 OJNY (V" )ap — 5 JOX* 1 (V") ap
— o/ Yg0PAY =0 (4.15)
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Apart from these, there are two more constraint identities which follow from the OPEs

given in section 2. The OPE of d, with dg implies

/
tdadg : + i dgdy —|—%8Ht(%)a3 =0 (4.16)

Similarly, the OPE of N™" with NP? implies

Oé,

P NN NPINT = [n”PaN’”q — ONTP — PYN nman”P] (4.17)

One way to think about these two identities is to note that we are working with a given
ordering of the pure spinor variables inside the normal ordering. However, for : d,dg : and
: N"™" NP4 ;| there is no preferred ordering. The above two identities (4.16) and (4.17) are
a reflection of this fact.'!

For later purpose, we multiply (4.16) with 5-form vfﬁpqr to obtain

(07 O/ (03
e (: dad5:+:d5da:+28ﬂt(%)aﬁ>:0 = A dads =0 (4.18)

where, we have used the fact that the trace of product of 5-form and 1-form is zero and
the 5-form is symmetric in its spinor indices.

For solving the equations of motion, we shall need to take into account all of these
constraint relations between the pure spinor variables.

4.3 Setting up the equations

We shall now equate QU and drV and solve the resulting equations of motion. As men-
tioned earlier, a convenient way to do this is to equate the terms with the same basis
elements taking into account the constraint identities given above.

To take into account the constraint identities, we have two options - eliminate some
basis in terms of others or introduce Lagrange multipliers. We shall make use of both of
these options. We shall use the elimination method for taking care of (4.16) and (4.17)
constraints. More specifically, we shall eliminate the basis involving OII" in favour of the
basis involving d,dg and similarly we shall eliminate the anti-symmetric part of the basis
involving N™"NP¢ (in simultaneous m <> p and n <> ¢ exchange) in the favor of basis
involving ON™". On the other hand, we shall introduce Lagrange multipliers for the six
constraints (4.10)—(4.15) which follow from the pure spinor constraint and involve the pure
spinor ghost. This means that we add a very specific zero to QU = 0rV equation so that
we have

6
QU = 8RV + Z I,K, (419)

a=1

"Note that there are OPE between II™ and II" as well as between J and J. However, no pure spinor
fields appear in these OPE and hence they do not lead to any non trivial constraint between basis elements.
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The I, K, involve contraction of the six identities (4.10)—(4.15) with appropriate Lagrange
multiplier superfields. We denote these arbitrary superfields by K; (i =1,---6). Thus,

6
D LaKa = (I)FE DD + (L) (Ka) g + (L) 5(K3)77 + (1) (Ka)p,

a=1

+ (I5)3" (K5)5, + (Ie) 3 (K6 )l (4.20)

The Lagrange multiplier superfields K; will also be determined in terms of the basic su-
perfields Byunp, Grmpn and ¥y, as we shall see.

We can now write down the equations of motion. Using equations (4.20), (4.10)—(4.15)
and the expressions of QU and OrV, we obtain the following equations after comparing
the same basis elements in both sides of (4.19)

1. II™II™ A\~
o
5 |:Daan - 7naﬁFmﬁ:| - 2anflmoz
2. TI™ 9P\~
a/
3. da80PN\°
o m «a a 1 mn\«a o
5 _’YaﬁFm +DO'FB_§(7 ) gHmnﬁ :Dﬂcg
4. TIMdgAe
o g_ L pays m ( 708 o 3
5 _D‘)‘Fm _5(7 ) aFmpq_’Yaa<K - K ) :28mca
5. 802908\
o
2 {’ngaGmm + DaHaﬁ} = DigBio|a)
6. OTL A
o 2
( 8) (’Ymrypq)ﬁongq = Hma
7. dadg)®

o mn

o af 1 mn\ S «
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10.

11.

12.

13.

14.

15.

16.

17.

9%26P\>
/

/ ! « 60’_ /. m o
5 | O Py + G imae K| = By + @50 Ca

TI™ NP~
! B

% |:DaFmpq - ’YmaﬂGqu:| = QamFapq + (’y[p)ﬂtﬁ(K‘l) |m|q]

ImJa«
1
0= _§7qaﬁ(K4)qu
IIm oA~
o B of Pq\f G +ﬁ/( Pa) GP
5 |:O/’VgﬁanFm - Z(’Y ) aDBFmpq + Gma 4 YmY BaTpq
= Hyo — a’Wig(Kzl)qu
DO N™"\P
/

% ['VQBFpmn — DgHmna | = DaFpmn + (W[W)BU(KQUOM]

96> J NP
1
0= —5750—(}(5)0%
00N
/
/ / o 5 e _of
5 [—i%’;’é(qu)agl’mpﬁ2%’&%&[(" + a8 0m G+ (V") Do Hinna —2Has
= B,Ba_a/’)/ga(K%)Uan
RPN
! / (O/)2 s 0/2 5 O/( mn)
mn . pq _
% [—iv;nﬁFmB— 3 (’)/m")/pq)ﬂaamqu"i_g(’Y Y ) aD/BGman 8 v
= —a'yi5(Ko)n
RPN
1
0= —§VZB(K6)2
JOI™
1
0= —a'g(K1)f — 57a(Ko)
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18.

19.

20.

21.

22.

23.

24.

25.

26.

JI\*

0= —577(%(}(1)2
Ad \P
a/ 2 mn (8% «
( ) (7 ’qu) BGmnpq =C B
16
do NP
O/ @ 1 Pq\Q oo
o5 —DpGry — 5(7 ) ﬂ(Gmnpq + qumn) = (Ym0 (K3)7)
do JNP
1 n [exe
0= _5’7 ,BU(K?)) n
daONP
a/ /. n 8 KO’O& a KQO' al mn\o D GO& Fa a/ mn . pq\&x G
504750(11 — On )+Z(7 )8 Do G — ﬁ+§(7 Y1) *5Gimnpg
= % — /", (K3)°%
NN
o [ o
5 [a ’Ypa,gﬁpGﬁmn _ Z(’qu)BaDﬁ (Gmnpq + qumn) + Hmm]
= Fomn — a/’ygzﬁ(K2)ﬂmnq + (’Y[m)aﬁ(Kﬁ)i]
1
0= (V[m)aﬁ(Kl)g] - 573,8(K2)6mnq
0= Fomm + (V[m)aﬁ(K@g]
IN™T NPI)™

O[,

2 [D aGmnpq:| - W{p)aﬁ(Kﬂﬁ\mnm

We have not yet taken into account the constraints imposed by (4.16) and (4.17) on the
basis elements. We do this now and first consider (4.16) which will relate 6th and the
7th equations of the above 26 equations. Eliminating JII" in 6th equation in favor of
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dndg using (4.16) and combining it with the 7th equation gives following equation for the
coefficient of d,dg\”
o 1 36

5 DUKaﬁ - §(I.Ymn)OCUGT/Brm - (Oé/)2

NPT = 0 (4.21)

Next, we consider (4.17) which relates the basis involving ON™" with the anti symmetric
part of the basis involving N""* NP4, This will relate 25th and the 26th equations. We first
seperate the symmetric and the anti symmetric parts of N NP? of 26th equation and
then combine the anti symmetric part with 25th equation using (4.17).
The anti symmetric part of QU — drV — >, I; side of the 26th equation is given by
1

a/
5 : (Nmanq — Nqumn) A [2DaGmnpq - (’Yp)aﬁ(K2)anq:| :

Oé/
= G ONA DG+ () K2 g 1) (K|

where, we have used equation (4.17) in going from the first to second line.
Combining this with the 25th equation and demanding the coefficient of AN A to
vanish gives the following equation

/

«
5 [_a,nquaG[mknqm] - (7p)aﬁ (K2)Bp[mn} +npq(7[m)aﬂ (K2)6n]pq:| _Famn - (’Y[m)aﬂ (Kﬁ)ﬁ] =0
(4.22)

On the other hand, the symmetric part of QU — OgV — ). I; side of the 26th equation is
given by

1 /
5 ¢ (Vg ) e [C;Daamnpq - (w,))a/g(KQ)ﬂmnq} :

1 mn £\Tpq \ o o B B
=3 N™NPIX 5 (DaGmnpq + Daqumn)_(’)’p)aﬁ(Ké) mng (Ym)ap(K2) pan |

Demanding the coefficient of N™" NPIN\Y to vanish gives the following equation

/

o
9 <DaGmnpq + Daqumn) _(’Y[p)a,B(K2)B|mn\q] - (’Y[m)aﬂ(K2)/B|pq\n] =0 (4.23)

Our goal now is to find the superfields (and Lagrange multipliers) which satisfy the 26
equations listed earlier (except 5, 6, 25 and 26) and (4.21), (4.22) and (4.23). If our
superfields satisfy these equations, then they will automatically satisfy the BRST equation
of motion QU = RV

4.4 The ansatz for various superfields

The equations of motion arising from QU = OrV/, in general, are very complicated due to
the presence of gamma matrices and the super covariant derivatives. A direct approach
based on comparing the different theta components of the superfields soon becomes messy
and intractable. Due to this reason, we shall follow an alternative approach in which we
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directly propose an ansatz for the superfields and verify that they indeed satisfy the equa-
tions given in the previous section. These ansatz follow from the requirement of Lorentz
invariance, equations of motion given in (2.23)—(2.26) and demanding that the superfields
appearing in the integrated vertex should be expressible in terms of the 3 basic superfields
Brinp, G and ¥y,,,. This allows us to work with the full covariant superfields instead
of working with their theta components as required by the presence of super covariant
derivatives. More details about how to arrive at these ansatz in given in appendix A.

Our proposed ansatz for expressing various superfields appearing in the integrated
vertex in terms of the 3 basic superfields By,pnp, G and Wy, and a set of unknown
constant co-efficients are as follows

Frn = [1Gmn » Gma = 91¥ma

K = a~gl ,B™ Heap = 17" Bunp

F = f5(4"™"™) gkmBnpg o= kaT(%)aﬁq’mﬁ

Frpg = [3Gmipkg + f4Bmpq - Gh, = 9275,”%]0— + g3k Yk g
Hypna = h2 Vo + hsk?(Ygim) o’ Ynlo
Gmnpg = 94k Brlpg + 95k Baimn + 96KimGrjpkq) + 97 MmipGgjn] (4.24)

We also need similar ansatz for the Lagrange multipliers in terms of the basic superfields.
We propose

(K1) = c1k” (1) Wy
(K2)png = C2k[m7:]5\llqﬁ + c3kq’7§f‘lln]5 + 647(‘;516[7”\1/”]6 + 05].67"%9”%”\1,%8 n Cﬁkr’yfqﬂ[m‘ljn]ﬁ
+ erk kg7 hpm g + sk ngim W
(K3)28 = coGrmn(Y")* + c10km Bsta (Y1) 4 c11ks Brum (71) + c1aks Brao (7,1 )P
(K1) = c13(1) P Wons + c1a(ym) P Wop + 15k ko (1) P05 + c16k kn (1) Wons
(K5)%%m = c17kpGam (Y1) + €18 Bmpg (771) 5 + €19 Bpar (Yn™") g + c20kmkip Bers (771°)%
(K6 ) = czlk’"(*yr)o‘ﬁ‘l/mﬁ (4.25)

Our job has now reduced to finding the unknown coefficients appearing in above ansatz.
If we put these ansatz for the superfields in the equation of motion given above, we shall
obtain a system of linear algebraic equations for the unknown coefficients which are much
easier to solve. However, before doing this, we shall now see that there are some restriction
on some of the coefficients which follow from the constraint identities given earlier and also
directly from pure spinor condition.

We start by noting that the superfield Gy,ppq appears in the expression of the integrated
vertex operator as N NPIG,, ... We want to find the consequence of the identity (4.17)
on Gpppg. For this, we consider the quantity (N NP? — NPIN™)G ) pnpq. Using the
identity (4.17) and the ansatz for Gunp, given in (4.24), we find that the right hand side
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of the identity (4.17) vanishes identically after contraction with G,y and hence
L (NTNPL_ NPANTYGL =0 = N™ NP Grnpg — Gpgmn) 1 =0 (4.26)

This shows that G,ppg is symmetric under the exchange of simultaneous m < p and n < ¢
indices. Now, the last two terms in the expression of G,y are already consistent with
this property. However, this is not the case with the first two terms for which the tensor
structures multiplying the coefficients g4 and g5 get exchanged. Thus, for G,y to be
symmetric under the exchange of m <+ p and n < ¢ indices, we must have

94 = g5 (4.27)

Next, we show that the term involving g7 in the Gyy,ppe superfield vanishes identically.
For this, we first note that the term involving g7 appears in the integrated vertex operator as

gt N NPy G = —g7r N NGy (4.28)

Using the definition of N™" we obtain classically
1
NN G g = it (") (") AN Gy

The right hand side vanishes after using the fierz relation (which follows from the pure
spinor condition)

AN = (AVStuvw)‘)ngvaw ) (4.29)

32 x 5!

the identities involving the product of gamma matrices and the symmetry and tracelessness
properties of Gy,y. We shall now show that this holds true even at the quantum level. The
normal ordering piece which arises at quantum level is given by the right hand side of the
identity (4.17) contracted with n™. So that the quantum version of the classical equation
N NPy, Grg = 0 is given by

. Nmanqnanmq =c: [nnpaqu _ nnanmp _ nmp(‘)qu + nmannp} nanmq . (4_30)

where ¢ is an arbitrary coefficient which needs to be determined. But, a little algebra shows
that the right hand side is proportional to : ON™G,,, : which is zero identically (since
N™4 is anti symmetric whereas G4 is symmetric in their indices). This means that the
term involving g7 vanishes identically even at the quantum level. Hence, g7 does not enter
in our equations of motion and thus we can drop this term from the expression of Gupg
given in (4.24).

Next, we consider the Lagrange multipliers. The first constraint identity I is given by

1
C N TN () e (K15 -5 JIN(Y")ap(K1)l : —a! + JOX (K1) =0 (4.31)

Using the expression of (K7)h given in (4.25), we find that the last two terms in the left
hand side of the above expression vanish identically and the equation reduces to

k" s N IX (V) as (1) o 1= 0 (4.32)
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Again following the similar steps as described after equation (4.28) and noting that J and
N™" have trivial OPE, we find that this equation is identically satisfied and hence ¢; does
not enter into our equations of motion. Thus, we can drop (K 1)£ from the equations given
in the previous subsection.

Finally, we consider the term involving cg in the Lagrange multiplier (Kg)?:ﬂ . After
contracting (I3);5 with the term involving ¢y of (K3)3?, we find that the last two terms
of the constraint identity I3 vanish identically whereas the first term vanishes by using
the similar argument as given below equation (4.28). Thus, we can also drop the term
involving cg from our equation of motions.

We are now ready to solve the equations of motion and determine the unknown coef-
ficients appearing in the superfields.

4.5 Solving for unknown coefficients

To determine the unknown coefficients in superfields, we put (4.24) and (4.25) in the
equations of motion given in subsection 4.3 and analyze them one by one. Some of the
equations will determine the unknown coeflicients while others will be satisfied identically.
The Mathematica package GAMMA is very helpful for doing these calculations [26].

The first five equations'? of the previous subsection give!
18 288 364 12 44
f1——a, fa = "k f3—?’ f4—(&,)2, f5__&
2 5761 1444 1
hlzaa h2:_a, ) h3:_a/ ’ a:_(Oé/)2
432
g1 = a (4.33)

Next, we contract the combined 6th and 7th equation (4.21) with 7,5 and 75 and
use (4.24) to find

48 192
92 = (@)2’ 93 = ——

(4.34)

(0%

Multiplying with a 5-form ,chgst does not give any new information due to (4.18).

The equation 8 gives

f4:w—8a

which is identically satisfied by the values of f4 and a given in equation (4.33). Next,
using (4.33), the 9th equation determines

24 24
C13 = BVE Cl4 = VR Cl5 = —30, Clg — 192 (4.35)
o o

1276 extract the information from the 3rd equation, it is convenient to contract it with 1-form, 3-form
and 5-forms. This gives rise to 3 different equations which determine f2, f5, ho and hs. Similarly, g1 and h;
can be determined from the 5th equation by contracting it with the 3-form.

131n general, some of the coefficients appearing in the superfields are determined by more than one
equations. But, their values always agree. This also shows the consistency of the equations with our ansatz.
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The equation 10 gives
1
10c13 + 2¢14 — 8016 =0

Similarly, equation 11 gives

ifocd , o o
- f; +—1lia/fs — 21(a')? fy + T = 2(a)%g0 + 2

1

=-72—-d <10013 + 2c14 — ,016>
«

Both of these equations are identically satisfied by (4.33) and (4.35).
Next, the 12th equation gives
63 3 9 o7
ar =g c18 =g c19 T6ar ’ 20 16 (4.36)

Using (4.36) and (4.33), the equations resulting from 13th and 14th equations, namely,

C20
cig +7cig—— =0

a/

and

2 : - ! h
a(a/)z_f4(§) +Zf25a+z30;(;—h;;)—hla'=—1+a’<018+7019—cj?)

are identically satisfied.

Further, the equations 15, 16, 17 and 18 are identically satisfied by the ansatz in (4.24)
and (4.25) without putting any restriction on the coefficients.

Next, the 19th equation on using (4.27) gives

43
94 =95 = (/)2 (4.37)

Similarly, on dropping the terms involving g7 and cg as discussed in the previous subsection
and using equation (4.37), the 20th equation gives

12 1 1
o

g6 =—; =—_ m=0, cp=-r7 (4.38)

Next, using equations (4.33), (4.37) and (4.38), the equations resulting from 21st and
22nd equations, namely

c1g —c11 +6c12 =0 (4.39)

and,

2

iol o o’)2
7(920/_’_93)_]05 ( )

48 *

7
2 16 (94 + 95) = B —ad (CIO —c11 + 6612)

ia(a’)? +

are identically satisfied.
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Finally, the 23rd, 24th equations along with (4.22) and (4.23) determine the Lagrange
multiplier superfields (Kg)gmp and (K6)§n. On dropping the terms involving g7 and the
Lagrange multiplier (Kl)g from these equations as discussed in the previous subsection
and using the other coefficients determined so far, these 4 equations give

961 721 721 81

Co = ——— Cqa = —— Cy = —— Cy = —

2 507 ° 507 1T 5ol >~ 5o/

81 . 241 .
C6=—r ", 1= 961 , =gy T -9 (4.40)

We have now determined all the coefficients appearing in the ansatz for superfields and
the Lagrange multipliers. We have also exhausted all the equations of motion. With these
coefficients, the BRST equation of motion QU = OrV is now identically satisfied. This
establishes that our ansatz for various superfields with the values of coefficients determined
in this section indeed gives the correct integrated vertex for the first massive states. The
final expression of the integrated vertex operator U including the numerical coefficients in
the ansatz is given in equations (3.1) and (3.2).

5 Conclusion

We have constructed the integrated form of the first massive vertex operator of open strings
in the pure spinor formalism. Since the vertex operator is solely expressed in terms of the
superfields Bynp, Gmn and ¥, using the theta expansion results given in [22], one can
readily obtain the theta expansion of the integrated vertex in terms of only the physical
fields binp, Gmn and ¥,,q. This, therefore, demonstrates that the integrated vertex operator
thus constructed is in terms of the physical degrees of freedom only.

This construction can also be used to obtain the first massive integrated vertex op-
erator in the Heterotic string. For this, one simply need to take the tensor product of
the vertex operator constructed here with the anti-holomorphic integrated vertex of the
bosonic string. However some normalisation factors need to be accounted for while going
to closed superstrings from open superstrings.

Previously, with only the unintegrated form of the massive vertex being known, the
possible scattering amplitudes involving massless and first massive states that could be
explicitly computed, were severely restricted. Knowing the integrated vertex now enables
one to compute any amplitude upto two loop order involving arbitrary number of the
massless and first massive states in the pure spinor formalism.'* The results of some
amplitude calculations involving massive states will be reported in the future [29].

The pure spinor constraints as well as the OPEs imply that the basic worldsheet op-
erators satisfy non-linear constraints. This fact leads to several subtleties. In particular,
it implies non-trivial identities which a subset of all worldsheet operators at a given con-
formal weight and ghost number will satisfy. We showed how to take into account all such
constraints systematically in section 4.2. This line of reasoning was based on its successful

171t is the understanding of the authors that at present there are no unanimous consensus on computing
full multiloop amplitudes in pure spinor formalism. But, also see [10, 27, 28].
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role in determining the unintegrated vertex [23] and is now further strengthened by the
successful construction of the integrated form of the vertex. These evidences therefore
suggest that we have indeed adopted the correct way of incorporating the effect of all such
constraints at higher mass levels.

The general strategy outlined in section 3 and the method given in appendix A.2 for
writing the ansatz do not explicitly or implicitly depend on the conformal weight and
ghost number for which we eventually employed it. It is also to be noted that an identical
strategy can be applied to construct even unintegrated vertex for any massive state, the
only difference being the equation that one now needs to solve is QV = 0. This leads
us to conjecture that our strategy is very general and can be successfully implemented to
determine integrated as well as unintegrated form of vertex operators for all higher massive
states in pure spinor formalism. We plan to explicitly test this in future works [30].
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A Motivating the ansatz

A.1 The polynomial dependance of vertex operators on the pure spinor ghost
field

In writing the most general form of the integrated vertex in equation (4.2), we assumed
that it does not depend upon the A\ factors. In this appendix, we justify this assumption.
First we recall that the integrated vertex U can also be determined by integrating the b
ghost around the unintegrated vertex V, i.e.,

U(z) = f ;% bw)V (2) (A1)

In the pure spinor formalism, the b ghost is a composite operator which involves different
powers of A\ in the denominator [3]. So, naively, one might expect that the integrated
vertex will also involve different powers of A\ in denominator. However, it is possible to
work in a gauge in which the vertex operators are independent of the A\ terms. To see
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this, we recall from the RNS formalism that the massive states also appear in the OPEs of
the massless vertex operators. This allows us, in principle, to construct the massive vertex
operators from the knowledge of the massless vertex operators. More specifically for open
strings, this construction, pointed out to the authors by Nathan Berkovits, goes as follows.
If V1, V5 are unintegrated and Uy, Uy are integrated massless vertex operators respectively,
then we have

QU = V1 and QUy = 0rVo (A.2)

We now take the contour integral of U; around the integrand of U, and define
dw
Us(2) = 7{ U (w)Un(2) (A3)

Acting on this with the BRST operator @ and using (A.2), we obtain

QUs = § 20 )QUAE) = § 5T (wALVa(E) = 0.1s (A1)
where,
Va(e) = § 5ot (w)Va(a) (A5)

and in the first equality in (A.4), we have used the fact that § dw OgVi(w) is zero.

Now, if we choose the momentum ki and ko of U; and Us to satisfy

(k1 + ko) = 2ky - ks = (ky)” = —m? = == (A.6)
then, by construction, the V3 and Us will be unintegrated and integrated massive vertex
operators respectively of open string states at mass level n.

One might ask how do we know that the Us and V3 as defined in (A.3) and (A.5) do not
vanish. To answer this question, we recall that the OPE of two massless vertex operators
necessarily contain the massive vertex operators (this is necessary for the consistency of
the theory and is well known from the RNS formalism). Now, the integrated vertices U;
and Us have conformal weight one. Hence, by dimensional analysis, it is easy to see that
the integrand involving the integrated massive vertex operator can only appear at the first
order pole in (A.3) and hence its contour integral can’t vanish. By a similar argument, we
see that V3 as defined in (A.5) can’t vanish.

Since the massless vertices can be chosen to be independent of A\ in denominator [1],
this construction shows that the massive vertices can also be constructed without using
the A\ in the denominator. Moreover, since the massless vertices do not involve JJ and
0J terms, the above construction also shows why JJ and 0J terms do not appear in the
massive vertices. In appendix A.2, we give another argument for this based on group theory.
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A.2 General form of the superfields

In this appendix, we give the method for writing down the ansatz (4.24) and (4.25) for the
massive superfields which appear in the vertex operators and Lagrange multipliers. The
same method can be very easily generalized for the construction of any massive vertex
operator in the pure spinor formalism.

We start by arguing that the superfields appearing in the integrated vertex operator
must be expressible in terms of the basic superfields B,,,p, Gy and Wo,,. This follows
because as shown in [22, 23], the superfields appearing in the full set of superspace equations
of motion can be expressed solely in terms of any of the basic superfields V,,q, By or
Gmn- Thus, the vertex operators should be expressible entirely in terms of any of these
basic superfields.!> For the unintegrated vertex operator (2.20), this can be seen using
equations (2.21) and (2.23)—(2.26). From this, it is also clear that if we want to express
the entire vertex operator in terms of only one or two basic superfield, we need to use the
supercovariant derivative. However, if we use all the 3 superfields, then we can avoid the use
of supercovariant derivatives (since the supercovariant derivative of the basic superfields
can be expressed in terms of the basic superfields without supercovariant derivative using
equations (2.23)—(2.26)).

We shall make use of all the 3 basic superfields By, Gimn and W,,,. Thus, due to
equations (2.23)—(2.26), the relation between the superfields in integrated vertex operator
and these basic superfields can be expressed without using the super covariant derivative.
Moreover, whatever be the functional form of these superfields, the Lorentz invariance
implies that they can only involve 3 basic superfields, the momentum vector, the space-

n

time metric ™" and the gamma matrices. Thus, the functional dependence of all the

superfields in the momentum space is
Superfields in U = f(Bmnp, Gmn, Ymas km,n"", Gamma Matrices)

Our goal now is to determine these functions. This can be done by making use of the
group representation theory. To see this, we note that the physical degrees of freedom
(encoded in the fields ¥ma, bmnp and gmy) should match on both sides at each order in
the theta expansion of the above equation. Moreover, since the right hand side does not
involve supercovariant derivative, it follows that we can equate the coefficients in the theta
expansion of the superfield in the left hand side at a given order with the coefficient at
the same order in the theta expansion of the right hand side.'® Since the right hand side
involve only the basic superfields ¥, , Binnp and Gy, it follows that any given order theta
component of the superfield in the left side is related to the same order theta component
of the basic superfields W,,q, Bimnp and Gy, We now focus on the theta independent
component. Using above argument, it follows that the theta independent components

5This is similar to the case of the massless vertices. The massless vertices are also expressed entirely in
terms of the superfields which appear in the N' = 1 super Yang Mills equations of motion in 10 dimensions.

16Note that if we have a superspace equation of the form So = DaT, then the £*" order component of
the superfield S, will be related to (£ —1)*" and (£+1)"" order components of the superfield T'. However, if
we have an equation of the form S, = R, then the £t order component of S, will be related to £t order
component of R,.

— 27 —



of the superfields in the left hand side must be expressible in terms of only the theta
independent components of the basic superfields By, Gin and Vo, namely bynp, Gmn
and 7/)ma-17

Thus, for the theta independent components of the superfields in the integrated vertex,
our problem has reduced to finding the correct physical degrees of freedom and to express
them in terms of bynp, gmn and Y. The covariant expression for the full superfield can
then be obtained by replacing bynp, gmn and Vma by Bmnp, Gmn and ¥, respectively.
The validity of this procedure can be justified by the fact that it gives an operator U
which satisfies the correct BRST equation QU = drV. Once we have an operator U which
satisfies this equation, we are guaranteed that it is the correct integrated vertex irrespective
of how we arrive at it.

Now, the correct degrees of freedom in the theta independent components of the super-
fields can be obtained by looking at their index structure and using the group theory. In the
rest frame, the physical fields bynp, gmn and ¥, form the 84, 44 and 128 representations
of the little group SO(9). Thus, to determine the correct physical degrees of freedom in the
theta independent components of the superfields, we need to find the number of 84, 44
and 128 representations of SO(9) in their theta independent components in the rest frame.

We shall illustrate this method by some examples now. First, consider the superfield
Cpn in (4.2). Since, it is anti symmetric in its indices m and n, its only non zero components
in the rest frame can be Cy, and Cy,. These can only form 9 and 36 representation of SO(9)
and hence can’t contain the physical massive fields. Thus, C,,, must be zero. Similarly,
all the superfields whose theta independent components cannot form the 84, 44 or 128
representations of SO(9), must be zero. Next, we consider the superfield Gﬁm. Since, it is
also anti symmetric in its vector indices m and n, going to the rest frame, we find that its
non zero components can only be Gga and Gfb. Our goal is to look for representations of
SO(9) corresponding to the physical states. Now, the index structure of Gg ., implies that its
theta independent component forms the product representation 16 x 9 which contains one
128. Similarly, G'gb contains one 128. This means that the theta independent component
of G,Bnn should contain two representations of 128 and hence there should be two terms
involving W,,, in the expansion of G?,m in terms of the basic fields By, Gmn and o,
After finding the correct number of terms, the next step is to write down the form of GBon
so that it has two terms involving W¥,,,. Taking into account the on shell conditions (2.26),
we find

Ggq - 9275)U\PQ]U + 93]{7"%?0]{[?3\1/(1]6 (A?)

where g2 and g3 are some unknown coefficients which need to be determined.

Y This is not true for the massless states. One reason for this is that given a differential equation of
the form DoS = B, (where S and B, are some superfields encoding the information about the massless
states), one can’t invert this to write an expression for S in terms of some differential operator acting on
B, since k? = 0 for the massless states. This is unlike the massive states where we can always invert this
kind of equations.
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