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Abstract: The pion-pole contribution to hadronic light-by-light scattering in the anoma-

lous magnetic moment of the muon (g− 2)µ is fully determined by the doubly-virtual pion

transition form factor. Although this crucial input quantity is, in principle, directly ac-

cessible in experiment, a complete measurement covering all kinematic regions relevant for

(g− 2)µ is not realistic in the foreseeable future. Here, we report in detail on a reconstruc-

tion from available data, both space- and time-like, using a dispersive representation that

accounts for all the low-lying singularities, reproduces the correct high- and low-energy

limits, and proves convenient for the evaluation of the (g − 2)µ loop integral. We con-

centrate on the systematics of the fit to e+e− → 3π data, which are key in constraining

the isoscalar dependence, as well as the matching to the asymptotic limits. In particular,

we provide a detailed account of the pion transition form factor at low energies in the

time- and space-like region, including the error estimates underlying our final result for

the pion-pole contribution, aπ
0-pole
µ = 62.6+3.0

−2.5 × 10−11, and demonstrate how forthcoming

singly-virtual measurements will further reduce its uncertainty.
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1 Introduction

For decades the anomalous magnetic moment of the muon, aµ = (g − 2)µ/2, has been one

of the prime physical quantities both to test the Standard Model (SM) at quantum loop

level, tracing back to the early milestone calculation performed in [1], and to monitor the

signals coming from physics beyond the Standard Model (BSM). It can be experimentally

measured to a very high precision, with the up-to-date value [2, 3]

aexp
µ = 116 592 089(63)× 10−11, (1.1)
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Figure 1. Diagrammatic representation of (a) HVP and (b) HLbL.

revealing a tantalizing deviation of about (3–4)σ from the SM prediction.1 For this reason,

an even more ambitious upgraded experiment at Fermilab [8] and a complementary one

at J-PARC [9] are aiming at a four-fold improvement to achieve a precision of 16 × 10−11

(see [10] for a detailed comparison of the two approaches). Potential BSM contributions

to aµ notwithstanding, the current theoretical uncertainties of the SM contributions are

required to be controlled more precisely in order to synchronize with the upcoming exper-

imental precision.

The dominant SM uncertainty arises from hadronic contributions [11–13], given that

the uncertainty estimates of QED up to five loops [14–16] (with analytical cross checks

evaluated to four-loop order [17–19]) and electroweak contributions to two loops (including

three-loop leading logarithms) [20, 21] amount to . 1× 10−11. The first leading category,

hadronic vacuum polarization (HVP) illustrated in diagram (a) of figure 1, enters at O(α2)

in the expansion of the fine-structure constant, followed by the second hadronic light-by-

light (HLbL) scattering category shown in diagram (b) of figure 1 atO(α3). Higher-order in-

sertions of HVP and HLbL scattering are already controlled sufficiently accurately [22–24].

Despite the non-perturbative nature of these two contributions, it is possible to derive

data-driven estimates based on dispersion relations. The HVP corrections can be related

to the total cross section of e+e− → hadrons [25, 26]. Therefore, its evaluation benefits

from improved experimental measurements, with most recent compilations [27–30] already

providing uncertainties comparable to or less than HLbL. In contrast, current estimates

of HLbL rely heavily on hadronic models [31–47], which despite being based on chiral

symmetry or large-Nc arguments2 and (partially) fulfilling constraints from perturbative

QCD (pQCD) involve model uncertainties that are difficult to control. In this regard, a

dispersive framework for the evaluation of HLbL scattering based on the general principles

of analyticity, unitarity, and crossing symmetry has been recently developed [48–51], in-

cluding first numerical results for two-pion contributions [52, 53]. Such a framework thus

1Recently, there have been hints for another deviation from the SM emerging in the anomalous magnetic

moment of the electron, (g − 2)e, albeit presently only at the level of 2.5σ [4–7].
2To ensure anomaly cancellation in the SM subtleties arise in the large-Nc counting related to a rescaling

of the quark charges. In consequence, the π0- and η8-pole contributions become suppressed by two orders

in Nc compared to their naive scaling, which strongly challenges the viability of the large-Nc expansion as

an organizing principle for HLbL scattering. This issue will be addressed below in appendix C.
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provides an alternative model-independent determination of HLbL scattering complemen-

tary to lattice QCD calculations [54–58], attributing the contributions to on-shell form

factors and scattering amplitudes that are, at least in principle, accessible experimentally.

The single-meson poles constitute the simplest singularities of the HLbL tensor, whose

residues are determined by the doubly-virtual transition form factors (TFFs). Therefore,

the numerically dominant pion-pole contribution would be fully determined if the doubly-

virtual pion TFF could be measured for all (relevant) space-like momenta. In the absence

of such double-tag experiments for e+e− → e+e−π0, we dispersively reconstruct the pion

TFF in light of the measurements of the π0 → γγ decay width, the e+e− → 3π cross

section, and the space-like singly-virtual form factor from e+e− → e+e−π0 again owing to

the constraints from analyticity and unitarity. The resulting form factor representation

Fπ0γ∗γ∗ = F disp
π0γ∗γ∗ + F eff

π0γ∗γ∗ + F asym
π0γ∗γ∗ (1.2)

takes into account all low-energy intermediate states by the first dispersive part, incorpo-

rates the normalization and space-like high-energy data by the second (small) contribution

from higher intermediate states, and implements the asymptotic constraints for arbitrary

virtualities at O(1/Q2) via the last term. The pion-pole contribution is then evaluated

based on this comprehensive dispersive determination of the pion TFF, completing previ-

ous efforts devoted to the data-driven determination of aπ
0-pole
µ [59–64] (see also [13, 65–70]).

The paper is formatted as follows. The (unambiguous) definition of the pion-pole con-

tribution to aµ in the dispersive approach to HLbL scattering is recalled in section 2, in

terms of the on-shell pion TFF. Section 3 is devoted to the dispersive reconstruction of the

TFF based on its isospin decomposition and unitarity relation, the fits to the e+e− → 3π

cross section, and the double-spectral representation of the form factor. The decomposi-

tion (1.2) gives rise to various energy scales that are discussed in section 4. The asymptotic

constraints dictated by pQCD are discussed in section 5. The numerical results for the

form factor in both time-like and space-like regions as well as the pion-pole contribution to

aµ including a detailed discussion of its uncertainty estimates are presented in section 6.

Conclusions are drawn in section 7 and additional supplementary material is collected in

the appendices.

2 Pion-pole contribution to aµ

In order to evaluate the HLbL scattering contribution to the muon (g− 2)µ, we define the

full fourth-rank HLbL tensor Πµνλσ following [51],

Πµνλσ(q1, q2, q3) = −i
∫

d4x d4y d4z e−i(q1·x+q2·y+q3·z)〈0|T {jµ(x)jν(y)jλ(z)jσ(0)}|0〉,
(2.1)

where

jµ(x) =
2

3
(ūγµu)(x)− 1

3
(d̄γµd)(x)− 1

3
(s̄γµs)(x) (2.2)

denotes the electromagnetic currents carried by the light quarks and qi are the four-

momenta of the photons. The leading-order HLbL contribution is then obtained by the
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Figure 2. The pion-pole contribution to HLbL scattering of the muon (g − 2)µ.

projection technique [71]:

aHLbL
µ = − e6

48mµ

∫
d4q1

(2π)4

∫
d4q2

(2π)4

1

q2
1q

2
2(q1 + q2)2

[
∂

∂kρ
Πµνλσ(q1, q2, k − q1 − q2)

]

k=0

× Tr

{
(/p+mµ)[γρ, γσ](/p+mµ)γµ

1

/p+ /q1
−mµ

γλ
1

/p− /q2
−mµ

γν

}
, (2.3)

where p is the four-momentum of the muon and q1 + q2 + q3 = 0.

Diagrammatically, the pion-pole contribution can be attributed to the one-particle

reducible piece of the HLbL tensor arising from a single pion propagator. There are three

Feynman diagrams shown in figure 2, where the momenta are indicated in the hadronic

subgraph.

After projection onto the muon anomaly, we obtain the result [39]

aπ
0-pole
µ = −e6

∫
d4q1

(2π)4

∫
d4q2

(2π)4

1

q2
1q

2
2(q1 + q2)2[(p+ q1)2 −m2

µ][(p− q2)2 −m2
µ]

×
[
Fπ0γ∗γ∗(q

2
1, (q1 + q2)2)Fπ0γ∗γ∗(q

2
2, 0)

q2
2 −M2

π0

T̂1(q1, q2; p)

+
Fπ0γ∗γ∗(q

2
1, q

2
2)Fπ0γ∗γ∗((q1 + q2)2, 0)

(q1 + q2)2 −M2
π0

T̂2(q1, q2; p)

]
, (2.4)

where p2 = m2
µ, Fπ0γ∗γ∗ is the on-shell pion TFF, and the integral kernels T̂1 and T̂2 are

shown in appendix A. The first and second diagram give identical contributions collected in

T̂1, while the third diagram leads to the term containing T̂2. Critically, this diagrammatic

derivation happens to coincide with its dispersive definition, obtained by carefully isolating

the respective residues in the HLbL tensor [49, 51].

After performing Wick rotations for the two-loop integrals, five out of six angular inte-

grations can be carried out for arbitrary form factors resorting to Gegenbauer-polynomial

techniques, which leads to a three-dimensional integral representation for the pion-pole

contribution [11],

aπ
0-pole
µ =

(α
π

)3
∫ ∞

0
dQ1

∫ ∞

0
dQ2

∫ 1

−1
dτ

×
[
w1(Q1, Q2, τ)Fπ0γ∗γ∗(−Q2

1,−Q2
3)Fπ0γ∗γ∗(−Q2

2, 0)

+ w2(Q1, Q2, τ)Fπ0γ∗γ∗(−Q2
1,−Q2

2)Fπ0γ∗γ∗(−Q2
3, 0)

]
, (2.5)
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where Q2
1/2 = −q2

1/2, Q2
3 = Q2

1 + 2Q1Q2τ +Q2
2, and τ = cos θ, with θ the remaining angle

between the Euclidean four-momenta Q1 and Q2. The weight functions appearing in (2.5)

are given by

w1(Q1, Q2, τ) = −2π

3

√
1− τ2

Q3
1Q

3
2

Q2
2 +M2

π0

T1(Q1, Q2, τ),

w2(Q1, Q2, τ) = −2π

3

√
1− τ2

Q3
1Q

3
2

Q2
3 +M2

π0

T2(Q1, Q2, τ), (2.6)

where the kernel functions T1 and T2 are reproduced in appendix A.

The relation (2.5) constitutes a special case of the master formula for the complete

HLbL contribution to aµ [51, 53], obtained by decomposing the HLbL tensor into scalar ba-

sis functions according to the general recipe established in [72, 73] that ensure the absence

of kinematic singularities and zeros, critical for the applicability of a dispersive representa-

tion. In the end, twelve combinations of these scalar functions Π̄i enter the master formula

aHLbL
µ =

2α3

3π2

∫ ∞

0
dQ1

∫ ∞

0
dQ2

∫ 1

−1
dτ
√

1−τ2Q3
1Q

3
2

12∑

i=1

T̄i(Q1,Q2, τ)Π̄i(Q1,Q2, τ), (2.7)

in which the pion pole only contributes to Π̄1 and Π̄2

Π̄π0-pole
1 (Q1, Q2, τ) = −Fπ0γ∗γ∗(−Q2

1,−Q2
2)Fπ0γ∗γ∗(−Q2

3, 0)

Q2
3 +M2

π0

,

Π̄π0-pole
2 (Q1, Q2, τ) = −Fπ0γ∗γ∗(−Q2

1,−Q2
3)Fπ0γ∗γ∗(−Q2

2, 0)

Q2
2 +M2

π0

, (2.8)

reproducing the equivalent representation (2.5) with T̄1 = T2 and T̄2 = T1.

If dispersion relations are not derived for the HLbL tensor but for the Pauli form factor

directly [74], this equivalence has so far only been confirmed for a vector-meson-dominance

(VMD) form factor, and in general it is not guaranteed that dispersion relations for different

quantities lead to the same notion of the pion pole. Moreover, in model calculations

different definitions have been employed in the past, including off-shell pions [46, 75–84] and

a variant introducing a constant form factor at one vertex [42]. However, these ambiguities

are specific to each particular model and do not occur in the dispersive approach to the

HLbL tensor. Once an organizing principle in terms of its singularities is accepted, the pion-

pole contribution as given by the master formula (2.5) and (2.7) follows unambiguously.

In consequence, the most recent phenomenological evaluations [85–87] and lattice QCD

calculation [88] of the pion-pole contribution have adopted this dispersive definition.

The properties of the weight functions w1 and w2 have been studied extensively in [85].

We briefly summarize their main features to gain some intuition for the evaluation of the

multi-dimensional integral in the master formula (2.5). w1(Q1, Q2, τ) and w2(Q1, Q2, τ)

are dimensionless, w2(Q1, Q2, τ) is symmetric under Q1 ↔ Q2, and both tend to zero for

– 5 –
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Figure 3. The weight functions w1(Q1, Q2, τ) (left diagram) and w2(Q1, Q2, τ) (right diagram) as

functions of Q1 and Q2 for τ = 0, θ = 90◦.

Qi → 0 and τ → ±1. Asymptotically, they behave according to

lim
Q1→∞

w1(Q1, Q2, τ)→ 1

Q1
, lim

Q2→∞
w1(Q1, Q2, τ)→ 1

Q2
2

,

lim
Qi→∞

w2(Q1, Q2, τ)→ 1

Q3
i

, (2.9)

hence assuring the convergence of the three-dimensional integral (2.5) for a form factor

approaching zero at large momenta. In fact, the contribution from w2 even converges for

a pointlike form factor. To better understand the divergence structure of the integral, it is

instructive to consider the leading order in chiral perturbation theory (ChPT). Since this

corresponds to a pointlike form factor, the loop integral diverges, demanding a counter term

that cannot be determined independently by other means but aπ
0-pole
µ itself. However, as

pointed out in [38, 41], the chiral analysis does predict the logarithmically enhanced pieces,

in a parameter-free way for the double logarithm and in terms of a low-energy constant

(LEC) related to P → `+`− decays (P = π0, η, ` = e, µ) for the single logarithm [89–92].

In the dispersive approach, this relation to pseudoscalar dilepton decays is accounted for

automatically in terms of the TFFs, see appendix B, as a matter of fact more accurately

without any need to rely on the chiral expansion. This relation between the TFF and pseu-

doscalar decays is well-established in the literature [93–100], and indeed the representation

for the TFF derived here for (g− 2)µ should prove valuable for an improved prediction for

the π0 → e+e− decay as well.

Finally, w1(Q1, Q2, τ) and w2(Q1, Q2, τ) are plotted as functions of Q1 and Q2 for τ = 0

(θ = 90◦) in figure 3. It can been seen that the maximum peaks appear in the momenta

range below 0.2 GeV for both w1(Q1, Q2, τ) and w2(Q1, Q2, τ). In line with the asymptotic

behavior (2.9) we find that w2(Q1, Q2, τ) is roughly an order of magnitude smaller than

w1(Q1, Q2, τ) for the same values of τ and falls off faster compared to w1(Q1, Q2, τ) after

reaching the maximum peak. In summary, the peaks of the weight functions w1(Q1, Q2, τ)

and w2(Q1, Q2, τ) are concentrated in the momentum range Qi ≤ 0.5 GeV so that the

most prevailing contribution in the master formula (2.5) arises from the low-energy region.

Moreover, this is exactly the region where the pion TFF can be precisely determined in our

dispersive framework, hence providing a possibility to model-independently evaluate the

– 6 –
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dominant pion-pole contribution with well-controlled uncertainties. Accordingly, we now

turn to the dispersive determination of the pion TFF itself.

3 Dispersion relations for the pion transition form factor

3.1 Definition and low-energy properties

The pion TFF is defined by the QCD vertex function

i

∫
d4x eiq1·x〈0|T {jµ(x)jν(0)}|π0(q1 + q2)〉 = −εµναβ qα1 qβ2 Fπ0γ∗γ∗(q

2
1, q

2
2), (3.1)

where jµ are the light quark currents defined in (2.2) and ε0123 = +1.3 It describes the

interaction between an on-shell neutral pion ((q1 + q2)2 = M2
π0) and two off-shell photons

with four-momenta q1 and q2. The normalization of the form factor for real photons is

dictated by the Adler-Bell-Jackiw anomaly [101–103],

Fπ0γ∗γ∗(0, 0) =
1

4π2Fπ
≡ Fπγγ , (3.2)

where Fπ = 92.28(9) MeV [104] is the pion decay constant. It is related to the neutral pion

decay width into two photons by F 2
π0γ∗γ∗(0, 0) = 4 Γ(π0 → γγ)/(πα2M3

π0), which has been

tested up to 1.4% in a Primakoff measurement of the π0 → γγ decay width [105] (chiral

and radiative corrections have been worked out in [106–109]). We will use the chiral tree-

level prediction (3.2) including the quark-mass renormalization of Fπ, together with its 1.4%

uncertainty, as the central value and uncertainty estimate for the normalization of the TFF.

The updated PrimEx-II experiment is expected to achieve a precision of 0.85% [110, 111],

so that, very likely, the dominant source of uncertainty might soon be of systematic nature

in understanding the emerging tension with the chiral 2-loop prediction [109].

In a dispersive approach, the pion TFF is reconstructed from the most important

lowest-lying singularities in the unitarity relation.4 Assuming exact isospin symmetry, one

of the photons in the π0γ∗γ∗ vertex must be an isovector (I = 1) state and the other

an isoscalar (I = 0). Therefore, the form factor can be decomposed into definite-isospin

virtualities as

Fπ0γ∗γ∗(q
2
1, q

2
2) = Fvs(q

2
1, q

2
2) + Fvs(q

2
2, q

2
1), (3.3)

where the isovector and isoscalar virtualities are labeled by the indices v and s. At low

energies, the unitarity relation for γ∗v → γ∗sπ
0 is dominated by the γ∗v → π+π− → γ∗sπ

0

process as shown in figure 4. Consequently, the building blocks in the sub-diagrams are

the pion vector form factor and the γ∗s → 3π amplitude.

3Note that the definition of jµ in [60–63] differs from (2.2) by a factor e. For (g − 2)µ, however, the

standard convention separates all factors of e upfront, which leads to the normalization given in (3.2).
4In general, we restrict our attention to purely hadronic states, i.e. neglect radiative processes/cor-

rections, which is justified by the smallness of the electromagnetic coupling constant. An exception is the

energy range of the ω meson due to its eight-percent branching to π0γ [104]. This coupling of the three-pion

states to π0γ is taken into account, see (3.17).
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Figure 4. Two-body unitarity relation for γ∗v → γ∗sπ
0. The gray blobs represent the pion vector

form factor and the γ∗s → 3π amplitude, respectively, and the solid lines pion intermediate states.

The pion vector form factor is described by two differently subtracted variants of the

Omnès representation [112]. First, it is parameterized by

F Vπ (s) =
(
1 + αV s

)
Ω(s), Ω(s) = exp

{
s

π

∫ ∞

4M2
π

ds′
δ(s′)

s′(s′ − s)

}
, (3.4)

where Ω(s) is the Omnès function [112], and three different ππ P -wave phase-shift inputs

are used for δ(s): Bern and Madrid phases [113, 114], respectively, are based on analyses

of Roy- and Roy-like equations of ππ scattering. In addition, we consider an extension

of [113] including the ρ′(1450) and ρ′′(1700) resonances in an elastic approximation [60],

fit to the pion vector form factor as measured in τ decays [115], in order to estimate the

impact of inelasticities on the ππ input. The coefficient αV ∼ (1–10)×10−2 GeV−2 is again

obtained from a fit to [115] up to 1.0 GeV for Bern and Madrid phases and the full range

for the third variant. The polynomial is set to a constant above 1.0 GeV (1.9 GeV for the

third phase) to attain a better high-energy behavior. Second, a twice-subtracted version

as in [62, 116] is used below 1.3 GeV (below 1.9 GeV for the third phase),

F Vπ (s) = exp

{
〈r2〉Vπ

6
s+

s2

π

∫ ∞

4M2
π

ds′
δ(s′)

s′2(s′ − s)

}
, (3.5)

with a fit radius 〈r2〉Vπ ∼ 0.436 fm2 covering the data up to 1.0 GeV. It is smoothly guided

to the once-subtracted representation at 1.9 GeV by adjusting the radius to the value that

follows from the once-subtracted version by means of a sum rule, 〈r2
sum〉Vπ ∼ 0.420 fm2. The

difference between both variants of F Vπ enters the dispersive uncertainty for subsequently

calculated quantities.

Turning to the γ∗s → 3π amplitude, its two-body unitarity relation is shown in the left

diagram of figure 5. It involves the final-state interactions between pion pairs, which can

be resummed in terms of the P -wave phase shift in the dispersive framework. However, it

possesses a more complex analytic structure as a three-body decay process, which will be

discussed in detail in section 3.2. While the full three-body unitarity γ∗s → π+π−π0 → γ∗vπ
0

governing the unitarity relation for γ∗s → γ∗vπ
0 cannot be implemented exactly in our

approach, the ππ rescattering in the two-body unitarity relation for γ∗s → 3π already

generates the leading topologies containing three-pion cuts for γ∗s → γ∗vπ
0 as presented in

the right diagram of figure 5, approximating the left-hand cut structure in 3π → γ∗vπ
0 by

pion-pole terms [62].
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Figure 5. Two-body unitarity relation for the γ∗s → 3π amplitude (left) and the approximation

for three-body unitarity in γ∗s → γ∗vπ
0 that follows from the two-body rescattering (right). The

part of the diagram in the dashed box can be viewed as a special case of the full π+π−π0 → γ∗vπ
0

amplitude. The gray blob labeled P refers to the P -wave ππ scattering amplitude.

3.2 Parameterization of e+e− → 3π

3.2.1 The γ∗
s → 3π formalism

We define the following matrix element in terms of the scalar function F(s, t, u; q2) for the

investigation of the γ∗s (q)→ π+(p+)π−(p−)π0(p0) amplitude

〈0|jµ(0)|π+(p+)π−(p−)π0(p0)〉 = −εµνρσ p ν+p ρ−pσ0 F(s, t, u; q2), (3.6)

with q = p+ +p−+p0. The Mandelstam variables are chosen as s = (q−p0)2, t = (q−p+)2,

and u = (q − p−)2, which fulfill s+ t+ u = 3M2
π + q2.

At low energy, the Wess-Zumino-Witten anomaly [117, 118] provides a normalization

for F in the chiral limit [119–121], which reads

F(0, 0, 0; 0) =
1

4π2F 3
π

≡ F3π. (3.7)

So far, it has been tested only at the 10% level both in the extraction from Primakoff

measurements [122] and from the reaction π−e− → π−e−π0 [123]. Therefore, a dispersive

framework was proposed in [61, 63] to extract the chiral anomaly from the γπ → ππ cross

section up to 1 GeV, using forthcoming data on γπ− → π−π0 taken in the COMPASS

Primakoff program [124].

The partial-wave expansion of F in the s-channel reads [125]

F(s, t, u; q2) =
∑

l odd

fl(s, q
2)P ′l (zs), (3.8)

where only partial waves with odd angular momenta contribute and zs = cos θs is the cosine

of the scattering angle in the s-channel. P ′l (zs) denotes the derivatives of the Legendre

polynomials so that the dominant P -wave is projected out by

f1(s, q2) =
3

4

∫ 1

−1
dzs (1− z2

s )F(s, t, u; q2). (3.9)
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Neglecting discontinuities of F - and higher partial waves,5 F can be decomposed into

single-variable functions based on the reconstruction theorem [126, 127],

F(s, t, u; q2) = F(s, q2) + F(t, q2) + F(u, q2). (3.10)

F(s, q2) is related to the l = 1 partial wave according to

f1(s, q2) = F(s, q2) + F̂(s, q2),

F̂(s, q2) =
3

2

∫ 1

−1
dzs (1− z2

s )F
(
t(s, q2, zs), q

2
)
, (3.11)

where

t(s, q2, zs) =
1

2
(3M2

π + q2 − s) +
1

2
σπ(s)λ1/2(q2,M2

π , s) zs, (3.12)

with σπ(s) =
√

1− 4M2
π/s and λ(x, y, z) = x2+y2+z2−2(xy+yz+xz) the Källén function.

F̂(s, q2) contains the left-hand-cut contribution to the partial wave f1(s, q2) arising from

the crossed-channel singularities. Furthermore, the angular integration in F̂(s, q2) imposes

a complex analytic structure in the decay region q2 > 9M2
π , which is explained in detail

in [59]. The discontinuity equation for F(s, q2) reads

discF(s, q2) = 2i
(
F(s, q2) + F̂(s, q2)

)
θ(s− 4M2

π) sin δ(s) e−iδ(s), (3.13)

whose solution is given by a once-subtracted dispersive representation [59]:

F(s, q2) = Ω(s)

{
a(q2) +

s

π

∫ ∞

4M2
π

ds′
F̂(s′, q2) sin δ(s′)
s′(s′ − s)|Ω(s′)|

}
. (3.14)

The numerical calculation of the integral equation (3.14) relies on the iterative solution

of Khuri-Treiman (KT) equations [128] based on the observation that F̂ is linear in F . In

practice, we solve (3.14) for a(q2)→ 1 (and a finite cutoff Λ3π above which we assume the

asymptotic behavior F̂(s, q2) ∼ 1/s) and restore the full dependence as an overall normal-

ization of the iterative solution. For q2 = M2
ω/φ, the solutions of (3.14) have been used to

describe the vector-meson decays ω/φ → 3π [59], where the subtraction constants a are

fixed from the partial decay widths of ω/φ→ 3π. In the present case, a(q2), as a function

of q2, contains the information about the coupling of the isoscalar photon to 3π states.

Therefore, a(q2) was determined from e+e− → 3π cross section data in [62], assuming that

three-body unitarity for γ∗s → 3π is dominated by the narrow resonances ω and φ.

In this work, we further improve the parameterization of a(q2) by introducing a con-

formal polynomial to account for the effects from inelastic channels. In detail, we employ a

once-subtracted representation with the addition of a conformal-polynomial term Cp(q
2),

a(q2) = αA +
q2

π

∫ ∞

sthr

ds′
ImA(s′)
s′(s′ − q2)

+ Cp(q
2), (3.15)

5The effect of F -waves has been studied for ω → 3π [59] and γπ → ππ [63], demonstrating that the

non-zero contributions that arise in the vicinity of the ρ3(1690) resonance can be safely ignored in the

present context.
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in which the function A is given by the sum of Breit-Wigner parameterizations

A(q2) =
∑

V

cV

M2
V − q2 − i

√
q2 ΓV (q2)

, (3.16)

where V represents ω and φ and as well as ω′(1420) and ω′′(1650) as the description of

the e+e− → 3π cross section extends to 1.8 GeV. The energy-dependent widths Γω/φ(q2)

of the ω/φ mesons derive from their main decay channels according to

Γω(q2) =
γω→3π(q2)

γω→3π(M2
ω)
Γω→3π +

γω→π0γ(q2)

γω→π0γ(M2
ω)
Γω→π0γ ,

Γφ(q2) =
γφ→3π(q2)

γφ→3π(M2
φ)
Γφ→3π +

∑

K=K+,K0

γφ→KK̄(q2)

γφ→KK̄(M2
φ)
Γφ→KK̄ , (3.17)

with Γi the measured partial decay width for the decay i and the energy-dependent

coefficients

γω→π0γ(q2) =
(q2 −M2

π)3

(q2)3/2
, γφ→KK̄(q2) =

(q2 − 4M2
K)3/2

q2
. (3.18)

The phase space γω/φ→3π(q2) is calculated as described in [59]. These main channels

amount to about 98% of the ω and φ total widths, while the missing 2% are remedied

by rescaling all partial widths accordingly. We also considered adding the leading missing

channels ω → π+π− and φ → ηγ explicitly to the parameterization, but this yields an

almost identical effect compared to the simple rescaling of the partial widths. For the ω′

and ω′′ excited-state resonances, with masses and widths taken from [104], we assume a

100% branching ratio to 3π. Due to the π0γ channel, the integration starts at sthr = M2
π0 .

The subtraction constant αA in equation (3.15) is fixed by the chiral anomaly at the real-

photon point for γ∗s → 3π (corrected by quark-mass renormalization) [61, 129],

αA =
F3π

3
× 1.066(10). (3.19)

Finally, the new conformal-polynomial term in (3.15) is given by

Cp(q
2) =

p∑

i=1

ci
(
z(q2)i − z(0)i

)
, z(q2) =

√
sinel − s1 −

√
sinel − q2

√
sinel − s1 +

√
sinel − q2

, (3.20)

where the inelastic threshold sinel is chosen at 1 GeV2 motivated by the nearby KK̄ thresh-

old and the second parameter is fixed at s1 = −1 GeV2. The degree p of the conformal

polynomial is larger than the actual number of free parameters for the following reasons.

First, the S-wave cusp must be eliminated because of the P -wave nature of the photon.

Second, a(q2) is constructed in such a way that the sum rule for the subtraction constant

αA is exactly fulfilled,

αA =
1

π

∫ ∞

sthr

ds′
Im a(s′)

s′
=

1

π

∫ ∞

sthr

ds′
ImA(s′)

s′
+

1

π

∫ ∞

sinel

ds′
ImCp(s

′)
s′

, (3.21)
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which induces another constraint on the coefficients ci in (3.20). Third, the integration

in (3.21) extends to infinity to fulfill the sum rule exactly, but in practice an isoscalar

integration cutoff sis needs to be introduced, both for the double-spectral representation of

the TFF that we will derive below to satisfy the asymptotic constraints from pQCD and

because the description of the e+e− → 3π data based on KT equations cannot be justified

to arbitrarily high energies. In practice, we take sis = (1.8 GeV)2, so that, to ensure the va-

lidity of (3.21), the imaginary part of the conformal polynomial has to decrease sufficiently

fast. For that reason, we constrain the ci further to cancel the leading asymptotic behavior

for q2 → ∞. For a degree p and n constraints on the asymptotic behavior the imaginary

part behaves as q−(2n+1) and p−n−2 free parameters remain. We find that the low-energy

e+e− → 3π data can be well described with two free parameters for n = 3–5 and three free

parameters for n = 6, with small deviations starting around 1.6 GeV. The representation

for a(q2) constructed in this manner not only results in an improved description of the data,

in particular above the φ resonance, but also guarantees the internal consistency of the dif-

ferent representations for the TFF when generalizing the single dispersion relation (3.28)

to the double-spectral representation (3.31), see section 3.3.

3.2.2 Fit results for e+e− → 3π

We determine the normalization a(q2) by fitting the residues cV and the coefficients of

the conformal polynomial ci to the e+e− → 3π data. To this end, the relation between

the e+e− → 3π cross section (neglecting the electron mass) and the γ∗s → π+π−π0 ampli-

tude (3.10) is given by

σe+e−→3π(q2) = α2

∫ smax

smin

ds

∫ tmax

tmin

dt
(s− 4M2

π)λ(q2,M2
π , s) sin2 θs

768π q6
|F(s, t, u; q2)|2,

(3.22)

where the integration boundaries are

smin = 4M2
π , smax =

(√
q2 −Mπ

)2
,

tmin/max = (E∗− + E∗0)2 −
(√

E∗2− −M2
π ±

√
E∗20 −M2

π

)2

, (3.23)

with

E∗− =

√
s

2
, E∗0 =

q2 − s−M2
π

2
√
s

. (3.24)

As detailed in [62], the most comprehensive single data sets of the e+e− → 3π cross

section at low and high energies are provided by SND [130, 131] and BaBar [132], respec-

tively, so that the combined SND+BaBar data set yields the dominant constraint for the

entire energy region below 1.8 GeV, with negligible differences when fitting to the full data

base instead (see the fits in [62] to the data compilation from [133]). The uncertainty

estimates for the fits are generated based on the following variations: F(s, q2) is calculated

using the three different ππ phase shifts introduced in section 3.1 in the context of the

pion vector form factor. Additionally, the cutoff Λ3π in the integral equation (3.14) above

which the asymptotic behavior is assumed is varied from 1.8 to 2.5 GeV.
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Figure 6. Fits to the e+e− → 3π cross section from SND [130, 131] and BaBar [132] with

the different variants of the conformal polynomial labeled by n, the phase shift from [113], and

Λ3π = 2.5 GeV, in comparison to [62] (HKLNS14).

The e+e− → 3π cross sections for different values of n fit to the SND+BaBar data sets

below 1.8 GeV using the phase shift from [113] and a cutoff Λ3π = 2.5 GeV are shown in

figure 6. It can be clearly seen that the fit results are substantially improved above the φ

peak by introducing the conformal polynomial in comparison to the results obtained in [62].

The uncertainty bands for individual n are not included in the plot as the curves would

be hard to distinguish otherwise especially below 1.6 GeV. The differences in the reduced

χ2, see table 1 for the explicit fit results for the different phase shifts and cutoffs Λ3π, are

almost exclusively generated by the high-energy end of the fit range, thus indicating that

indeed our KT description starts to break down around 1.8 GeV. The low-energy data,

however, are described with a reduced χ2/dof ∼ 1.

3.3 Double-spectral representation

The previous discussion of the isospin decomposition (3.3) and the crucial building blocks

in the unitarity relation for the pion TFF, the pion vector form factor F Vπ (s) and the

γ∗s → 3π P -wave amplitude f1(s, q2), defines the quantities that enter a once-subtracted

dispersion relation in the isovector virtuality (for fixed isoscalar virtuality) [61],

Fvs(q
2
1, q

2
2) = Fvs(0, q

2
2) +

q2
1

12π2

∫ ∞

4M2
π

dx
q3
π(x)

(
F Vπ (x)

)∗
f1(x, q2

2)

x3/2(x− q2
1)

, (3.25)
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n = 3 n = 4 n = 5 n = 6

cω [GeV−1] 2.87 . . . 2.90 2.85 . . . 2.88 2.84 . . . 2.87 2.83 . . . 2.86

cφ [GeV−1] −(0.400 . . . 0.412) −(0.400 . . . 0.414) −(0.400 . . . 0.414) −(0.400 . . . 0.413)

cω′ [GeV−1] −(0.24 . . . 0.52) −(0.14 . . . 0.39) −(0.040 . . . 0.33) −0.15 . . . 0.14

cω′′ [GeV−1] −(0.80 . . . 1.16) −(0.60 . . . 0.94) −(0.49 . . . 0.90) −(0.45 . . . 0.78)

c1 [GeV−3] −(1.56 . . . 1.79) −(1.75 . . . 1.96) −(1.81 . . . 2.08) −(2.00 . . . 2.24)

c2 [GeV−3] −(1.05 . . . 1.16) −(1.28 . . . 1.40) −(1.44 . . . 1.50) −(1.67 . . . 1.73)

c3 [GeV−3] — — — −0.05 . . . 0.12

χ2/dof 1.37 . . . 1.70 1.58 . . . 2.03 1.68 . . . 2.15 1.71 . . . 2.16

Table 1. Fit parameters and reduced χ2 for the e+e− → 3π fits to SND+BaBar [130–132] using

different versions of the conformal polynomial with asymptotic behavior q−(2n+1). The ranges

indicate the variation found for the different ππ phase shifts and values of Λ3π.

with qπ(s) =
√
s/4−M2

π . For q2
2 = M2

ω/φ, the representation (3.25) has been used to

describe the ω/φ→ π0γ∗ TFFs, where the sum rule for the subtraction function

Fvs(0, q
2
2) =

1

12π2

∫ ∞

4M2
π

dx
q3
π(x)

x3/2

(
F Vπ (x)

)∗
f1(x, q2

2) (3.26)

is related to the real-photon decays [60]. For q2
2 = 0, (3.25) yields the isovector part of the

singly-virtual pion TFF,

Fvs(q
2
1, 0) = Fvs(0, 0) +

q2
1

12π2

∫ ∞

4M2
π

dx
q3
π(x)

(
F Vπ (x)

)∗
f1(x, 0)

x3/2(x− q2
1)

, (3.27)

where the sum rule Fvs(0, 0) = Fπγγ/2 is typically saturated at the 90% level [61, 62].

For the (g − 2)µ application (2.5) we need a representation of the space-like doubly-

virtual form factor that can be evaluated at arbitrarily high energies, matching smoothly

onto the asymptotic behavior expected from pQCD, see section 5. In this regard, the

once-subtracted representation is disfavored because it approaches a constant for large vir-

tualities, contradicting the pQCD scaling, unless the sum rule for the subtraction constant

is fulfilled exactly. In practice, however, the uncertainties in the input always generate

variants of the form factor that behave as a constant at high energies, and such a constant

form factor does not lead to a convergent (g − 2)µ integral. Therefore, we start from an

unsubtracted dispersion relation [62]

Fvs(q
2
1, q

2
2) =

1

12π2

∫ ∞

4M2
π

dx
q3
π(x)

(
F Vπ (x)

)∗
f1(x, q2

2)

x1/2(x− q2
1)

, (3.28)

despite the expected 10% violation of the sum rule for the normalization Fπγγ/2. To

remedy this shortcoming, we introduce an isovector integration cutoff siv and add an ef-

fective pole collecting the contributions from higher intermediate states and high-energy

contributions in the 2π and 3π channels, see section 5 for details. In this manner, the rep-

resentation (3.28), in principle, already determines the general doubly-virtual form factor.

– 14 –



J
H
E
P
1
0
(
2
0
1
8
)
1
4
1

However, to find a representation that facilitates the evaluation in the entire space-like

region we derive a more compact double-spectral representation that makes the analyticity

of the form factor Fπ0γ∗γ∗(q
2
1, q

2
2) in both of its arguments q2

1 and q2
2 explicit,

Fπ0γ∗γ∗(q
2
1, q

2
2) =

1

π2

∫ ∞

0
dx

∫ ∞

0
dy

ρ(x, y)

(x− q2
1)(y − q2

2)
, (3.29)

where ρ(x, y) is the double-spectral density that we aim to reconstruct from the low-lying

hadronic intermediate states. Accordingly, the single dispersion relation (3.28) is elevated

to the double-spectral form by performing yet another dispersion relation in the isoscalar

variable,

Fvs(−Q2
1, q

2
2) =

1

π

∫ sis

sthr

dy
ImFvs(−Q2

1,y)

y−q2
2

=
1

12π2

∫ siv

4M2
π

dx
q3
π(x)

(
F Vπ (x)

)∗
f1(x,q2

2)

x1/2
(
x+Q2

1

) , (3.30)

where sis is the isoscalar integration cutoff and the threshold sthr = M2
π0 is the same as

in (3.21). This leads to a double-spectral representation of the form factor,

F disp
π0γ∗γ∗(−Q

2
1,−Q2

2) =
1

π2

∫ siv

4M2
π

dx

∫ sis

sthr

dy
ρdisp(x, y)(

x+Q2
1

)(
y +Q2

2

) +
(
Q1 ↔ Q2

)
,

ρdisp(x, y) =
q3
π(x)

12π
√
x

Im
[(
F Vπ (x)

)∗
f1(x, y)

]
, (3.31)

to describe the low-energy properties, which can be applied to space-like doubly-virtual

kinematics. The nonzero imaginary part of Fvs(−Q2
1, q

2) is attributed to three-body uni-

tarity in the isoscalar virtuality, both the three-pion cuts which result in the deviation of

the phase of f1(s, q2) from the phase of F Vπ (s) in the decay region q2 > 9M2
π [60] and

the complex nature of a(q2) as well. In fact, the complicated analytic structure of the

partial wave f1(s, q2) itself might make it seem surprising that the TFF fulfills a dispersive

representation as simple as (3.29), see appendix D for a more detailed discussion.

Formally, the equivalence of the single dispersion relation (3.28) and the double-

spectral representation (3.31) for Fvs(q
2
1, q

2
2) implies a sum rule

(
F Vπ (s)

)∗
f1(s, q2

2) =
1

π

∫ sis

sthr

dy
Im
[(
F Vπ (s)

)∗
f1(s, y)

]

y − q2
2

, (3.32)

which, once finite cutoffs are applied, requires that the singularities be concentrated in the

low-energy region to ensure overall consistency, precisely the motivation for constraining

the high-energy behavior of the imaginary part of a(q2) accordingly. In this context, due

to the pseudothreshold singularities located at s = (
√
q2

2 −Mπ)2 [60], it becomes more

convenient to consider the integrated quantities instead, which is why we do not pursue

the sum rule (3.32) itself any further.
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4 Relevant scales for the transition between low and high energies

Having presented the construction of the dispersive representation of the low-energy prop-

erties of the pion TFF, we first wish to offer a qualitative understanding of the relevant

scales that show up in its subsequent quantitative completion at higher energies. To this

end, we will use phenomenologically successful models. The following reasoning is meant

to be of qualitative use to help understanding the characteristic mass or energy scales that

we find later in the model-independent final calculations.

For the calculation of the hadronic quantum fluctuations in the magnetic moment of

the muon, the latter’s mass provides a scale somewhat smaller than the masses of pions;

hence it is clear that the low-energy sector of QCD plays the most important role for these

quantum fluctuations. Yet, concerning the pion-pole contribution, it turns out that only

a proper high-energy behavior of the pion TFF guarantees the convergence of the corre-

sponding integrals. Thus, pure low-energy information is not enough for a quantitatively

reliable determination of the pion-pole contribution. Fortunately, pQCD provides some

input for the asymptotic behavior of the pion TFF [134–136]. Also from a practical point

of view, an interpolation between the low-energy region and the asymptotic behavior is

more constraining and therefore more accurate than a pure extrapolation. The question

related to relevant scales is then: where is the effective onset sm of the asymptotic region?

The central piece of our framework is the dispersive representation of the pion TFF: at

low energies, the virtual photons couple dominantly to two- and three-pion states. Below

about 1 GeV, these two- and three-pion states essentially behave elastically. Their rescat-

tering is quantitatively under control by the dispersive framework developed in [59–63].

We use the phrase “low-energy region” to characterize the regime dominated by elastic

reactions. Above 1 GeV, new channels, i.e. inelasticities become important. For instance,

in the isovector channel, the two-pion states (and the virtual photon) couple to four-pion

states [59, 113, 114, 137–139]. Although the threshold for four pions lies significantly be-

low 1 GeV, both the smallness of four-pion phase space near threshold and the derivative

couplings of the pions demanded by chiral symmetry effectively delay the onset of the

importance of the four-pion states to the πω threshold. In the isoscalar channel, the three-

pion states (and the virtual photon) couple to kaon pairs; this is particularly significant

in the energy region of the φ meson, which has sizable branching fractions to kaon pairs

and to three pions [104]. Of course, these are only examples: at higher energies, more and

more channels come into play.

From a technical point of view, it is much more challenging to deal with the coupled-

channel dynamics above 1 GeV. On the other hand, it should be clear that for our purposes

a less detailed knowledge of the regime beyond the low-energy region is acceptable. We

have to expect an effective scale Meff of the higher-lying inelasticities, i.e. the effective

scale of the physics not covered by two- and three-pion states and their respective elastic

rescattering, to reside at an energy larger than 1 GeV; but we shall argue now that it

cannot be far away from it either.

The pion TFF is a part of the PV V three-point correlator, where P/V denotes a

quark current with pseudoscalar/vector quantum numbers. With the standard Lehmann-
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Symanzik-Zimmermann procedure, one can map out the pion-pole contribution to the

PV V correlator; see, e.g., [98]. The crucial point is that the whole PV V correlator would

vanish if chiral symmetry were not broken [140]. On the other hand, chiral symmetry

breaking is a long-distance, low-energy phenomenon. Quantitatively, it is characterized by

the scale 4πFπ ≈ 1 GeV [141]. Thus, the pion TFF as part of the PV V correlator cannot

be influenced too much from high-lying inelasticities, and we expect Meff more or less close

to 1 GeV.

This reasoning is not entirely independent of the question concerning the onset sm

of the asymptotic region; yet, it is not the same question. The asymptotic region con-

cerns large space-like momenta where one can apply pQCD and the operator product

expansion (OPE), while the higher-lying inelasticities concern the time-like input for a

dispersive representation. To relate the frameworks of OPE and dispersion theory, we use

the QCD sum rule method [142–146], to be more specific: the light-cone QCD sum rules

(LCSRs) [147–150]. The details of this analysis with the aim of an estimate for sm are

provided in appendix E. In the QCD sum rule language, sm coincides with the duality

threshold. It enters as a free parameter that must be determined by comparison to data.

For the case at hand, we compare to the singly-virtual pion TFF. By construction, the

duality threshold must lie above the low-energy regime that is parameterized explicitly by

hadronic resonances in the sum rule method, yet the analysis of appendix E reveals that

the duality threshold cannot lie significantly higher either. Figure 16 in appendix E shows

that the best agreement with the data on the singly-virtual pion TFF is achieved by low

values of sm, again not much larger than 1 GeV2.

5 Matching to the asymptotic behavior

The dispersive double-spectral density of (3.31) incorporates all the low-lying singularities

in the 2π and 3π channels, but does not account for higher intermediate states nor the

correct matching to pQCD. Therefore, we now develop the explicit form of the effective and

asymptotic contributions in (1.2), considering both leading-order (LO) and next-to-leading-

order (NLO) pQCD dynamics as well as an effective pole in order to impose the correct

normalization Fπγγ and incorporate the constraints from space-like singly-virtual data.

5.1 Leading-order perturbative QCD

If both momenta q2
1 and q2

2 are large (and have the same sign), the T -product of the

electromagnetic currents jµ in (3.1) can be expanded along the light cone x2 = 0. The

lowest-order and leading-twist expansion of the TFF reads [134–136]

Fπ0γ∗γ∗(q
2
1, q

2
2) = −2Fπ

3

∫ 1

0
du

φπ(u)

uq2
1 + (1− u)q2

2

+O
(
q−4
i

)
, (5.1)

where powers of asymptotic momenta are denoted by qi. The twist-two pion distribution

amplitude can be expanded in terms of Gegenbauer polynomials C
3/2
2n as

φπ(u, µ) = 6u(1− u)

[
1 +

∞∑

n=1

a2n(µ)C
3/2
2n (2u− 1)

]
, (5.2)
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which provides a universal asymptotic distribution amplitude φπ(u) = 6u(1 − u) at large

factorization scale µ→∞ as the logarithmically µ-dependent coefficients a2n tend to zero.

Since at low scales the non-perturbative coefficients a2n are largely unknown, we will use

the asymptotic distribution amplitude φπ(u) in the following analysis, ignoring the higher-

order terms n ≥ 1 as well as higher-twist corrections.

Introducing an asymmetry parameter ω = (q2
1 − q2

2)/(q2
1 + q2

2), the leading expres-

sion (5.1) can be changed into the form

Fπ0γ∗γ∗(q
2
1, q

2
2) = −4Fπ

3

f(ω)

q2
1 + q2

2

+O
(
q−4
i

)
, (5.3)

where

f(ω) =

∫ 1

0
du

φπ(u)

u(1− ω) + (1− u)(1 + ω)
. (5.4)

Specifically, this implies the OPE limit [143, 151] for the diagonal form factor (ω = 0),

Fπ0γ∗γ∗(−Q2,−Q2) =
2Fπ
3Q2

+O
(
Q−4

)
. (5.5)

In addition, formal evaluation at ω = ±1 produces

Fπ0γ∗γ∗(−Q2, 0) = Fπ0γ∗γ∗(0,−Q2) =
2Fπ
Q2

+O
(
Q−4

)
, (5.6)

usually referred to as the Brodsky-Lepage (BL) limit of the singly-virtual form factor.

However, the OPE expansion justifies (5.1) only for |ω| < 1/2 [152, 153], otherwise its

derivation cannot be considered rigorous. Apart from these two frequently studied con-

ventional limits, (5.3) also predicts the asymptotic behavior for arbitrary virtualities q2
1

and q2
2 by (5.4). Hence, our representation will be matched to f(ω) to fully take into

account the entire domain of space-like virtualities, instead of just two particular lim-

its (5.5) and (5.6). Beyond the leading expansion (5.1), calculations including αs correc-

tions [154, 155], higher terms in the Gegenbauer-polynomial expansion of φπ(u) [147, 156]

within QCD sum rules [148–150, 157], Dyson-Schwinger equations [158, 159], and Regge

theory [160–162] could be considered, but a consistent treatment of all subleading correc-

tions becomes very complicated with little numerical impact on (g − 2)µ. As an explicit

example we will consider αs corrections in section 5.2.

At LO, we implement the pQCD constraints as follows. First, it has been observed

that (5.1) can be transformed into a dispersion relation by a simple change of variables

u→ x/(x− q2
2) for space-like virtuality q2

2 [148],

Fπ0γ∗γ∗(q
2
1, q

2
2) =

1

π

∫ ∞

0
dx

ImFπ0γ∗γ∗(x, q
2
2)

x− q2
1

, (5.7)

with

ImFπ0γ∗γ∗(x, q
2
2) =

2πFπ
3(x− q2

2)
φπ

(
x

x− q2
2

)
. (5.8)
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Furthermore, we find that identifying the discontinuities in the second variable q2
2 leads to

a new double-spectral representation for the asymptotic expression:

Fπ0γ∗γ∗(q
2
1, q

2
2) =

1

π2

∫ ∞

0
dx

∫ ∞

0
dy

ρasym(x, y)

(x− q2
1)(y − q2

2)
, (5.9)

where

ρasym(x, y) = −2π2Fπxyδ
′′(x− y) (5.10)

is a double-spectral density proportional to xy and concentrated along the diagonal direc-

tion x = y because of the second derivative of the delta function. Note that the singular

nature of ρasym(x, y) along the diagonal direction is a rather general feature not restricted

to the asymptotic distribution amplitude φπ(u). For instance, a constant pion distribution

amplitude φπ(u) = 1 produces a double spectral density (2π2Fπ/3)δ(x − y) proposed in

the context of QCD sum rules [143].

The double-spectral form of the pQCD expression (5.9) then suggests to decompose

the TFF in terms of the different integration regions

Fπ0γ∗γ∗(q
2
1, q

2
2) =

1

π2

∫ sm

0
dx

∫ sm

0
dy

ρ(x,y)

(x−q2
1)(y−q2

2)
+

1

π2

∫ ∞

sm

dx

∫ ∞

sm

dy
ρ(x,y)

(x−q2
1)(y−q2

2)

+
1

π2

∫ sm

0
dx

∫ ∞

sm

dy
ρ(x,y)

(x−q2
1)(y−q2

2)
+

1

π2

∫ ∞

sm

dx

∫ sm

0
dy

ρ(x,y)

(x−q2
1)(y−q2

2)
,

(5.11)

where sm is a continuum threshold introduced to separate the different regions, see the dis-

cussion in section 4. On the one hand, the low-energy input to the double-spectral density

has been derived in (3.31). On the other, the spectral density in the doubly-asymptotic

region can be identified with ρasym(x, y) in (5.10). The spectral densities in the third

and fourth mixed low- and high-energy regions are not well constrained, e.g. the asymp-

totic spectral density ρasym(x, y) applied in these regions simply vanishes. Given that the

contribution from the doubly-asymptotic region alone can provide the correct asymptotic

behavior and that both the BL limit as well as the available data can be described with

a combination of the low-energy dispersive contribution and an effective pole, we will dis-

card the contributions from the mixed regions altogether assuming that the effective pole

sufficiently takes care of them. In the end, this defines the asymptotic contribution

F asym
π0γ∗γ∗(q

2
1, q

2
2) = 2Fπ

∫ ∞

sm

dx
q2

1q
2
2

(x− q2
1)2(x− q2

2)2

=
2Fπq

2
1q

2
2

(q2
1 − q2

2)2

(
1

sm − q2
1

+
1

sm − q2
2

+
2

q2
1 − q2

2

log
sm − q2

1

sm − q2
2

)
, (5.12)

which reproduces the limit defined by (5.1) for non-vanishing virtualities.

We remark that an asymptotic contribution of the form (5.12) could also be used to

impose the correct asymptotic behavior on a hadronic model. For instance, for a VMD-

inspired model one could write

FVMD
π0γ∗γ∗(q

2
1, q

2
2) = Fπγγ

(
(1− ε)M4

1

(M2
1 − q2

1)(M2
1 − q2

2)
+

εM4
2

(M2
2 − q2

1)(M2
2 − q2

2)

)
+ F asym

π0γ∗γ∗(q
2
1, q

2
2),

(5.13)
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which amounts to a simplified model for our full representation (1.2). By construction, all

asymptotic limits for non-vanishing virtualities are correct, while the strict BL limit (5.6)

emerges for (1− ε)M2
1 + εM2

2 = 8π2F 2
π . We tried to describe our full result using (5.13) as

an approximation, treating either M1, M2, and ε, or, in addition, sm as free fit parameters.

Such an ansatz seems to work reasonably well, with systematic errors introduced at the

level of aµ around 0.5× 10−11, but of course cannot replace the full calculation.

5.2 Next-to-leading-order perturbative QCD

Higher orders in pQCD beyond the leading result [134–136] have been derived in [155].

Adapted to our notation, the corresponding correction can be expressed as

Fπ0γ∗γ∗(q
2
1, q

2
2) =−2Fπ

3

∫ 1

0
du

φπ(u)

uq2
1 +(1−u)q2

2

(
1+

CFαs(µ
2
s)

2π
f(u,−q2

1,−q2
2,−µ2)

)
,

f(u,q2
1, q

2
2,µ

2) =−9

2
+
L12(L12−2)

2

(
1− q2

1q
2
2

(q2
1−q2

2)2u(1−u)

)
+

3

2
L12

− q2
1

2(q2
1−q2

2)

(
1− q2

2

(q2
1−q2

2)(1−u)

)
L1(L1−2)+

q2
2

2(q2
1−q2

2)u
(L12−L2)

+
q2

2

2(q2
1−q2

2)

(
1+

q2
1

(q2
1−q2

2)u

)
L2(L2−2)− q2

1

2(q2
1−q2

2)(1−u)
(L12−L1),

Li = log
q2
i

µ2
, L12 = log

uq2
1 +(1−u)q2

2

µ2
, CF =

N2
c −1

2Nc
=

4

3
. (5.14)

In the singly-virtual limit we obtain

Fπ0γ∗γ∗(−Q2, 0) =
2Fπ
Q2

(
1− 5

2

CFαs(−Q2)

2π

)
=

2Fπ
Q2

(
1− 5

3

αs(−Q2)

π

)
, (5.15)

in agreement with the result stated in [155]. Similarly, evaluation in the doubly-virtual

limit produces

Fπ0γ∗γ∗(−Q2,−Q2) =
2Fπ
3Q2

(
1− 3

2

CFαs(−2Q2)

2π

)
=

2Fπ
3Q2

(
1− αs(−2Q2)

π

)
. (5.16)

In each case, we have set µ2
s = q2

1 + q2
2 [155]. As a powerful check on (5.14) the dependence

on µ cancels also for general virtualities if the asymptotic form of the distribution ampli-

tude is employed. Subleading terms in the Gegenbauer-polynomial expansion of the pion

distribution amplitude again depend on µ, which compensates the µ dependence within

the non-asymptotic αs corrections.

For the asymptotic contribution to the pion TFF we seek corrections to

F asym
π0γ∗γ∗(q

2
1, q

2
2) = 2Fπ

∫ ∞

sm

dx
q2

1q
2
2

(x− q2
1)2(x− q2

2)2
. (5.17)
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Since the corresponding double-spectral function is peaked at x = y, the canonical choice

of scale should be

F asym
π0γ∗γ∗(q

2
1, q

2
2) = 2Fπ

∫ ∞

sm

dx
q2

1q
2
2

(x− q2
1)2(x− q2

2)2

(
1 +

2

3π
αs(−x)δ(q2

1, q
2
2,−x)

)
,

δ(q2
1, q

2
2, µ

2) =

∫ 1
0 du φπ(u)

uq2
1+(1−u)q2

2
f(u,−q2

1,−q2
2,−µ2)

∫ 1
0 du φπ(u)

uq2
1+(1−u)q2

2

, (5.18)

and we have checked that for Q2 values of practical importance this estimate yields correc-

tions close to the naive expectation −αs(−2Q2)/π ∼ −10% from the doubly-virtual limit.

In the end, the uncertainty in the choice of matching scale sm in the LO contribution safely

encompasses such corrections.

5.3 Constraints from singly-virtual data

As the next step, we present the conceptual ideas how to incorporate high-energy TFF

data in our representation (1.2). The final results of the corresponding fits will be provided

in section 6 together with all other results for the pion TFF in various kinematic regimes.

Despite the absence of doubly-virtual measurements of the TFF thus far, there is ample

experimental information for space-like singly-virtual kinematics [163–166]. These data

sets cover primarily large virtualities and thus provide the opportunity to probe the high-

energy behavior of the singly-virtual form factor beyond the low-energy region . 1 GeV,

the latter being most relevant for aµ. Most high-energy data in fact corroborate the BL

limit limQ2→∞Q
2Fπ0γ∗γ∗(−Q2, 0) = 2Fπ with f(|ω| = 1) = 3/2 despite the questionable

convergence at |ω| = 1, in contrast to a naive continuation of the OPE f(|ω| = 1) = 1 or

f(|ω| = 1) = 5/2 obtained form the Chernyak-Zhitnitsky distribution amplitude [147, 156].

Potential deviations from the BL limit were suggested by the BaBar experiment [165], where

the measured form factor exceeded the BL limit by as much as 50% at Q2 > 10 GeV2, but

the latest Belle measurement [166] did not find any evidence for such a rapid growth at

high Q2. We will assign sufficiently broad uncertainty bands that cover both scenarios, so

that our final result for aπ
0-pole
µ will not depend on any prejudice either way.

Our representation evaluated for singly-virtual asymptotics receives contributions from

the low-energy dispersive part (3.31), while the pQCD term (5.12) vanishes. In practice,

the low-energy representation (3.31) already fulfills the BL limit at a level around 55%,

so that only the remainder needs to be generated by higher intermediate states as well as

high-energy contributions to the 2π and 3π channels. This can be conveniently achieved

by an effective pole in the double-spectral density, which amounts to an extra term

F eff
π0γ∗γ∗(q

2
1, q

2
2) =

geff

4π2Fπ

M4
eff

(M2
eff − q2

1)(M2
eff − q2

2)
, (5.19)

where the coupling geff is determined by imposing the sum rule for Fπγγ and the mass pa-

rameter Meff is fit to the space-like singly-virtual data [163–166]. The resulting parameters

geff and Meff are found to be around 10% and (1.5–2) GeV respectively, in agreement with

the assumption that an effective pole subsumes the contributions from higher intermediate
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states. As pointed out in the discussions of the pion phase shift (2π states) and of the

fit to the cross section for e+e− → 3π (3π states), our dispersive representation includes

some part of the spectral strength of the energy region (1–2) GeV. Naively, one might then

expect that the complementary part covered by the effective pole of (5.19) should lead

to a value of Meff significantly higher up in energy. However, as pointed out in section 4,

there cannot be much spectral strength at very high energies contributing to the pion TFF.

Phrased differently, the range found for Meff is completely reasonable and a better descrip-

tion of the region above 1 GeV would merely lead to a smaller value of geff instead of a

higher value of Meff.

In view of the tension of the BaBar data [165] both with the BL limit and the other

data sets we need to specify how we treat the corresponding systematic uncertainty in our

fits. First, we observe that, while otherwise the results are very stable with respect to

the lower threshold Q2
min above which data are fit, including the BaBar data induces a

strong sensitivity on Q2
min, and the χ2 deteriorates appreciably if Q2

min is increased. For

this reason, we define the central value of our analysis by the fit to all data sets excluding

BaBar, with Q2
min = 5 GeV2, which leads to an asymptotic value almost exactly at the BL

limit. To estimate the systematic uncertainties, we perform fits with Q2
min = (5–10) GeV2,

with and without the BaBar data, and for each fit consider a 3σ error band. The envelope

of all these fits corresponds to an uncertainty band +20
−10% around the central value, where

the asymmetric error reflects the fact that the BaBar data imply a systematic shift in the

upward direction. In this way, we assign a very generous error band to the space-like fits,

in such a way that the systematic uncertainties are safely covered by the corresponding

error estimate in our final result. Moreover, since only data above 5 GeV2 are included in

the fit, the low-energy region remains a prediction, effectively improving the asymptotic

behavior of the result from [62] by the matching to the pQCD constraints.

6 Numerical results

In this section we present the numerical outcome of our analysis. First of all, the singly-

virtual pion TFF in the time-like region is predicted and the resulting e+e− → π0γ cross

section is compared to the corresponding experimental results. Second, the space-like

doubly-virtual form factor is discussed, in particular along the singly-virtual and the diag-

onal direction, and the asymptotic behavior in the entire domain of space-like kinematics

is further confronted with the predictions from pQCD. Last, the pion-pole contribution

to aµ is calculated along with comprehensive uncertainty estimates, each of which will be

related to the various experimental input quantities.

6.1 Time-like form factor and e+e− → π0γ

According to (3.26) and (3.27), the time-like singly-virtual TFF obeys a once-subtracted

dispersion relation:

Fπ0γ∗γ∗(q
2, 0) = Fπγγ+

1

12π2

∫ ∞

4M2
π

dx
q3
π(x)

(
F Vπ (x)

)∗

x3/2

{
f1(x, q2)−f1(x, 0)+

q2

x− q2
f1(x, 0)

}
,

(6.1)
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where the normalization at the real photon point q2 = 0 is fixed to the chiral anomaly using

again the sum rule (3.26). For the studies in [62], the isoscalar contribution corresponding to

the first two terms in the integrand of (6.1) was calculated using the previously determined

partial wave f1(s, q2), where an asymptotic continuation ∼ 1/x was assumed above the

isovector integration cutoff siv. The last term, the isovector piece, was determined using

a finite matching point of 1.2 GeV [61]. Here, we will consider an update of this once-

subtracted analysis based on the new parameterization for a(q2), including the conformal

polynomial and the new isovector part, where siv is chosen as a strict integration cutoff for

both isoscalar and isovector contributions in line with the dispersive representation (3.31).

At the same time, the double-spectral representation (3.29) provides an unsubtracted form

of the time-like TFF

Fπ0γ∗γ∗(q
2, 0) = F disp

π0γ∗γ∗(q
2, 0) + F eff

π0γ∗γ∗(q
2, 0), (6.2)

where the determination of the parameters geff and Meff in the effective pole is described

in section 5.3.

The relation between the e+e− → π0γ cross section and the pion TFF reads (neglecting

the mass of the electron for simplicity)

σe+e−→π0γ(q2) = α2 (q2 −M2
π0)3 π

6 q6
|Fπ0γ∗γ∗(q

2, 0)|2. (6.3)

We emphasize that our predictions of the time-like form factor and thus the cross section

are entirely based on the dispersive framework with the input quantities described in the

previous sections: the anomalies Fπγγ and F3π, the ππ P -wave phase shift, the pion vector

form factor, and the e+e− → 3π cross section data.

The resulting e+e− → π0γ cross section predicted from the once-subtracted and the

unsubtracted TFFs based on the new parameterization of a(q2) are compared to the pre-

vious analysis [62] in figure 7. In addition to the e+e− → π0γ cross section measure-

ments [167–169] already included in [62], we also take into account the most accurate new

data determined from the full data sample of the SND experiment [170]. The mean val-

ues of our cross section are obtained averaging over the variations of the input quantities,

n from 3–6 in the conformal polynomial of a(q2), and also the change of the integration

cutoffs Λ3π and
√
siv in the range (1.8–2.5) GeV. The band corresponding to the theoret-

ical uncertainties σth, defined as the maximum deviations of all the variations from the

average cross section, are only shown for the unsubtracted TFF in figure 7, since other-

wise the individual bands could hardly be differentiated. These results are fully consistent

with [62], which is not immediately guaranteed for the unsubtracted version (6.2) given

that the effective pole introduced to enforce the correct normalization implies a finite range

of validity, the effects of which could potentially affect the low-energy region in particular

for low masses Meff.

We further calculate the reduced χ2 corresponding to these results in the case of

the different experimental data sets [167–170] for a more quantitative assessment of our

description. The reduced χ2/dof calculated below 1 GeV and 1.1 GeV is shown in table 2,
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Figure 7. The e+e− → π0γ cross section calculated from the once-subtracted TFF (blue solid

line), the unsubtracted TFF (red dashed line), and [62] (black dot-dashed line), compared to

the data of SND [167, 168], CMD2 [169], and SND (2016) [170]. The inserts show the same plot

around the ω and φ peaks, respectively. The gray band indicates our uncertainty estimate for the

unsubtracted TFF.

together with a modified variant

χ̃2 =

N∑

i=1

(
yi − yth(qi)

)2

σ2
i + σ2

th(qi)
, (6.4)

where qi =
√
q2
i and the difference between experiment and theory yi − yth(qi) is weighted

by the combined uncertainty
√
σ2
i + σ2

th(qi). We observe very good agreement between the

once- and unsubtracted TFFs, while, as expected, differences to [62] arise from the new

parameterization of a(q2). Below 1 GeV, the χ2 deteriorates for the previously studied data

sets from SND [167, 168] and CMD2 [169], but for the new SND data [170] the situation

is reversed, here the new a(q2) leads to a better description. The difference can be traced

back largely to the ω peak, see insert in figure 7, where now the strength of the resonance

is predicted almost perfectly, both for the subtracted and unsubtracted variants. In fact,

the slight difference in the χ2 originates almost exclusively from data outside the ω region.

Including the φ region, i.e. all data below 1.1 GeV, we find that the slight mismatch

at the resonance peak already observed in [62] is compounded, and accordingly the χ2

deteriorates appreciably when extending the energy region beyond 1 GeV. This indicates

that, most likely, the inelastic effects in a(q2) fit to the 3π channel, including imaginary
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SND CMD2 SND (2016)

once-subtracted TFF
χ2/dof 1.16 [2.76] 2.64 [12.7] 1.91 [4.73]

χ̃2/dof 0.43 [0.73] 1.10 [1.85] 0.42 [0.68]

unsubtracted TFF
χ2/dof 1.07 [2.51] 2.34 [11.5] 1.51 [4.04]

χ̃2/dof 0.36 [0.62] 0.95 [1.45] 0.29 [0.50]

HKLNS14
χ2/dof 0.90 [1.08] 1.82 [3.35] 2.15 [2.01]

χ̃2/dof 0.54 [0.62] 1.18 [1.39] 0.68 [0.65]

Table 2. Reduced χ2 and χ̃2 for the e+e− → π0γ cross section determined from the once-subtracted

and the unsubtracted TFFs and from [62] (HKLNS14), compared to SND [167, 168], CMD2 [169],

and SND (2016) [170] below 1 GeV [below 1.1 GeV].

parts that open around the KK̄ threshold, cannot describe the same energy region in the

e+e− → π0γ spectrum, reflecting the fact that these inelastic effects do not have to affect

the 3π and π0γ channels in the same way. Accordingly, the marked improvement in the 3π

channel just above the φ resonance comes at the expense of a mismatch in π0γ. Phrased

differently, the coefficients in the conformal polynomial if fit to e+e− → π0γ instead of

3π would change, likely restoring agreement in the φ region. In addition, a quantitative

description above 1 GeV would at some point be distorted by the influence of the effective

poles in the unsubtracted TFF (6.2), so that the once-subtracted variant would become

more appropriate for that purpose. While it is therefore not unexpected that the χ2 of the

central values increases in the φ region, we remark that when including the uncertainty

estimates, see χ̃2 in table 2, the description hardly deteriorates and in the case of the new

SND data and the unsubtracted TFF even slightly improves. This demonstrates that the

gradual breakdown of the predictive power of our formalism in the time-like region around

the φ resonance is largely captured by our uncertainty estimates.

In this work, we are most interested in the space-like TFF as it enters in (g − 2)µ,

and the improved description of 3π was constructed in such a way as to better control

the analytic continuation to the space-like region. In principle, one could imagine fitting

a similar representation of a(q2) to e+e− → π0γ data alone and calculating the analytic

continuation of the TFF based on the conformal parameters obtained in this fit. However,

we conclude that the uncertainties in both the theoretical description and the data base are

not competitive with a direct fit to e+e− → 3π, which therefore provides the most reliable

prediction of the space-like TFF. On the experimental side this conclusion is illustrated by

the fact that the different data sets favor different theoretical predictions, see table 2, while

on the theory side the complications become most apparent in the analytic continuation.

For the application in (g−2)µ the asymptotic behavior requires an unsubtracted dispersion

relation, but the effective pole would render precisely that variant unsuitable for a fit to

the whole e+e− → π0γ spectrum, as would be required for a reliable analytic continuation

to the space-like region.
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Figure 8. The singly-virtual form factors obtained in the current analysis (solid lines with gray

uncertainty band) and from the once-subtracted representation [62] (HKLNS14, dashed lines) in

the low-energy region, in comparison to CELLO [163] and CLEO [164] data.

6.2 Space-like form factor

After the discussion of the time-like TFF, we start the analysis of the space-like doubly-

virtual TFF

Fπ0γ∗γ∗(−Q2
1,−Q2

2) = F disp
π0γ∗γ∗(−Q

2
1,−Q2

2) + F eff
π0γ∗γ∗(−Q2

1,−Q2
2) + F asym

π0γ∗γ∗(−Q
2
1,−Q2

2)

(6.5)

by first comparing our result for the singly-virtual TFF with the once-subtracted dispersive

representation employed in [62],

Fπ0γ∗γ∗(−Q2, 0) = Fπγγ −
Q2

π

∫ ∞

sthr

ds′
ImFπ0γ∗γ∗(s

′, 0)

s′(s′ +Q2)
. (6.6)

For this purpose, the singly-virtual form factor at low energies up to 3 GeV2 is displayed in

the form Q2Fπ0γ∗γ∗(−Q2, 0) as a function of Q2 in figure 8, together with the experimental

data from CELLO [163] and CLEO [164], where the total uncertainties are obtained by

adding the statistical and systematic errors in quadrature.6 Our theoretical uncertainty

of the singly-virtual form factor is estimated as the quadratic sum of the ±1.4% Fπγγ
normalization uncertainty varying geff, the dispersive uncertainty, and the +20

−10% BL uncer-

tainty varying Meff. Here, the dispersive error is defined as the maximum deviation from

the central result found for different phase shifts and different pion vector form factors

6For the CELLO data, we directly take the uncertainties as given in [163] since systematic effects are

not listed separately.
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described in section 3.1, n ranging from 3–6 in the fit of a(q2) to the e+e− → 3π cross

section, and varying the integration cutoffs Λ3π and
√
siv between (1.8–2.5) GeV. The re-

sulting form factor depicted in solid lines is consistent with the available data and is close

to the result obtained from the once-subtracted representation (6.6) in dashed lines at low

energies below 1 GeV2. At larger momenta the curves start to deviate, which is exactly

expected from the matching of our representation to the correct high-energy behavior: the

once-subtracted representation tends to show a linear behavior in the plot, whereas the

unsubtracted form factor slowly converges to the BL limit.

Next, we update the low-energy parameters characterizing the singly-virtual TFF,

most notably its radius

aπ =
M2
π0

Fπγγ

∂

∂q2
Fπ0γ∗γ∗(q

2, 0)

∣∣∣∣
q2=0

= 31.5(2)Fπγγ (8)disp(3)BL × 10−3 = 31.5(9)× 10−3. (6.7)

The increased value compared to aπ = 30.7(6) × 10−3 [62] traces back to the matching

to the asymptotic behavior and corresponds to the fact that our form factor is slightly

smaller than the once-subtracted TFF (6.6) as show in figure 8. While fully consistent

within uncertainties, the central value thus moves closer to the one derived from Padé

approximants [44], aπ = 32.4(2.2) × 10−3, and also to the current experimental average

aexp
π = 33.5(3.1) × 10−3 [104], which is dominated by extractions from the Dalitz decay

π0 → e+e−γ [171] (compare also [172]) and the space-like CELLO data [163]. The disper-

sive approach continues to provide the most precise determination, due to the fact that

other extractions are limited either by poor space-like data or the small kinematic region

accessible in the Dalitz decay.

The next coefficient in the expansion around q2 = 0 is evaluated as

bπ =
M4
π0

Fπγγ

1

2

∂2

∂(q2)2
Fπ0γ∗γ∗(q

2, 0)

∣∣∣∣
q2=0

= 1.14(1)Fπγγ (4)disp(1)BL × 10−3 = 1.14(4)× 10−3, (6.8)

where the overall uncertainty is entirely dominated by the dispersive one as expected

for a low-energy parameter. The larger dispersive uncertainty compared to the result

1.10(2) × 10−3 obtained in [62] partially originates from the fact that the uncertainty

from the fits to the e+e− → 3π cross section using different variants of the conformal

polynomials in the parameterization (3.15) is included in the dispersive one. However, the

total uncertainty is still appreciably smaller e.g. compared to 1.06(26)× 10−3 from [44].

The asymptotic behavior of the singly-virtual TFF Q2Fπ0γ∗γ∗(−Q2, 0) at higher ener-

gies is shown in figure 9, along with the BaBar and Belle measurements [165, 166] and the

CELLO and CLEO data [163, 164] already included in figure 8.7 We find that the central

value of our result almost matches the BL prediction, slowly approaching this limit from be-

low. Although even fits including the BaBar data and using an energy threshold of 10 GeV2

7We include the Q2-independent error components of the systematic errors into the total uncertainties

of BaBar and Belle [165, 166].
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Figure 9. The singly-virtual form factor Q2Fπ0γ∗γ∗(−Q2, 0) as a function of Q2, in comparison to

the experimental data [163–166]. The dashed horizontal line indicates the BL limit.

do not fully capture the rapid rise suggested by the BaBar data, our error band does cover

all reasonably conceivable fit variants, see section 5.3, which implies that the statistical sig-

nificance of the last few BaBar data points does not suffice to drastically alter the fit results.

As the next step, we calculate the diagonal TFF Fπ0γ∗γ∗(−Q2,−Q2) as another repre-

sentative result for the doubly-virtual form factor. In the dispersive approach, the doubly-

virtual diagonal form factor is completely determined by the singly-virtual inputs by virtue

of its isospin structure. In particular, analyticity guarantees that the space-like form factor

has to be a smooth function when matching to pQCD, even though it receives contributions

from three different terms in (6.5), including the asymptotic contribution (5.12). The un-

certainty in this asymptotic piece is estimated by varying the threshold parameter sm in the

range 1.7(3) GeV2, which ensures a smooth matching and coincides with the typical range

found with LCSRs [147–150], see section 4. It is then added quadratically to the other three

sources of uncertainty already discussed in the context of the singly-virtual form factor.

The asymptotic behavior of the diagonal form factor is known rigorously from the

OPE, see (5.5). In the absence of experimental measurements, our result given in the form

Q2Fπ0γ∗γ∗(−Q2,−Q2) in figure 10 is compared to an LMD+V (lowest meson dominance +

vector [140]) resonance model fit to lattice data extrapolated to the physical pion mass [88].

We find a slightly smaller diagonal form factor compared to the LMD+V model fit to

lattice, otherwise observe consistency within the uncertainty bands. Similarly, the results

for Q2Fπ0γ∗γ∗(−Q2,−Q2) from our dispersive calculation and the lattice calculation of the

TFF [88] at high energies up to 40 GeV2 are shown in figure 11, again in agreement within

uncertainties. Our central value approaches the OPE limit from below, which indicates a

negative subleadingO(1/Q4) contribution as obtained in [143]. The total uncertainty at low
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Figure 10. The diagonal form factor Q2Fπ0γ∗γ∗(−Q2,−Q2) versus Q2 at low energies (blue solid

line with uncertainty band), compared to the LMD+V model fit to the lattice data [88] (red dashed

line with uncertainty band). The black dashed line shows the OPE limit.

energy is largely dominated by the one from the normalization Fπγγ , but the uncertainties

from the BL limit and the asymptotic contribution start to compete at higher energies.

Accordingly, the uncertainty bands of both analyses shrink to the central results at higher

energies since they are suppressed as subleading terms in O(1/Q2) and both analyses are

matched correctly to the leading OPE limit (5.5).

So far, we have shown the TFF for two special space-like kinematics to demonstrate

consistency with experiment and lattice, respectively. However, the analysis is not complete

since for (g − 2)µ we need the TFF as a function of two general photon virtualities. The

full result, presented in the form (Q2
1 +Q2

2)Fπ0γ∗γ∗(−Q2
1,−Q2

2) as a function of Q2
1 and Q2

2,

is depicted in figure 12. The virtualities Q2
1 and Q2

2 cover broad ranges from low-energy to

asymptotic regions of interest. The smooth transition and the correct high-energy behavior

of the form factor in the entire kinematic domain are dictated by the analyticity of the

form factor and the proper pQCD matching.8

Finally, we compare the high-energy behavior of our dispersive representation (6.5)

to the predictions of the asymptotic behavior from pQCD by analyzing the function f(ω)

defined in (5.3) and (5.4). Its value encodes the asymptotic behavior of the TFF for ar-

bitrary virtualities Q2
1 and Q2

2. f(ω) at the energy scale chosen as the highest accessible

energy of the BaBar and Belle experiments [165, 166] is illustrated in the left diagram

8A data file containing the doubly-virtual TFF for space-like kinematics, including the individual as well

as the combined uncertainties, is attached as supplementary material to this article.
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band). The OPE limit of the form factor is indicated by the black dashed line.

Figure 12. Three-dimensional representation of (Q2
1 +Q2

2)Fπ0γ∗γ∗(−Q2
1,−Q2

2) as a function of the

photon virtualities.
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Figure 13. f(ω) obtained from the dispersive representation (6.5) (blue solid line with uncertainty

band) calculated at Q2
1+Q2

2 = 35 GeV2 (left) and at Q2
1+Q2

2 = 1.6×103 GeV2 (right), in comparison

to f(ω) from the LO and NLO asymptotic pion distribution amplitudes φπ(u) = 6u(1 − u) (red

dashed line) and (5.14) (black dot-dashed line).

of figure 13. At these virtualities, our uncertainty band should safely cover most of the

modifications to f(ω) from higher terms in the Gegenbauer-polynomial expansion as well

as other proposed modifications of the pion distribution amplitude, as an example we show

the αs corrections (5.14). At very high energies, by construction, f(ω) obtained from the

dispersive representation is nearly identical to the one obtained from the LO asymptotic

pion distribution amplitude φπ(u) = 6u(1− u), therefore ensuring the correct high-energy

behavior of the form factor (see right diagram). In this case, since αs vanishes only loga-

rithmically, the NLO curve is not covered anymore by our uncertainty band, but such large

virtualities are irrelevant for the (g − 2)µ integral. Moreover, a complete NLO matching

would actually be disadvantageous, given that, by chance, for the relevant energy range

our central curve, although matched to the LO amplitude asymptotically, comes out closer

to the NLO prediction (see left diagram). We stress that figure 13 merely demonstrates to

which extent the TFF has approached the pQCD limit for a particular choice of photon

virtualities, it does not provide additional insights into the pion distribution amplitude

beyond its asymptotic form.

6.3 Consequences for aµ

We now turn to the main application of the detailed analysis of the space-like doubly-virtual

TFF presented in the preceding section, the pion-pole contribution to aµ. Evaluating the

loop integrals in its definition (2.5) by means of the TFF representation (6.5), the final

result reads

aπ
0-pole
µ = 62.6(1.7)Fπγγ (1.1)disp(2.2

1.4)BL(0.5)asym × 10−11

= 62.6+3.0
−2.5 × 10−11. (6.9)

Here, the uncertainties from the numerical integration are negligible, in fact, we used

both the standard variant (2.5) and a more symmetric parameterization of the integration

region first suggested in [173] and subsequently implemented in [52, 53]. All uncertainties
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therefore derive from the TFF, with individual contributions estimated in close analogy to

the previous sections. First, the central value is defined by the average over all variants

of the dispersive formalism, i.e. ππ phase shifts, cutoff parameters, parameterizations of

the pion vector form factor, and the conformal polynomial, with the uncertainty defined

as the maximum deviation from this average. The normalization uncertainty then reflects

the PrimEx result for the π0 decay width corresponding to an uncertainty of 1.4% in Fπγγ ,

the BL error the uncertainty band from figure 9, and the asymptotic error the impact of

the variation of sm in (5.12) according to sm = 1.7(3) GeV2. The quadratic sum of the four

different sources of uncertainty defines our final estimate. Note that while this strategy is

completely analogous to the corresponding error estimates discussed before for the time-

and space-like TFF, due to the fact that the TFF enters squared in the integral it is critical

to perform this error estimate for each source individually at the level of aµ, using the total

error band of the TFF instead would assume fully-correlated uncertainties and thereby

overestimate the final error.

The decomposition (6.9) further suggests opportunities for future cross checks and

improvements. First, the PrimEx-II measurement is expected to reduce the uncertainty in

Fπγγ to 0.85% [110, 111], which translates to normalization and total uncertainties of 1.0

and +2.7
−2.1 × 10−11 in aµ, respectively. Next, the dispersive uncertainties in particular in the

low-energy space-like TFF could be cross-checked and potentially improved by upcoming

data from BESIII [174], while the F3π low-energy theorem, used to normalize a(q2) in (3.19),

is currently under study at COMPASS [175]. A conclusive measurement of the asymptotic

singly-virtual TFF at Belle II [176, 177] would eliminate the systematic uncertainties from

tensions between BaBar and Belle as well as the BL limit. In fact, simply taking the

central fit to the full data base with 1σ uncertainties would formally reduce the BL error to

0.2×10−11 (with a central value of 63.1×10−11), which emphasizes the fact that our result,

at the level of accuracy quoted in (6.9), is insensitive to the tensions in the asymptotic

behavior. Strictly speaking, all singly-virtual data on the space-like pion TFF [163–166]

result from doubly-virtual measurements extrapolated to the point where one photon is on-

shell. With our doubly-virtual TFF (6.5) at hand, agreement with data could be checked

directly or our TFF could be used for the extrapolation. Also for this purpose, the values

for radius (6.7) and curvature (6.8) might prove useful. Finally, absent doubly-virtual data

it is not possible to reduce the pQCD uncertainties directly, but input from lattice QCD

would allow one to further scrutinize this contribution.

Our central result (6.9) is compared to previous calculations in table 3. For complete-

ness, we have also provided references that consider an off-shell pion-exchange contribution,

but emphasize that these results are model-dependent, corresponding to a particular choice

of the interpolating field. The wide spread among these results is therefore not surprising

given that, in general, each model will represent a different such choice. Similarly, a model

involving a constant TFF at the singly-virtual vertex in HLbL scattering [42] disagrees

with the dispersive definition of the pion-pole contribution, so that the resulting number

cannot be compared to ours either.

In the end, our central value is remarkably close to early estimates using hadronic

models [33, 37, 39], either VMD, LMD+V, or the extended Nambu-Jona-Lasinio model,

and falls within the quoted model errors that had been typically estimated at the level of
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method aπ
0-pole
µ aπ

0-“exchange”
µ aπ

0-“const”
µ reference

NJL model 81.8(16.5) [75]

LMD+V 72(12) [77]

holographic model 65.4(2.5) [79]

Dyson-Schwinger equations 57.5(6.9) [80]

nonlocal chiral quark model 50.1(3.7) [81]

resonance chiral theory 65.8(1.2) [82]

constituent chiral quark model 68(3) [83]

resonance chiral theory 66.6(2.1) [46]

LMD+V 78(10) [42]

ENJL, VMD 59(9) [33, 34]

VMD 57(6) [37]

LMD+V 58(10) [39]

lattice QCD, LMD+V fit 65.0(8.3) [88]

rational approximants 63.6(2.7) [86]

resonance chiral theory 58.1(9) [87]

dispersion relations 62.6+3.0
−2.5 this work, [64]

Table 3. Comparison to previous results for aπ
0-pole
µ . The uncertainties are reproduced as given

in the respective publication, see main text for further discussion. For completeness, we also list

works that calculate contributions involving an off-shell pion instead (π0-“exchange”) or put one

of the form factors to a constant (π0-“const”), but stress that these results either depend on the

interpolator of the pion field or do not correspond to the dispersively defined pion pole, respectively,

and therefore cannot be compared with the on-shell pion-pole contribution.

15%. Recent updates in resonance chiral theory [87] find similar values, however, without an

attempt to quantify the model uncertainty. Our central value is even closer to a calculation

of the pion pole using a TFF constructed from rational approximants, with parameters

determined from π0 → γγ and space-like singly-virtual data [86]. The quoted error contains

the propagated uncertainties from the data input and estimates of the systematics of the

approach by comparing different approximants and varying a parameter that describes

doubly-virtual kinematics within a certain range. In this respect, the main advantages

of the dispersive approach concern the fact that also data from the time-like region can

be used, as illustrated by the key role of the e+e− → 3π data in our analysis; that the

sensitivity to the space-like input is significantly reduced in comparison, removing the

systematic uncertainty from the asymptotic behavior of the TFF; and that the doubly-

virtual dependence is actually predicted within the formalism, eliminating the need for

an extrapolation of the singly-virtual input to doubly-virtual kinematics. Further, we

have provided an economical way to implement all short-distance constraints, which is not

straightforward to achieve in hadronic models, e.g. the LMD+V model fails to produce

the correct asymptotics for small but finite q2
1 and q2

2 →∞. Finally, our result also agrees
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with a calculation in lattice QCD [88]. Currently, an LMD+V ansatz is required to extend

the lattice data to the full range of virtualities to perform the (g− 2)µ integral, but future

updates at higher statistics are set to provide a sufficiently fine grid to enable a direct

comparison to (6.9) in a fully model-independent way.

7 Conclusions and outlook

In this work we presented a comprehensive dispersive reconstruction of the doubly-virtual

pion TFF, which determines the residue of the pion-pole contribution to aµ. As a first

step, dispersion relations for the pion TFF were derived based on its isospin structure

and unitarity relation, wherein the 2π and 3π intermediate states define the low-lying sin-

gularities in the isovector and isoscalar virtualities, respectively. As a consequence, the

doubly-virtual pion TFF was reconstructed in light of the low-energy theorems for Fπγγ
and F3π, the ππ P -wave phase shifts from Roy- and Roy-like equations, and experimental

input from e+e− → 2π, 3π. Extending previous work, we achieved an improved description

of the e+e− → 3π cross section data after introducing a conformal polynomial to take into

account the inelastic effects in the 3π channel. Starting from the unsubtracted disper-

sion relation (3.28), the double-spectral representation (3.31) was derived afterwards as a

convenient representation for the evaluation of the pion-pole (g − 2)µ loop integrals.

Another key advance in this work concerns the consistent matching to constraints from

pQCD. To this end, the LO leading-twist light-cone expansion (5.1) was reformulated in

terms of an asymptotic double-spectral density, which leads to an asymptotic contribu-

tion (5.12) governing the correct high-energy behavior of the TFF for non-vanishing vir-

tualities. We evaluated the known αs corrections but found them to be negligible within

uncertainties. As the final step, we introduced an effective pole term to remedy the nor-

malization of the form factor and account for constraints from space-like singly-virtual data

measured in e+e− → e+e−π0. The validity of the dispersive approach was cross-checked by

comparing the dispersive prediction for e+e− → π0γ based on the time-like singly-virtual

TFF to cross section data. We found good agreement up to 1 GeV, with deviations starting

to appear in the vicinity of the φ resonance, right where the phase space for inelastic con-

tributions in the e+e− → 3π fit was assumed to open. We studied the resulting space-like

TFF (6.5) extensively both for singly- and doubly-virtual kinematics, in comparison to

experimental data, lattice-QCD calculations, and theoretical predictions from pQCD.

This detailed study of the pion TFF, incorporating all the low-lying singularities and

the correct high-energy behavior at O(1/Q2), culminates in the first dispersive determi-

nation of the pion-pole contribution to the muon (g − 2)µ (6.9), the lowest intermediate

state in a dispersive approach to HLbL scattering. Our data-driven evaluation produces

a central value in line with previous model-dependent estimates, but provides for the first

time a determination that fully exploits the constraints from the fundamental principles

of analyticity, unitarity, and crossing symmetry as well as the predictions from pQCD in

deriving well-controlled uncertainty estimates. In fact, despite being already sufficient for

a SM prediction of aµ at the level of the upcoming experiments, these uncertainties can be

reduced further by virtue of future more precise singly-virtual measurements both in low-

and high-energy regimes.
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As the largest individual piece, our determination of the pion-pole contribution to aµ is

a critical step towards a complete data-driven evaluation of HLbL scattering [48–53]. More-

over, the strategies developed here regarding the incorporation of high-energy constraints

will facilitate similar studies of the η and η′ TFFs [178–182], thus paving the way towards a

fully data-driven determination of all light pseudoscalar-meson-pole contributions to HLbL

scattering in (g − 2)µ.
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A Integral kernels

The integral kernels T̂1(q1, q2; p) and T̂2(q1, q2; p) for (2.4) read:

T̂1(q1, q2;p) =−16
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2
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m2
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q2

1p·q2

(
q2

2 +q1 ·q2

)
+p·q1

(
4

3

(
q2

1 +q1 ·q2

)
q2

2 +
16

3
p·q2q1 ·q2

)
. (A.1)

The kernel functions T1(Q1, Q2, τ) and T2(Q1, Q2, τ) in (2.6) are given as

T1(Q1, Q2, τ) =
Q1

(
σE1 − 1

) (
Q1τ

(
σE1 + 1

)
+ 4Q2

(
τ2 − 1

))
− 4τm2

µ

Q1Q2Q2
3m

2
µ

+X
8
(
τ2 − 1

) (
2m2

µ −Q2
2

)

Q2
3m

2
µ

,

T2(Q1, Q2, τ) =
1

2Q1Q2Q2
3m

2
µ

[
Q2

1τ
(
σE1 − 1

) (
σE1 + 5

)
+Q2

2τ
(
σE2 − 1

) (
σE2 + 5

)

+ 4Q1Q2

(
σE1 + σE2 − 2

)
− 8τm2

µ

]
+X

(
8
(
τ2 − 1

)

Q2
3

− 4

m2
µ

)
, (A.2)

where

X =
1

Q1Q2x
arctan

(
zx

1− zτ

)
, x =

√
1− τ2,

z =
Q1Q2

4m2
µ

(1− σE1 )(1− σE2 ), σEi =

√
1 +

4m2
µ

Q2
i

,

Q2
3 = Q2

1 + 2Q1Q2τ +Q2
2. (A.3)
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B The pion pole in chiral perturbation theory

An analysis of HLbL scattering at leading order in ChPT coupled to lepton fields produces

the following representation [38, 41]9

aπ
0-pole, ChPT
µ = 3

(
α

π

)3(mµ

Fπ

)2( 1

4π

)2{
log2 Λ

µ
+

[
1

6
χ(Λ)− f(r) +

1

2

]
log

Λ

µ
+ C(Λ)

}
,

(B.1)

where

f(r) = log
m2
µ

µ2
+

1

6
r2 log r − 1

6
(2r + 13) +

1

3
(2 + r)

√
r(4− r) arccos

√
r

2
. (B.2)

Here, r = M2
π0/m

2
µ, Λ is a UV cutoff, in ChPT to be identified with the scale of chiral

symmetry breaking Λχ ∼ 4πFπ, the IR scale µ should be identified with Mπ0 [12], χ(Λ) is

a LEC that renormalizes the 1-loop ChPT expression for π0 → e+e−, and C(Λ) subsumes

all terms not enhanced by a logarithm.

The precise definition of χ(Λ) depends on the scheme, which in (B.1) is chosen in

accordance with [89]. Explicitly, conventions can be specified using the reduced amplitude

for P → `+`−

A`(q
2) =

2i

π2q2

∫
d4k

k2q2 − (q · k)2

k2(q − k)2
(
(p− k)2 −m2

`

) F̃
(
k2, (q − k)2

)
, (B.3)

where q2 = M2
P denotes the mass of the pseudoscalar, p2 = m2

` the lepton mass, and

F̃
(
q2

1, q
2
2

)
the TFF for P → γ∗γ∗ normalized by the chiral anomaly

F̃ (q2
1, q

2
2) =

F (q2
1, q

2
2)

Fπγγ
. (B.4)

For the decay kinematics one has, in addition, (p− q)2 = m2
` , and thus 2p · q = M2

P .

At leading order in ChPT F̃ (q2
1, q

2
2) = 1 and the integral in (B.3) diverges. This

divergence is cured by introducing counterterms based on the Lagrangian [89]

L =
3iα2

32π2

(
¯̀γµγ5`

){
χ1Tr

(
Q2{U †, ∂µU}

)
+ χ2Tr

(
QU †Q∂µU −Q∂µU †QU

)}
, (B.5)

where Q is the charge matrix and U contains the meson fields. Altogether, this leads to [89]

ReAChPT
` (q2) = 3 log

m`

Λ
− χ(Λ)

4
− 7

2
+

1

β`

[
π2

12
+

1

4
log2 1− β`

1 + β`
+ Li2

(
β` − 1

β` + 1

)]
, (B.6)

where

Li2(x) = −
∫ x

0
dt

log(1− t)
t

, β` =

√
1− 4m2

`

q2
, (B.7)

and χ(Λ) = χr
1(Λ) + χr

2(Λ). Note, however, that the choice of scheme is not unique in the

literature: another popular choice [90] is related by χ(Λ) = χ[89](Λ) = χ[90](Λ)− 4.

9For the reasons explained in appendix C, aπ
0-pole
µ does not actually scale with N2

c . In the following, we

therefore set Nc = 3 from the start.
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Since the pion pole as defined in dispersion theory [49, 51] coincides with the dia-

grammatic expression (2.4), we can start from this expression to analyze how the ChPT

constraints emerge within dispersion relations. First, we expand the kernel functions in

terms of muon propagators as far as possible, using relations of the form

∫
d4q2

(2π)4

F (q2
1, q

2
2)F

(
(q1+q2)2,0

)

(q2
2−M2

π0)q2
2(q1+q2)2

qµ2 =

∫
d4q2

(2π)4

F (q2
1, q

2
2)F

(
(q1+q2)2,0

)

(q2
2−M2

π0)q2
2(q1+q2)2

q1 ·q2

q2
1

qµ1 , (B.8)

which follow from a standard tensor decomposition. This produces

aπ
0-pole, disp
µ,T1

= −32π2

3F 2
π

(
α

π

)3 ∫ d4q2

(2π)4

F̃ (q2
2, 0)

q2
2(q2

2 −M2
π0)

(
2m2

µ + q2
2

(p− q2)2 −m2
µ

− 1

)

×
∫

d4q1

(2π)4

q2
1q

2
2 − (q1 · q2)2

q2
1(q1 + q2)2

(
(p+ q1)2 −m2

µ

) F̃
(
q2

1, (q1 + q2)2
)
,

aπ
0-pole, disp
µ,T2

= −16π2

3F 2
π

(
α

π

)3 ∫ d4q1

(2π)4

∫
d4q2

(2π)4

F̃ (q2
1, q

2
2)F̃

(
(q1 + q2)2, 0

)

q2
1q

2
2(q1 + q2)2

(
(q1 + q2)2 −M2

π0

)

×
[(
q2

1 + q1 · q2

)
q2

2

(p− q2)2 −m2
µ

+

(
q2

2 + q1 · q2

)
q2

1

(p+ q1)2 −m2
µ

+
2m2

µ

(
q2

1q
2
2 − (q1 · q2)2

)
− q2

1q
2
2(q1 + q2)2

(
(p+ q1)2 −m2

µ

)(
(p− q2)2 −m2

µ

)
]
. (B.9)

Accordingly, the representation for the T1 term can be expressed as

aπ
0-pole, disp
µ,T1

= −
(
α

π

)3 1

3F 2
π

1

i

∫
d4q2

(2π)4

F̃ (q2
2, 0)

q2
2 −M2

π0

(
2m2

µ + q2
2

(p− q2)2 −m2
µ

− 1

)
Iµ(q2

2), (B.10)

where

I`(q
2) =

2i

π2q2

∫
d4k

k2q2 − (q · k)2

k2(q − k)2
(
(p− k)2 −m2

`

) F̃
(
k2, (q − k)2

)
(B.11)

has been defined in close analogy to A`(q
2), the difference being that q2 is not restricted

to M2
π0 . We checked numerically for a VMD form factor that the representation (B.9)

reproduces the known result.

In [39] it was established that the T2 term remains finite even for a pointlike form

factor, so that the corresponding integral cannot contribute to any singularities. The log-

enhanced terms in (B.1) all originate from the approximation where the form factors are

put equal to unity, at this order in the chiral expansion their structure is not resolved.

Matching the dispersive representation (B.10) onto (B.1) therefore requires taking the

pointlike limit in the appropriate fashion. First, we note that for Iµ(q2
2) we cannot use the

form (B.6), since this relies on the specific kinematics for the pseudoscalar decay. Explicit

calculation with Feynman parameters shows that in addition to the log-divergent piece

there is a contribution involving log(−q2
2), whose coefficient is related to the log Λ term.

The corresponding structure is therefore

Iµ(q2
2) = −3 log

Λ

µ
− χ(Λ)

4
+

3

2
log

(
− q2

2

µ2

)
+ Cµ, (B.12)
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with some constant piece Cµ. The chiral LEC still regulates the divergence since its specific

form does not depend on the kinematics. Once the form factor is replaced by its pointlike

limit, the same LEC therefore describes the renormalization of the π0 → `+`− vertex (as-

suming lepton flavor universality). This argument already shows that for the dispersive for-

malism to be consistent with the chiral constraints derived in [38, 41] it suffices that the form

factor used be consistent with the LEC χ(Λ), as extracted from π0 → e+e− or η → `+`−.

The individual terms in (B.1) can then be understood as follows: for the second loop

integral we have

1

i

∫
d4q2

(2π)4

1

q2
2 −M2

π0

(
2m2

µ + q2
2

(p− q2)2 −m2
µ

− 1

)

=
1

16π2

(
3m2

µ log
Λ2

µ2
− 2m2

µ

∫ 1

0
dx(1 + x) log

x2m2
µ + (1− x)M2

π0

µ2

)

=
3m2

µ

16π2

(
log

Λ2

µ2
− f(r)− 1

2

)
, (B.13)

with f(r) as given in (B.2). Next, the log(−q2
2) piece leads to a term

1

16π4

(
2m2

µ

∫ 1

0
dx(1 + x)

1

i

∫
d4q2

q4
2

3

2
log

(
− q2

2

µ2

))
=

3m2
µ

16π4

3

2
2π2

∫ Λ
µ dxx3

x4
log x2

=
3m2

µ

16π2
3 log2 Λ

µ
. (B.14)

Adding the individual contributions we find

aπ
0-pole, disp
µ,T1, div = −

(
α

π

)3 1

3F 2
π

3m2
µ

16π2
(B.15)

×
[(
− 3 log

Λ

µ
− χ(Λ)

4
+ Cµ

)(
2 log

Λ

µ
− f(r)− 1

2

)
+ 3 log2 Λ

µ

]

= 3

(
α

π

)3(mµ

Fπ

)2( 1

4π

)2{
log2 Λ

µ
+

[
1

6
χ(Λ)− f(r) + C̃µ

]
log

Λ

µ
+ . . .

}
.

Taking the pointlike limit of (B.10) in this way therefore reproduces the basic features

of the direct ChPT result (B.1), in particular the coefficient of the double logarithm, the

contribution from χ(Λ), and the part of the coefficient of the single logarithm that is non-

analytic in the quark mass. The analytic contribution, C̃µ = 1/2, requires a more careful

treatment of the renormalization schemes [38, 41] and certainly cannot be expected to

emerge from a naive cutoff regularization of the loop integrals.

In conclusion, the above discussion demonstrates that dispersion relations for HLbL

scattering in the form of [49, 51] fulfill the low-energy constraints from ChPT. Most aspects

of (B.1) can already be derived from a pointlike form factor alone, so that the corresponding

constraints are automatically maintained due to the structure of the loop integrals, which

become identical to ChPT once the form factor is set to unity. The only information about

the pion TFF beyond its pointlike limit is contained in the LEC χ(Λ), which is needed
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to renormalize the π0 → µ+µ− vertex due to the missing form-factor suppression for high

momenta. Such a contribution therefore does not arise in a dispersive approach where the

full form factor enters, but consistency with the chiral constraint is automatic as long as

the employed form factor agrees with experimental constraints from π0 → e+e− and/or

η → `+`− (the latter if SU(3) symmetry is assumed). This comparison can indeed proceed

in terms of χ(Λ): a given representation for the pion TFF can be turned into a prediction

for this LEC, which can then be compared to the experimental value as extracted from

the decay width. Equivalently, the decay width calculated from the form factor could be

directly compared to the experimental result, with the chiral LEC one particular choice

how to present the relation between HLbL scattering and the rare meson decays. We stress,

however, that the comparison in terms of the TFF directly is actually preferable since it

dispenses with the need for the chiral expansion.

C Large-Nc scaling

If the chiral anomaly Fπγγ were to scale with Nc, the ChPT expression for the pion pole

would acquire on overall factor N2
c [38, 41], and together with the scaling F 2

π ∼ Nc this

would reproduce the overall Nc scaling of the quark-loop contribution to HLbL scattering,

see e.g. [31, 42].

However, as pointed out in [183–185] this argument is not consistent because to ensure

anomaly cancellation in the SM the quark charges need to be rescaled as well. We consider

directly the SU(3) case, where

Qu =
1

2

(
1 +

1

Nc

)
, Qd = Qs = −1

2

(
1− 1

Nc

)
. (C.1)

For the decay of π0 → γγ as well as the octet and singlet decays of the η, η′ system,

η8, η0 → γγ, one finds that the charge factors

(Q2
u −Q2

d)Nc = 1,

1√
3

(Q2
u +Q2

d − 2Q2
s)Nc =

1√
3
,

√
2

3
(Q2

u +Q2
d +Q2

s)Nc =

√
3

8
Nc −

1√
6

+

√
3

8

1

Nc
, (C.2)

actually cancel the Nc scaling except for in the singlet component. Accordingly, a test of

Nc = 3 either has to rely on η, η′ decays, where the mixing adds further complications [186],

or more complicated decays such as η → ππγ [185, 187]. Note that for such a test the im-

plicit dependence of Fπ on Nc is irrelevant since Fπ would simply be taken from experiment.

For the HLbL tensor we consider the corresponding flavor decomposition of the current

jµ = (Qu −Qd)jµ3 +
1√
3

(Qu +Qd − 2Qs)j
µ
8 +

√
2

3
(Qu +Qd +Qs)j

µ
0 , (C.3)
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where

jµ3 =
1

2
(ūγµu− d̄γµd), jµ8 =

1

2
√

3
(ūγµu+ d̄γµd− 2s̄γµs),

jµ0 =
1√
6

(ūγµu+ d̄γµd+ s̄γµs). (C.4)

Collecting terms at different orders in Nc this produces

jµ = jµ3 +
1√
3
jµ8 −

1√
6
jµ0 +

√
3

2

1

Nc
jµ0 ≡ jµLO + jµNLO, (C.5)

where we have named the two currents according to their Nc scaling,

jµLO =
1

2
(ūγµu− d̄γµd− s̄γµs), jµNLO =

1

2Nc
(ūγµu+ d̄γµd+ s̄γµs). (C.6)

Restricted onto SU(2), these currents correspond to the isovector and isoscalar component,

respectively.

The leading Nc behavior of the quark loop can therefore only occur when each current

receives a contribution from jµLO. However, since the currents (C.6) correspond to charges

QLO = diag(1,−1,−1) and QNLO = 1, both of which fulfill Q2 = 1, this implies that π0

and η8 have to couple to exactly one of them each — otherwise the charge factor Tr(Q2λa),

with Gell-Mann matrices λa, a = 3, 8, vanishes — and therefore cannot contribute at

leading order in Nc, completely in line with the cancellation observed in (C.2). For the π0,

this result simply follows from isospin conservation, see (3.3), which forces exactly one of

the currents to be isoscalar.

We are thus led to the prediction that the π0 and η8 poles should be suppressed by

1/N2
c compared to the singlet component η0, in clear contradiction to phenomenology. To

obtain a more realistic estimate one needs to include both the chiral scaling and, potentially,

η–η′ mixing. Since the mixing disappears in the chiral limit, the effect should scale with

ms, in such a way that the overlap of the η with the singlet η0 should be suppressed by

M2
K/Λ

2
χ. For a typical choice of Λχ this Nc-leading but quark-mass-suppressed contribution

to the η from the η0 is therefore not that different from the Nc-suppressed η8 itself. Taking

everything together, the η and η′ poles should be suppressed by

M2
η

M2
π0

{
1,

1

Nc

Λ2
χ

M2
K

,
1

N2
c

Λ4
χ

M4
K

}
& 10,

M2
η′

M2
π0

1

N2
c

∼ 6, (C.7)

relative to the π0 pole, respectively. While the η′ contribution comes out correctly, the

one from the η pole is predicted to be too small by about a factor 3 (depending on the

exact choice of Λχ), and accordingly the hierarchy between η and η′ is reversed. Worse,

the 1/Nc suppression of the π0 pole compounds the mismatch with the pion loop, which

has often been considered as leading in a chiral counting but subleading in Nc, see e.g. [11],

but with the corrected Nc assignments in the charges its contribution would be expected

to be enhanced by one power in Nc and two in the chiral scaling compared to the π0 pole,

in spectacular disagreement with phenomenology. From our perspective, this casts doubt

on the viability of the large-Nc expansion as an organizing principle for HLbL scattering.
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π0

γ∗(q1)

γ∗(q2)

m1

Mπ

Mπ

Figure 14. Triangle topology in the π0 → γ∗γ∗ transition. For the physical case m1 ≥ 2Mπ no

anomalous thresholds occur.

A potential way around these conclusions would require considering QCD on its own,

not as part of the SM gauge theories. This is essentially done in the original litera-

ture [188–190], where it was shown that planar diagrams dominate in the limit Nc → ∞,

αsNc fixed. One could then argue that the factors of Nc that originate in the quark charges

due to anomaly cancellation do not correspond to this topological expansion and should

therefore not be counted in this notion of the large-Nc limit [191]. On the other hand, the

large-Nc scaling of (C.6) does provide an explanation for the suppression of the isoscalar

current in electromagnetic reactions, which raises the question why the implied hierarchy

fails in the context of HLbL scattering.

D Anomalous thresholds and analyticity

The presence of two electromagnetic currents in the π0 → γ∗γ∗ transition together with

light pion intermediate states makes it appear likely that anomalous thresholds [192] require

a modification of the integration contours in (3.29), and indeed for similar quantities in the

context of HLbL scattering, e.g. the partial waves for γ∗γ∗ → ππ, such complications do

arise for time-like virtualities [48, 51]. For the pion TFF the crucial analytic properties can

be derived from the triangle diagram C0 shown in figure 14, depending on the mass m1 [193].

The key assumption in the derivation of the dispersion relation for Fvs(q
2
1, q

2
2) is that

the dependence on the isovector virtuality permits a standard dispersive reconstruction.

The corresponding imaginary part reads (s = q2
1)

ImC0(s) =
θ(s− 4M2

π)√
λ(s,M2

π , q
2
2)

log
s− 3M2

π − q2
2 + 2m2

1 − σπ(s)
√
λ(s,M2

π , q
2
2)

s− 3M2
π − q2

2 + 2m2
1 + σπ(s)

√
λ(s,M2

π , q
2
2)
, (D.1)

which defines the critical points

s±(q2
2) =

1

2

{
3M2

π + q2
2 −m2

1 ± σπ(m2
1)
√
λ
(
m2

1,M
2
π , q

2
2

)}
. (D.2)
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Figure 15. Topologies for π0 → γ∗γ∗. The solid lines all refer to pion states, but the analytic

properties of these Feynman diagrams are again indicative of the general analytic structure.

Anomalous thresholds arise if either point, as a function of q2
2, crosses the unitarity cut and

moves onto the first sheet. The trajectory of s−(q2
2) indeed comes close at q2

2 = M2
π + 2m2

1,

but since the KT equations are solved for q2
2 → q2

2 + iε, the intersection with the real axis

occurs at

sc = 4M2
π

(
1− ε2

4m2
1

(
m2

1 − 4M2
π

)
)
. (D.3)

In the KT solution the mass m2
1 is replaced by a spectral function whose support starts

at s′ = 4M2
π , so that the intersection with the unitarity cut is narrowly avoided. However,

this derivation shows that if there were a lighter state with mass below 2Mπ, the trajectory

would indeed move onto the first sheet and require a modification of the integration contour.

In general, the occurrence of anomalous thresholds in a dispersion relation in the

photon virtuality q2
1 depends crucially on the form of the γ∗ → 3π amplitude. The preceding

discussion applies if that amplitude may be described by a dispersion relation in the crossed

channel with threshold above 2Mπ, in particular the first diagram in figure 15. Even at

two-loop order (in γ∗ → 3π, see second diagram in figure 15, corresponding to three

loops for the TFF) such a representation exists, and even more so a representation free of

anomalous thresholds [194]. Indeed, an anomalous threshold in the γ∗ → 3π amplitude

would likely trigger an anomalous threshold in the pion TFF itself. In this way, the first

problematic diagram occurs at three-loop order for the γ∗ → 3π amplitude (third diagram

in figure 15, corresponding to four loops in the TFF): the 3π triangle should give rise to

anomalous thresholds. However, this diagram involves an additional cut, implying that

the corresponding γ∗ → 3π amplitude cannot be decomposed in terms of single-variable

functions anymore. Such contributions involving 4π cuts cannot be fully accounted for in

our dispersive analysis of the γ∗ → 3π amplitude, and thus appear within the estimates

for higher intermediate states, but not in the dispersive part of the decomposition.

Apart from anomalous thresholds, it is surprising that a simple dispersion rela-

tion for the TFF arises despite the complicated analytic structure of the partial wave

f1(s, q2
2). To test this assumption numerically, we separated the normalization according

to f1(s, q2) = a(q2)f̄1(s, q2) and expressed the form factor in terms of

Fvs(q
2
1, q

2
2) = a(q2

2)g(q2
1, q

2
2), g(q2

1, q
2
2) =

1

12π2

∫ ∞

4M2
π

dx
q3
π(x)

(
F Vπ (x)

)∗
f̄1(x, q2

2)

x1/2(x− q2
1)

. (D.4)

The requirement that the single and double dispersion relations be equivalent then
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implies that

a(q2
2)g(q2

1, q
2
2) =

1

π

∫ ∞

sthr

dy
Im
[
a(y)g(q2

1, y)
]

y − q2
2

, (D.5)

and since, by construction, a(q2
2) is analytic the same is true for Fvs(q

2
1, q

2
2) as soon as

g(q2
1, q

2
2) is analytic. Taking q2

1 space-like, this statement follows from

1

π

∫
dy

ImFvs(q
2
1, y)

y − q2
2 − iε

=
1

π2

∫
dy

Im a(y)

y − q2
2 − iε

∫
dy′

Im g(q2
1, y
′)

y′ − y + iε

+
1

π2

∫
dy′

Im g(q2
1, y
′)

y′ − q2
2 − iε

∫
dy

Im a(y)

y − y′ − iε

=
1

π2

∫
dy Im a(y)

∫
dy′ Im g(q2

1, y
′)

× 1

y′ − y + iε

(
1

y − q2
2 − iε

− 1

y′ − q2
2 − iε

)

=
1

π2

∫
dy

Im a(y)

y − q2
2 − iε

∫
dy′

Im g(q2
1, y
′)

y′ − q2
2 − iε

= a(q2
2)g(q2

1, q
2
2) = Fvs(q

2
1, q

2
2), (D.6)

and the general case follows by analytic continuation in q2
1. From the KT solution we

do not have access to g(q2
1, q

2
2) above q2

2 = (1.8 GeV)2, but we can still check if, with a

reasonable high-energy completion of the imaginary part, the resulting function g(q2
1, q

2
2)

fulfills a dispersion relation. Empirically, we observe that with a continuation according to

1/y2 a once-subtracted dispersion relation does reproduce the KT result, providing another

check on the consistency of our dispersive formalism for the pion TFF.

E Scale estimate from light-cone QCD sum rules

We start with a dispersive representation of the doubly-virtual pion TFF for space-like

momenta

Fπ0γ∗γ∗(q
2
1, q

2
2) =

1

π

∫ ∞

0
ds

ImFπ0γ∗γ∗(s, q
2
2)

s− q2
1

(E.1)

and split the spectral information into high and low energies [148, 149]:

Fπ0γ∗γ∗(q
2
1, q

2
2) =

GV (q2
2)

M2
V − q2

1

+
1

π

∫ ∞

sm

ds
ImFπ0γ∗γ∗(s, q

2
2)

s− q2
1

. (E.2)

For the low-energy part we use a VMD model [195]:

ImFπ0γ∗γ∗(s, q
2
2) ≈ GV (q2

2)π δ(s−M2
V ) for s < sm, (E.3)

with a vector-meson mass MV and a quantity GV proportional to the electromagnetic form

factor for the transition of the vector meson to the pion.

Duality between hadronic and quark-gluon (“OPE”) degrees of freedom suggests that

at high energies, properly energy-averaged quantities should agree for both representa-

tions [148, 149]. Therefore one demands

1

π

∫ ∞

sm

ds
ImFπ0γ∗γ∗(s, q

2
2)

s− q2
1

≈ 1

π

∫ ∞

sm

ds
ImFOPE

π0γ∗γ∗(s, q
2
2)

s− q2
1

(E.4)
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for any value of q2
1 (and sufficiently large sm) and

1

π

∫ ∞

0
ds

ImFπ0γ∗γ∗(s, q
2
2)

s− q2
1

≈ 1

π

∫ ∞

0
ds

ImFOPE
π0γ∗γ∗(s, q

2
2)

s− q2
1

(E.5)

for asymptotically large q2
1. Taken together, these relations allow one to determine [148,

149] both parts on the right-hand side of (E.2), leading to

GV (q2) ≈ 1

π

∫ sm

0
ds ImFOPE

π0γ∗γ∗(s, q
2) (E.6)

and

Fπ0γ∗γ∗(q
2
1, q

2
2) ≈ 1

M2
V − q2

1

1

π

∫ sm

0
ds ImFOPE

π0γ∗γ∗(s, q
2
2)+

1

π

∫ ∞

sm

ds
ImFOPE

π0γ∗γ∗(s, q
2
2)

s− q2
1

. (E.7)

The pion TFF is symmetric in its two virtualities whereas the right-hand side of (E.7) is

not. We symmetrize the expression by hand and obtain

Fπ0γ∗γ∗(q
2
1, q

2
2)≈ 1

2

[
1

M2
V −q2

1

1

π

∫ sm

0
ds ImFOPE

π0γ∗γ∗(s,q
2
2)+

1

π

∫ ∞

sm

ds
ImFOPE

π0γ∗γ∗(s,q
2
2)

s−q2
1

+
1

M2
V −q2

2

1

π

∫ sm

0
ds ImFOPE

π0γ∗γ∗(q
2
1,s)+

1

π

∫ ∞

sm

ds
ImFOPE

π0γ∗γ∗(q
2
1,s)

s−q2
2

]
.

(E.8)

In [148, 149], a Borel transformation has been applied to (E.5) and a Borelized version

of (E.7) is used for the singly-virtual pion TFF. In the following, we use the symmetrized

finite-energy sum rule (E.8) as it is. It has the advantage that it contains only two non-

perturbative parameters, the vector-meson mass MV and the “continuum threshold” sm,

i.e. the onset of the asymptotic regime.

Finally, we need the OPE expression for the spectral information. To this end, we use

the asymptotic LO leading-twist expression (5.1) that relates the pion TFF to the pion dis-

tribution amplitude [134–136]. The final expression for this LCSR VMD approach (LV) is

FLV
π0γ∗γ∗(q

2
1, q

2
2) :=

Fπ
3

∫ x1

0
dx

φπ(x)

(1− x)(M2
V − q2

2)
− Fπ

3

∫ 1

x1

dx
φπ(x)

xq2
1 + (1− x)q2

2

+
Fπ
3

∫ x2

0
dx

φπ(x)

(1− x)(M2
V − q2

1)
− Fπ

3

∫ 1

x2

dx
φπ(x)

xq2
2 + (1− x)q2

1

, (E.9)

where

xi :=
sm

sm − q2
i

. (E.10)

Expression (E.9) shows very satisfying high- and low-energy limits provided one chooses

M2
V = 8π2F 2

π [196–198]. In line with the chiral anomaly one obtains

FLV
π0γ∗γ∗(0, 0) =

2Fπ
3M2

V

∫ 1

0

φπ(x)

1− x =
2Fπ
M2
V

=
1

4π2Fπ
. (E.11)
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Figure 16. Comparison of (E.9) to singly-virtual pion TFF data [163–166]. Color coding for the

experimental points as in figure 9.

The Brodsky-Lepage limit [134–136] is recovered:

FLV
π0γ∗γ∗(−Q2, 0) =

Fπ
3

∫ xQ

0
dx

φπ(x)

(1− x)M2
V

+
Fπ
3

∫ 1

xQ

dx
φπ(x)

xQ2

+
Fπ
3

∫ 1

0
dx

φπ(x)

(1− x)(M2
V +Q2)

=
1

Q2

2Fπ
3

∫ 1

0
dx

φπ(x)

x
+O(1/Q4) =

2Fπ
Q2

+O(1/Q4). (E.12)

Finally, for large Q2
1, Q2

2 one finds the relation

FLV
π0γ∗γ∗(−Q2

1,−Q2
2) =

2Fπ
3

∫ 1

0
dx

φπ(x)

xQ2
1 + (1− x)Q2

2

+O(1/Q4
i ), (E.13)

which is in line with the OPE prediction [134–136, 153]. More generally, if both virtualities

are space-like, (E.9) vanishes as soon as one of the two virtualities becomes infinitely large,

irrespective of the value of the other virtuality. This property is not so easy to achieve for

hadronic resonance saturation models.

Before we show the results, we stress again that the QCD sum rule formula (E.9)

containing in particular the VMD model for the low-energy part is not meant for a full-

fledged quantitative calculation of the pion TFF, but for understanding the size of sm.

Figure 16 shows a comparison of formula (E.9) to the data on the singly-virtual pion TFF

for different values of sm. Obviously, large values of sm do not agree with the data while

a value of sm = 1 GeV2 provides a consistent picture.
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