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1 Introduction

M-theory and its branes are not yet particularly well understood. And their study promises

to teach us a great deal about supersymmetric quantum field theory more generally. Of

particular interest is the elusive six-dimensional (2, 0)-Theory of N M5-branes [1, 2]. Not

only does the formulation of this theory provide an important challenge to our understand-

ing of quantum field theory it’s existence also unifies and explains many non-perturbative

aspects of lower-dimensional quantum field theories.

For a variety of reasons it is believed that there is no six-dimensional diffeomorphism

invariant lagrangian formulation of the (2, 0)-Theory (e.g. see [3]). However there are a

myriad of lagrangians that are associated to lower-dimensional compactifications that can

capture some, or even all, of the (2, 0)-Theory dynamics. In particular when reduced on

a circle of radius R the (2, 0)-Theory becomes five-dimensional maximally supersymmet-

ric Yang-Mills theory with gauge group U(N) and coupling g2 = 4π2R. Alternatively

one can think of the (2, 0)-Theory as providing a strong coupling, UV completion of the

perturbatively non-renormalizable five-dimensional Yang-Mills theory [4].

In [5, 6] a non-abelian system of equations was formulated which provide a represen-

tation of the six-dimensional (2, 0) superalgebra. The system involves a set of dynamical

equations as well as some constraint equations. Solving the constraints in different ways

leads to maximally supersymmetric Chern-Simons theory in 2+1 dimensions or maximally

supersymmetric Yang-Mills in 4+1 dimensions, corresponding to M2-branes and M5-branes

on S1 respectively.

Owing to the manifest Lorentz symmetry of the system there is also the possibility

to construct limits of M2-branes and M5-branes which have been infinitely boosted along

some direction (off the brane for M2’s but on the brane for M5’s). These equations were

analysed in [7, 8] for M2-branes and M5-branes respectively and shown to reduce to motion
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on a moduli space of solitons. In the latter case this reproduces the DLCQ description of

the (2, 0)-Theory as motion on the moduli space of self-dual gauge fields [12, 13]. We refer

to these infinitely boosted branes as null-branes due to the fact that their worldvolume

‘time’ coordinate is null direction in spacetime.

The main point of this paper is to show that for these null cases we can construct

lagrangians for the dynamics. The result are novel field theories in 2+1 and 4+1 dimensions

with 16 supersymmetries, translations and spatial rotations but which are not invariant

under boosts.1 Furthermore the field content includes non-dynamical Lagrange multiplier

fields which restrict the dynamics to motion on a moduli space of solitons. These appear

to be a new type of maximally supersymmetric lagrangian and it would be interesting to

seek other examples.

In the rest of this paper we will study the M2-brane example in section two. This

is a field theory in 2+1 dimensions with maximal supersymmetry, an SO(2) rotational

symmetry and an SO(2)×SO(6) R-symmetry. In section three we construct the M5-brane

example which is a field theory in 4+1 dimensions with maximal supersymmetry, an SO(4)

rotational symmetry and SO(5) R-symmetry. We also briefly explore the dimensional

reduction of these theories. In section four we comment on how the 8 supersymmetries

that arise in the moduli space dynamics are enhanced to 16 supersymmetries in the field

theory. In the final section we give our conclusions and comments. We also provide an

appendix with some useful Fierz identities.

2 The null M2

In [7] a novel system of equations was derived from the system of [6]. In particular the

dynamical fields take values in a three-algebra with invariant inner-product 〈 · , · 〉 and

totally anti-symmetric product:

[ · , · , · ] : V ⊗ V ⊗ V → V , (2.1)

that satisfies the fundamental identity

[U, V, [X,Y, Z]] = [[U, V,X], Y, Z] + [[X, [U, V, Y ], Z] + [X,Y, [U, V, Z]] . (2.2)

In addition the three-algebra generates a Lie-algebra G by the three-algebra analogue of the

adjoint map: X → ϕU,V (X) = [U, V,X] defined by any pair U, V ∈ V . This also induces

an invariant Lie-algebra inner-product ( · , · ) on G that satisfies

(T, ϕU,V ) = 〈T (U), V 〉 , (2.3)

for any T ∈ G and pair U, V ∈ V . More concretely there is a unique finite-dimensional

three-algebra with positive definite inner-product 〈 · , · 〉 [9, 10]. In particular V = R4 with

orthonormal basis TA, A = 1, 2, 3, 4 and

[TA, TB, TC ] =
4π

k
εABCDTD . (2.4)

1More preceisely there is no manifest boost symmetry. It is conceivable that boosts can still be identified

in non-linear and potentially non-local manner.
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In which case one finds G = su(2) ⊕ su(2) and ( · , · ) acts as (k/4π)tr,−(k/4π)tr on the

two su(2) factors respectively.

Some trial and error shows that the equations of motion of [7] arise from the action2

SM2 = Sscalar + SCS + Sfermion , (2.5)

where

Sscalar =

∫
d2xdt

[
〈DtZ,DtZ̄〉 − 〈DXI , D̄XI〉+ 〈DZ̄, H̄〉+ 〈D̄Z,H〉

−i〈DtX
I , [Z, Z̄,XI ]〉 − 1

2
〈[XI , XJ , Z][XI , XJ , Z̄]〉

]
SCS = i

∫
d2xdt

[
1

2
(At, Fzz̄) +

1

2
(Az, Fz̄t) +

1

2
(Az̄, Ftz) +

1

2
(At, [Az, Az̄])

]
Sfermion =

∫
d2xdt

[
i

2
√

2
〈ΨT

+, DtΨ+〉+ i〈ΨT
+, Γ̂zD̄Ψ− + Γ̂z̄DΨ−〉

− 1

2
√

2
〈ΨT

+, Γ̂ZZ̄ Γ̂IJ
[
XI , XJ ,Ψ+

]
〉+

1√
2
〈ΨT
−,
[
Z, Z̄,Ψ−

]
〉

+i〈ΨT
+, Γ̂

I Γ̂Z

[
Z,XI ,Ψ−

]
〉+ i〈ΨT

+, Γ̂
I Γ̂Z̄

[
Z̄,XI ,Ψ−

]
〉
]
. (2.6)

Here the dynamical fields consist of six scalars XI , I = 5, 6, 7, 8, 9, 10, a complex scalar

Z = X4 + iX3 and fermions Ψ± satisfying

Γ̂t12Ψ± = −Ψ± Γ̂t34Ψ± = ±Ψ± , (2.7)

where Γ̂t, Γ̂1, . . . , Γ̂10 form a real basis of the Spin(1, 10) Clifford algebra.3 In addition we

have introduced the complex coordinate z = x1 + ix2 and

Γ̂Z =
1

2
(Γ̂3 − iΓ̂4) Γ̂z =

1

2
(Γ̂1 − iΓ̂2) . (2.8)

There is also a non-dynamical complex scalar H which also takes values in the three-algebra

V and a one-form gauge field (At, Az, Az̄) taking values in the associated Lie-algebra G.

The action has an SO(2) rotational symmetry along with an SO(2) × SO(6)

R-symmetry. In addition one can explicitly check that it is also invariant under the sixteen

supersymmetries derived in [7]:

δXI = iεT+Γ̂IΨ− + iεT−Γ̂IΨ+

δZ =
√

2εT+Γ̂Z̄Ψ+

δZ̄ = −
√

2εT+Γ̂ZΨ+

δAz( · ) =
√

2εT+Γ̂I Γ̂z[XI ,Ψ+, · ] + 2iεT−Γ̂zΓ̂Z̄

[
Z̄,Ψ+, ·

]
− 2iεT+Γ̂zΓ̂Z [Z,Ψ−, · ]

2Note that compared to [7] we have rescaled XI → l−3/2XI , Z → 2l3/2Z,H → 1
2
l−3/2H,Ψ± → l−3/2Ψ±

so that the fields have canonical scaling dimensions.
3The hat arises as this basis is adapted from M5-branes to M2-branes in the construction of [6, 7] but

this distinction is not necessary here and can be dropped.
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δAz̄ = −
√

2εT+Γ̂I Γ̂z̄[XI ,Ψ+, ·] + 2iεT−Γ̂z̄Γ̂Z [Z,Ψ+, · ]− 2iεT+Γ̂z̄Γ̂Z̄

[
Z̄,Ψ−, ·

]
δAt( · ) = 2

√
2iεT−Γ̂Z [Z,Ψ−, · ] + 2

√
2iεT−Γ̂Z̄

[
Z̄,Ψ−, ·

]
+ 2εT−Γ̂ZZ̄ Γ̂I

[
XI ,Ψ+, ·

]
− 2εT+Γ̂ZZ̄ Γ̂I

[
XI ,Ψ−, ·

]
δΨ+ = 2i

√
2Γ̂I

[
Z, Z̄,XI

]
ε− − 2i

(
Γ̂ZDtZ − Γ̂Z̄DtZ̄

)
ε+

−
(

Γ̂Z Γ̂IJ
[
Z,XI , XJ

]
+ Γ̂Z̄ Γ̂IJ

[
Z̄,XI , XJ

])
ε+

+ 2
(

Γ̂z̄Γ̂
IDXI + Γ̂zΓ̂ID̄XI

)
ε+

+ 2
√

2i
(

Γ̂z̄Γ̂ZDZ − Γ̂zΓ̂Z̄D̄Z̄
)
ε−

δΨ− = −
√

2Γ̂IDtX
Iε+ −

√
2i

3
Γ̂ZZ̄ Γ̂IJK

[
XI , XJ , XK

]
ε+

+
(

Γ̂Z Γ̂IJ
[
Z,XI , XJ

]
+ Γ̂Z̄ Γ̂IJ

[
Z̄,XI , XJ

])
ε−

+ 2
(

Γ̂z̄Γ̂
IDXI + Γ̂zΓ̂ID̄XI

)
ε−

− 2i
(

Γ̂ZDtZ − Γ̂Z̄DtZ̄
)
ε− +

√
2i
(

Γ̂z̄Γ̂Z̄H − Γ̂zΓ̂ZH̄
)
ε+ .

δH = 2
√

2εT−Γ̂ZDΨ− + 2εT+Γ̂zΓ̂ZDtΨ−

+ iεT+Γ̂zΓ̂Z Γ̂IJ
[
XI , XJ ,Ψ−

]
− 2
√

2εT−Γ̂zΓ̂
I [Z̄,XI ,Ψ−] , (2.9)

where

Γ̂t12ε± = ε± Γ̂t34ε± = ±ε± . (2.10)

While examining the cubic fermion terms that arise in δS it is helpful to observe that they

take the same form as the cubic fermion terms that arise in the case of the maximally

supersymmetric Lorentzian M2-brane theory (see the appendix).

The action (2.5) has some non-standard features. Firstly although the scalars Z have

canonical kinetic terms they do not have gradient terms. The scalars XI have the opposite:

no kinetic terms but canonical gradient terms. Furthermore there is a term which is linear

in the XI time-derivative.

We see that the field H imposes a holomorphic constraint

D̄Z = 0 . (2.11)

We also have the Gauss law constraint arising from the At equation of motion:

Fzz̄(·) = −i
([
Z,DtZ̄, ·

]
+
[
Z̄,DtZ, ·

])
−
[
XI ,

[
Z, Z̄,XI

]
, ·
]
− 1

2
√

2

[
ΨT

+,Ψ+, ·
]
.

(2.12)

For static bosonic configurations these constraints reduce to a 3-algebra form of the

Hitchin System:

D̄Z = 0

Fzz̄(·) = −
[
XI ,

[
Z, Z̄,XI

]
, ·
]
. (2.13)
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These arise as BPS solutions to M2-brane [14]. It was shown in [7] that allowing for time

evolution the dynamical evolution is still restricted to the Hitchin moduli space (at least

for a class of configurations).

Finally we note that in [7] this system was identified as describing intersecting M2-

branes along the x1, x2 and x3, x4 directions, in the limit of an infinite boost along

x5. The SO(2) × SO(6) R-symmetry then arises from rotations in the two-dimensional

(x3, x4)-plane of the M2-brane and in the six-dimensional plane orthogonal to both

M2-branes respectively.

3 Null M5-branes

We now turn our attention to a similar construction that represents M5-branes. Although

the system is also derived from the three-algebra construction of [5] it turns out that the

resulting dynamical equations can be extended to any gauge group (for example by consid-

ering a non-positive definite three-algebra and decoupling the negative definite modes). In

particular the field content consists of five scalars XI (where now I = 6, 7, 8, 9, 10), a gauge

field one-form (At, Ai), i = 1, 2, 3, 4 and fermions Ψ all taking values in some Lie-algebra.

There is also an anti-self-dual tensor Gij . We consider the action

SM5 =
1

g2
tr

∫
d4xdt

(
1

2
FtiFti −

1

2
DiX

IDiX
I +

1

2
FijGij

+
i

2
Ψ̄Γ−DtΨ +

i

2
Ψ̄ΓiDiΨ−

1

2
Ψ̄[XI ,Γ−ΓIΨ]

)
, (3.1)

where Ψ̄ = ΨTΓt. Here the fermions satisfy Γt12345Ψ = −Ψ and we define

Γ± =
1√
2

(Γ5 ± Γt) . (3.2)

Again Γt,Γ1, . . . ,Γ10 are a real representation of the Spin(1, 10) Clifford algebra. Note

that, unlike the gauge field strength Fij , Gij does not satisfy a Bianchi identity.

The equations of motion arising from this action agree with those constructed in [5, 8].4

In particular we see that Gij acts as a Lagrange multiplier imposing self-duality of the spa-

tial components of the gauge field strength; Fij = 1
2εijklFkl. Thus the on-shell condition

reduces to motion on the moduli space of self-dual gauge fields. In particular the action re-

duces to a sigma-model on ADHM moduli space which includes a potential and background

gauge field that arise from the vacuum expectation values of XI and A0 respectively [8].

This agrees with the DLCQ prescription for the M5-brane (2, 0) SCFT given in [12, 13].

First we begin with the supersymmetries of [5, 8]:

δXI = iε̄ΓIΨ

δAi = iε̄ΓiΓ−Ψ

δAt = iε̄Γ+−Ψ

4Here we have rescaled the fields from those of reference [5] to their canonical form and also switched

the roles of t = x+ and x−.
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δΨ = Γ−ΓIDtX
Iε+ ΓiΓ

IDiX
Iε+ ΓiΓ+−Ftiε−

1

4
Γ+ΓijFijε

− 1

4
Γ−ΓijGijε−

i

2
Γ−ΓIJ [XI , XJ ]ε

δGij = iε̄ΓijDtΨ + 2iε̄Γ+Γ[iDj]Ψ− ε̄ΓijΓ+−ΓI [XI ,Ψ] , (3.3)

where Γt12345ε = ε. These transformations close on-shell and one can check that the

resulting equations of motion are invariant.

However to construct a supersymmetry of the action we need to find an expression for

δGij that is anti-self-dual off-shell. Thus the transformations (3.3) require some modifica-

tion. First we observe that we are free to modify δGij by

δGij → δGij + iε̄ΞΓijkDkΨ , (3.4)

for any choice of Ξ, because the Bianchi identity of Fij ensures that the change in δS is a

boundary term. In particular taking Ξ = 3
2Γ+ we find that

δGij + ?δGij = 2ε̄Γ+ΓijEΨ , (3.5)

where

EΨ = iΓ−DtΨ + iΓkDkΨ− Γ−ΓI [XI ,Ψ] , (3.6)

is the fermion equation of motion. We can correct this by making the following shift in the

supersymmetry transformations:

δGij → δGij − ε̄Γ+ΓijEΨ

δΨ̄→ δΨ̄ +
1

2
ε̄Γ+ΓijFij , (3.7)

so that the action remains invariant but now δGij is anti-self dual off-shell. One can now

see that the action is indeed invariant under the following supersymmetry transformations

δXI = iε̄ΓIΨ

δAi = iε̄ΓiΓ−Ψ

δAt = iε̄Γ+−Ψ

δΨ = Γ−ΓIDtX
Iε+ ΓiΓ

IDiX
Iε+ ΓiΓ+−Ftiε+

1

4
Γ+ΓijFijε

− 1

4
Γ−ΓijGijε−

i

2
Γ−ΓIJ [XI , XJ ]ε

δGij = − i
2
ε̄Γ−ΓijΓ+DtΨ−

1

2
ε̄Γ−ΓijΓ+ΓI [XI ,Ψ]− i

2
ε̄ΓkΓijΓ+DkΨ . (3.8)

When checking the vanishing of the cubic fermion terms in δS is it helpful to observe

that they have a similar structure to those that arise in maximally supersymmetric five-

dimensional Yang-Mills (see the appendix).

Lastly we note that we are free to add an FijFij term into the action:

S → S − ξ

4g2

∫
d4xdt FijFij , (3.9)

– 6 –
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for any choice of ξ. This will not change the equations of motion since DiFij = 0 as a

result of the self-dual condition imposed by Gij along with the Bianchi identity of Fij .

Furthermore, to preserve supersymmetry, we simply shift the variation δGij to

δGij → δGij + 2iξε̄Γ−Γ[iDj]Ψ , (3.10)

so as to ensure δS = 0. However in the rest of this paper we will set ξ = 0 since on-shell

ξ 6= 0 leads to an infinite contribution to the action arising from the integral over time of

the constant instanton number.

In [5, 8] the equations of motion arising from (3.1) were interpreted as the limit of

an infinite boost of M5-branes along a worldvoume direction x5 with a fixed value for the

null momentum P−. In particular preserving P− breaks the SO(1, 5) Lorentz symmetry

of the M5-brane worldvolume to SO(4) and leaves the SO(5) R-symmetry and sixteen

supersymmetries intact. This agrees with the SO(4) × SO(5) symmetry and maximal

supersymmetry of the action (3.1).

3.1 Dimensional reduction

The action (3.1) provides a non-Lorentz invariant field theory in 4 + 1 dimensions which

is invariant under sixteen supersymmetries, an ISO(4) Euclidean group and an SO(5) R-

symmetry. It’s on-shell conditions reduce to motion on the moduli space of self-dual gauge

fields on R4 with t playing the role of time.

Clearly we can dimensionally reduce this action to obtain similar ones in d+ 1 dimen-

sions with d < 4. Following the usual rules of dimensional reduction over 4− d dimensions

the bosonic field content is now

(At, Ai) (Xa = Ad+1, . . . , A4) (XI) (Gij , Gia, Gab) , (3.11)

where now the i index has been reduced to i = 1, . . . , d with a = d+1, . . . , 4 and as before we

have I = 6, 7, 8, 9, 10. Note also that anti-self-duality implies that the various components

(Gij , Gia, Gab) are not independent. In all these cases the on-shell conditions imply that

the dynamics corresponds to motion on the moduli space of self-dual connections reduced

to R4−d.

One readily sees from (3.1) that scalars Xa will have kinetic terms but XI will not.

Furthermore there will be a potential of the form

V ∼ −tr([Xa, XI ][Xa, XI ]) , (3.12)

but no potential terms with only XI or Xa. Thus, unlike the dimensional reduction of

Lorentzian maximally supersymmetric Yang-Mills theories, the R-Symmetry is not en-

hanced to SO(9− d). Rather, upon reduction to d+ 1 dimensions, we obtain a maximally

super-symmetric field theory with ISO(d) Euclidean symmetry and a SO(4 − d) × SO(5)

R-symmetry.

– 7 –
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For the sake of completeness let us list the dimensional reductions.

Reduction to 3+1 dimensions. Reduction to 3+1 dimensions we have (i, j = 1, 2, 3)

(At, Ai) (X4 ≡ A4) (XI) (Gij , Gi4) . (3.13)

However, we are taking that G is anti-self-dual so we have the relationship

Gij = −εijkGk4 . (3.14)

Thus the action becomes

S3+1 =
1

g2

∫
d3xdt

[
1

2
FtiFti+

1

2
DtX

4DtX
4+

1

2
Gij

(
Fij−εijkDkX

4
)

− 1

2
DiX

IDiX
I+

1

2
[X4,XI ][X4,XI ]

+
i

2
Ψ̄Γ−DtΨ+

i

2
Ψ̄ΓiDiΨ+

1

2
Ψ̄Γ4[X4,Ψ]− 1

2
Ψ̄[XI ,Γ−ΓIΨ]

]
. (3.15)

Reduction to 2+1. Next let us look at the reduction to 2 + 1 dimensions and compare

the result with the action in section two. The field content is given by (i = 1, 2, a = 3, 4)

(At, Ai) (Xa ≡ Aa) (XI) (Gij , Gab, Gia) , (3.16)

but due to anti-self-duality the components Gij and Gab are related as are the various

components of Gia. Let us introduce the complex coordinates

z = x1 + ix2 Z = X4 + iX3 , (3.17)

and

D =
1

2
(D1 − iD2) ΓZ =

1

2
(Γ4 − iΓ3) . (3.18)

We also re-express the independent components of the Lagrange multiplier field as

G = G12 = −G34 H = G14 − iG13 . (3.19)

We these definitions we can write the reduced action as

S2+1 =
1

g2
tr

∫
d2xdt

(
1

2
FtzFtz̄ +

1

2
DtZDtZ̄ + H̄DZ̄ +HD̄Z

−DXID̄XI +
1

2
[Z,XI ][Z̄,XI ]− 2iG

(
Fzz̄ −

1

4
[Z, Z̄]

)
+
i

2
Ψ̄Γ−DtΨ + iΨ̄(Γz̄DΨ + ΓzD̄Ψ) +

1

2
Ψ̄ΓZ [Z,Ψ] +

1

2
Ψ̄ΓZ̄ [Z̄,XI ]

−1

2
Ψ̄[XI ,Γ−ΓIΨ]

)
. (3.20)

The on-shell conditions now reduce to motion on the moduli space of solutions to the

Hitchin System, this time for any gauge group. However although it has the same number

of supersymmetries as the M2-brane case discussed above it only has SO(2) × SO(5) R-

symmetry, not SO(2) × SO(6). It is natural to postulate that, just as the lorentzian M2-

brane theory is the strong coupling limit of (2+1)-dimensional maximally supersymmetric

Yang-Mills (which can be viewed as the dimensional reduction of the M5-brane), the null

M2-brane theory (2.5) is the strong coupling fixed point of the null M5-brane action (3.20)

in the case of an SU(2) gauge group.

– 8 –
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Reduction to 1+1 dimensions. Next we consider the reduction to 1+1 Dimensions.

Here the bosonic fields are (a = 2, 3, 4)

(At, A1) (Xa ≡ Aa) (XI) (Gab, Ba = G1a) . (3.21)

However, we are taking that G is anti self-dual so we have the relationship

Gab = −εabcBc . (3.22)

The action can be written now as

S1+1 =
1

g2

∫
dxdt

[
1

2
Ft1Ft1+

1

2
DtX

aDtX
a− 1

2
D1X

ID1X
I+

1

2
[Xa,XI ][Xa,XI ]

−1

2
Gab(εabcD1X

c+i[Xa,Xb])

+
i

2
Ψ̄Γ−DtΨ+

i

2
Ψ̄Γ1D1Ψ+

1

2
Ψ̄Γa[Xa,Ψ]− 1

2
Ψ̄[XI ,Γ−ΓIΨ]

]
. (3.23)

Here we see that the Lagrange multiplier reduces the theory to motion on the moduli space

of Nahm’s equations.

Reduction to 0+1 dimensions. Lastly we can consider the case of a reduction to 0+1

dimensions. The bosonic fields are (a = 1, 2, 3, 4)

(At) (Xa ≡ Aa) (XI) (Gab) , (3.24)

and now Gab is anti-self-dual. The action becomes

S0+1 =
1

g2

∫
dt

[
1

2
DtX

aDtX
a +

1

2
[Xa, XI ][Xa, XI ]− i

2
Gab[X

a, Xb]

+
i

2
Ψ̄Γ−DtΨ +

1

2
Ψ̄Γa[Xa,Ψ]− 1

2
Ψ̄[XI ,Γ−ΓIΨ]

]
. (3.25)

This is itself a quantum mechanical model whose on-shell equations of motion reduce it to

a sigma model on the moduli space of matrices that satisfy

[Xa, Xb] =
1

2
εabcd[Xc, Xd] . (3.26)

However there are no finite dimensional non-trivial solutions to this system. To see this

one observes that the expression

V = −tr([Xa, Xb][Xa, Xb]) (3.27)

is positive definite but when evaluated on (3.26) we find

V =
1

2
εabcdtr(Xa[Xb, [Xc, Xd]]) , (3.28)

which vanishes by the Jacobi identity and hence [Xa, Xb] = 0. Nevertheless it might

be interesting to explore any applications for this model in terms of the Matrix theory

approach to M-theory.
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4 Eight vs sixteen supersymmetries

In the examples above we have constructed field theories in a variety of dimensions which

are invariant under sixteen supersymmetries. However the on-shell conditions reduce the

dynamics to one-dimensional motion on a finite-dimensional moduli space of BPS config-

urations (self-dual gauge fields and their various dimensional reductions). However these

moduli spaces are hyper-Kähler and as such the one-dimensional sigma-models describing

their dynamics possess only 8 supersymmetries. What has happened?

To resolve this paradox we observe that the sixteen supersymmetries split into

(Q+,Q−) and their algebra takes the form [7, 8]

{Q+,Q+} ∼ P+

{Q+,Q−} ∼ P
{Q−,Q−} ∼ P− . (4.1)

Here P+ is the energy arising from the lagrangians above, P denote the spatial momenta

and P− is a topological index, such as the instanton number. In particular this index is,

up to an overall scale, integer P− ∼ n ∈ Z and the moduli space of BPS solutions M is

graded by n:

M = ⊕n∈ZMn . (4.2)

Within each component Mn (apart from n = 0) we see that {Q−,Q−} 6= 0 and hence

the Q− supersymmetries are broken. Thus the resulting moduli space dynamics is only

invariant under the eight Q+ supersymmetries. For n = 0 the moduli space is flat and

all sixteen supersymmetries are again realised. Thus by embedding these one-dimensional

sigma model dynamics in to a field theory we see that we are able to realise the full 16

supersymmetries and also make their higher-dimensional interpretation more transparent.

5 Conclusion

In this paper we have presented gauge theory actions in 2 + 1 and 4 + 1 dimensions (along

with the dimensional reduction of the latter) without boost invariance but with maximal

supersymmetry. In particular some fields lack kinetic terms. As such one might be con-

cerned that there is nothing to suppress them and the resulting theory will be pathelogical.

However there are also Lagrange multiplier fields that restrict the dynamics to a moduli

space of BPS configurations. As a result the kinetic energy of all the fields are controlled

and the actions can be reduced to one-dimensional motion on the moduli space. This last

step breaks half of the supersymmetry. One could state this result the other way around: we

have managed to embed one-dimensional moduli space dynamics into a field theory and

thereby double the supersymmetry and clarify the spacetime interpretation.

These actions have been derived by solving the constraints of the (2, 0) system of [5, 6]

in the special null cases that were studied in [7, 8]. As such they are expected to describe

limits of M2-branes and M5-branes where the branes have been infinitely boosted so that

their worldvolume time coordinate becomes light-like. In other words in this construction
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these actions arise as a limit of an infinite boost of static M2-branes and M5-branes, aka

null M2-branes and M5-branes. Such embeddings were discussed in [15] for the case of

single branes. It is amusing to observe that the Lagrange multiplier fields H and Gij which

appear in our non-Lorentian actions both arise as components of the self-dual three-form

of the six-dimensional (2, 0) supermultiplet.

The sigma-models that result from the M5-brane action and its dimensional reduction

are certainly not new. In particular for the uncompactified case they have appeared as a

DLCQ prescription for the M5-brane (2, 0) SCFT [12, 13]. Indeed our result here provides

another perspective on how this model relates to the (2, 0)-Theory. We also expect that

our action could be identified with a non-abelian version of the M5-brane light-cone action

constructed in [16]. In addition the AdS/pp-wave duals to these and similar DLCQ models

was studied in [17–21] and it would be interesting to relate our construction in more detail

to these analyses.

It would also be interesting to derive these actions by taking a non-Lorentzian scaling

limit, perhaps something like a mixture of Carrollian and Galilean limits in the sense of [11]

(and [22] for pp-wave spacetimes), directly within the parent Lorentzian field theory with-

out embedding the branes into eleven-dimensions. Or alternatively relate our modes to the

very special conformal symmetry models constructed in [23]. Indeed one may expect that

many supersymmetric field theories admit non-Lorentzian limits of this type which pre-

serve all the supersymmetries and whose on-shell dynamics reduce to motion on a moduli

space. Such a limit makes the Manton approximation where the dynamics are described

by slow motion on a soliton moduli space exact. It also raises the question of what is

the classification of all field theories with 16 supersymmetries if one does not impose the

condition of Lorentz invariance.
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A Fierz identities

Here we list some identities that arise from the Fierz identity. In section two one has

the following:

0 = 〈ΨT
+, [X

I , (εT−Γ̂ZZ̄ Γ̂IΨ+),Ψ+]〉+ 〈ΨT
+, [X

I , (εT−Γ̂JΨ+), Γ̂ZZ̄ Γ̂IJΨ+]〉
0 = 〈ΨT

+, [X
I , (εT+Γ̂I Γ̂z̄Ψ+), Γ̂zΨ−]〉 − 〈ΨT

+, [X
I , (εT+Γ̂I Γ̂zΨ+), Γ̂z̄Ψ−]〉

+ 〈ΨT
+, [X

I , (εT+Γ̂I Γ̂ZΨ+), Γ̂I Γ̂Z̄Ψ−]〉 − 〈ΨT
+, [X

I , (εT+Γ̂I Γ̂Z̄Ψ+), Γ̂I Γ̂ZΨ−]〉
0 = 〈ΨT

+, [Z, (ε
T
−Γ̂ZΨ−),Ψ+]〉+ 2〈ΨT

+, [Z, (ε
T
−Γ̂z̄ZΨ+), Γ̂zΨ−]〉

− 〈ΨT
+, [Z, (ε

T
−Γ̂IΨ+), Γ̂I Γ̂ZΨ−]〉

0 = 〈ΨT
−, [Z, (ε

T
+Γ̂ZΨ+),Ψ−]〉+ 2〈ΨT

−, [Z, (ε
T
+Γ̂zZΨ−), Γ̂z̄Ψ+]〉

− 〈ΨT
+, [Z, (ε

T
+Γ̂IΨ−), Γ̂I Γ̂ZΨ+]〉 . (A.1)
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There are also similar identities where Z → Z̄. These can be derived from the vanishing

of the cubic fermion terms that arise in δS for the maximally supersymmetric M2-brane

theory and then splitting-up the fields into their various components, e.g. Ψ = Ψ+ + Ψ−,

ε = ε+ + ε−, XI → XI , Z, Z̄, where the sign indicates their chirality with respect to Γ̂034.

In section three the following Fierz identities arise:

0 = tr
(
ΨT
−[(εT−Γ0Ψ+),Ψ−]

)
+ tr

(
ΨT

+[(εT−ΓmΨ−),Γ0ΓmΨ+]
)

+ tr
(
ΨT
−[(εT−ΓmΨ−),Γ0ΓmΨ+]

)
+ tr

(
ΨT
−[(εT−Γ0ΓmΨ+),ΓmΨ−]

)
0 = tr

(
ΨT
−[(εT+Γ0Ψ−),Ψ−]

)
− tr

(
ΨT
−[(εT+Γ0ΓmΨ−),ΓmΨ−]

)
, (A.2)

where m = 1, 2, 3, 4, 6, 7 . . . , 10 (i.e. m 6= 5). These can be derived from the vanishing of

the cubic fermion terms that arise in δS in five-dimensional maximally supersymmetric

Yang-Mills theory and then splitting-up the fields into their various components, e.g. Ψ =

Ψ+ + Ψ−, ε = ε+ + ε− where the sign indicates their chirality with respect to Γ05.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] E. Witten, Some comments on string dynamics, in Future perspectives in string theory.

Proceedings, Conference, Strings’95, Los Angeles, USA, March 13–18, 1995, pp. 501–523,

1995, hep-th/9507121 [INSPIRE].

[2] A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [INSPIRE].

[3] E. Witten, Five-brane effective action in M-theory, J. Geom. Phys. 22 (1997) 103

[hep-th/9610234] [INSPIRE].

[4] N. Seiberg, Notes on theories with 16 supercharges, Nucl. Phys. Proc. Suppl. 67 (1998) 158

[hep-th/9705117] [INSPIRE].

[5] N. Lambert and C. Papageorgakis, Nonabelian (2,0) Tensor Multiplets and 3-algebras, JHEP

08 (2010) 083 [arXiv:1007.2982] [INSPIRE].

[6] N. Lambert and D. Sacco, M2-branes and the (2, 0) superalgebra, JHEP 09 (2016) 107

[arXiv:1608.04748] [INSPIRE].

[7] P. Kucharski, N. Lambert and M. Owen, The (2, 0) Superalgebra, Null M-branes and

Hitchin’s System, JHEP 10 (2017) 126 [arXiv:1706.00232] [INSPIRE].

[8] N. Lambert and P. Richmond, (2, 0) Supersymmetry and the Light-Cone Description of

M5-branes, JHEP 02 (2012) 013 [arXiv:1109.6454] [INSPIRE].

[9] J.P. Gauntlett and J.B. Gutowski, Constraining Maximally Supersymmetric Membrane

Actions, JHEP 06 (2008) 053 [arXiv:0804.3078] [INSPIRE].

[10] G. Papadopoulos, M2-branes, 3-Lie Algebras and Plucker relations, JHEP 05 (2008) 054

[arXiv:0804.2662] [INSPIRE].

[11] C. Duval, G.W. Gibbons, P.A. Horvathy and P.M. Zhang, Carroll versus Newton and

Galilei: two dual non-Einsteinian concepts of time, Class. Quant. Grav. 31 (2014) 085016

[arXiv:1402.0657] [INSPIRE].

– 12 –

https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/hep-th/9507121
https://inspirehep.net/search?p=find+EPRINT+hep-th/9507121
https://doi.org/10.1016/0370-2693(96)00712-5
https://arxiv.org/abs/hep-th/9512059
https://inspirehep.net/search?p=find+EPRINT+hep-th/9512059
https://doi.org/10.1016/S0393-0440(97)80160-X
https://arxiv.org/abs/hep-th/9610234
https://inspirehep.net/search?p=find+EPRINT+hep-th/9610234
https://doi.org/10.1016/S0920-5632(98)00128-5
https://arxiv.org/abs/hep-th/9705117
https://inspirehep.net/search?p=find+EPRINT+hep-th/9705117
https://doi.org/10.1007/JHEP08(2010)083
https://doi.org/10.1007/JHEP08(2010)083
https://arxiv.org/abs/1007.2982
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.2982
https://doi.org/10.1007/JHEP09(2016)107
https://arxiv.org/abs/1608.04748
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.04748
https://doi.org/10.1007/JHEP10(2017)126
https://arxiv.org/abs/1706.00232
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.00232
https://doi.org/10.1007/JHEP02(2012)013
https://arxiv.org/abs/1109.6454
https://inspirehep.net/search?p=find+EPRINT+arXiv:1109.6454
https://doi.org/10.1088/1126-6708/2008/06/053
https://arxiv.org/abs/0804.3078
https://inspirehep.net/search?p=find+EPRINT+arXiv:0804.3078
https://doi.org/10.1088/1126-6708/2008/05/054
https://arxiv.org/abs/0804.2662
https://inspirehep.net/search?p=find+EPRINT+arXiv:0804.2662
https://doi.org/10.1088/0264-9381/31/8/085016
https://arxiv.org/abs/1402.0657
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.0657


J
H
E
P
1
0
(
2
0
1
8
)
1
3
3

[12] O. Aharony, M. Berkooz, S. Kachru, N. Seiberg and E. Silverstein, Matrix description of

interacting theories in six-dimensions, Adv. Theor. Math. Phys. 1 (1998) 148

[hep-th/9707079] [INSPIRE].

[13] O. Aharony, M. Berkooz and N. Seiberg, Light cone description of (2, 0) superconformal

theories in six-dimensions, Adv. Theor. Math. Phys. 2 (1998) 119 [hep-th/9712117]

[INSPIRE].

[14] C. Kim, Y. Kim, O.-K. Kwon and H. Nakajima, Vortex-type Half-BPS Solitons in ABJM

Theory, Phys. Rev. D 80 (2009) 045013 [arXiv:0905.1759] [INSPIRE].

[15] B.S. Acharya, J.M. Figueroa-O’Farrill, B.J. Spence and S. Stanciu, Planes, branes and

automorphisms: 2. Branes in motion, JHEP 07 (1998) 005 [hep-th/9805176] [INSPIRE].

[16] I.A. Bandos and P.K. Townsend, Light-cone M5 and multiple M2-branes, Class. Quant.

Grav. 25 (2008) 245003 [arXiv:0806.4777] [INSPIRE].
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