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1 Introduction

The conformal bootstrap program in d > 2 spacetime dimensions exploits the crossing

symmetry of 4-point correlation functions to constrain the space of conformal field theories

(CFTs) [1].1 A key ingredient in this approach is the expansion of correlation functions

into conformal blocks that are in one-to-one correspondence with conformal primaries in

the operator product expansion (OPE) [3–5]. The computation of conformal blocks is

notoriously difficult, and the result is often a complicated function of the position of the

operators, for which there is not always a closed-form expression. This complexity has

motivated the search for simpler formulations of the crossing equation, for instance using

integration over the position of operators with various measures. Some integration measures

are specifically designed to make the crossing equations more tractable [6, 7]; others use

insights from the AdS/CFT correspondence to represent the conformal blocks as Mellin

integrals [8–13]. In this work, we would like to present a relatively simple method to derive

conformal blocks based on the Fourier transform into momentum space.

The use of momentum-space techniques is standard in quantum field theory, follow-

ing naturally from the necessity to implement translation symmetry in computations. In

conformal field theory, the 4-point functions are readily invariant under translations when

1See ref. [2] for a recent comprehensive review.
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expressed in terms of the conformal cross-ratios. However, translation invariance is not

trivial in the OPE: it is only recovered after summing the contributions of descendant

operators. The direct computation of conformal blocks using the OPE is therefore rather

cumbersome [14–16], and in practice one usually prefers to use an approach based on solv-

ing a differential equation [17]. The momentum-space approach to conformal correlators

make the direct computation of conformal blocks much simpler. Moreover, it allows to

separate easily the Gaussian part of the correlation function given by the identity and

double-trace operators from the rest of the theory.

But the use of momentum-space techniques in conformal field theory comes at a price,

and there are two immediate difficulties that must be overcome. The first is of technical na-

ture: while translations act trivially in momentum space, special conformal transformations

are more involved, as their generators are second-order differential operators. The structure

of 2- and 3-point correlation functions can still be derived from conformal Ward identities,

but the procedure is not as simple as in position space [18–27]. The second problem as-

sociated with momentum space has do with the very definition of the OPE. The standard

argument based on radial quantization must be amended, and it does not seem that an

OPE can be applied at all for time-ordered correlation functions. There exist instead an

approach that uses a crossing-symmetric basis of functions, following Polyakov’s original

bootstrap idea [28]. Such a basis has been recently constructed using Witten diagrams and

Mellin integral representations [29, 30], with an direct interpretation in momentum-space

language [31]. In this work, we will explore a different direction and show instead that

both of the difficulties mentioned above are alleviated when one considers null momenta

in Minkowski space, i.e. momenta that lie on the (future or past) light cone. In this case

the 3-point functions take a simpler form, and, more importantly, the imaginary part of

the 4-point function can be expanded in conformal blocks [32, 33].

We will focus on the time-ordered correlation function of 4 identical scalar primary

operators φ,

〈
0
∣∣T
{
φ(p1)φ(p2)φ(p3)φ(p4)

}∣∣0
〉
≡ (2π)dδd(p1 + p2 + p3 + p4)iM(p1, p2, p3). (1.1)

This is equivalent to defining M as

iM(p1, p2, p3) =

∫
ddx1d

dx2d
dx3e

i(p1·x1+p2·x2+p3·x3)
〈
0
∣∣T
{
φ(x1)φ(x2)φ(x3)φ(0)

}∣∣0
〉
, (1.2)

where we have used translation invariance to move one point to the origin of the coordinate

system. By Lorentz invariance, M is a function of the “masses” m2
i = −p2i , and of the

Mandelstam invariants2

s = −(p1 + p2)
2, t = −(p1 + p3)

2, u = −(p2 + p3)
2, (1.3)

For the reasons mentioned previously, we will restrict our analysis to null momenta (p2i = 0),

assuming for now that the Fourier transform exists in this limit. Two of the momenta must

lie on the future light cone (we take these to be p1 and p2) and two on the past light cone

2We are obviously working with the “mostly plus” convention for the metric in d dimensions.

– 2 –



J
H
E
P
1
0
(
2
0
1
8
)
1
2
5

~p1

~p2

~p3

~p4

θ

Figure 1. 2 → 2 scattering configuration in the center-of-mass frame, with incoming massless

particles carrying momenta p1 and p2, and outgoing particles momenta p3 and p4.

(p3 and p4), so that s > 0 and t, u ≤ 0. We will parameterize the Mandelstam invariants t

and u as

t = −s

2
(1− x), u = −s

2
(1 + x), −1 ≤ x ≤ 1. (1.4)

so that the relation s+ t+u = 0 is satisfied. This kinematic configuration corresponds to a

2 → 2 scattering process in which x = cos θ, where θ is the scattering angle, as illustrated

in figure 1.

The existence of an OPE is related to the ability of defining states corresponding to a

single operator insertion. Because of the time-ordering operator, a complete set of states

cannot be inserted directly into the 4-point function (1.1). Instead, we will use an OPE

valid for the imaginary part of M only, which satisfies

(2π)dδd(p1+ p2+ p3+ p4) 2 ImM(p1, p2, p3) =
〈
0
∣∣T
{
φ(p3)φ(p4)

}
T
{
φ(p1)φ(p2)

}∣∣0
〉
. (1.5)

T (T) indicate respectively the (anti-)time-ordered product of the operators. The kinematic

choice s > 0, t ≤ 0 is implicit here. By dimensional analysis, the imaginary part of M
must satisfy3

2 ImM(p1, p2, p3) = s2∆φ−3d/2G(x), (1.6)

where ∆φ is the scaling dimension of the operator φ. We will show that there exists a

conformal block expansion for the dimensionless function G(x), in the form

G(x) =
∑

O∈φ×φ

λ2
φφO G∆,ℓ(x) (1.7)

where O indicates any primary operator that appears in the OPE of φ, with scaling dimen-

sions ∆, spin ℓ, and OPE coefficient λφφO.
4 The result of our analysis is that the conformal

block G∆,ℓ(x) can be written as

G∆,ℓ(x) = N∆,ℓ g∆,ℓ(x) (1.8)

3Note that if the quantity 2∆φ − 3d/2 is an integer, there could be a scale anomaly in the 4-point

function, which means a logarithmic dependence on s in the real part of M [32, 33]. The imaginary part

of M is nevertheless guaranteed to take the form of eq. (1.6) in that case.
4Since there are only traceless symmetric tensors that enter the OPE of two scalar operators, the spin

ℓ of the operator O is sufficient to characterize its Lorentz representation in any dimension d. Also, there

is a single OPE coefficient associated with each operator O.

– 3 –



J
H
E
P
1
0
(
2
0
1
8
)
1
2
5

where N∆,ℓ is a normalization constant discussed below, and g∆,ℓ(x) an even polynomial

of degree ℓ in x,

g∆,ℓ(x) =

⌊ℓ/2⌋∑

n=0

Xℓ,n x
ℓ−2n, (1.9)

with coefficients

Xℓ,n =
ℓ!(2n)!

24n(n!)2(ℓ− 2n)!
(
3−∆−ℓ

2

)

n

(
3−∆̃−ℓ

2

)

n

× 3F2

(
−n, 1− ∆+ ℓ

2
, 1− ∆̃ + ℓ

2
;
1

2
− n, 2− d

2
− ℓ; 1

)
. (1.10)

written in terms of a generalized hypergeometric 3F2 function5 and of the Pochhammer

symbol (a)n = Γ(a+ n)/Γ(a). ∆̃ is the shadow operator dimension defined by ∆̃ = d−∆.

The coefficients Xℓ,n can alternatively be written as a finite sum presented in eq. (3.24).

The polynomials g∆,ℓ(x) are regular for every ∆ satisfying the unitarity bound ∆ ≥ d−2+ℓ

(for ℓ > 0), and they do not depend on the dimension ∆φ of the external operator. They

have several remarkable limits:

• If the scaling dimension of the intermediate operator is large compared to its spin or

to the dimension of spacetime, i.e. ∆ ≫ ℓ, d, then g∆,ℓ(x) can be written as

g∞,ℓ(x) =
ℓ!

2ℓ
(
d−2
2

)
ℓ

C(d−2)/2
ℓ (x), (1.11)

where C(d−2)/2
ℓ (x) is a Gegenbauer polynomial. This is the same Gegenbauer poly-

nomial that appears in the position-space conformal block in the limit where two of

the operators are close to each other [14, 34].

• If the scaling dimension of the intermediate operator saturates the unitarity bound,

i.e. if ∆ = d − 2 + ℓ, then g∆,ℓ(x) reduces to a different Gegenbauer polynomial,

namely

gd−2+ℓ,ℓ(x) =
ℓ!

2ℓ
(
d−3
2

)
ℓ

C(d−3)/2
ℓ (x). (1.12)

This case is strikingly analogous to eq. (1.11) with the spacetime dimension lowered

by one unit. This coincidence arises since a traceless symmetric tensor that satisfy a

conservation condition effectively transform in the subgroup SO(d−1) of the Lorentz

group SO(d− 1, 1), as explained in more detail in section 3.

• If the spacetime dimension is large while the scaling dimension of the operator remains

at finite value above the unitarity bound (∆ & d−2+ℓ), then only the leading power

in x remains in the polynomial:

g∆,ℓ(x)
d→∞−−−→ xℓ. (1.13)

5This hypergeometric function falls in the category of the so-called continuous dual Hahn polynomi-

als [30]. We thank Matthijs Hogervorst for pointing this out.
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Figure 2. The coefficient N∆,ℓ of eq. (1.14) as a function of ∆ and for ℓ = 0, 2 and 4 in two

different cases: the left panel corresponds to d = 4 spacetime dimensions with a scalar operator of

scaling dimension ∆φ = 3; the right panel to d = 5 and ∆φ = 5.5.

The constant N∆,ℓ in eq. (1.8) depends on the normalization of 2- and 3-point functions

and is therefore related to the definition of the OPE coefficients. Working with standard

conventions specified later, it is given by

N∆,ℓ =
23d−4∆φ−2ℓ+1π3d/2+1Γ

(
∆φ − d

2

)4
Γ
(
∆− d−2

2

)
Γ
(
∆+ℓ
2 −∆φ + d

2

)2
(∆− 1)ℓ

Γ
(
∆+ℓ
2

)4
Γ
(
∆φ − ∆−ℓ

2

)2
Γ
(
∆φ + ∆+ℓ

2 − d
2

)2
Γ
(
∆φ + ∆−ℓ

2 − d+ 1
)2 .

(1.14)

Unlike g∆,ℓ(x), this expression depends on ∆φ and is not always regular. It is notably

divergent if the dimension ∆φ of the external operator is d/2 or (d − 2)/2. The latter

case is trivial, as the operator φ must be a free field and M does not have an imaginary

part; in the former case our approach is simply inconclusive, and we will therefore always

assume ∆φ 6= d
2 in this work.6 Moreover, N∆,ℓ is divergent for intermediate operators with

scaling dimension ∆ = 2∆φ − d − ℓ − 2n, with n ∈ N. We will also assume that no such

operator appear in the φ× φ OPE, which is a reasonable assumption if φ is taken to be a

low-dimension operator of the CFT. Besides its divergences, the coefficient N∆,ℓ has zeros

whenever the intermediate operator has a dimension that matches one of the operators of

the schematic double-trace form φ∂2nφ, i.e. when ∆ − ℓ = 2∆φ + 2n. This property is in

agreement with the fact that M must be trivial in a generalized free field theory where

all correlators are Gaussian. The zeros and singularities of N∆,ℓ are illustrated in two

representative cases in figure 2. The figure also shows that N∆,ℓ becomes independent of

the spin at large ∆.

These are the results of our work, and their derivation is detailed in the remainder of

the paper. Section 2 is devoted to the study of 2-point functions in momentum space. It also

contains a discussion of the OPE defined through the state/operator correspondence, and

of the special role played by shadow operators. In section 3, we derive an expression for the

6When ∆φ = d
2
, the momentum-space 2-point function of φ must be renormalized. This can for instance

be achieved shifting the scaling dimension of φ by an infinitesimal parameter, in which case the conformal

block expansion that we derived should still be valid.
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3-point function of two scalar operators with a generic traceless symmetric spin-ℓ tensor,

and compute the conformal blocks as products of pairs of 3-point functions. Section 4

provides a free theory example in which only higher-spin conserved current have to be

considered. The blocks are Gegenbauer polynomials in that case, and their orthogonality

can be used to invert the OPE. Some additional details regarding the computation of the

4-point function in terms of Feynman diagrams are relegated to appendix A. Finally, we

conclude in section 5 with a discussion of issues that were ignored before, such as the

definiteness of the Fourier transform in the light-cone limit, related to the question of the

OPE convergence in momentum space.

2 Two-point functions and the momentum-space OPE

In this section we discuss momentum-space operators and states, focusing on the simplest

observables that are 2-point correlation functions. The goal is to derive a completeness re-

lation that will later define the conformal block expansion. We begin with scalar operators,

and then discuss traceless symmetric spin-ℓ tensors.

2.1 The scalar two-point function

In a Lorentzian theory, there are two distinct types of correlators depending on how light-

like-separated points are treated. Specializing to scalar 2-point functions, one distinguishes

the time-ordered correlator (or Feynman 2-point function)

F∆(x) ≡
〈
0
∣∣T
{
O(x)O(0)

}∣∣0
〉
=

1

[x2 + iǫ]∆
(2.1)

from the Wightman 2-point function, written without the time-ordering product,

W∆(x) ≡
〈
0
∣∣O(x)O(0)

∣∣0
〉
=

1

[−(x0 − iǫ)2 + (xi)2]∆
, (2.2)

where the infinitesimal ǫ > 0 in both cases. These equations define the normalization of the

primary operator O. The distinction between the two orderings is particularly important

in momentum space, where we integrate over all of spacetime, including points at zero

distance from each other. The corresponding momentum-space correlators are

F∆(q) ≡
∫

ddx e−iq·xF∆(x) = −i
πd/2 Γ

(
d
2 −∆

)

22∆−d Γ (∆)
(q2 − iǫ)∆−d/2 (2.3)

and

W∆(q) ≡
∫

ddx e−iq·xW∆(x) = Θ(q0)Θ(−q2)
πd/2+1

22∆−d−1Γ (∆)Γ
(
∆− d−2

2

)(−q2)∆−d/2,

(2.4)

where Θ is the Heaviside step function (Θ(a) = 1 for a > 0, Θ(a) = 0 otherwise). The time-

ordered 2-point function has support for all q, but it is divergent and needs renormalization

whenever ∆ = d
2 + n. On the contrary, the Wightman 2-point function only has support

in the future momentum-space light cone, but it is well-defined and positive for all scaling

– 6 –
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dimensions ∆ satisfying the unitarity bound. This positivity condition is necessary in any

unitary theory since the Wightman 2-point function defines the norm of a state

〈
O(q′)

∣∣O(q)
〉
= (2π)dδd(q′ + q)W∆(q) (2.5)

where we have taken

∣∣O(q)
〉
≡
∫

ddx eiq·xO(x0 + iǫ, xi)
∣∣0
〉
,

〈
O(q)

∣∣ =
∣∣O(−q)

〉†
. (2.6)

An important property of CFTs in Minkowski space is that the set of states {|O(q)〉}
for all q in the future light cone spans the full Verma module of the primary operator

O [32, 35]. A simple way of seeing this is to insert this set of states in the position-

space Wightman 2-point function (2.2) and to verify that the full expression is recovered

independently of the positions of the 2 points.7 Alternatively, it can be noted that the set

of states (2.6) represents all linear combinations of a primary operator O inserted at the

point (x0, xi) = (iǫ, 0) and of its descendants. There exist a unitary evolution operator

U(t) = eiHt, H = ǫ2P0 −K0, (2.7)

that takes the constant time slice x0 = 0 into spheres enclosing the point (iǫ, 0) and its

conjugate (−iǫ, 0), with decreasing radius as |t| → ∞. Here Pµ and Kµ are respectively

the generators of translations and special conformal transformations, and H corresponds

to the Hamiltonian of N-S quantization [36].8 This construction defines a state/operator

correspondence for Lorentzian CFTs, in exact analogy with radial quantization in Euclidean

space. States that carry spin can be constructed in an analogous way from operators

with spin, and we will eventually be able to define a completeness relation that applies to

arbitrary Wightman correlation functions. In order to do so, we first need to determine the

normalization of 2-point functions, i.e. to compute the equivalent of eq. (2.4) for operator

with spin.

2.2 The two-point function of traceless symmetric tensors

The only operators with spin that need to be considered in this work are those that can

appear in the OPE of two scalars, and they all belong to the traceless symmetric represen-

tations of SO(d− 1, 1). The Wightman 2-point functions

Wµ1...µℓ,ν1...νℓ
∆ (x) ≡

〈
0
∣∣Oµ1...µℓ(x)Oν1...νℓ(0)

∣∣0
〉
, (2.8)

are known to be

Wµ1...µℓ,ν1...νℓ
∆ (x) = W∆(x)

[
1

ℓ!
Iµ1ν1(x) · · · Iµℓνℓ(x) + permutations− traces

]
(2.9)

7The exact form of the completeness relation 1 ∝ |O(q)〉〈O(−q)| needed to perform this check will be

given later in eq. (2.17).
8Note that this construction works for any ǫ > 0, not necessarily infinitesimal, but it is convenient to

take ǫ ≪ 1 in the sense that it reproduces naturally the prescription of the Wightman function (2.2) in

which Lorentz invariance is explicit.
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with

Iµν(x) = ηµν − 2
xµxν

x2
, (2.10)

and where permutations and traces are understood to be among µi and νi indices sepa-

rately.9 There are several approaches to computing the Fourier transform of this 2-point

function (see for instance ref. [31]). We will present a method based on conformal Ward

identities, which is convenient as it generalizes naturally to the computation of 3-point

functions in section 3. The idea is to consider the most general object that has the cor-

rect transformation properties under the Lorentz group, dilatation, and special conformal

transformations in the form of the second-order differential equation10

[
−qσ

∂2

∂qρ∂qσ
+

1

2
qρ

∂2

∂qσ∂qσ
+ (∆− d)

∂

∂qρ
+

∂

∂qσ
Σ(µ)
ρσ

]
Wµ1...µℓ,ν1...νℓ

∆ (q) = 0, (2.11)

where Σ
(µ)
ρσ is the spin matrix acting on the indices µ1 . . . µℓ only, not on ν1 . . . νℓ. The

unique solution to this problem, up to an overall normalization constant, is

Wµ1...µℓ,ν1...νℓ
∆ (q) = CO Θ(q0)Θ(−q2)(−q2)∆−d/2

ℓ∑

n=0

2nℓ!

n!(ℓ− n)!

(
d
2 −∆

)
n

(2−∆− ℓ)n
(2.12)

×
[
1

ℓ!

qµ1qν1 · · · qµnqνn

(−q2)n
ηµn+1νn+1 · · · ηµℓνℓ + permutations− traces

]
.

The constant CO can then be determined by contracting the indices of both operators: one

the one hand, from eq. (2.9),

ηµ1ν1 · · · ηµℓνℓW
µ1...µℓ,ν1...νℓ
∆ (x) =

(d− 2)ℓ
ℓ!

W∆(x). (2.13)

On the other hand, from eq. (2.12),

ηµ1ν1 · · · ηµℓνℓW
µ1...µℓ,ν1...νℓ
∆ (q) = CO Θ(q0)Θ(−q2)

(d− 2)ℓ (∆ + ℓ− 1)

ℓ!(∆− 1)
(−q2)∆−d/2. (2.14)

Making use of the Fourier transform (2.4) of the scalar 2-point function, one can deduce that

CO =
πd/2+1

22∆−d−1(∆ + ℓ− 1)Γ (∆− 1) Γ
(
∆− d−2

2

) , (2.15)

provided that q0 > 0 and that q2 < 0. We have thus obtained an expression valid for any

traceless symmetric tensor. The momentum-space 2-point function of a vector field is for

instance

Wµ,ν
∆ (q) = Θ(q0)Θ(−q2)(−q2)∆−d/2 πd/2+1(∆− 1)

22∆−
d−1Γ (∆ + 1)Γ

(
∆− d−2

2

)
[
ηµν +

d− 2∆

∆− 1

qµqν

q2

]
,

(2.16)

9We have chosen in this work to normalize all traceless symmetric operators such that their 2-point

function is given by eq. (2.9). For conserved operators, such as the energy-momentum tensor or conserved

currents associated with global symmetries, the standard normalization differs from our convention, as it is

usually taken so that they satisfy canonical Ward identities. The conversion between these two normaliza-

tions can be simply achieved through a redefinition of OPE coefficients.
10Invariance of the 2-point function under translations is ensured by the delta function imposing momen-

tum conservation, which has been factored out of the definition of Wµ1...µℓ,ν1...νℓ
∆ (x).
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and it can be verified that the conservation condition qµW
µ,ν
∆ (q) is automatically satisfied

when ∆ = d − 1. Note that there is no simple factorization of the tensor structure as in

the position-space expression (2.9).

2.3 Completeness relation and shadow operators

The existence of a completeness relation can be inferred from the state/operator correspon-

dence discussed above. The states (2.6) and their generalization
∣∣Oµ1...µℓ(k)

〉
for operators

with spin readily satisfy orthogonality properties, both for different primary operators and

for unequal momenta. We have therefore

1 = |0〉〈0|+
∑

O

∫

q0>0
q2<0

ddq

(2π)d
Π∆

µ1...µℓ,ν1...νℓ
(q)
∣∣Oµ1...µℓ(q)

〉〈
Oν1...νℓ(−q)

∣∣, (2.17)

where the sum is over all primary operators O 6= 1, and the tensors Π(q) take into account

the normalization of operators. They must be chosen such that

Wµ1...µℓ,ρ1...ρℓ
∆ (q)Π∆

ρ1...ρℓ,σ1...σℓ
(q)W σ1...σℓ,ν1...νℓ

∆ (q) = Wµ1...µℓ,ν1...νℓ
∆ (q). (2.18)

In our case, since we only consider scalar or traceless symmetric tensors, the Π(q) can be

determined from eq. (2.12). The solution is unique if we require that they transform under

irreducible representations of the Lorentz group, i.e. that they are traceless and symmetric

in both sets of indices. By construction, we find

Π∆
µ1...µℓ,ν1...νℓ

(q) =
(−q2)d/2−∆

CO

ℓ∑

n=0

2nℓ!

n!(ℓ− n)!

(
∆− d

2

)
n

(∆− ℓ− d+ 2)n
(2.19)

×
[
1

ℓ!

qµ1
qν1 · · · qµnqνn
(−q2)n

ηµn+1νn+1
· · · ηµℓνℓ + permutations− traces

]
.

This tensor is singular when the dimension ∆ saturates the unitarity bound, i.e. when

∆ = d − 2 + ℓ. In that case, however, the operator Oµ1...µℓ is a conserved tensor and the

corresponding state satisfies qµ1

∣∣Oµ1...µℓ(q)
〉
= 0, so that we can take

Πd−2+ℓ
µ1...µℓ,ν1...νℓ

(q) =
(−q2)−d/2+2−ℓ

CO

[
1

ℓ!
ηµ1ν1 · · · ηµℓνℓ + permutations− traces

]
. (2.20)

Alternatively, one can proceed with the expression (2.19) for generic ∆ and take the limit

∆ → d− 2 + ℓ at the end, as we will see that this gives finite results.

Comparing the tensor (2.19) with the 2-point function (2.12), one can see that the for-

mer is obtained replacing ∆ with ∆̃ = d−∆ in the latter, up to the overall normalization

coefficient, i.e. Π∆
µ1...µℓ,ν1...νℓ

(q) ∝ Wµ1...µℓ,ν1...νℓ
d−∆ (q). This is not an accident but follows from

the existence of a non-local “shadow” operator Õ that has the same transformation prop-

erties as O under the conformal group, but with scaling dimension ∆̃ = d −∆ [3, 38–41].

If we define “shadow states” by

∣∣Õµ1...µℓ
(q)
〉
≡ Π∆

µ1...µℓ,ν1...νℓ
(q)
∣∣Oν1...νℓ(q)

〉
, (2.21)
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then the completeness relation can be expressed in the very simple form

1 = |0〉〈0|+
∑

O

∫

q0>0
q2<0

ddq

(2π)d
∣∣Õµ1...µℓ

(q)
〉〈
Oµ1...µℓ(−q)

∣∣. (2.22)

This alternative formulation is more than just a rewriting of the completeness rela-

tion (2.17): since correlation functions 〈· · · Õ〉 involving the shadow operator have similar

transformation properties under the conformal group as the functions 〈· · · O〉, we will be

able to determine the former directly in terms of the latter in section 3.

This concludes the derivation of a completeness relation that can be used to write an

OPE for any Wightman correlation function.

2.4 An OPE for the time-ordered 4-point function

The crossing-symmetric 4-point function (1.1) is not a Wightman correlation function, and

therefore the completeness relation (2.22) cannot be directly used to generate a conformal

block expansion. In position space, a time-ordered product can be expressed as a sum of

Wightman functions multiplied with Heaviside step functions enforcing the chronological

ordering. But this does not translate into a sum of momentum-space Wightman functions

upon Fourier transform. Instead, we make use of the combinatoric identity

〈
0
∣∣T
{
φ(x1)φ(x2)φ(x3)φ(x4)

}∣∣0
〉
+
〈
0
∣∣T
{
φ(x1)φ(x2)φ(x3)φ(x4)

}∣∣0
〉

+
(〈

0
∣∣T
{
φ(x1)φ(x2)

}
T
{
φ(x3)φ(x4)

}∣∣0
〉
+ permutations

)

−
(〈

0
∣∣φ(x1)T

{
φ(x2)φ(x3)φ(x4)

}∣∣0
〉
+ permutations

)

−
(〈

0
∣∣T
{
φ(x2)φ(x3)φ(x4)

}
φ(x1)

∣∣0
〉
+ permutations

)
= 0, (2.23)

where the permutations are among the xi, and T denotes the anti-time-ordering operator.

For real scalar operators, T corresponds to the Hermitian conjugate of the time-ordered

product T. The Fourier transform of this equation relates the real part of the 4-point

function (the first line) to a set of correlators that are of mixed Feynman/Wightman type.

The correlators of the third and fourth lines vanish in the limit p2i → 0 if we approach it

from the Euclidean side (−p2i < 0), because in that case φ(pi)
∣∣0
〉
= 0 and

〈
0
∣∣φ(pi) = 0.

The completeness relation (2.22) can then be used to evaluate each of the 6 terms of

the second line as products of 3-point functions. Only one of them is non-zero, since

T
{
φ(pi)φ(pj)

}
|0〉 = 0 if the combined momentum pi + pj does not lie in the future light

cone. The only remaining term gives the equality

2Re
〈
0
∣∣T
{
φ(p1)φ(p2)φ(p3)φ(p4)

}∣∣0
〉
= −

〈
0
∣∣T
{
φ(p3)φ(p4)

}
T
{
φ(p1)φ(p2)

}∣∣0
〉
, (2.24)

which is equivalent to eq. (1.5) when written in terms of M(p1, p2, p3). Using the com-

pleteness relation on the right-hand side of this equation and performing the trivial integral
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over the exchange momentum q, one obtains finally

2 ImM(p1, p2, p3) =
∑

O

∫
ddx3d

dx4 e
i(p3·x3+p4·x4)

〈
0
∣∣T
{
φ(x3)φ(x4)

}
Õµ1...µℓ

(0)
∣∣0
〉

×
∫

ddx1d
dx2 e

i(p1·x1+p2·x2)
〈
0
∣∣Oµ1...µℓ(0)T

{
φ(x1)φ(x2)

}∣∣0
〉
.

(2.25)

This is the essential equality that defines the conformal block expansion for the imaginary

part of M. It only involves 3-point functions in which the momentum-conserving delta

functions have been factored out. Evaluating these functions is the subject of the next

section.

3 Three-point functions and conformal blocks

In this section we describe the derivation of the 3-point functions of two scalars and one

traceless symmetric spin-ℓ operator and the computation of their product as in eq. (2.25).

As for the 2-point function, we begin with the scalar case and later discuss the implemen-

tation of operators with spin.

3.1 Scalar three-point function

We denote the momentum-space 3-point function of scalar operators in which two of the

operators are time-ordered by

iλφφOV∆(p1, p2) =

∫
ddx1d

dx2e
i(p1·x1+p2·x2)

〈
0
∣∣O(0)T

{
φ(x1)φ(x2)

}∣∣0
〉
. (3.1)

The OPE coefficient λφφO has been taken out of the definition so that V∆(p1, p2) is a

function of the scaling dimensions ∆ ≡ ∆O and ∆φ, and of the momenta only. The

position-space 3-point function is given by

〈
0
∣∣O(0)T

{
φ(x1)φ(x2)

}∣∣0
〉

(3.2)

=
λφφO[

−(x01 + iǫ)2 + (xi1)
2
]∆/2 [−(x02 + iǫ)2 + (xi2)

2
]∆/2

[(x1 − x2)2 + iǫ]∆φ−∆/2
.

For space-like separated points, this is the ordinary CFT 3-point function for scalar primary

operators. In the general case, the iǫ prescriptions ensure the correct ordering of operators.

Using the translation invariance of the 3-point function, one can rewrite eq. (3.1) in the

form of a momentum integral over a product of 2-point functions as

iV∆(p1, p2) =

∫
ddk

(2π)d
F∆φ−∆/2(k)W∆/2(p1 + k)W∆/2(p2 − k), (3.3)

where Fα and Wα are the time-ordered and Wightman 2-point functions given in eqs. (2.3)

and (2.4) respectively, for fictitious scalar operators with scaling dimension α. This integral

can be represented by the Feynman diagram in figure 3. It has been computed in ref. [32]
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p2

p1

p1 + k

k

p2 − k

p1 + p2

φ

φ

O

Figure 3. Feynman diagram representation of eq. (3.3), in which the time-ordered 2-point function

is indicated with a single solid line, and the Wightman 2-point functions with double lines.

for null momenta p21 = p22 = 0, and the result can be written in terms of the invariant

s = −2p1 · p2 as

V∆(p1, p2) =
22d−2∆φ−∆+1πd+1Γ

(
∆φ − d

2

)2
Γ
(
∆
2 −∆φ + d

2

)

Γ
(
∆
2

)2
Γ
(
∆φ − ∆

2

)
Γ
(
∆φ + ∆

2 − d
2

)
Γ
(
∆φ + ∆

2 − d+ 1
) s∆φ+∆/2−d. (3.4)

Combining this result with the OPE expansion (2.25) for the imaginary part of M, one

can immediately compute the conformal block for an intermediate scalar operator to be

G∆,0(x) =
V∆(p1, p2)

2

s2∆φ+∆−2dCO
, (3.5)

where CO is given in eq. (2.15). It is straightforward to verify that this expression coincides

with eq. (1.8) at ℓ = 0.

3.2 Three-point function for intermediate operators with spin

The generalization of eq. (3.1) for an operator O with spin will be denoted by

iλφφOV
µ1...µℓ

∆ (p1, p2) =

∫
ddx1d

dx2e
i(p1·x1+p2·x2)

〈
0
∣∣Oµ1...µℓ(0)T

{
φ(x1)φ(x2)

}∣∣0
〉
, (3.6)

where the position-space 3-point function is given by [42, 43]

〈
0
∣∣Oµ1...µℓ(0)T

{
φ(x1)φ(x2)

}∣∣0
〉

(3.7)

=
λφφO (Rµ1 · · ·Rµℓ − traces)

[
−(x01 + iǫ)2 + (xi1)

2
](∆−ℓ)/2 [−(x02 + iǫ)2 + (xi2)

2
](∆−ℓ)/2

[(x1 − x2)2 + iǫ]∆φ−(∆−ℓ)/2
.

with

Rµ =
xµ1
x21

− xµ2
x22

. (3.8)

There are various ways of computing the tensor V µ1...µℓ

∆ . One of them consists in express-

ing it as a differential operator acting on the scalar 3-point function [31]. We will use

instead conformal Ward identities in momentum space, following a strategy developed in

refs. [18–22]. Requiring Lorentz and scale invariance is simple enough, and we can param-
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eterize the 3-point function as11

V µ1...µℓ

∆ (p1, p2) = s(2∆φ+∆−2d−ℓ)/2
ℓ∑

n=0

(−1)nℓ!

n!(ℓ− n)!
Fℓ,n

(−p21
s

,
−p22
s

)

×
[
1

ℓ!
pµ1

1 · · · pµn

1 p
µn+1

2 · · · pµℓ

2 + permutations− traces

]
, (3.9)

where the Fℓ,n are functions of two dimensionless variables, and they are unknown at this

stage. Invariance of this expression under special conformal transformation gives addi-

tional constraints among the Fℓ,n. It is important to remark that since special conformal

transformations do not preserve the light cone condition p2i = 0, we must consider the

general kinematics at arbitrary p2i in order to derive these constraints. The Ward identity

associated with special conformal transformations generated by Kρ is given by

2∑

i=1

[
−pσi

∂2

∂pρi ∂p
σ
i

+
1

2
piρ

∂2

∂piσ∂pσi
+ (∆φ − d)

∂

∂pρi

]
V µ1...µℓ

∆ (p1, p2) = 0. (3.10)

Note that the differential operator acting on V does not depend on the spin of the operator:

this is because we have used translation invariance to place O at the origin of coordinate

space, where [Kρ,Oµ1...µℓ(0)] = 0. In general, the constraints among the functions Fℓ,n

take the form of second order differential equations. In the limit p2i → 0, they reduce

however to first order differential equations, because the second-order derivatives part of

eq. (3.10) coincides with the Todorov operator that preserves the condition p2i = 0 [44, 45].

We will assume that the Fℓ,n are well-defined in that limit. In order to simplify the problem

further, the Ward identity can be split into components corresponding to special conformal

transformations along p1, p2, and along orthogonal directions. For instance, contracting

eq. (3.10) with pρ2, one obtains the condition

(
∆φ − d

2
− 1

)
∂zFℓ,n(z, 0)

∣∣∣
z=0

=

(
∆− ℓ

2
+ ∆φ − d

)(
∆+ ℓ

2
−∆φ +

d

2
− n

)
Fℓ,n(0, 0)

+(ℓ− n)

(
∆− ℓ

2
+ ℓ− n− 1

)
Fℓ,n(0, 0)

+(ℓ− n)(∆φ − d− n)Fℓ,n+1(0, 0), (3.11)

which relates first derivatives of the Fℓ,n with their values at p2i = 0. A similar equation is

obtained when contracting eq. (3.10) with pρ1, in this case involving derivatives of the Fℓ,n

with respect to their second variable. These equations always have a solution for generic

∆φ, but they do not constrain the Fℓ,n at p2i = 0. The Ward identity in the orthogonal

direction is more interesting: defining a vector p⊥ such that p1 · p⊥ = p2 · p⊥ = 0 (which is

always possible in d > 2) and contracting it with eq. (3.10) leads to the condition

(
∆− ℓ

2
+ n

)
Fℓ,n+1(0, 0) =

(
∆+ ℓ

2
− n− 1

)
Fℓ,n(0, 0). (3.12)

11Again, we assume that there is no scale anomaly in the 3-point function.
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This recursion relation determines the 3-point function completely up to an overall nor-

malization constant CφφO, and we get

V µ1...µℓ

∆ (p1, p2) = CφφO s∆φ−d+(∆−ℓ)/2
ℓ∑

n=0

(−1)ℓ−nℓ!

n!(ℓ− n)!

2ℓ
(
∆+ℓ
2 − n

)
n

(
∆−ℓ
2 + n

)
ℓ−n

(∆− 1)ℓ

×
[
1

ℓ!
pµ1

1 · · · pµn

1 p
µn+1

2 · · · pµℓ

2 + permutations− traces

]
. (3.13)

It will turn out to be more convenient to express this 3-point function in terms of the sum

and difference of the momenta p1 and p2, defining q = p1 + p2 and r = p1 − p2, for which

V µ1...µℓ

∆ (q, r) = CφφO s∆φ−d+(∆−ℓ)/2

ℓ/2∑

n=0

ℓ!

n!(ℓ− 2n)!

1

22n
(
3−∆−ℓ

2

)
n

(3.14)

×
[
1

ℓ!
qµ1 · · · qµ2nrµ2n+1 · · · rµℓ + permutations− traces

]
.

It is interesting to note that the tensor structure of the 3-point function does not depend

on ∆φ. This is a known feature of 3-point function involving two identical scalar operators.

In order to determine CφφO, we consider the scalar integral obtained contracting the

symmetric tensor pµ1

1 · · · pµℓ

1 with the 3-point function. On the one hand, using eq. (3.13),

we find

p1µ1
· · · p1µℓ

V µ1...µℓ

∆ (p1, p2) = CφφO

(
∆−ℓ
2

)
ℓ

(∆− 1)ℓ
s∆φ+(∆+ℓ)/2−d. (3.15)

On the other hand, from the definition (3.6),

iλφφOp1µ1
· · · p1µℓ

V µ1...µℓ

∆ (p1, p2) (3.16)

= iℓ
∫

ddx1d
dx2 e

i(p1·x1+p2·x2) ∂

∂xµ1

1

· · · ∂

∂xµℓ

1

〈
0
∣∣Oµ1...µℓ(0)T

{
φ(x1)φ(x2)

}∣∣0
〉
.

Using the explicit form of the 3-point function (3.7) together with properties of the scalar

3-point integral derived above, it can be shown that this is equivalent to

p1µ1
· · · p1µℓ

V µ1...µℓ

∆ (p1, p2) = (−i)ℓ
(
∆−ℓ
2

)
ℓ

(
d−∆φ − ∆+ℓ

2

)
ℓ(

∆φ − ∆+ℓ
2

)
ℓ

V∆+ℓ(p1, p2) (3.17)

where V∆+ℓ is the scalar integral of eq. (3.4), with the scaling dimension of the operator O
shifted by ℓ. The equivalence between eqs. (3.15) and (3.17) implies that

CφφO =
iℓ22d−2∆φ−∆−ℓ+1πd+1Γ

(
∆φ − d

2

)2
Γ
(
∆+ℓ
2 −∆φ + d

2

)
(∆− 1)ℓ

Γ
(
∆+ℓ
2

)2
Γ
(
∆φ − ∆−ℓ

2

)
Γ
(
∆φ + ∆+ℓ

2 − d
2

)
Γ
(
∆φ + ∆−ℓ

2 − d+ 1
) . (3.18)

Note that CφφO need only be defined for even ℓ, as the 3-point function vanishes by sym-

metry for odd ℓ. It is therefore a real coefficient, and so is V µ1...µℓ

∆ . This result completes

the computation of the momentum-space 3-point function.
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3.3 Construction of conformal blocks

With the knowledge of the 2- and 3-point functions, the conformal blocks defined in the

introduction can now be read directly from eq. (2.25). First, using the explicit form of

the tensor Π given in eq. (2.19), it can be verified that the 3-point function involving the

shadow states (2.21) is related to the 3-point function constructed with the ordinary state.

Explicitly, we find

Π∆
µ1...µℓ,ν1...νℓ

(q)V ν1...νℓ
∆ (q, r) =

1

CO
V(d−∆)µ1...µℓ

(q, r) (3.19)

where CO is the constant defined in eq. (2.15). Therefore, the conformal blocks take the

simple form

G∆,ℓ(x) =
V µ1...µℓ

∆ (q, r)V(d−∆)µ1...µℓ
(q, r′)

s2∆φ−3d/2CO

(3.20)

where the various momenta are given by q = p1 + p2 = −(p3 + p4), r = p1 − p2 and

r′ = p3 − p4. This basis of vectors is convenient as all scalar products take a simple form:

− q2 = r2 = r′2 = s, q · r = q · r′ = 0, r · r′ = −s x. (3.21)

In particular, x measures the only non-trivial angle between r and r′, and all momenta

are normalized in units of s so that the dependence on s disappears in eq. (3.20). In our

conventional notation G∆,ℓ(x) = N∆,ℓ g∆,ℓ(x), the constant N∆,ℓ is directly related to the

normalization of the 2- and 3-point functions by

N∆,ℓ =
C2
φφO

CO
, (3.22)

with CO and CφφO given in eqs. (2.15) and (3.18) respectively. Evaluating the polynomial

g∆,ℓ(x) is a straightforward exercise of combinatorics, albeit a delicate one due to the

presence of the trace terms in eq. (3.14). We find

g∆,ℓ(x) =

⌊ℓ/2⌋∑

n=0

Xℓ,n x
ℓ−2n (3.23)

with coefficients

Xℓ,n =
ℓ!

24n(ℓ− 2n)!
(
3−∆−ℓ

2

)

n

(
3−∆̃−ℓ

2

)

n

×
n∑

k=0

(−1)k22k(2n− 2k)!

k! [(n− k)!]2

(
2−∆−ℓ

2

)
k

(
2−∆̃−ℓ

2

)

k(
d−2
2 + ℓ− k

)
k

. (3.24)
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This definition is equivalent to the generalized hypergeometric function (1.10). The first

few polynomials are

g∆,0(x) = 1, (3.25)

g∆,2(x) = x2 − ∆(d−∆)− d

d(∆− 1)(d−∆− 1)
, (3.26)

g∆,4(x) = x4 − 6
∆(d−∆) + d

(d+ 4)(∆ + 1)(d−∆+ 1)
x2

+3
∆2(d−∆)2 − (d+ 2)(d− 4)

(d+ 2)(d+ 4)(∆− 1)(∆ + 1)(d−∆− 1)(d−∆+ 1)
. (3.27)

As can be seen, the coefficient of the leading term in x satisfies

Xℓ,0 = 1 (3.28)

for any ℓ. The g∆,ℓ(x) are even polynomials, which realizes the crossing symmetry t ↔ u

of the 4-point function, and they are obviously invariant under the shadow transformation

g∆,ℓ(x) = gd−∆,ℓ(x). (3.29)

An important property of these polynomials, which is not obvious from their definition, is

that they are positive in the forward scattering regime x = 1,

g∆,ℓ(1) ≥ 0. (3.30)

This is because the conformal block is the norm of a state in that limit [32, 33].

The various special cases listed in the introduction can be straightforwardly obtained

from eq. (3.24). At large d, keeping the quantity ∆−ℓ−d+2 fixed, all the terms subleading

in x in the polynomial vanish,

Xℓ,0 = 1, Xℓ,n
d→∞−−−→ 0 (n > 0). (3.31)

This property follows from the simple form of the 3-point function (3.14) when ∆ is large

(also valid at large ∆̃, i.e. when ∆ → −∞),

V µ1...µℓ

∆ (q, r)
|∆|→∞−−−−−→ CφφO s∆φ−d+(∆−ℓ)/2 [rµ1 · · · rµℓ − traces] (3.32)

and from the fact that all trace terms can be neglected when d → ∞, so that the prod-

uct (3.20) of the 3-point functions becomes trivial. At large ∆ but finite d, the conformal

block is obtained squaring the 3-point function (3.32), which reproduces the Gegenbauer

polynomial of eq. (1.11). Alternatively, it can be seen that the sum (3.24) is dominated by

the term k = n in that limit, so that

Xℓ,n
∆→∞−−−−→ (−1)nℓ!

22nn!(ℓ− 2n)!
(
d−2
2 + ℓ− n

)
n

. (3.33)
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Conversely, when ∆ approaches the unitarity bound value d − 2 + ℓ, only the term k = 0

contributes to the sum (3.24), and one obtains

Xℓ,n
∆→d−2+ℓ−−−−−−−→ (−1)nℓ!

22nn!(ℓ− 2n)!
(
d−3
2 + ℓ− n

)
n

, (3.34)

corresponding to the other Gegenbauer polynomial (1.12). The fact that these last two

limits differ by one unit of spacetime dimension can be understood as follows: when ∆

saturates the unitarity bound, the operator O is a conserved current, and the states that

it defines satisfy therefore qµa |Oµ1...µℓ(q)〉 = 0, for all a = 1, . . . , ℓ. In the center-of-

mass frame in which q = (1, 0, . . . , 0), only the states with spatial indices |Oi1...iℓ(q)〉
are non-null. These states transform as traceless symmetric tensors under the subgroup

SO(d) ⊂ SO(d, 1). Moreover, the 3-point function projected onto this subspace takes the

form of eq. (3.32) up to terms that ensure the conservation property, which explains why

one recovers a Gegenbauer polynomial in one less dimension.

The appearance of the Gegenbauer polynomials C(d−3)/2
ℓ (x) is not a surprise, as it es-

tablishes a connection with a different expansion of the momentum-space 4-point function,

namely the partial wave expansion in which intermediate states are organized in terms of

their angular momentum.12 The connection between the two expansions is not simple,

as a single conformal block contains intermediate descendant states with arbitrarily large

spin, and conversely a given partial wave receives contribution from a (presumably infinite)

tower of primary operators. Nevertheless, it turns out that the polynomials g∆,ℓ(x) admit

a relatively simple decomposition in terms of partial waves, in the form

g∆,ℓ(x) =

⌊ℓ/2⌋∑

n=0

(−1)n(2n)!ℓ!

2ℓ+2n+1(n!)2
d− 3 + 2ℓ− 4n(

2− d
2 − ℓ

)
n

(
d−3
2

)
ℓ−n+1

(
2−∆−ℓ

2

)

n

(
2−∆̃−ℓ

2

)

n(
3−∆−ℓ

2

)

n

(
3−∆̃−ℓ

2

)

n

C(d−3)/2
ℓ−2n (x).

(3.35)

The coefficients relating the g∆,ℓ(x) to the Gegenbauer polynomials C(d−3)/2
n (x) are rational

functions of the scaling dimension ∆. This is not the case if one tries to expand the g∆,ℓ(x)

in terms of a different basis of polynomials, as for instance the C(d−2)/2
n (x).

The large and small ∆ limits of the conformal blocks are particularly interesting due

to the orthogonality of the Gegenbauer polynomials. In the next section we exploit this

property to invert the OPE in a case where only conserved currents appear.

4 An application: OPE inversion in the free scalar theory

Free theories are interesting from an algebraic CFT point-of-view: for instance in the theory

of a free scalar field φ(x), there are infinitely many primary operators entering the φ × φ

OPE. We can write them schematically as the normal-ordered product of two fields with

derivatives acting on either of them,

Oµ1...µℓ(x) ∼ : φ(x)∂µ1 · · · ∂µℓφ(x) : . (4.1)

12We thank João Penedones for pointing this out.
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Figure 4. The 3 connected Feynman diagrams that contribute to the 4-point function of the

operator O ∼ φ2 in the free scalar theory. The dashed lines indicate the external operator O, while

the solid lines represent propagators of the free field φ.

An explicit construction shows that there is exactly one such operator for every even spin

ℓ, and none for odd ℓ, in accordance with the fact that the equation of motion �φ = 0

forbids the contraction of indices. With the exception of the scalar operator (ℓ = 0),

all these operator are higher-spin conserved currents, as their scaling dimension saturates

the unitarity bound, ∆O = d − 2 + ℓ. The existence of these double-trace operators is

needed to reproduce the Gaussian nature of the 4-point function in terms of ordinary

conformal blocks.

In momentum space, the correlator of 4 free fields is trivial: M is a sum of delta

functions and it does not have an imaginary part. This is consistent with the vanishing

of the coefficient N∆,ℓ, visible in eq. (1.14). The free scalar field theory contains however

other scalar operators whose correlators are not Gaussian, and for which the momentum-

space conformal blocks are interesting: this is for instance the case of the first operator

with ℓ = 0 in eq. (4.1), namely

O(x) =
1√
2
: φ(x)2 : (4.2)

where the numerical factor is fixed by the standard normalization condition (2.1) of the

2-point function. In this section, we will discuss the conformal block expansion of the

4-point function of O(x), and show how the results of the previous sections can be used to

compute OPE coefficients.

In the free theory, the 4-point function can be computed explicitly in terms of Feynman

diagrams. The three connected diagrams that enter the computation are shown in figure 4,

and M is given by their sum

M = Ms +Mt +Mu. (4.3)

The computation of each individual diagram is described in details in appendix A. It should

be noted that the loop integrals are UV divergent in spacetime dimension d ≥ 8, and IR

divergent in d ≤ 6. The UV divergence arises from the fact that the source for the operator

O has dimension 2, and that it possible in d = 8 (and in even d > 8) to write a counterterm

involving 4 sources in the action. This counterterm is nevertheless real, and the imaginary

part of the 4-point function must therefore be finite in all d > 6. The explicit computation
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of appendix A yields the result

G(x) =
211−dπ3d/2+1

(d− 4)Γ(d− 3)Γ
(
d−2
2

)3
[
2F1

(
1, 1;

d− 2

2
;
1 + x

2

)
+ 2F1

(
1, 1;

d− 2

2
;
1− x

2

)]
,

(4.4)

which is indeed finite in d > 6. The hypergeometric 2F1 functions take a simple form in

all integer dimensions, for instance in d = 5,

G(x)
∣∣∣
d=5

=
512π8

√
1− x2

. (4.5)

In this case, the IR divergence only shows up at x = ±1. The same observation can be

made in d = 6. For generic values of x, G(x) can actually be analytically continued in d

from d > 6 down to d > 4. In d = 4, the imaginary part of M diverges for all x.

The conformal block expansion derived in this work can now be applied to G(x). There

are two types of primary operators that enter the O × O OPE: an infinite series of the

form ∂nφ4, and the operators (4.1) of the form ∂nφ2. The former do not contribute to

the imaginary part of the 4-point function of O, as they have double-trace dimensions for

which the momentum-space blocks vanish. On the other hand, the operators Oµ1...µℓ give

non-vanishing contributions. Using the fact that they have scaling dimension ∆ = d−2+ℓ,

the conformal block expansion takes the form

G(x) =
∞∑

ℓ=0

λ2
ℓ

2d+ℓ+4π3d/2(l!)3Γ
(
d−3
2

)
Γ
(
d−1
2 + ℓ

)

(d− 4)2Γ
(
d−2
2 + ℓ

)
Γ (d− 3 + ℓ)3

C(d−3)/2
ℓ (x), (4.6)

where λℓ indicates the OPE coefficient between two scalars O of eq. (4.2) and one spin-ℓ

operator of eq. (4.1). The orthogonality of Gegenbauer polynomials can then be used to

write an inversion formula in the form of an integral of G(x) over the interval x ∈ [−1, 1],

namely

λ2
ℓ =

(d− 4)2Γ
(
d−2
2 + ℓ

)
Γ (d− 3 + ℓ)2

2ℓ+8π3d/2+1(l!)2
(
d−3
2

)
ℓ

∫ 1

−1
dx
(
1− x2

)(d−4)/2 C(d−3)/2
ℓ (x)G(x). (4.7)

Plugging in the expression (4.4) for G(x), one finds

λ2
ℓ =

[
1 + (−1)ℓ

] 2ℓ
(
d−2
2

)2
ℓ

ℓ! (d+ ℓ− 3)ℓ
. (4.8)

These OPE coefficients are found to be in agreement with previous computa-

tions [32, 46, 47]. It should be noted that they are regular in any dimension, including

d = 3 and 4, as a consequence of the analyticity in d of our method.

Finally, we illustrate in figure 5 the convergence of the momentum-space OPE in this

free theory example, showing the combined contribution of operators with spin 0, 2, 4 and

6 to G(x) in d = 5 and 6 dimensions. The convergence is clearly fast in d = 6, and this

property carries on in d > 6. It slows down when d approaches the critical dimension

d = 4, where every single conformal block diverges individually, and so does G(x). Below
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Figure 5. The combined contribution of conformal blocks up to a maximal spin ℓmax = 0, 2, 4, 6

(from lighter to darker blue lines) to the imaginary part of M for the operator φ2 in the free scalar

theory, in d = 5 (left) and d = 6 (right) spacetime dimensions. The red dotted line indicates the full

result given in eq. (4.4). The upper panels correspond to the actual value of the conformal blocks,

while the lower panels show their relative contribution.

that critical dimension, in d = 3, the imaginary part of M computed from the Feynman

diagram result (4.5) is finite. The individual conformal blocks are also finite, but it can

be verified that they grow with the spin of the intermediate operator. The OPE does not

converge in this case.

5 Conclusions

In this work, we have computed conformal blocks for the momentum-space 4-point function

of identical scalar operators in the light-cone limit. More than the result itself, the main

message that we would like to carry is the simplicity of the method: using translation

invariance in the form of momentum conservation, together with a particularly simple

realization of the shadow operator formalism, the conformal blocks can be obtained by

direct multiplication of 3-point functions. The result is a polynomial in the cosine of the

scattering angle, with coefficients given in a closed-form expression valid in any spacetime

dimension d. This direct computation method is expected to stay relatively simple for

conformal blocks of external operators carrying spin, even though it would be interesting

to have an alternative formulation of the momentum-space conformal blocks, either as the

solution a differential equation [17], or possibly using recursion relations [48–52].
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There are several features of the momentum-space blocks that could have interesting

applications in conformal field theory. The positivity of the blocks at x = ±1 has already

been exploited in refs. [32, 33] to derive positive sum rules for anomaly coefficients. Their

orthogonality for low and high scaling dimensions of the intermediate operator is suggestive

of more general orthogonality properties, which should be studied in relation with OPE in-

version formulae [53–58]. But more importantly, the primary use of conformal blocks could

be in a momentum-space formulation of the bootstrap program. It should be noted how-

ever that while crossing symmetry in the channel t ↔ u is automatically realized through

the parity property of the polynomials g∆,ℓ(x), there is no obvious crossing equation for

the channels s ↔ t and s ↔ u, as they relate the imaginary part of M to its real part, for

which there is no conformal block expansion. A possible solution to this problem would be

to exploit the analyticity properties of the 4-point function. We leave the study of these

questions for future work.

Finally, in spite of the interesting features described above, there is an important

downside to the use of momentum-space conformal blocks that must be mentioned: it is

unclear in which situations the use of the completeness relation (2.22) leads to a convergent

series expansion. The free scalar field theory setup of section 4 provides a concrete example

of this problem in d = 3: even though each conformal block is finite, their sum does

not converge. It is understood in this case how the the divergence is related to the IR

singularities of a loop integral. We do not know however how to address the problem of

possible IR divergences in interacting theories. The simplest case that we can examine is

the Ising model in d = 3. Since the spectrum of operators and the OPE coefficients are

known for low-dimension operators entering the OPE of the lightest scalar [59], we can

evaluate the first few conformal blocks and check if they hint towards a convergent series.

The values of G∆,ℓ in the forward limit x = 1 and in the right-angle scattering case x = 0

for each operator are given in table 1. The inspection of this data is however inconclusive.

For each spin, the leading operator gives a very small contribution to the 4-point function,

as its scaling dimension is very close to the double-trace limit ∆ ≈ 2∆σ+ℓ+2n. Among the

remaining operators, there is no clear hierarchy that could indicate a convergent expansion,

although operators of low twist seem to give overall larger contributions to the 4-point

function. The question of the OPE convergence in momentum space will have to remain

open for now.
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A One-loop integral in the free scalar field theory

In this appendix, we briefly outline the computation of the one-loop Feynman diagrams

that appear in section 4. The diagrams under consideration are a special case of the usual

scalar box integral [60], in which all internal and external propagators are massless. This
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ℓ ∆ λσσO
λ2
σσOG∆,ℓ(0) λ2

σσOG∆,ℓ(1)

·10−10 ·10−10

0 1.412625 1.051854 0.0 0.0

0 3.82968 0.053012 5.5 5.5

0 6.8956 0.000734 9.9 9.9

0 7.2535 0.000162 3.2 3.2

2 3 0.652276 0.0 0.0

2 5.50915 0.021149 −19.3 35.2

2 7.0758 0.000955 −0.3 0.6

4 5.022665 0.276304 0.0 0.0

4 6.42065 0.007821 6.0 11.8

4 7.38568 0.009510 33.4 74.1

6 7.028488 0.125933 0.0 0.0

Table 1. List of operators with dimension ∆ ≤ 8 that enter the σ× σ OPE in the critical 3d Ising

model, with their spin ℓ, scaling dimension ∆, OPE coefficient λσσO, and the contribution of these

operator to the imaginary part of the 4-point function at x = 0 and x = 1. σ is the lowest-dimension

scalar operator, with ∆σ = 0.5181489. The data on the left-hand side of this table is taken from

ref. [59], while the right-hand side is computed from the conformal blocks.

p2

p1

p4

p3k + p1

k k + p1 + p3

k − p2

Figure 6. Reproduction of the diagram Mu of figure 4 with labels and arrows indicating our choice

for the loop momenta.

is a well-known integral, but it usually not considered in the massless limit due to infrared

divergences in d = 4. We will therefore detail its evaluation here.

We begin with the Feynman diagram of figure 6. The other two diagrams are related

to this one by crossing. Since we use the standard CFT normalization (2.1) of the 2-point

function in position space, the propagator in momentum space comes with an additional

normalization factor compared to usual Feynman rules, which can be read off directly from

eq. (2.3) setting the scaling dimension ∆ to its free field value,

F(d−2)/2(p) =
4πd/2

Γ
(
d−2
2

) i

−p2 + iǫ
. (A.1)

The integral can therefore be written as

Mu =
210π2d

Γ
(
d−2
2

)4
∫

ddk

(2π)d
1

k2(k + p1)2(k + p1 + p2)2(k − p2)2
. (A.2)
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This expression includes a factor of 4 coming from the normalization (4.2) of the operator

φ2. Introducing Feynman parameters and shifting the integration momentum appropri-

ately, the integral can be rewritten as

Mu =
329π2d

Γ
(
d−2
2

)4

(
4∏

i=1

∫ 1

0
dλi

)
δ(λ1 + λ2 + λ3 + λ4 − 1)

∫
ddk

(2π)d
1

(k2 − λ1λ2s− λ3λ4t− iǫ)4
.

(A.3)

Note that we have introduced the iǫ prescription that was implicit in eq. (A.2). Evaluating

the momentum integral, we obtain

Mu =
28−dπ3d/2Γ

(
8−d
2

)

Γ
(
d−2
2

)4 (A.4)

×
∫ 1

0
dλ1

∫ 1−λ1

0
dλ2

∫ 1−λ1−λ2

0
dλ3

[
− λ1λ2s− λ3(1− λ1 − λ2 − λ3)t− iǫ

](d−8)/2
.

The gamma function in the numerator is a reminder of the fact that the integral is UV

divergent in even d ≥ 8, which is obvious in eq. (A.2). After the change of variables defined

by λ1 = (1− ω1)(1− ω3), λ2 = ω2ω3 and λ3 = ω1(1− ω3), this becomes

Mu =
28−dπ3d/2Γ

(
8−d
2

)

Γ
(
d−2
2

)4 (A.5)

×
∫ 1

0
dω1dω2dω3

[
ω3(1− ω3)

](d−6)/2
[
− (1− ω1)ω2s− ω1(1− ω2)t− iǫ

](d−8)/2
.

The integral over ω3 factorizes and can be evaluated explicitly in d > 4 to get

Mu =
210−dπ3d/2Γ

(
8−d
2

)

(d− 4)Γ(d− 3)Γ
(
d−2
2

)2
∫ 1

0
dω1dω2

[
−(1−ω1)ω2s−ω1(1−ω2)t− iǫ

](d−8)/2
. (A.6)

Next, note that the term in square brackets changes sign over the region of integration,

since s > 0 and t < 0 in the kinematical configuration that we consider. We split therefore

the integral over ω2 into two regions 0 ≤ ω2 ≤ ω∗
2 and ω∗

2 ≤ ω2 ≤ 1, where ω∗
2 = −ω1t/(s+

ω1u) ∈ [0, 1], and rescale in each case the interval with a change of variable ω2 → ω∗
2ω2

and ω2 → ω∗
2 − (1− ω∗

2)ω2 respectively, after which we obtain

Mu =
210−dπ3d/2Γ

(
8−d
2

)

(d− 4)Γ(d− 3)Γ
(
d−2
2

)2

×
[
(−s− iǫ)(d−8)/2

∫ 1

0
dω1dω2

ω
(d−6)/2
1 ω

(d−8)/2
2

1 + (1− ω1)u/s
+ (s ↔ t)

]
. (A.7)

The two regions are related by crossing s ↔ t, in agreement with the symmetries of the

diagram in figure 6. The integral over ω2 is now trivial, but it is only convergent in d > 6:

in d ≤ 6, Mu has an IR divergence. The remaining integral over ω1 corresponds to a
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hypergeometric 2F1 function, and we get

Mu =
212−dπ3d/2Γ

(
8−d
2

)

(d− 4)2(d− 6)Γ(d− 3)Γ
(
d−2
2

)2 (A.8)

×
[
(−s− iǫ)(d−8)/2

2F1

(
1, 1;

d− 2

2
;−u

s

)
+ (−t)(d−8)/2

2F1

(
1, 1;

d− 2

2
;−u

t

)]
.

This integral is analytic at small u, and the hypergeometric functions are real for all physical

momenta. Of the two terms in the square brackets, only the first one has an imaginary

part, coming from (−s)(d−8)/2. Explicitly, using the notation of eq. (1.4), we have

ImMu = s(d−8)/2 210−dπ3d/2+1

(d− 4)Γ(d− 3)Γ
(
d−2
2

)3 2F1

(
1, 1;

d− 2

2
;
1 + x

2

)
. (A.9)

The imaginary part of the box diagram is therefore finite in all d > 4 for generic x. The

forward limit t → 0 (or equivalently x → 1) is divergent for 4 < d ≤ 6, while in d > 6 the

integral is finite for all scattering angles.

The other two diagrams in figure 4 can be evaluated in a similar fashion. For Mt, the

result is simply given by exchanging t and u in eq. (A.8), and its imaginary part is given by

ImMt = s(d−8)/2 210−dπ3d/2+1

(d− 4)Γ(d− 3)Γ
(
d−2
2

)3 2F1

(
1, 1;

d− 2

2
;
1− x

2

)
. (A.10)

The evaluation of Ms follows a different path, since the integrand is real all along. For all

our purposes, it is therefore sufficient to notice that its imaginary part vanishes,

ImMs = 0. (A.11)
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