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coupled only to background metrics can be misleading at very late times due to the implicit

assumption they make of perturbation theory when neglecting other interactions. Using the

Rindler horizon as an example we show how this secular growth parallels similar phenomena

for thermal systems, and how it can be resummed to allow late-time inferences to be drawn
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this calculation, as well as on the possible relevance of our calculations to predictions near
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1 Introduction and summary

This paper argues that, for quantum fields in the presence of horizons, perturbation theory

is like good weather: if you wait long enough it eventually fails. This might be important to

the extent that the properties of free fields in curved spacetime are used to draw inferences

about late-time behaviour (as is often done for near-de Sitter cosmology and black hole

information loss).

Quantum field theory on spacetimes with horizons turns out to contain many surprises.

The first of these was the discovery of Hawking radiation [1, 2] and the peculiar relationship

between gravity and thermodynamics [3–7]. This is a gift that even now continues giving,

leading to many associated puzzles about information loss that cut to the foundations of

quantum mechanics and general relativity [8, 9] (for reviews with more extensive references,

see [10–14]). It is perhaps noteworthy that many of these puzzles involve understanding

the system at very late times, such as the Page time [15, 16] after which significant amounts

of information are radiated.

What is striking is that these puzzles seem to rely simply on the existence of horizons

and do not require large curvatures. As such they seem to be accessible entirely within

the domain of validity of effective field theory (EFT) methods [17] (for reviews of these

techniques applied to gravity, see [18–20]). As a consequence they appear to arise within
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controlled calculations that should accurately capture the quantum system’s behaviour.

Furthermore, couching them within an EFT framework ensures they do not rely on the

details concerning whatever unknown physics unitarizes quantum gravity at very high

energies. Indeed, the persistence of these puzzles has stimulated re-examination of the

domain of validity of EFT techniques, and a reassessment of whether these methods might

sometimes unexpectedly break down near horizons even when curvatures are small.

Thermality, open systems and late-time breakdown of perturbative methods.

When identifying the domain of validity of EFT methods near horizons a possibly important

observation is that quantum systems near horizons resemble open thermal systems in two

related ways. First, they are thermal inasmuch as the spectrum of emitted radiation takes

a black-body form (up to grey-body factors). Second, they are open in the sense that the

existence of the horizon ensures there is an unobserved sector (e.g. the black-hole interior)

that entangles and exchanges information with the observers of interest (those outside the

black hole).

The observation that these are open systems can be germane to identifying the do-

main of validity of EFT methods. Wilsonian EFT reasoning is usually assumed to apply

provided only there exists an appropriate hierarchy of energy scales, E1 � E2, with the

EFT defined (by construction) by the action built only from low-energy degrees of free-

dom that reproduces the physics of some more UV-complete system order-by-order in the

small ratio E1/E2. But for open thermal systems it can sometimes happen that having a

small parameter is insufficient to justify perturbative methods, regardless of how small the

relevant parameter turns out to be.

To see why, recall that open systems by definition are those for which a sector of the

system (called here the ‘environment’) is not measured in detail. In the special case of a

thermal system this environment consists of all those parts of the heat bath that are ignored

and replaced by a coarse-grained thermodynamic description. It is the tracing over these

unmeasured degrees of freedom that allows the rest of the system to be described by a

density matrix rather than a pure state. But if an environment like this is always present,

it is generic that it can cause a breakdown in perturbative methods at late times.

This late-time breakdown of perturbation theory has it roots in the observation that

the time-evolution operator is U(t) = exp(−iHt), and no matter how H gets split into

perturbed and unperturbed parts — i.e. H = H0 + Hint — it is always true that there is

eventually a time late enough that it is a bad approximation to compute U(t) in powers

of Hintt. Put another way: no matter how weak the coupling to the environment, if the

environment never goes away its eternal presence can eventually allow perturbatively small

effects to accumulate and become large.1 This kind of late-time breakdown of perturbation

theory — often called secular growth, due to the appearance of increasing functions of time

1A familiar example of this occurs with the passage of light through a transparent medium. Regardless

of how weak the interactions are between photons and their environment (the medium), one eventually

transitions to a regime where the light either reflects or refracts. Since neither of these options need be

a small change to the direction of the incident light, a description of this perturbing in the light-medium

interaction is destined eventually to break down.
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order-by-order in the perturbative expansion — is less familiar in particle physics, for which

the focus is usually on scattering and so interactions get turned off at late times as wave

packets separate from one another.

Of course the existence of secular growth need not completely preclude making late

time predictions. For instance, one believes in exponential decay laws,

n(t) = n0 e
−Γt , (1.1)

for times well after the mean lifetime (i.e. for Γt� 1) even though the decay rate Γ is usually

computed in perturbation theory. The exponential decay is robust in this sense because it

relies only on the evolution of the number of particles satisfying dn/dt = −Γn for all times,

since the integration of this evolution ensures the validity of (1.1), regardless of how large Γt

might be. Observations like this ultimately underly the ability to resum late-time behaviour

for thermal systems, but even when resummations are possible the existence of secular

evolution has implications (such as by giving physical predictions that are not analytic in

the small couplings, sometimes making them not captureable by a simple Taylor series).

Thermal systems provide among the best-studied examples of open systems and there

are indeed well-known examples where perturbation theory does break down for thermal

systems. One pertinent to what follows is the need to resum thermal mass effects — ‘hard

thermal loops’ — for massless bosons in thermal environments [21, 22]. Another, related,

example is the well-known breakdown of perturbative (mean-field) methods when calcu-

lating near a critical point [23]. Both of these examples are also associated with infrared

effects due to the presence of massless (or very light compared with the temperature)

bosons. Mathematically, the fluctuations of these bosons tend to cause correlation func-

tions to become singular at low frequencies and this can both give rise to infrared (IR)

divergences and to the secular growth and divergence of these correlation functions at late

times. These fluctuations are stronger at nonzero temperature because of the singular

small-k limit of the Bose-Einstein distribution function,

fB(k) =
1

ek/T − 1
' T

k

[
1 +O

(
k

T

)]
, (1.2)

when evaluated for dispersion relation ω(k) = k.

Relevance for QFT in curved space. The thermal nature of quantum systems near

horizons combined with the breakdown of late-time perturbation theory that can occur

for thermal systems makes it natural to ask whether or not perturbation theory also can

break down at late times near horizons. If so, then the mere existence of a small expan-

sion parameter (such as the low-energy derivative expansion underlying EFT methods)

is insufficient to justify some calculations; in particular those relevant to very late times.

This would represent an ill-appreciated boundary to the domain of validity of semiclassical

methods for quantum fields in curved space.

This is particularly important for applications to gravity, for which the very validity of

semiclassical methods relies on EFT methods that reveal semiclassical perturbation theory

to be in essence a derivative expansion. Semiclassical methods are predictive only to the
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extent that quantum loops are suppressed by successively higher powers of the low energies

and curvatures, divided by the UV scales of the problem (such as, but not restricted to,

the Planck mass, Mp).

If open systems are a guide then having a good hierarchy of scales need not in itself

be sufficient to justify perturbation theory at late times. This is because regardless of how

small this perturbative parameter is, there is a danger that powers of this parameter enter

into observables systematically multiplied by growing powers of time. If this occurs (and

it can occur for thermal systems), no matter how small the interaction, there is always a

time after which it can no longer be treated perturbatively.

Notice that, if present, this kind of late-time breakdown of perturbation theory could

be important for arguments like those leading to inferences about very late times during

inflation or about information loss near black holes. This is because these arguments tend

to be based on calculations involving free fields moving on curved spacetime, for which the

neglect of interactions amounts to the assumption that these interactions can be treated

perturbatively. If QFT near horizons share the late-time breakdown of perturbation theory

experienced by open systems then this basic assumption could be at risk.

Even so, controlled conclusions at late times might yet be possible, although some sort

of resummation might be necessary in order to do so. Indeed there is evidence that such re-

summations are possible for cosmological horizons, for which quantum effects in multi-field

models are known to exhibit secular growth that undermines late-time perturbative calcula-

tions [24–45]. In this case the resummed late-time evolution [46, 47] appears to be given by

the stochastic formulation of inflationary theories [48, 49], plus calculable corrections [50].

As a bonus, the recognition that these are essentially open systems also leads to an un-

derstanding of why initially quantum fluctuations decohere while outside the horizon, re-

entering as the primordial classical fluctuations used to describe the later universe [51–63].

This paper. In this paper we start — see however [64] — the process of assessing sec-

ular behaviour near black hole horizons at late times, starting with uniformly accelerated

(Rindler) observers in flat space. This example has the advantage that the connection

between acceleration and thermality is very well-understood [65–69] and calculations are

explicit.

We argue here that Rindler observers working within the Minkowski vacuum indeed

do see the instances of secular growth and perturbative breakdown that one would expect

given their thermal nature. In particular by studying a massless scalar field φ subject to

a λφ4 interaction on flat space we show how Rindler observers run into difficulty naively

perturbing in powers of λ at late Rindler times. This happens in precisely the way ex-

pected based on the Rindler observer’s thermal interpretation of the Minkowski vacuum.

Interestingly, the same does not happen for a Minkowski observer because of an IR/UV

interplay: they find differing results at late time because the two kinds of observers do not

use the same renormalization for very short-distance fluctuations.

Our story is organized as follows. First, section 2 reviews the appearance of power-law

secular growth, starting in section 2.1 at late Minkowski time for two-point correlation

functions of thermal systems. Section 2.2 then repeats the calculation for correlation
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functions computed using the zero temperature Minkowski vacuum, both showing why the

finite-temperature effects go away for a Minkowski observer, but instead persist (though at

late Rindler time) for a Rindler observer. The Rindler observer also sees power-law growth

with time, with a coefficient agreeing with the thermal result if the temperature is given

by the Unruh result Ta = a/2π [65]. The main difference between Minkowski and Rindler

results arises because these make different choices for the two-point mass counterterm. The

Rindler observer makes a different subtraction in order to avoid late-time secular evolution

for the Rindler ground state. Once the Rindler observer subtracts to ensure no such growth

for correlations in the Rindler vacuum the result in the Minkowski vacuum is completely

fixed, leading to IR effects not present otherwise.

This explanation of secular growth is followed, in section 3, by a discussion of how the

spurious secular growth can be resummed to obtain reliable late-time predictions. Although

a general formalism for this often exists for open systems [50], its use is over-kill in this par-

ticular instance since the basic breakdown in late-time perturbation theory arises because of

a nonzero mass shift. Resumming mass shifts is easy to do since this is what the Schwinger-

Dyson equations tell us how to do, and in the present instance simply amounts to replacing

the naive leading-order propagator with the one corresponding to the appropriate mass.

Once this resummation is done the resulting two-point function falls off to zero for

large invariant separation, s. It does so more slowly, however, than does the leading-order

propagator, falling like s−3/2 rather than s−2 at large times. It is this relative growth of

the difference between the accurate propagator and its leading approximation to which the

secular breakdown of perturbation theory points.

Some further conclusions are summarized in section 4, including preliminary discus-

sions of the potential relevance of this calculation to late-time black-hole physics.

2 Secular growth and perturbation theory

A scalar field in curved spacetime is the poster child for the interplay of quantum effects

with gravitational fields, with most discussions being limited to free quantum fields propa-

gating on a background metric. Implicit in such discussions is the justification for neglecting

any other interactions amongst the quantum fields. To study this justification more ex-

plicitly we therefore explore the implications of self-interactions for a real quantum scalar

field, φ(x), using this as our vehicle for tracking late-time issues in perturbation theory.

To this end consider the following action describing the self-interaction of a real scalar

quantum field φ(x) in the presence of a background gravitational field, gµν :

S = −
∫

d4x
√
−g

[
1

2
gµν∂µφ∂νφ+ V (φ)

]
, (2.1)

with scalar potential chosen to describe self-interactions of massless particles

V (φ) =
λ

4
φ4 . (2.2)

We choose small λ and our interest lies in the validity of perturbative calculations in powers

of λ.

– 5 –



J
H
E
P
1
0
(
2
0
1
8
)
1
2
2

&%
'$

sx y

Figure 1. Feynman graph giving the leading one-loop ‘tadpole’ correction to the scalar propagator.

The result obtained by evaluating this graph must be summed with the tree-level two-point counter-

term graph.

In any real system many other interactions typically also exist, including interactions

between φ and quantum fluctuations of the metric, and these can be treated using standard

EFT methods [18–20]. Although we focus for simplicity purely on the self-interaction λφ4,

we believe our treatment applies equally well to any other perturbatively small interactions

in this type of EFT framework.

2.1 Thermal calculation

Let us first display how secular growth arises for this scalar-field system, and how this

can undermine the validity of perturbative expansions in powers of λ. To do so consider

preparing the system in a thermal state in Minkowski space, gµν = ηµν , with density matrix

ρ =
1

Z
exp
(
−H/T

)
. (2.3)

Here Z is chosen (as usual) to ensure Tr ρ = 1 and H is the conserved Hamiltonian

generator of time-translations in Minkowski space,

H =

∫
d3x

[
1

2
(∂tφ)2 +

1

2
(∇φ)2 + V (φ)

]
, (2.4)

with the integration taken over a spatial slice at fixed t.

Since our interest is in secular evolution and perturbative corrections we compute

order-λ corrections to the correlation function G(x; y) = 〈Tφ(x)φ(y)〉, where T denotes

time-ordering and the average is taken using the thermal state (2.3): 〈O〉 = Tr (ρO). Since

time-dependence is kept (as opposed, say, to thermodynamic properties) the correlation

function is computed using the Keldysh formalism [70, 71].

2.1.1 Secular growth

The leading correction to G(x; y) in powers of λ arises at one loop, and is obtained by

evaluating the tadpole graph of figure 1. The loop part of this graph diverges in the UV

and is renormalized as at zero temperature (such that the renormalized zero-temperature

mass remains zero), leaving the usual finite-temperature residual mass shift

δm2
T =

λT 2

4
. (2.5)
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Figure 2. Feynman graph giving a subleading two-loop ‘cactus’ correction to the scalar propagator.

Although this is not the only two-loop contribution, it is noteworthy because of the power-law (as

opposed to logarithmic) IR divergences it acquires due to the singularity of the Bose-Einstein

distribution at small momenta.

Using this self-energy in the remainder of the graph, and evaluating the result at zero

spatial separation leads to the following form in the limit of large temporal separation:

Gtad(x0,x; y0 = x0 + t,y = x) =
δm2

T Tt

8π
+ · · · = λT 3t

32π
+ · · · , (2.6)

where the ellipses denote terms growing more slowly with t at large temporal separation.

Details of this calculation are provided in appendix A.

Eq. (2.6) provides an example of secular growth: regardless of how small λ may be,

the theory tells us that perturbation theory built around it eventually breaks down for

late enough times. Later sections give more details about why this occurs, but for now it

suffices to mention that this type of late-time breakdown of perturbative methods is very

common in most areas of physics (though not so much in particle physics).

To summarize, late-time perturbative breakdown typically arises whenever there is

a persistent environment with which a system interacts. In such a case late times are

a problem because no matter how weak the interaction with the environment might be,

eventually the secular accumulation of arbitrarily small effects can give big results. Eq. (2.6)

provides an illustration of this effect, where it is the relevant persistent environment is in

this case the thermal bath itself.

2.1.2 IR divergences

Secular growth at late times is related to (but not identical with) infrared divergences when

performing loops involving intermediate states with arbitrarily small frequency. This con-

nection arises because divergence of a correlation function at late times implies singularity

of its Fourier transform at small frequencies, and such singularities can also cause loop

integrals to diverge because of contributions near ω = 0.

Although the graph of figure 1 is not infrared divergent, massless bosons can also

experience enhanced IR divergences at finite temperature. A simple example of this can be

seen once two-loop corrections to the scalar propagator are examined, such as the ‘cactus’

graph of figure 2. In this case the upper loop again contributes the temperature-dependent

mass shift given in (2.5), while the lower loop diverges like a power of an IR cutoff, ωmin,

– 7 –
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contributing a factor

lower loop ∝ λT

ωmin
. (2.7)

At zero temperature this lower loop would diverge logarithmically, ∝
∫

d4k/(k2)2, but

this becomes a power divergence at finite temperature because of the singularity of the

Bose-Einstein distribution,2 nB(k) = (ek/T − 1)−1 ' T/k for k � T .

These kinds of IR divergences also signal a breakdown of perturbative methods, in

this case due to the unsuppressed contribution of frequencies ω ≤ λT in loops, where the

naive suppression by powers of small coupling can instead systematically become powers

like (λT/ω)L. The need to resum3 the IR part of such graphs leads to well-known hard-

thermal-loop effects whose dependence on fractional powers of λ also reveals a breakdown

in validity for naive expansions in integer powers of λ.

We notice in passing that the zero-temperature limit of the graph of figure 2 does not

contribute an IR divergence. This is at first a surprise because, as mentioned above, the

bottom loop appears to contribute proportional to ∝
∫

d4k/(k2)2 and so should diverge

logarithmically in the IR. The total graph nonetheless does not diverge because the upper

loop in figure 2 (or the only loop in figure 1) is renormalized to ensure m2 = 0 at zero

temperature, ensuring that the naive zero-temperature graph simply cancels with the mass

counter-term. The same cancellation does not occur at finite temperature because the

counter-terms only cancel the zero-temperature part of the top tadpole contribution.

This relevance of a UV renormalization to the IR behaviour of the result is an example

of how UV/IR mixing plays a role in our subsequent calculations.

2.2 Rindler calculation

The previous section illustrates several ways for which IR issues can make perturbative

expansion for thermal bosons be more subtle than one might think based purely on zero-

temperature calculations. The existence of these types of IR issues then raises a potential

puzzle: even zero-temperature scalar field theory on flat space can be thought of as a

thermal state from the point of view of a Rindler observer who is uniformly accelerated

relative to inertial observers.

If a Rindler observer sees the usual Minkowski vacuum as a thermal state, the ordi-

nary zero-temperature Minkowski propagator should display thermal perturbative secular

growth as seen by a Rindler observer. How does this come about? And if it does come

about, why isn’t secular growth and perturbative breakdown also a problem for Minkowski

observers?

2Alternatively, if evaluated within the Euclidean formulation the extra divergence arises because the inte-

gration is only over spatial components, d3k, because the frequency integral is replaced by a Matsubara sum.
3Although controlled resummation is possible for massless scalars it need not always be true that such

IR issues can be solved by resumming specific classes of higher-order graphs. An example where things are

more serious arises when the zero-temperature squared mass is adjusted to be slightly negative, m2
0 < 0, so

that it is the total mass, m2 = m2
0 + δm2

T , that vanishes. This corresponds to arranging the theory to sit

at a critical point, for which it is well-known that mean-field (perturbative) calculations are simply not a

good approximation.

– 8 –
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Figure 3. Cartoon of a Rindler wedge, showing both the (red) hyperbolic world-line of an accel-

erating observer and the (black) horizons to which it asymptotes.

These questions are clarified in this section, where we show how the ordinary vacuum

indeed does include secular growth, at least when renormalized as appropriate for a Rindler

observer and when evaluated at late Rindler times. As we show below the potential

breakdown of perturbative methods associated with thermal secular growth turns out to

coincide with a breakdown of perturbation theory that is also expected at zero temperature.

To proceed we reproduce the above calculations at zero temperature, and so evaluate

the correlation function G(x; y) = 〈0|Tφ(x)φ(y)|0〉 for the standard Minkowski vacuum,

|0〉. The corrections to this correlation function arise by evaluating the same graphs as

before, but using standard zero-temperature Feynman rules.

For later purposes it is useful to have explicit expressions for the lowest-order propa-

gators when the scalar mass is nonzero, and this is given by

G0(x; y) = −i
∫

d4p

(2π)4

eip·(x−y)

p2 +m2 − iε
=

1

4π2

m√
(x− y)2 + iε

K1

[
m
√

(x− y)2 + iε
]
, (2.8)

where in our (− + ++) conventions (x − y)2 = ηµν(x − y)µ(x − y)ν is negative for time-

like separations and positive for space-like separations. Here Kν(z) is a modified Bessel

function, for which we record the following useful asymptotic forms [72, 73]

K1(z) ' 1

z
+
[
−1 + 2γ + 2 ln

(z
2

)] z
4

+O(z3) for |z| → 0 , (2.9)

(with γ the Euler-Mascheroni constant) and

K1(z) '
√

π

2z
e−z

[
1 +

3

8z
+ · · ·

]
for |z| → ∞ if |arg(z)| < 3π

2 . (2.10)

In particular, the massless limit of (2.8) gives

G0(x; y) = −i
∫

d4p

(2π)4

eip·(x−y)

p2 − iε
=

1

4π2

1

(x− y)2 + iε
(m = 0) . (2.11)
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2.2.1 Secular growth

With these expressions in hand we may now evaluate the tadpole graph of figure 1. Evaluat-

ing the self-energy loop factor — i.e. the part of the graph without the external lines — gives

a momentum-independent result which we denote as4 iΣ(0), and whose value is given by

Σ(0) = −δm2
ct + 3iλ

∫
d4k

(2π)4

1

k2 − iε
, (2.12)

where δm2
ct is the mass counter-term that subtracts the UV-divergent part of the integral.

We return to evaluate this expression in more detail later.

Temporarily re-installing a mass for φ, the remainder of the graph evaluates to give

Gtad(x; y) = −iΣ(0)

∫
d4p

(2π)4

eip·(x−y)

(p2 +m2 − iε)2
= Σ(0)

(
− ∂

∂m2

)
G(x; y)

= −δm
2

8π2
K0

[
m
√

(x− y)2 + iε
]
, (2.13)

where δm2 = −Σ(0) is the UV finite mass shift after renormalization. In the massless limit

this evaluates to

Gtad(x; y)→ δm2

8π2
ln
[
µ
√

(x− y)2 + iε
]
. (2.14)

up to a spacetime-independent IR-divergent constant. The precise value of the scale µ

depends on how this IR divergence is regulated, though we do not pursue this because

its value plays no role when tracking the dependence of the result on x − y. Notice that

for massless fields (2.14) holds for all x and y and not just asymptotically in the limit

(x− y)2 → 0.

The above agrees at leading nontrivial order with the standard operator-product ex-

pansion [74, 75]

φ(x)φ(0) ∼ C(x) +D(x)φ2(0) + · · · (as x2 → 0) , (2.15)

where the RG-improved one-loop expressions for the coefficients are

C(x) =
1

4π2x2
−
(
m2

3λ

)
D(x)[1−D(x)] and D(x) = (1 + L)1/3 , (2.16)

with

L :=
9λ

16π2
ln
(
µ2x2

)
. (2.17)

Here µ is the renormalization scale for the renormalized coupling λ(µ).

Imagine now choosing both xµ and yµ to lie within the same Rindler wedge, for which

we adopt coordinates (τ, ξ) defined relative to (t, x) = (x0, x1) by

x = ξ cosh(aτ) and t = ξ sinh(aτ) , (2.18)

in terms of which the Minkowski metric becomes

ds2 = −ηµνdxµdxν = −(aξ)2dτ2 + dξ2 + dy2 + dz2 . (2.19)

4In our conventions the momentum-space propagator is −i/(p2 +m2 − Σ).
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Next evaluate G(x, y) with x2 = y2 and x3 = y3 and choose a particular Rindler

observer — i.e. fixed ξ — on whose accelerating world-line both xµ and yµ lie. From the

point of view of this Rindler observer these two points are separated purely by a shift in

Rindler time, τ , and this is the proper time along this trajectory if τ is rescaled so that

a = 1/ξ. In this case a also represents the proper acceleration of this trajectory.

The invariant separation between these points is then related to their Rindler time

difference by

− (x− y)2 =
4

a2
sinh2

(aτ
2

)
' 1

a2
eaτ
[
1 +O(e−2aτ )

]
, (2.20)

where the final approximate equality gives the asymptotic form when x and y are chosen so

that aτ � 1. For such an observer, when aτ � 1 eq. (2.14) implies an asymptotic secular

growth of Gtad(τ) with τ of the form

Gtad(τ) =
δm2

8π2
ln
[
µ
√

(x− y)2 + iε
]
' δm2 aτ

16π2
+ subdominant . (2.21)

What value should be chosen for δm2 in this last expression? As discussed earlier,

the tadpole loop diverges in the UV and a Minkowski observer would renormalize this

divergence by cancelling it against a mass counter-term, thereby effectively choosing δm2
M =

−ΣM(0) = 0. A Rindler observer would also have to choose a counter-term, and the natural

choice for this observer would be to demand the sum of counterterm and tadpole graph

vanish if evaluated in the Rindler ground state.5 Said differently, secular growth at late

Rindler time cannot be avoided for both the Minkowski and Rindler vacua, and once it is

excluded from the Rindler vacuum it necessarily appears for the Minkowski state, and does

so in precisely the way expected for thermal secular growth.

Once this is done the counter-term no longer completely cancels the tadpole graph

when it is evaluated in the Minkowski vacuum, and so differs from the Minkowski choice

by a finite amount. A standard calculation using the Rindler vacuum gives a finite residual

result [68, 76–80]

δm2
a =

λa2

16π2
. (2.22)

Using this in (2.21) then gives

Gtad(τ) =
λa3τ

(16π2)2
+ subdominant , (2.23)

which agrees with the thermal result, (2.6), provided we identify temperature with accel-

eration in the usual way:

Ta =
a

2π
. (2.24)

2.2.2 IR divergences

A similar discussion applies when describing the power-law IR divergences encountered in

the cactus graph of figure 2. The divergence of this graph in the IR is one of the signals of

5The Rindler state is the ground state of the Rindler hamiltonian, defined as the Poincaré boost generator

that generates translations in Rindler time.
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Figure 4. Feynman graph giving a two-loop correction to the scalar propagator that is not pro-

portional to the one-loop tadpole contribution of figure 1.

perturbative breakdown for thermal systems [81, 82]. Once the top loop in this graph is rec-

ognized to be nonzero (i.e. δm2
a 6= 0 because of the Rindler renormalization choice), the bot-

tom loop diverges in the infrared. If evaluated in position space this loop involves a factor

lower loop ∝
∫

d4v [G(u; v)]2 =
1

(2π)4

∫
d4v

[(u− v)2 + iε]2
, (2.25)

where v denotes the interaction point in figure 2 where the two loops touch.

The IR divergence in this language corresponds to a failure of (2.25) to converge in the

limit v →∞. This divergence can be regularized by imposing an upper limit on the absolute

value of the invariant separation L = |(u−v)2|max, and the divergence is logarithmic in this

invariant cutoff. The IR divergence becomes a power-law divergence once L is re-expressed

in terms of a maximum Rindler time, τmax, since L is exponential in τmax.

2.2.3 Other graphs

So far all of the problematic graphs involve the basic tadpole, and as a consequence are

proportional to δm2. This makes them vanish or not depending on the counter-term choices

made when renormalizing the tadpole’s UV divergence. Do all secular effects disappear if

δm2 vanishes?

To address this requires examining other graphs, such as the ‘setting-sun’ diagram of

figure 4. The self-energy contribution to this graph is given by the contributions excluding

the external lines, and so evaluates to [83, 84]

iΣ(k) = −iλ2

∫
d4p

(2π)4

d4q

(2π)4

1

(p2 − iε)(q2 − iε)[(p+ q + k)2 − iε]

' A+Bk2 + Ck2 ln

(
k2

µ2

)
+ · · · , (2.26)

where the second line takes the small-k limit, where A and B are divergent constants and

C is calculable and finite.

Once external lines are attached this leads to a dependence on invariant separation

(x− y)2 of the form

Gsun(x; y) = −i
∫

d4k

(2π)4

Σ(k)

(k2 − iε)2
eik·(x−y) . (2.27)
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On dimensional grounds this shows that it is the k-independent terms in Σ that contribute

to Gsun logarithmically in (x−y)2, while those terms proportional to k2 instead contribute

proportional to (x − y)−2. This suggests that it really is Σ(0) that dominates for late

Rindler times.

3 Near-horizon resummation

The previous section shows that, with the Rindler renormalization choice, the Minkowski

vacuum shares the secular-growth phenomena associated with thermal states. In particular,

perturbative corrections to Minkowski correlation functions involving massless bosons grow

with Rindler time, indicating a breakdown of perturbation theory at large Rindler time.

If perturbation theory breaks down in this regime how can the large-τ behaviour be

computed? In this section we argue that it can be computed in the same way as is done

for finite-temperature corrections: by resumming self-energy insertions to the propagator.

The basic problem at late Rindler times arises because the Rindler observer chooses

mass counter-terms that do not completely cancel the self-energy Σ(k = 0). As a result per-

turbation theory is organized in a way that obscures the correct dispersion relations, since

these are not the poles of the lowest-order propagators. But the position of these poles is

important when studying the limit where both |x−y| and x0−y0 are large and proportional

to one another (as is the case for large Rindler time), because in this regime the propagator

G0(x; y) = −i
∫

d4p

(2π)4

eip·(x−y)

p2 − iε
=

∫
d3p

(2π)3

1

2|p|
e−i|p||x

0−y0|+ip·(x−y) . (3.1)

is dominated by the contributions of on-shell particles. But when particles are close to on-

shell it is always a bad approximation to perturb in the self-energy, Σ, because it is the series

1

p2 − Σ
=

1

p2

∞∑
n=0

(
Σ

p2

)n
, (3.2)

that is breaking down. No matter how small Σ is made (by choosing λ small) there is

always a regime near p2 = 0 for which a series expansion in powers of λ must fail.

But this diagnosis also tells how to resum the terms that are not small in the pertur-

bative expansion: one must use the full propagator for which all mass shifts are properly

incorporated into the position of the propagator’s pole. Happily for massless particles this

can be read off from the form of the lowest-order massive propagator given in eq. (2.8),

evaluated with m2 = δm2
a.

The resummed result then is

Grs(x; y) =
1

4π2

√
δm2

a

(x− y)2 + iε
K1

[√
δm2

a(x− y)2 + iε
]

=
a

16π3

√
λ

(x− y)2 + iε
K1

[ a
4π

√
λ(x− y)2 + iε

]
, (3.3)
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where the last equality evaluates δm2
a using eq. (2.22). Indeed for |δm2

a(x − y)2| � 1 this

becomes

Grs(x;y)' 1

4π2

{
1

(x−y)2 + iε
+
δm2

a

4

[
−1+2γ+2ln

(√
δm2

a(x−y)2 + iε

2

)]
+O[(δm2

a)
2]

}
.

(3.4)

The O[δm2
a] term in this expression precisely captures the dependence on (x − y)2 found

in (2.14) by evaluating the tadpole graph. In this language the secular growth found when

expanding in powers of δm2
a ∝ λ simply reflects that the above expansion breaks down

when |δm2
a(x− y)2| is not small.

But (2.8) also gives the result in the late-time limit when |δm2
a(x − y)2| is not small.

In this limit by using the large-argument limit of the Bessel function one instead finds

Grs(x; y) ' 1√
32π3

(δm2
a)

1/4

[(x− y)2 + iε]3/4
exp

[
−
√
δm2

a(x− y)2 + iε
]

=
1

8π2

√
a

2

λ1/4

[(x− y)2 + iε]3/4
exp

[
− a

4π

√
λ(x− y)2 + iε

]
. (3.5)

Notice this is not simply the same as using the operator-product expansion using RG-

improvement, eqs. (2.16) and (2.17), to resum all orders in λ ln[m2
a(x− y)2]. For time-like

intervals, for which (x − y)2 = −(∆t)2 < 0, the exponential part of this last expression

does not represent a suppression, leaving a result whose modulus falls like (∆t)−3/2. For

spacelike separations the suppression is instead exponential over a length scale set by√
δm2

a =
√
λ a/4π.

Notice that this predicts a falloff of the resummed result with temporal separation that

is slower than for the lowest-order massless propagator, which instead satisfies G0 ∝ (∆t)−2

for purely time-like separations. For this reason Grs eventually is no longer a small change

to G0, and it is this breakdown of perturbation theory for which the secular growth was the

signal. Notice also that the normalization of the late-time limit of Grs is proportional to

(δm2)1/4 ∝ λ1/4, again reflecting a dependence on λ that cannot be captured by a Taylor

series about λ = 0.

4 Discussion

This paper builds evidence for the picture advocated in [50, 51] that quantum fields in

spacetimes with horizons are better described as open quantum EFTs than as traditional

Wilsonian ones. Besides providing insights about how early quantum fluctuations can deco-

here [51] in cosmology, this picture also suggests an unexpected breakdown of perturbative

methods when computing late-time behaviour.

Of course, nobody is surprised to hear that horizons lend themselves to treatment in

terms of open systems. After all, it is the very essence of a horizon to cloak the physics in

one region from the view of another, and this long ago suggested a formulation in terms of

reduced density matrices [2, 8]. What is less commonly appreciated is the generic threat

the use of such techniques potentially raises for the use of semiclassical methods when

discussing late-time behaviour.
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The problem with perturbative methods arises because for quantum fluctuations the

gravitational field acts like an environment, and when this environment is static (or nearly

so) its eternal presence provides unlimited time during which arbitrarily small perturbative

effects can accumulate to cause large outcomes. This is a familiar phenomenon for particles

interacting with a medium, and basically arises because no matter how small the interac-

tion, Hint, with the medium might be, there is always a time beyond which exp[−iHintt]

differs significantly from 1 − iHintt.

But this kind of breakdown of perturbative methods is particularly fatal for grav-

itational applications because semiclassical methods provide our only access to reliable

predictions.6 Normally we think of semiclassical methods as relying on expanding in pow-

ers of derivatives of fields relative to the scale of gravitational UV completion (as outlined,

for instance, in [18–20]) and so feel justified in using them provided that spacetime curva-

tures remain small. But late-time perturbative breakdown sets a completely independent

boundary to the domain of validity of semiclassical methods because it occurs regardless

of how small the perturbation parameter is.

The evidence provided in this paper comes from the simplest situation having a horizon:

an interacting scalar field probed by accelerated observers within flat spacetime. Such

observers are known to regard the Minkowski vacuum as a thermal state, and based on

this we search for evidence that the Minkowski vacuum displays the same kind of late-time

secular effects that are found for thermal states. (Such effects arise when very light bosons

interact with the heat bath, and in the simplest situations secularly growing perturbations

arise from the same graphs that give such a boson a thermal shift to their mass.)

We find the same kinds of late-time secular growth arise for perturbative calculations

of the two-point propagator in the (zero-temperature) Minkowski vacuum, provided both

external points are restricted to lie along an accelerated trajectory within a single Rindler

wedge, and provided that the mass counter-term is chosen so that late-time secular growth

does not occur for the Rindler vacuum. The required counter-term expresses that the

Rindler observer sees a finite acceleration-dependent mass shift (the direct analog of the

temperature-dependent mass shift experienced by a particle interacting with a thermal

bath).

Perturbative breakdown occurs for the Minkowski state at late Rindler times, rather

than late Minkowski time. It consequently occurs out towards null infinity, along the

Rindler horizon.

Because the secular growth has its roots in a nonzero mass shift, it is easy to resum:

one merely organizes perturbation theory using the full shifted mass in the unperturbed

part of the scalar field action. Once this is done the resummed propagator falls rather than

growing at large times, but does so more slowly as a function of invariant separation than

does the naive unperturbed propagator. From this point of view the secular growth seen

in perturbation theory expresses the fact that the difference between the resummed and

the naive propagators grows with time.

6Notice that the issue here is not about the ability to solve Einstein’s field equations only approximately,

it is about the entire justification for thinking in terms of small quantum corrections to any classical solution

in the first place.
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Figure 5. Penrose diagram for a Schwarzschild black hole, with crosses indicating the near-horizon

points at which a correlation function 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 might be evaluated to compute cor-

relations relevant to information-loss arguments.

4.1 Relevance for black holes

All this is suggestive that similar phenomena might also hold for black-hole spacetimes.

Black holes are also believed to produce quantum fields in thermal states — with tempera-

ture set in terms of the Schwarzschild radius by TH ∼ 1/rs. One might therefore expect the

same kinds of secular growth and perturbative breakdown to occur for them as generically

does for thermal states. These effects should be largest for bosons with masses much lighter

than the Hawking temperature (such as for photons).

For Schwarzschild black holes this would mean, for instance, that perturbations about

a free quantum field prepared in the Hartle-Hawking state should show secular growth

that ultimately causes perturbation theory to break down as one approaches future infinity

along the black-hole event horizon. Even if these interactions are gravitationally weak, such

as if Hint ∼ GNT
3
H ∼ T 3

H/M
2
p ∼ `2p/r

3
s (where GN ∼ `2p ∼ 1/M2

p is Newton’s gravitational

constant), then perturbative inferences would be expected to fail when

t &
r3
s

`2p
∼ G2

NM
3 , (4.1)

which is of order the Page time [15, 16] associated with significant information loss. The

time beyond which perturbative methods fail would be even earlier than this for inter-

actions with dimensionless couplings larger than T 2
H/M

2
p . Notice that this breakdown of

perturbation theory can happen when the black hole is still very massive and so has nothing

to do with the eventual appearance of large curvatures once M ∼Mp.

If the Rindler calculation is a reliable guide, the secular growth of perturbative interac-

tions can be resummed to provide a reliable weak-coupling picture of what happens on such

long time-scales. If singing from the Rindler scoresheet this resummation would correspond

to shifting the mass by an amount δm2 ∝ T 2
H , leading to a corresponding mass-dependent

change in the asymptotic fall-off at late times.
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Such a change in asymptotic large-time behaviour near the future horizon could well

lead to large changes in inferences based purely on the quantum mechanics of free fields

on a Schwarzschild background. For instance, consider a four-point correlation function

〈φ(x1)φ(x2)φ(x3)φ(x4)〉, evaluated with xµi situated at the four points marked by crosses in

the Penrose diagram of figure 5. Calculating such a correlation function might be relevant

to computing mutual entanglement between Hawking pairs at an early time and Hawking

pairs at much later times. Any perturbative calculation of such a correlation function

inevitably involves propagators evaluated with late-time separations in the danger zone

near the future horizon, and so could well be poorly approximated by the free result.

But what is the evidence that this kind of perturbation-violating secular growth ac-

tually occurs for black-hole spacetimes? Unfortunately, unlike for cosmology, very few

explicit calculations exist, although suggestively there is one that does claim to find secu-

lar growth [64].

An indication of how well intuition built on the Rindler example should apply to black

holes can be found by performing the Rindler calculation in position space. In this case

the tadpole expression evaluates to

Gtad(x, y) ∝ δm2

∫
d4u G(x;u)G(u; y) =

δm2

(2π)4

∫
d4v

[(v − x+ y)2 + iε][v2 + iε]

=
δm2

8π2
ln
[
µ
√

(x− y)2 + iε
]

+ (const) . (4.2)

This result — cf. eq. (2.14) — exhibits an (x − y)-independent IR divergence at large v,

and converges for small v so long as (x− y)2 6= 0. In this language it is the emergence of a

divergence as (x− y)2 → 0 that is responsible for the logarithmic dependence on (x− y)2

seen in the second line.

For arguments of secular growth it is the late-time limit (x − y)2 → ∞ that is of

interest, and explicit calculation of the above integral shows this also to be logarithmic.

What is important is this: the coefficient of the large-distance logarithm of interest for

secular growth is identical to the coefficient of the short-distance logarithm in the limit

(x−y)2 → 0. This is important because this coefficient can therefore be determined purely

from the integration region near v2 = 0 and (v − x + y)2 = 0; that is, by integration

restricted to the near-horizon limit.

To the extent that this is also true for black-hole spacetimes it would imply that

it is only the near-horizon coincident limit of the propagator that matters for the late-

time secular behaviour of perturbation theory. For general curved spaces this limit always

has the Hadamard form 1/[4π2σ(x, y)] where σ(x, y) is the invariant squared separation

between x and y. This suggests that the result could well agree with the result found using

this form in the Rindler calculation. That this limiting form may suffice to understand

the thermal features (and so late-time limit) of black holes also gets support from the

observation that the coincident near-horizon limit also suffices to capture the features of

the Hawking radiation [85].
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4.2 Back-reaction

Back-reaction issues lie at the heart of any understanding of black-hole information loss,

and one might wonder whether back-reaction itself changes the basic picture described

above. In particular, one might wonder if the late-time breakdown of perturbation theory

found here gives rise to effects that are large enough to destabilize the background geometry

about which our calculations are based.

It can (but need not) happen that late-time secular effects can mean back-reaction is

large enough to significantly alter the background. The secular growth of interest here de-

scribes the accumulation over long times of perturbatively small effects that ultimately lead

to significant deviations from the leading-order behaviour. Whether this also causes signif-

icant change to the background geometry depends on how much stress-energy is associated

with this long buildup.

Existing examples reveal at least two different reasons why significant back-reaction

need not occur despite the late-time breakdown of naive perturbation theory. The first

of these is illustrated by the Rindler example considered here. In this instance late-time

perturbative breakdown occurs not because correlation functions are becoming large at late

times but because they are falling, though more slowly than is the unperturbed propagator.

Since large fluctuations are not present there is no reason to expect a large stress energy.

Cosmology both provides a second concrete illustration of late-time perturbative break-

down without any accompanying evidence for uncontrolled back-reaction and an example

with explicitly curved backgrounds. In this case secular evolution happens because small

gaussian fluctuations accumulate and resum to produce a spectrum of very nongaussian

fluctuations on super-horizon scales [46, 49]. But when this late-time fluctuation spectrum

is used to compute stress-energy expectations there is no evidence for it becoming large [50].

Indeed, one of the goals of applying the above techniques to black-hole geometries is

to establish precisely how back-reaction evolves at late times in a reliable way.

In summary, our Rindler calculation suggests that perturbative methods might break

down in the late-time regime for gravitational systems with horizons, that have thermal

properties. This might be relevant for black-hole information puzzles, even where curva-

tures are weak enough that Wilsonian EFT methods would naively have been thought to

be working. If true, simple extrapolations based on free fields in curved space might be

misleading at very late times. The good news is that such late-time problems are likely

to be resummable. We intend to pursue explicit calculations to reveal whether or not the

above arguments really do undermine inferences about late-time behaviour of quantum

fields near black holes.
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A Calculation of late-time thermal behaviour

This appendix provides more details of the secular late-time behaviour of scalar correlation

functions at finite temperature. Because our interest is in time-dependence of correlation

functions we use Takahashi and Umezawa’s Thermo-field dynamics [86], a variant of the

Keldysh real-time finite-temperature formalism [70, 71] rather than the Euclidean Matsub-

ara formalism (for textbook discussions, see [87–93].

This involves a doubling of the degrees of freedom with φ1 representing the physical

field and φ2 the thermal ghost field. The extra field is introduced so that the vacuum

expectation value of any physical operator agrees with its statistical average for an ensemble

in thermal equilibrium (with temperature T ) [94]. We make use of the Lagrangian:

L = −1

2
∂µφ1∂

µφ1 −
1

2
m2φ2

1 −
λ

4
φ4

1 +
1

2
∂µφ2∂

µφ2 +
1

2
m2φ2

2 +
λ

4
φ4

2 (A.1)

The extra degrees of freedom introduced by φ2 correspond to the particle states on the

hidden side of the horizon (ie. modes in the left Rindler wedge relative to modes in the

right Rindler wedge) in the context of the Rindler story [94]. There are four propagators

∆jk(p;m) where j, k ∈ {1, 2} label the field type of the external points. The momentum-

space propagators are:

−i∆11(p;m) =
−i

−p2
0 + |p|2 +m2− iε

+
2πδ(−p2

0 + |p|2 +m2)

e|p0|/T −1
(A.2)

−i∆12(p;m) = −i∆21(p;m) = πcsch

(
|p0|
2T

)
δ(−p2

0 + |p|2 +m2) (A.3)

−i∆22(p;m) =
i

−p2
0 + |p|2 +m2 + iε

+
2πδ(−p2

0 + |p|2 +m2)

e|p0|/T −1
(A.4)

In what follows we will consider the massless theory m → 0+. The massless tadpole

correction to the (physical) 11-propagator is a sum over two diagrams; the external points

are fixed to be of type 1 and the vertices must be varied over types 1 and 2 [95, 96]:

Gtad(x;y)11 = + (A.5)

= −3iλ

[∫
d4p

(2π)4
[−i∆11(p;0)]2 eip·(x−y)

][∫
d4k

(2π)4
[−i∆11(k;0)]

]
+3iλ

[∫
d4p

(2π)4
[−i∆12(p;0)]2 eip·(x−y)

][∫
d4k

(2π)4
[−i∆22(k;0)]

]
(A.6)

The loop integrals evaluate to[∫
d4k

(2π)4
[−i∆11(k; 0)]

]
=

[∫
d4k

(2π)4
[−i∆22(k; 0)]

]∗
= Z + T (A.7)
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Where:

Z =

∫ ∞
−∞

dk0

2π

∫
d3k

(2π)3

i

k2
0 − |k|2 + iε

→ 0 (A.8)

T =

∫ ∞
−∞

dk0

∫
d3k

(2π)3

δ(k2
0 − |k|2)

e|k0|/T − 1
=

T 2

2π2

∫ ∞
0

dχ
χ

eχ − 1
=

T 2

12
(A.9)

The integral Z is the standard tadpole loop encountered in the zero-temperature the-

ory: after dimensional regularization and the addition of an appropriate counter-term to

the Lagrangian this gets renormalized to 0. The novel thermal integral evaluates trivially.

Combined with the symmetry factor 3 and coupling λ this accounts for the quoted thermal

mass shift [90]:

δm2
T =

λT 2

4
(A.10)

Accounting for the above mass shift, we get the following simplification in (A.6):

Gtad(x; y)11 =
iλT 2

4

∫
d4p

(2π)4

(
− [−i∆11(p; 0)]2 + [−i∆12(p; 0)]2

)
eip·(x−y) (A.11)

Using the explicit forms (A.2) and (A.3) the function in the brackets becomes:

−
[
− i∆11(p;0)

]2
+
[
− i∆12(p;0)

]2
=

1(
−p2

0 + |p|2− iε
)2 +

4πi

e|p0|/T −1

δ(−p2
0 + |p|2)

−p2
0 + |p|2− iε

(A.12)

+π2

[
csch2

(
|p0|
2T

)
− 4

(e|p0|/T −1)2

][
δ(−p2

0 + |p|2)
]2

For any χ > 0 we have the identity csch2(χ2 ) − 4
(eχ−1)2

= 4
eχ−1 and so the above

simplifies to:[
− i∆12(p; 0)

]2 − [− i∆11(p; 0)
]2

=
1(

−p2
0 + |p|2 − iε

)2 +
4πi

e|p0|/T − 1

δ(−p2
0 + |p|2)

−p2
0 + |p|2 − iε

+
4π2

e|p0|/T − 1

[
δ(−p2

0 + |p|2)
]2

(A.13)

At this point we use the regularization δ(z)
z−iε − iπ [δ(z)]2 = −1

2δ
′(z) (where δ′ is the

derivative of the Dirac delta) [90] and we can write (A.11) as:

Gtad(x; y)11 =
iλT 2

4

∫
d4p

(2π)4

[
1

(−p2
0 + |p|2 − iε)2

− 2πiδ′(−p2
0 + |p|2)

e|p0|/T − 1

]
eip·(x−y) (A.14)

For any even function f(−ω) = f(ω) we can write its 1D Fourier transform in terms

of a cosine Fourier transform as follows:∫ ∞
−∞

dω f(ω)e−itω = 2

∫ ∞
0

dω f(ω) cos(tω) (A.15)

Furthermore for any radial function g(σ) = G(|σ|), we can write its 3D Fourier trans-

form as: ∫
d3σ

(2π)3
G(|σ|)e−ir·σ =

1

2π2|r|

∫ ∞
0

dΣ Σ sin(|r|Σ)G(Σ) (A.16)
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So in terms of the dimensionless variables Σ = |p|
T and ω = p0

T (A.14) becomes

Gtad(x; y)11 =
iλT

8π3|x− y|

∫ ∞
0

dω cos
(
T (x0 − y0)ω

)
(A.17)

×
∫ ∞

0
dΣ Σ sin (T |x− y|Σ)

[
1

(−ω2 + Σ2 − iε)2 −
2πiδ′(−ω2 + Σ2)

eω − 1

]
where we’ve used the scaling property δ′(aχ) = δ′(χ)

|a|2 (immediately following from δ(aχ) =
δ(χ)
|a| ). Next we take the limit ε→ 0+ using the regularization 1

(z−iε)2 = Pf
[

1
z2

]
−iπδ′(z) [93]

giving

Gtad(x; y)11 =
iλT

8π3|x− y|

∫ ∞
0

dω cos
(
T (x0 − y0)ω

)
(A.18)

×
∫ ∞

0
dΣ Σ sin (T |x− y|Σ) Pf

[
1

(−ω2 + Σ2)2

]
+

λT

8π2|x− y|

∫ ∞
0

dω cos
(
T (x0 − y0)ω

)
coth

(ω
2

)
×
∫ ∞

0
dΣ Σ sin (T |x− y|Σ) δ′(−ω2 + Σ2

)
where we’ve made use of the identity 1 + 2

eω−1 = coth
(
ω
2

)
. The pseudo-function Pf

[
1
z2

]
is the regularization of 1

z2
[93] obeying

∫∞
−∞ dzPf

[
1
z2

]
f(z) = PV

∫∞
−∞ dz

f ′(z)
z (where PV is

the Cauchy principal value) [97]. We make use of a partial fraction expansion for the first

Σ-integral in (A.18) giving:∫ ∞
0

dΣ Σsin(T |x−y|Σ)Pf

[
1

(−ω2 +Σ2)2

]
=

1

4ω

∫ ∞
0

dΣ sin(T |x−y|Σ)Pf

[
1

(Σ−ω)2

]
− 1

4ω

∫ ∞
0

dΣ sin(T |x−y|Σ)Pf

[
1

(Σ+ω)2

]
(A.19)

=
T |x−y|

4ω
PV

∫ ∞
0

dΣ cos(T |x−y|Σ)

[
1

Σ−ω
− 1

Σ+ω

]
(A.20)

=−πT |x−y|
4ω

sin(T |x−y|ω) (A.21)

Next we make note of the well-known identity δ(−ω2 + Σ2) = δ(Σ−ω)+δ(Σ+ω)
2|ω| which

may be differentiated to yield [97]:

δ′(−ω2 + Σ2) =
δ′(Σ− ω) + δ′(Σ + ω)

4|ω|Σ
(A.22)

With this and the rule
∫∞
−∞ dzf(z)δ′(z) = −

∫∞
−∞ dzf

′(z)δ(z) the second Σ-integral

in (A.18) may be integrated giving (recalling that ω > 0):∫ ∞
0

dΣ Σsin(T |x−y|Σ)δ′(−ω2 +Σ2
)

=
1

4ω

∫ ∞
0

dΣ sin(T |x−y|Σ)
[
δ′(Σ−ω

)
+δ′(Σ+ω

)]
(A.23)
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=−T |x−y|
4ω

∫ ∞
0

dΣ cos(T |x−y|Σ)
[
δ(Σ−ω

)
+δ(Σ+ω

)]
(A.24)

=−T |x−y|
4ω

cos(T |x−y|ω) (A.25)

Putting (A.21) and (A.25) all together into (A.18) leaves us with:

Gtad(x; y)11 = − iλT
2

32π2

∫ ∞
0

dω
sin (T |x− y|ω) cos

(
T (x0 − y0)ω

)
ω

(A.26)

− λT
2

32π2

∫ ∞
0

dω
coth

(
ω
2

)
cos (T |x− y|ω) cos

(
T (x0 − y0)ω

)
ω

And setting x0 − y0 = t and x = y we have:

Gtad(x; y)11 = − λT
2

32π2

∫ ∞
0

dω
coth

(
ω
2

)
ω

cos (Ttω) (A.27)

We interpret the singular distribution being cosine Fourier transformed in the following

manner:
coth

(
ω
2

)
ω

=
2

ω2
+

[
coth

(
ω
2

)
ω

− 2

ω2

]
(A.28)

This distribution has one singularity of the form 2
ω2 and the remainder function

coth(ω2 )
ω − 2

ω2 has absolutely integrable N th derivatives for all N ≥ 1 on the real line,

and also falls to zero at ω → ∞. This means that the asymptotic form of the function in

the limit Tt → ∞ is governed by the Fourier cosine transform of 2
ω2 which is −π

∣∣Tt∣∣ [98]

giving the result (2.6):

Gtad(x; y)11 =
1

32π
λT 3|t| + subdominant (A.29)

Or in terms of the thermal mass shift δm2
T = λT 2

4 we get that in the limit Tt→∞:

Gtad(x; y)11 =
δm2

T

8π
T |t| + subdominant (A.30)

This is in agreement with (2.21).
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