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1 Introduction

An outstanding puzzle in the Standard Model (SM) of particle physics is the origin of

the observed hierarchies in the fermion masses and mixing angles, the so-called SM flavor

puzzle. There have been many attempts to address the SM flavor puzzle, either alone or

in conjunction with solving the hierarchy problem, i.e., how to stabilize the Higgs mass

against its sensitivity to a New Physics (NP) scale. Among the latter, more ambitious,
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models, the relevant examples include the Randall-Sundrum (RS) models [1, 2], and the 4D

dual approximately conformal models of composite Higgs with partial compositeness [3–7].

These models typically exploit the fact that the mass hierarchy between the lightest and

the heaviest SM fermion is exponentially large, as is the hierarchy between the Planck and

the electroweak (EW) scales. The canonical representative of the models that explain only

the SM flavor structure, and do not solve the hierarchy problem, are the Froggatt-Nielsen

(FN) models [8–10], based on horizontal abelian flavor symmetries (for alternative ideas

about generating flavor hierarchies see [11, 12]).

The main purpose of this work is to explore how the SM flavor puzzle can be solved

within the framework of a clockwork theory. Originally presented in the context of ax-

ion physics [13, 14], and later generalized to a broader context in ref. [15], the clockwork

provides a natural mechanism for obtaining large hierarchies in couplings or scales, and

has already been successfully applied to the hierarchy problem [15–18]. Even though the

clockwork mechanism itself is four-dimensional, it can, in some cases, be viewed as a de-

constructed version of a higher dimensional theory. For example, the model addressing the

hierarchy problem can be related to the five-dimensional (5D) linear dilaton model [19–22],

motivated by the six-dimensional strongly coupled duals [23, 24] of Little String The-

ory [25, 26]. The clockwork mechanism has also been used in contexts extending beyond

the hierarchy problem, see e.g. refs. [27–42].

In what follows, we show that the clockwork mechanism can also successfully address

the SM flavor puzzle. It can reproduce the hierarchy of quark masses and mixing angles

with anarchic Yukawa couplings thanks to the hierarchical ‘overlaps’ of the chiral fermion

modes with the Higgs field. We identify two particular limits in which this solution shares

some similarities with the existing FN and RS solutions to the flavor puzzle. We show that

a certain limit of clockwork may correspond to a novel realization of the FN mechanism in

which the chiral fermions do not carry horizontal charges while the hierarchy of the flavon

vevs and the Dirac mass parameters is reversed. On the other hand, the flavor clockwork

model has no 5D continuous limit so that the connection with the RS model is only very

approximate, at best at the level of first fermionic KK states.

The relevance of clockwork for flavor physics has been explored before, in refs. [35, 36],

though with little overlap with the present work. Ref. [35] only dealt with neutrino masses,

while we focus on the quark sector. Ref. [36], while focusing on the charged fermion sector,

considered a direction orthogonal to the one explored in this work, closer to the investigation

of the relevance of random matrix theory for flavor [43]. Furthermore, it did not consider

phenomenological consequences — neither at colliders nor in low energy experiments, which

constitute a major part of our work.

The remainder of the paper is organized as follows. In section 2 we show how flavor

hierarchies can arise from the discrete clockwork mechanism, starting with a single fermion

and then generalizing to three generations, including the discussion of how the clockwork

mechanism could arise dynamically. This section also addresses the matter of gauge Landau

poles, as well as the perturbativity and stability of the Higgs potential in presence of

a large number of additional fermions coupled to the SM. In section 3 we derive the

flavor constraints on the clockwork models of flavor, while section 4 contains the collider
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Figure 1. A single clockwork chain with a chiral fermion, ψR,0, on the 0-th node, and vector-like

fermion pairs, ψR,i, ψL,i, on the other N nodes. The pattern of mass couplings is denoted in blue.

physics considerations, both the present constraints on the clockwork gears, as well as a

tentative proposal for how the gear spectra could be reconstructed in case of a discovery.

Our conclusions are given in section 5, while appendices contain a detailed discussion of

the phenomenological challenges with the continuum limit of the clockwork mechanism

(appendix A), the details on the matching of the dynamical fermionic clockwork onto the

SM effective field theory (appendix B),

2 Flavor hierarchies from a discrete clockwork

We begin with a discrete version of clockwork and show how this can lead to hierarchi-

cal SM fermion mass parameters (challenges facing a continuum version are discussed in

appendix A). We then discuss differences and similarities with two other mechanisms of

generating quark flavor hierarchies — the FN and the RS models of flavor.

2.1 Clockworking a single fermion

We start by reviewing the clockwork mechanism for a single right-handed chiral fermion,

ψR (see also figure 1). The fermion ψR interacts with an N -node chain of vector-like

fermions with mass terms, m, on each of the nodes, and a series of nearest neighbour mass

terms, qm, between the nodes,

LψR = i

N∑
j=0

ψ̄R,j /DψR,j + i

N∑
j=1

ψ̄L,j /DψL,j −m
N∑
j=1

(
ψ̄L,jψR,j − qψ̄L,jψR,j−1

)
+ h.c., (2.1)

where for notational simplicity we have identified ψR,0 ≡ ψR. The chains of fermions ψR,j
and ψL,j carry the same gauge quantum numbers as ψR,0. The covariant derivatives are

thus the same for fermions on all the nodes. For successful clockworking one requires q > 1.

The N × (N + 1) mass matrix,

Mψ = m


−q 1 0 . . . 0

0 −q 1 . . . 0
...

. . .
. . .

. . . 0

0 · · · 0 −q 1

 , (2.2)

is diagonalized by the unitary rotations, diag(0,M1, . . . ,MN ) = (V L)TMψV
R. This gives

one zero mode — a right-handed chiral fermion ψ′R,0 with mass M0 = 0,

ψ′R,0 =
N∑
j=0

V R
j0ψR,j , (2.3)
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and N Dirac fermion mass-eigenstates — the gears,

ψ′R,k =
N∑
j=0

V R
jkψR,j , ψ′L,k =

N∑
j=1

V L
jkψL,j , k = 1, . . . , N, (2.4)

with nonzero masses

M2
k = m2

(
1 + q2 − 2q cos

(
kπ

N + 1

))
. (2.5)

For q & O(1) there is an O(m) mass gap between the gears and the zero mode, with the

mass splittings between two adjacent gears scaling in the large N limit as O(m/N). More

precisely, in the large N limit the mass of the first gear is M1 ' m(q − 1), while the mass

splitting between the heaviest and the lightest gear is, MN −M1 ' 2m. This means that

for q → 1 the clockwork chain contains modes much lighter than M , with the mass of the

first gear M1 → 0. On the other hand, when q � 1, all the gears have masses of roughly

O(qm). In this case the spectrum of the gears is compressed in a 2m band around qm,

with (MN −M1)�M1.

The N ×N left-handed rotation matrix in eq. (2.4), V L, is given by

V L
jk = −

√
2

N + 1
sin

(N − j + 1)kπ

N + 1
, j, k = 1, . . . , N, (2.6)

while the (N+1)×(N+1) right-handed rotation matrix in eq. (2.4), V R, has the following

entries, for j = 0, . . . , N ,

V R
j0 =

N0

qN−j
, (2.7)

V R
jk = Nk

(
q sin

(N − j)kπ
N + 1

− sin
(N − j + 1)kπ

N + 1

)
, k = 1, . . . , N, (2.8)

where the pre-factors are given by

N0 =

√
q2 − 1

q2 − q−2N
, Nk =

√
2

(N + 1)

M

Mk
. (2.9)

The entries in the 0-th column of the V R rotation matrix, V R
j0 , can be interpreted

as the profile of the zero mode ψ′R,0 on the j-th node. For q > 1 the profile of the

zero mode is monotonically increasing from j = 0 to j = N , see figure 2. For future

reference we denote the value of the zero mode on the 0-th node as fψ. For q,N � 1 it is

exponentially suppressed,

fψ ≡ V R
00 =


∼ 1/qN , q � 1;

1√
1 +N

, q → 1.
(2.10)

This suppression will be the origin of the SM quark mass hierarchy once we introduce the

SM Higgs which is confined to couple only to the 0-th node. Similarly, the j-th entry in the

– 4 –



J
H
E
P
1
0
(
2
0
1
8
)
0
9
9

�=�
�=� �=�

�=��

� � � � � ��
-���
-���
���
���
���
���

���� �

� ψ�

Figure 2. The profiles of the zero mode, ψ′R,0 (k = 0), and the clockwork gears, ψ′R,k (k = 1, 2, 10

from thicker to thiner lines), in the case of clockworking a single fermion, ψR, for N = 10 nodes

with q = 2. The values of the profiles on each of the N + 1 nodes are denoted with a blue dot.

k-th column of the V R rotation matrix, V R
jk , gives the profile of the k-th clockwork gear on

j-th node. In particular, the profile of the k-th clockwork takes the following value on the

0-th node

fkψ ≡ V R
0k =

√
2

N + 1
q sin

( πk

1 + 1/N

) 1

|q − eiπk/(N+1)|

N�k
q�1
= (−1)k+1

√
2

N

πk

N
. (2.11)

Unlike the zero mode, the profiles of the gears are not exponentially suppressed on the 0-th

node, even when q,N � 1. A useful relation that the profiles of these gears fulfill is the

unitarity relation
N∑
k=1

(fkψ)2 = 1− (fψ)2 = 1−O(1/q2N ). (2.12)

Clockworking a single left-handed fermion, ψL, proceeds along exactly the same lines,

but exchanging L↔ R everywhere. For instance, one has now N+1 left-handed ψL,j fields,

where j = 0, . . . , N , identifying ψL,0 ≡ ψL. There are N right-handed fields, ψR,j , where

j = 1, . . . , N , so that on the N nodes one has vector-like fermions. After diagonalization

the left-handed zero mode profile is given by V L
j0 with the entries given in eq. (2.7). The

profile of the k-th left-(right-)handed gear is given by V
L(R)
jk with entries given in eq. (2.8)

(in eq. (2.6)).

2.2 Three generations and the solution to the SM flavor puzzle

We are now ready to introduce the set-up that explains the hierarchy of SM quark masses

through the clockworking mechanism. Each of the SM fermions, ψi, where i = 1, 2, 3, is

the generation index, is supplemented by an Nψi-node chain of vector-like fermions with

the same quantum numbers. That is, for each SM ψi one has a clockwork Lagrangian as in

eq. (2.1). In addition, the SM Higgs resides on the 0-th node, coupling the fermions on the 0-

th node through Yukawa interactions, see figure 3. For instance, the three families of right-

handed up quarks, u
(i)
R ≡ u

(i)
R,0, i = 1, 2, 3, residing on the 0-th node, are supplemented by

the corresponding vector-like partners u
(i)
R,k, u

(i)
L,k, on the nodes k = 1, . . . , Nu(i). Similarly,

– 5 –
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(i)
L,0

u
(1)
R,1,

u
(1)
L,1

u
(1)
R,Nu(1)

,

u
(1)
L,Nu(1)

u
(2)
R,1,

u
(2)
L,1

u
(2)
R,Nu(2)

,

u
(2)
L,Nu(2)

u
(3)
R,1,

u
(3)
L,1,

u
(3)
R,Nu(3)

,

u
(3)
L,Nu(3)

,

Q
(3)
L,1,

Q
(3)
R,1

Q
(3)
L,NQ(3)

,

Q
(3)
R,NQ(3)

Figure 3. The clockwork chains of vector-like fermions for each of the flavors meet at the central

node, the only one that contains the Higgs. The field content of each node is denoted in blue.

the right-handed down quarks, d
(i)
R and the left-handed doublets, Q

(i)
L are supplemented by

their own vector-like chains. In general, the chains are of different lengths, Nψ(i) .

The Lagrangian for three generations is thus given by

L =

3∑
i=1

(
L
u

(i)
R

+ L
d

(i)
R

+ L
Q

(i)
L

)
−

3∑
i,j=1

[(
YD
)
ij
Q̄

(i)
L,0H d

(j)
R,0 +

(
YU
)
ij
Q̄

(i)
L,0H̃u

(j)
R,0 + h.c.

]
,

(2.13)

where L
u

(i)
R

,L
d

(i)
R

,L
Q

(i)
L

are given in eq. (2.1) with obvious replacements in the notation.

Each of the clockworking Lagrangians L
u

(i)
R

,L
d

(i)
R

,L
Q

(i)
L

comes with a separate mass gap pa-

rameter, mu(i),md(i),mQ(i) and the clockworking factor, qu(i), qd(i), qQ(i).
1 In the following

we keep the clockworking factors qψ(i) and lengths of the chains, Nψ(i), flavor-dependent

and study the different possibilities to induce flavor hierarchies in the quark sector.

After electroweak symmetry breaking the Yukawa interactions lead to a mass term for

the zero modes. We use the unitary gauge, H =
(
0, (v + h)/

√
2
)
, with v = 246 GeV. The

zero modes are identified with the SM fermions. To leading order in v2/M2 expansion the

SM Higgs Yukawa matrices are given by the products of zero mode overlaps with the 0-th

node, fψ, (
Y SM
u

)
ij

= fQ(i) (YU )ij fu(j) ∼ q
−NQ(i)

Q(i) (YU )ij q
−Nu(j)

u(j) , (2.14)(
Y SM
d

)
ij

= fQ(i) (YD)ij fd(j) ∼ q
−NQ(i)

Q(i) (YD)ij q
−Nd(j)
d(j) . (2.15)

Here, there is no summation over i, j = 1, 2, 3, while for each of the zero mode overlaps

one needs to use the appropriate clockworking factor qu(i), qd(i), qQ(i) and chain lengths

Nu(i), Nd(i), NQ(i) in eqs. (2.7), (2.10). The SM Yukawas give the SM quark mass matrices,

1This is not the most general possibility as the masses and clockworking factors can be non-universal

within a chain, and also have off-diagonal entries, a possibility that we briefly discuss in the conclusions,

section 5.
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QL QNq−1 QNq−2 Q0 u0 uNu−2 uNu−1 uR

Figure 4. An example of a Feynman diagram that generates the hierarchical quark masses in FN

models.

as in the SM, (
MSM

u

)
ij

=
v√
2

(
Y SM
u

)
ij
,

(
MSM

d

)
ij

=
v√
2

(
Y SM
d

)
ij
. (2.16)

The O(v2/M2) corrections to the above expressions will be discussed below.

The hierarchy of quark masses is naturally obtained if

q
−NQ(1)

Q(1) � q
−NQ(2)

Q(2) � q
−NQ(3)

Q(3) , (2.17)

q
−Nu(1)

u(1) � q
−Nu(2)

u(2) � q
−Nu(3)

u(3) , (2.18)

q
−Nd(1)

d(1) � q
−Nd(2)

d(2) � q
−Nd(3)

d(3) , (2.19)

so that there is the corresponding hierarchy between the zero mode overlaps. The above

hierarchy is easy to achieve by choosing appropriately the qi and Ni factors, while keeping

YU , YD still anarchic. Two limits are especially illuminating, when comparing to the other

solutions of the SM flavor puzzle:

• The universal q limit (or the FN limit) of clockwork is when all the clockwork factors

are the same, qQ(i) = qu(i) = qd(i) ∼ O(few), while

NQ(1) � NQ(2) � NQ(3), (2.20)

and similarly for up and down right-handed quarks.

• The universal N limit (or the RS limit) is approached when

qQ(1) � qQ(2) � qQ(3), (2.21)

and similarly for up and down right-handed quarks, while all the clockwork chains

have the same length, NQ(i) = Nu(i) = Nd(i) ∼ O(few).

The two limits of the clockwork correspond, but are not entirely equivalent, to the

two well known solutions of the SM flavor puzzle, the FN and the RS models of flavor,

respectively. We discuss this further in section 2.3.

In both of the above limits we take YU and YD to be anarchic 3 × 3 complex matri-

ces. The SM quark mass matrices (2.16) are diagonalized by bi-unitary transformations,

diag(mu) = LuMSM
u R†u, diag(md) = LdMSM

d R†d. The entries of the rotation matrices are

given by the ratios of the zero mode profiles on the 0-th node.

– 7 –
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For the off-diagonal elements, i < j, one has,

|Lu,d|ij ∼ |Lu,d|ji ∼
fQ(i)

fQ(j)
∼
(
qQ(j)

)NQ(j)(
qQ(i)

)NQ(i)
, (2.22a)

|Ru|ij ∼ |Ru|ji ∼
fu(i)

fu(j)
∼
(
qu(j)

)Nu(j)(
qu(i)

)Nu(i)
, (2.22b)

|Rd|ij ∼ |Rd|ji ∼
fd(i)

fd(j)
∼
(
qd(j)

)Nd(j)(
qd(i)

)Nd(i) , (2.22c)

while the diagonal elements are close to unity. Since the CKM matrix is given by

VCKM = LuL
†
d, (2.23)

this fixes the ratios
fQ(1)

fQ(2)
∼ λ,

fQ(2)

fQ(3)
∼ λ2, (2.24)

where sin θC ' λ = |Vus| ' 0.23, with θC the Cabibbo mixing angle.

The SM quark mass eigenvalues are given by

mu(i) ∼ v fQ(i)fu(i),

md(i) ∼ v fQ(i)fd(i).
(2.25)

Taking as the parametric scaling of the quark masses (see also section 3.4),

mu ∼ λ7, mc ∼ λ3, mt ∼ 1, md ∼ λ7, ms ∼ λ5, mb ∼ λ2, (2.26)

the zero mode overlaps are required to be

q
−NQ(1)

Q(1) ∼ λ3, q
−NQ(2)

Q(2) ∼ λ2, q
−NQ(3)

Q(3) ∼ 1,

q
−Nu(1)

u(1) ∼ λ4, q
−Nu(2)

u(2) ∼ λ, q
−Nu(3)

u(3) ∼ 1,

q
−Nd(1)

d(1) ∼ λ4, q
−Nd(2)

d(2) ∼ λ3, q
−Nd(3)

d(3) ∼ λ2.

(2.27)

Note that the above clockwork scenario can still provide a solution to the hierarchy

problem, if we introduce an additional node chain for the graviton to induce a clockworking

effect for the gravitational coupling. In this case the SM and any clockwork extension of the

fermion sector would be coupled to the 0-th site of the clockwork-gravity model. In the 5D

picture, all the fermions would then have to be localized on a Nu(1) +Nu(2) + . . .+NQ(3) +1

stack of overlapping branes while only gravity propagates in the bulk.

2.3 Dynamical completions for clockwork models of flavor

In this subsection we discuss the connection between the FN and RS models of flavor and

the clockwork models in the two limits, eqs. (2.20) and (2.21). In FN the flavor puzzle is

solved by introducing a new U(1)H flavor symmetry, and a set of new fields, including a

flavon scalar field, φ. In the traditional FN models the chiral SM fermions carry integer

– 8 –
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uL,0 uL,Nu−1

uRuR,0 uR,Nu−1
−Λ −Λ

⟨φ⟩ · · ·⟨φ⟩
H

· · ·−Λ −Λ ⟨φ⟩

−Nq −Nq + 1 0 0 Nu − 1 Nu

Figure 5. The traditional FN chain with an additional axial U(1)A symmetry to prevent φ∗ cross

links. The horizontal charges are denoted in the nodes — the vector-like quarks on the two greyed

out nodes, linked by the Higgs, do not carry a horizontal charge.

generation-dependent U(1)H charges, Nu(i), Nd(i) and −NQ(i), whereas the flavon φ has

charge −1. The U(1)H symmetry is broken spontaneously by the flavon vev, 〈φ〉, yet the

original high energy symmetry preserving action leaves its imprint at low scales, dictating

the form of the SM Yukawa couplings. For instance, the Yukawa couplings for the up-quarks

are, using spurion analysis,

(Y SM
u )ij ∼

(〈φ〉
Λ

)NQ(i)+Nu(j)

[traditional FN], (2.28)

where Λ is a heavy scale to be discussed momentarily and the analogy with the clockwork

mechanism is evident with the association 〈φ〉/Λ = 1/q, cf. eqs. (2.14), (2.15). In traditional

FN we thus need 〈φ〉 � Λ, to generate flavor hierarchies.

As shown below there exists also a different realization of FN models, which we refer

to as the clockworked FN models, in which the spurion analysis still applies but it does so

with inverse powers of the vev of φ,

(Y SM
u )ij ∼

(
Λ

〈φ∗〉

)NQ(i)+Nu(j)

[clockworked FN], (2.29)

with Λ a dimensionful paremeter that has a different interpretation than in eq. (2.28). In

this case the identification with the clockwork models of flavor is 〈φ〉/Λ = q. In clockworked

FN models therefore 〈φ〉 � Λ generates the flavor hierarchies.

To realize explicitly the two types of FN models we need to specify the full field content.

We start with the traditional FN models, and then make the necessary modifications to

arrive at the clockworked FN models. Each SM fermion field, ψ(i), is accompanied by a

chain of Nψ(i) vector-like fermions of mass ∼ Λ. Taking for illustration the up-type quarks,

there are Nu(i) new Dirac fermions, u
(i)
k , added to the i-th generation SM quark, u

(i)
R . The

vector-like Dirac fermions carry U(1)H charges from 0 to Nu(i)−1, while the chiral fermion

u
(i)
R has a charge Nu(i). With this matter content the most general mass and Yukawa
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QL QL,Nq−1 QL,0 uL,0 uL,1 uL,Nu−1

QR,Nq−1 QR,0 uR,0 uR,1 uR,Nu−1 uR
⟨φ⟩ −Λ ⟨φ⟩ −Λ H

−Λ ⟨φ⟩ −Λ −Λ ⟨φ⟩

q

QL QL,Nq−1 QL,1 QL,0 uL,0 uL,Nu−2 uL,Nu−1

QR,Nq−1 QR,Nq−2 QR,0 uR,0 uR,1 uR,Nu−1 uR
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⟨φ⟩ −Λ

⟨φ⟩ −Λ
H −Λ

⟨φ⟩ ⟨φ⟩ −Λ
⟨φ⟩

Figure 6. Top: the traditional FN chain with the fields on the same node carrying the same

U(1)H horizontal (and electroweak) charges. The chiral fields on the outermost nodes are charged

under U(1)H . Bottom: re-grouping into two clockwork chains connected through a Higgs Yukawa

interaction on the middle node after flavon obtains a vev, 〈φ〉 6= 0.

interactions read,

LFN ⊃
(
ū

(i)
L,0 ū

(i)
L,1 · · · ū

(i)
L,Nu(i)−1

)

−Λ 〈φ〉 0 . . . 0

〈φ∗〉 −Λ 〈φ〉 . . . 0
...

. . .
. . .

. . . 0

0 · · · 〈φ∗〉 −Λ 〈φ〉




u
(i)
R,0
...

u
(i)
R,Nu(i)−1

u
(i)
R

 , (2.30)

where each entry has an O(1) dimensionless coefficient that we do not write out for simplic-

ity. This mass matrix closely resembles that of the clockwork with qm ∼ Λ and m ∼ 〈φ〉,
eq. (2.2), except for the φ∗ terms. The analogy is complete if the theory is supersymmet-

ric, so that such non-holomorphic terms are forbidden. We choose a different possibility

to forbid the φ∗ terms and introduce an axial U(1)A symmetry and a new scalar S with

charge 1 under U(1)A and a vev 〈S〉 = Λ, while the flavon φ has also U(1)A charge 1 and

those of the fermions are as in figure 5.2

For the quark doublets there are, analogously, Nq(i) new Dirac fermions, Q
(i)
k , added

to the i-th generation SM quark, Q
(i)
L . The vector-like fermions u

(i)
0 , Q

(i)
0 , both singlets

under U(1)H , then couple the two fermionic chains via the Higgs. Note that the U(1)A
charge assignments allow only one chirality of the two vectorlike fermions to couple to the

Higgs, see figure 5.

It is now easy to see that, after φ obtains the vev, the traditional FN model with a

U(1)A is equivalent to the clockwork model of flavor in the “universal q” limit, eq. (2.20).

All that is required is the identification, Λ→ qm, 〈φ〉 → m, setting all the O(1) factors in

eq. (2.30) to be exactly 1, and appropriately relabeling the fields, compare figure 6 with

figure 1. The traditional FN model and the clockwork model in the “universal q” limit,

2Since U(1)A is in general anomalous it would require additional structure were it to be gauged.
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U(1)H
U(1)A

+1

−1

0 QL QL,Nq−1 QL,0

QR,Nq QR,Nq−1

uL,1 uL,Nu

uRuR,0 uR,1

−Λ−Λ 〈φ∗〉
· · ·

〈φ∗〉

H
· · · −Λ−Λ〈φ∗〉 〈φ∗〉

−Nq −Nq + 1 0 0 1 Nu

Figure 7. The clockworked FN chain that naturally leads to the clockwork model of flavor. The

chiral fermions on the greyed-out Higgs node do not carry a horizontal charge.

eq. (2.20), are therefore equivalent, if the degrees of freedom associated with the flavon φ

are much heavier than the vectorlike fermions/gears, so that they can be integrated out.

The FN expressions for the SM quark masses, obtained using mass insertion approxima-

tion, figure 4, then also offer an intuitive diagrammatic interpretation of the clockwork

mechanism; we can identify uR (QL) at the end of the chain with the SM field. It then

has to ‘go through’ the rest of the chain to get to the Higgs, paying a (φ/Λ) factor at

every step.

We turn next to the clockworked FN models. In contrast to the traditional FN, there

is only one U(1)H -singlet fermion per chain, uR,0 (QL,0), while the rest of the fermions

come in pairs of opposite chirality but same charge, see figure 7.3 In the clockworked FN

the U(1)H is anomaly free. This is in contrast to the traditional FN where additional field

content is required to achieve anomaly free U(1)H . As before, we still use U(1)A to forbid

the terms under the diagonal of the mass matrix (as in eq. (2.30)). However, the axial

symmetry is no longer needed in order to arrive at just one Higgs term. Let us remark

again that, even though U(1)A remains anomalous, it is auxiliary to the discussion, and

can be avoided.

The clockwork model of flavor in the “universal q” limit follows immediately from the

field content in figure 7 in the limit of a heavy flavon degrees of freedom, now identifying

〈φ∗〉 → qm, Λ → m, and relabeling just two fields, QL, uR → QL,Nq , uR,Nu , compare

figure 1 with figure 7. Note that in this case Λ does not correspond to the mass of any

particle in the spectrum, but rather gives the mass band spread for vector-like fermions.4

The hierarchies in masses and mixings can be understood by realizing that the zero modes

are equal to the QL, uR fields, up to Λ/〈φ〉 corrections. The zero modes thus have effective

horizontal charges that are to a good approximation equal to the ones of QL, uR, i.e., they

are Nq, Nu respectively. This leads to the spurion expansion which is on inverse powers of

〈φ∗〉. This is somewhat reminiscent of the models of gauged mininal flavor violation where

the flavor symmetry is made anomaly free and the expansion is in inverse powers of flavon

vevs [44, 45].

3Apart from relabeling, the choice is just whether one of the uL,k, QR,k chiral fermions carry vanishing

horizontal charges (traditional FN), or charges Nu and −Nq (clockworked FN).
4It does have a symmetry interpretation, though. Once U(1)H is broken by 〈φ〉, one can define a new

accidental horizontal U(1)Λ symmetry by shifting in figure 7 the uL,i to the left by one node, the QR,i to

the right by one node, and assign the fields on the same node equal U(1)Λ charges. The U(1)Λ is broken

by Λ, so that Λ can be viewed as a spurion of this approximate symmetry.
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Given the above analogies between the FN models and the clockwork models of flavor

in the “universal q” limit, the logical question is how to tell them apart. The clockwork

models of flavor do not contain a dynamical flavon field, φ. The differences between the

“universal q” clockwork models and the FN models, which do contain the flavon field φ, will

therefore depend on how heavy the radial and the angular modes of φ are (we denote their

masses by m|φ|,marg φ), respectively. If both are parametrically heavier than the gears,

they can be integrated out, and the two models are equivalent at the renormalizable level

at the energy scales of the gears and below. The mass of the radial mode, m|φ|, depends

on the details of the scalar potential, and is naturally at the scale 〈φ〉. The angular mode,

on the other hand, is the Goldstone boson of a spontaneously broken global U(1)H —

the axiflavon. For global U(1)H that is anomalous, as in the traditional FN models, the

axiflavon can solve the strong CP problem [46, 47] or even act as a relaxion [48]. For non-

anomalous global U(1)H , as in the clockworked FN models, the mass of the axiflavon would

have to come from explicit breaking. If this breaking is small, the axiflavon would appear in

the spectrum, possibly pointing towards the dynamical symmetry origin of the clockwork.

There is, however, a particular limit of the FN parameter space, where both the radial

and the angular mode of φ are parametrically heavier than the gears. This is the case, if

both the flavon-fermion couplings (we denote them by Y ′) as well as the U(1)A breaking

Dirac mass terms, are small, Y ′ � 1 and Λ � 〈φ〉, respectively. We can then have a

hierarchy M ∼ max(Y ′〈φ〉,Λ) � marg φ � 〈φ〉, such that the gear masses, M , are much

smaller than marg φ, m|φ|, and still the spontaneous breaking of U(1)H dominates over the

explicit one, marg φ � 〈φ〉. In this case the “universal q” clockwork models and FN models

are exactly the same at the gear mass scale (at the renormalizable level).

The discussion changes, if the U(1)H is gauged (we denote the corresponding gauge

coupling by gH). In that case the angular mode of φ is absorbed by the U(1)H gauge

boson after spontaneous symmetry breaking. If the mass of the gauge boson, ∼ gH〈φ〉 is

parametrically bigger than the gear masses, M ∼ max(Y ′〈φ〉,Λ), the gauge boson can be

integrated out, and at the renormalizable level the “universal q” clockwork models and FN

models are equivalent.

Gauging U(1)H also has other consequences. Flavor Changing Neutral Currents (FC-

NCs) are generated from the tree level exchanges of the flavor gauge boson, so that the

〈φ〉 mass scale is pushed well above the LHC. The bounds from tree level exchanges of the

radial flavon mode are typically weaker, see e.g., refs. [49, 50] (these estimates are indica-

tive, the actual limits depend on the details of the FN model). The new fermions, are also

much more innocuous from the point of view of low energy constraints, as we show in the

next section. The low energy bounds only require them to be heavier than about a TeV.

Finally, we discuss the “universal N” limit of clockwork, eq. (2.21), which is reminiscent

of the RS flavor models [1, 2, 51, 52]. In this case the clockwork chains are of equal length, so

that the set-up in figure 3 can be projected to a single chain with N nodes, shown in figure 8.

It is tempting to think of the N nodes as a partial realization of the deconstructed extra

dimension. However, a crucial difference with a properly deconstructed extra dimension is

that in the clockwork model there is only a single gauge group, the SM one, which spans

all the nodes, while in the deconstructed extra dimensional models there is one copy of the
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(i)
L(R),N−1

u
(i)
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0 1 2 N−1 N

Figure 8. The “universal N” limit of the clockwork setup, where all the clockwork chains are of

the same length, N , and the hierarchy of the SM quark masses comes entirely from different values

of the clockworking factors, q, see also eq. (2.21).

gauge group for each of the nodes. Taking the N →∞ limit thus does not correspond to a

continuum limit. In the continuum limit the SM gauge fields would correspond to the zero

modes of the 5D gauge fields, but there are no corresponding KK states (a proper extension

of clockwork to 5D is possible, but leads to exponentially suppressed gauge couplings, see

appendix A).

The behavior of the zero modes in clockwork and the RS is very similar, while the

differences arise at the mass scale of the gears. For instance, the form of the SM Yukawa

matrices in terms of zero mode overlaps, eqs. (2.14), (2.15), is exactly the same as the well

known form in the RS models of flavor [51–54]. In the RS the fQ(i), fu(i), fd(i) are the zero

mode overlaps with the IR brane that contains the Higgs. In our case these are the values

of the zero modes on the 0-th node of the clockwork chain, which is the node that couples

to the Higgs.

On the other hand, the massive modes are quite different in the clockwork and the RS.

The RS contains KK states of both gauge bosons and the SM fermions, while in clockwork

the SM is supplemented only by the fermionic gears. Furthermore, the typical mass gap

between neighbouring clockworking gears is much smaller than the mass gap between the

gears and the zero mode, while the RS KK states have mass splittings that are all O(1).

We discuss the implications of this for flavor and high pT observables in sections 3 and 4.

2.4 The QCD Landau pole

The addition of new degrees of freedom charged under the SM gauge group modifies the

renormalization group evolution (RGE) of the SM gauge couplings above the scale µ = M .

The most pronounced effect is in the QCD coupling αs potentially destroying asymptotic

freedom [55]. At one loop, the RGE of αs is given by

dαs
dlnµ

= −2β0
α2
s

4π
, β0 =

11Nc − 2Nf

3
, (2.31)

where Nc = 3 is the number of colors and Nf is the number of fermions in the fundamental

representation of SU(Nc), i.e., all the SM quarks and gears lighter than scale µ. The sign

of the beta function depends on Nf , with Nf = 16 the maximum value for which QCD is

asymptotically free at one loop. This corresponds to 6 SM flavors plus Ngears = 10 gears.
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Figure 9. Example upper bounds on the total number of colored Dirac fermions (Nf = 6 +Ngears)

or, equivalently, on the effective number of gears per quark flavor (N̄gears ≡ Ngears/12) as a function

of the assumed common gear mass, M . Requiring there is no Landau pole in αs below ΛLandau =

10(100)M gives the bounds shown as orange (lower, green) lines, when rounding Nf to the closest

integer.

For Ngears > 10 the theory develops a UV Landau pole at the scale

ΛLandau = M e
−2π

αs(M)β0 , (2.32)

where M is the scale at which the gears are integrated out (so roughly the average gear

mass). In the setup of eq. (2.27) Ngears = 26 which gives ΛLandau ' 2 × 104 TeV for

M = 5 TeV. The value of ΛLandau can be increased through trivial modifications of the

setup. For instance, increasing q while reducing the length of the clockwork chains results

in fewer new colored states contributing to the QCD β function.

In figure 9 we show upper bounds on Nf and on the effective number of gears per quark

flavor, N̄gears ≡ Ngears/12, as a function of the common gear mass, M . We require that the

Landau pole is not reached below 10M(100M), with the bounds on Nf , N̄gears shown in

red (green). The bounds were computed using the three-loop αs RGE [56] with αs(mZ) =

0.118 [57]. We observe that in order for the Landau pole to be parametrically above the gear

masses the discrete clockwork chains cannot be arbitrarily long. The maximum number of

colored gears is Ngears ∼ O(30− 60) for M in the (few) TeV region.

2.5 Perturbativity and stability of the Higgs potential

Quark loops also provide an important negative contribution in the one-loop beta function

for the quartic self-coupling of the Higgs [58, 59]. In the SM this causes the quartic coupling

to run to negative values at ∼ 1010 GeV [60, 61]. This is pushed lower, when gears are

added to the SM field content. The contributions from the SM and the clockwork vector-

like quarks to the Higgs quartic, V ⊃ λ|H|4/2, can be written as

βλ ⊃ 12Tr
(
Y †UYU + Y †DYD

)
λ− 12Tr

(
Y †UYUY

†
UYU + Y †DYDY

†
DYD

)
, (2.33)
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where dλ/d lnµ = βλ/16π2 and making use of the basis-invariance of the result we per-

formed the computation in the interaction basis of eq. (2.13) where only the 0-th site

couples to the Higgs.

The scale at which the Higgs quartic becomes negative is, at leading logarithmic ap-

proximation,

ΛDecay = M e
− 16π2λ0

βλ , (2.34)

where λ0 ' 0.258. Requiring that the beta function remains perturbative,

Tr
(
Y †UYUY

†
UYU

)
+ Tr

(
Y †DYDY

†
DYD

)
� 4π2

3
, (2.35)

puts a self-consistency constraint on the clockwork flavor models — while entries in the

Yukawa matrices can be O(1) they should be mostly smaller than 1.

The problem of vacuum stability near the mass scale of vector-like quark states is

a common problem in many NP models. A well known solution to increase the scale

at which perturbativity or vacuum stability is lost (albeit at the cost of some tuning),

is to add additional scalars. A coupling between a new singlet φ and the Higgs of the

form L ⊃ λSH
†Hφ2, gives a positive contribution to the beta function, δβλ = 2λ2

S , thus

potentially raising the scale ΛDecay.

3 Flavor constraints

3.1 General considerations

We start the discussion by considering the clockwork model before electroweak symmetry

breaking. The clockwork Lagrangian (2.13), after mass diagonalization of the clockwork

chains using the unitary transformation in eq. (2.3), is given by

L = Lkin −
∑
i,j

[
fQ(i)fd(j)(YD)ijQ̄

(i)
L Hd

(j)
R + fQ(i)fu(j)(YU )ijQ̄

(i)
L H̃u

(j)
R

]
−
∑
k

∑
i,j

[
fQ(i)f

k
d(j)(YD)ijQ̄

(i)
L Hd

(j)
R,k + fQ(i)f

k
u(j)(YU )ijQ̄

(i)
L H̃u

(j)
R,k

+ fkQ(i)fd(j)(YD)ijQ̄
(i)
L,kHd

(j)
R + fkQ(i)fu(j)(YU )ijQ̄

(i)
L,kH̃u

(j)
R

]
−
∑
k,k′

∑
i,j

[
fkQ(i)f

k′

d(j)(YD)ijQ̄
(i)
L,kHd

(j)
R,k′ + fkQ(i)f

k′

u(j)(YU )ijQ̄
(i)
L,kH̃u

(j)
R,k′

]
+ h.c..

(3.1)

To shorten the notation above we denoted the zero modes by Q
(i)
L , d

(i)
R , u

(i)
R , and dropped

the primes on gear mass eigenstates, Q
(i)
L,k, d

(i)
R,k and u

(i)
R,k, where k = 1, . . . , Nψ(i). The zero

modes are identified with the SM fields, which obtain their mass only after electroweak

symmetry breaking.

The Yukawa couplings between the SM fields and the gears, shown in the second and

third lines of eq. (3.1), induce new contributions to the FCNCs [62–64]. The relevant tree

level contributions are shown in figure 10, and for the low energy observables we can work
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Name Operator Name Operator

O(1)
HQ

(
H†i
←→
D µH

)
Q̄Lγ

µQL O(1)
QQ (Q̄Lγ

µQL)(Q̄LγµQL)

O(3)
HQ

(
H†i
←→
D I

µH
)
Q̄Lγ

µτ IQL O(3)
QQ (Q̄Lγ

µτ IQL)(Q̄Lγµτ
IQL)

OHu
(
H†i
←→
D µH

)
ūRγ

µuR O(1)
Qd (Q̄Lγ

µQL)(d̄RγµdR)

OHd
(
H†i
←→
D µH

)
d̄Rγ

µdR O(1)
Qu (Q̄Lγ

µQL)(ūRγµuR)

OHud
(
H̃†iDµH

)
ūRγ

µdR Odd (d̄Rγ
µdR)(d̄RγµdR)

OuH
(
H†H

)
Q̄LH̃uR Ouu (ūRγ

µuR)(ūRγµuR)

OdH
(
H†H

)
Q̄LHdR

Table 1. Dimension six SU(3)c × SU(2)L × U(1)Y -invariant operators that receive contributions

from the clockwork gears. The notation for operators follows ref. [67].

in the limit where the gears are integrated out. After electroweak symmetry breaking the

SM quarks become massive, with the leading contribution being the first line of eq. (3.1),

corrected by v2/M2 suppressed terms from couplings to the gears. The latter also induce

FCNC couplings of the SM quarks to the Z-boson and the Higgs, and produce additional

flavor breaking contributions to the charged currents. The B0
d,s−B̄0

d,s, D
0−D̄0 and K0−K̄0

mixing amplitudes therefore receive NP corrections from the tree level exchanges of the Z

and the Higgs. In addition, neutral-meson mixings also receive phenomenologically relevant

one loop corrections due to the exchanges of the gears, shown in figure 11.

For generic flavor violating couplings, heavy fermions would need to have PeV-scale

masses, in order to avoid experimental constraints on FCNCs. In contrast, in clockwork

flavor models the FCNCs are suppressed by the overlaps of the zero-modes that also lead

to the hierarchy of SM quark masses. The bounds on the gear masses are therefore only in

the TeV mass range, as we show below. This protection against FCNCs from zero-mode

overlaps, the clockwork GIM (CW-GIM), is well known in the RS models of flavor, where

it was dubbed RS-GIM [51, 52], and is a general feature of sequestered models, including

the FN models [65, 66].

3.2 Flavor mixing in the EFT

In this subsection we first prepare the necessary formalism that allows for a systematic

comparison with the experimental constraints on low-energy observables, to be used in the

subsequent subsections. In the first step we integrate out the gears at the scale µ ∼ M ,

matching the diagrams in figures 10 and 11 to dimension six operators of the SM effective

field theory (SMEFT) [67, 68]

LSMEFT =
∑

wiOi. (3.2)

The Wilson coefficients scale as wi ∼ 1/M2, where M is the typical mass of the gears.

Matching to SMEFT amounts to working in the mass-insertion approximation, i.e., we
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(b)

ψj ψi

(c)

ψj ψi

(a)

ψj ψiΨkl Ψkl ΨknΨk
′
m

Figure 10. Three types of diagrams generating NP induced O(v2/M2) flavor violating transitions

among the SM fermions (single lines) from tree level exchanges of gears (double lines). The dashed

lines denote the SM Higgs, while the wiggly line in diagram (b) denotes either a W or Z boson.

keep in the analysis terms that are leading in the YU,Dv/M expansion.

The dimension six operators generated in the matching are listed in table 1. The

tree-level diagrams in figure 10 match onto the Higgs-current fermion-current operators

(ψ2H2D) shown in the left column of table 1. The (a) and (b) diagrams in figure 10 match

onto the operators O(1,3)
HQ for the SU(2)-singlet gears, u

(i)
R,k, d

(i)
R,k, and onto the operators

OHu, OHd and OHud for the doublet gears, Q
(i)
L,k. These diagrams also contribute to

the chirallity-flipping operators OuH and OdH via equations of motion [62], modifying the

effective SM Yukawa couplings [69]. Diagram (c) requires the mixing of the gears in doublet

and singlet representations and also contributes to the latter operators.

For example, the contribution to the operator O(1)
HQ reads,

[w
(1)
HQ]ij =

1

4
fQ(i)fQ(j)

∑
k

∑
r

−[YD]ir

(
fkd(r)

)2(
Mk
d(r)

)2 [Y †D]rj + [YU ]ir

(
fku(r)

)2(
Mk
u(r)

)2 [Y †U ]rj


' 1

4

[
FQ

(
YUM

−2
u Y †U − YDM−2

d Y †D

)
FQ

]
ij
,

(3.3)

with

Mψ = diag[qmψ(1), qmψ(2), qmψ(3)]. (3.4)

The contributions to the other Wilson coefficients can be found in appendix B. In eq. (3.3)

the zero-mode overlaps are written in a matrix notation, FQ = diag[fQ(1), fQ(2), fQ(3)],

Fu = diag[fu(1), fu(2), fu(3)], Fd = diag[fd(1), fd(2), fd(3)]. The equality in the second line

applies when q is universal with q � 1, so that all the gears in a given clockwork chain are

degenerate and one can use the unitarity relation of eq. (2.12). For quarks QL(3) and uR(3),

that are not clockworked, cf. eq. (2.27), this needs to be replaced with fkψ = 0 in the first

line of eq. (3.3) and with vanishing contributions to the appropriate Wilson coefficients in

the second line.

A double insertion of a flavor-violating ψ2H2D operator gives a tree-level Z and H

exchange contribution to the four-fermion operators relevant for neutral-meson mixing.

These contributions are of order O(v4/M4). The loop diagrams in figure 11, on the other

hand, contribute at O(v2/M2) and can thus give the leading contribution to the meson-

mixing [64] for gear masses in the few-TeV range. The relevant four-fermion operators

(ψ4) are listed in the right row of table 1. Diagram (a) in figure 11 with gears u
(i)
R,k or d

(i)
R,k

– 17 –



J
H
E
P
1
0
(
2
0
1
8
)
0
9
9

ψj

ψi ψj

ψi ψj

ψjψi
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Ψkm ΨkmΨk
′
n Ψk

′
n

(a) (b)

Figure 11. One loop diagrams contributing to neutral-meson mixing induced at O(v2/M2) by

Higgs-mediated interactions (dashed lines) with the gears (double lines).

(with gears Q
(i)
L,k) on the interal lines matches onto O(1,3)

QQ (onto Odd and Ouu). Diagram

(b) in figure 11 matches onto O(1)
Qd (onto O(1)

Qu) when on one of the internal lines the gear is

Q
(i)
L,k, while on the other it is d

(i)
R,k (u

(i)
R,k). Contributions to O(1,3)

QQ are generated by diagram

(b) with u
(i)
R,k and d

(i)
R,k gears on the internal lines, although these do cancel out for meson

mixing. The results of this matching at one loop are shown in appendix B.

In order to connect the Wilson coefficients evaluated at the high-energy scale µ = M

to the experimental data at the electroweak or low-energy scales we need to add other

loop-corrections to ψ4.5 We include EW contributions to the mixing of ψ2H2D into the

four-fermion operators [70–72], running from µ = M down to µ = mW in the leading

logarithm (LL) approximation. Pure gauge interactions (viz. in the symmetric electroweak

phase) cannot produce ∆F = 2 contributions in the loop corrections to ψ2H2D opera-

tors [72], while the Yukawa corrections can potentially be more important than the loop

contributions computed in figure 11 because some are proportional to the top Yukawa [71]

and are logarithmically enhanced by log(M/mW ). The matching between four-fermion

operators of the SMEFT and those of the low-energy EFT (LEEFT) at µ = mW gener-

ates extra finite pieces at one loop [73, 74]. The QCD corrections also induce important

rescalings and mixings among the four-fermion operators that we include in the running

to LL accuracy [75–78] despite being formally a two-loop contribution. As for the ψ2H2D,

they are not renormalized by QCD interactions and we neglect the corresponding EW loop

corrections which are small compared to the tree-level contributions in figure 10.

Finally, in matching the SMEFT and LEEFT at the electroweak scale, we need to

transform the fermions in flavor space from the interaction basis to the mass basis by

(uL, dL, uR, dR) −→ (L†uuL, L
†
ddL, R

†
uuR, R

†
ddR), (3.5)

where Lu, Ld, Ru, Rd are the unitary transformation matrices and where the relation

VCKM = LuL
†
d is understood.

3.3 Low-energy constraints

A necessary condition for the self-consistency of the clockwork model of flavor is that the

presence of the gears do not parametrically change the mass hierarchies of the zero modes.

5In case that several clockwork chains contribute to the same Wilson coefficient we assume that the scale

M is equal to the mass of the lightest gear, neglecting the RG running above this threshold.
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The quark masses, including the dimension-6 corrections, are

[Mu]ij =
v√
2

[
Y SM
u

]
ij

=
v√
2

(
[FQYUFu]ij −

v2

2
[wuH ]ij

)
, (3.6)

where we have written
(
Y SM
u

)
ij

in eq. (2.14) up to second order and the down-type mass

matrix is obtained with the obvious substitutions. The explicit results in appendix B show

that the O(v3) contributions from the gears have the same suppression factors fQ(i) fu(i)

and fQ(i) fd(i), and thus do not change the flavor patterns.

The suppression of corrections by the zero-mode overlaps is a general feature of the

contributions of the clockwork gears to processes involving SM fermions. For instance, the

operators OuH and OdH missalign the masses of the quarks and their Higgs couplings

LY = −
(
ūL

[
Y SM
u√

2
+ δyu

]
uR + d̄L

[
Y SM
d√

2
+ δyd

]
dR

)
h+ h.c., (3.7)

where the corrections to the SM relation are, in the quark mass basis, given by

[δyu]ij = − v2

√
2

[
LuwuHR

†
u

]
ij

= − v2

2
√

2

[
Lu FQ

(
YUM

−2
u Y †UF

2
QYU

+YUF
2
uY
†
UM

−2
Q YU − 2YUM

−1
u Y †UM

−1
Q YU

)
FuR

†
u

]
ij
,

(3.8)

[δyd]ij = − v2

√
2

[
LdwdHR

†
d

]
ij

= − v2

2
√

2

[
Ld FQ

(
YDM

−2
d Y †DF

2
QYD

+YDF
2
dY
†
DM

−2
Q YD − 2YDM

−1
d Y †DM

−1
Q YD

)
FdR

†
d

]
ij
.

(3.9)

Note that despite the unitary rotations, these couplings still receive a clockwork suppres-

sion of the quarks involved in the process, FQ and Fu,d, because the flavor hierarchies in

eq. (2.27) are inherited by the rotation matrices, cf. eq. (2.22).

This is a general feature of all the contributions of the gears to low-energy observables.

For instance, for processes involving only di quarks, the dominant contribution is generally

given by the operators with external quark doublets. For example, the contribution of

[OHd]33 to Z → bb is suppressed by a clockwork factor λ4, to be compared to the one

given by [O(1,3)
HQ ]33, which is unsuppressed because QL(3) is not clockworked. Analogously,

the contribution of [O(1,3)
QQ ]12 to K-K̄ mixing is O(λ10) and of the same order as the top-

box diagram in the SM, while the one from [O(1)
Qd]12 and [Odd]12 are further suppressed by

factors λ2 and λ4, respectively. In the case of neutral processes involving the ui quarks

the singlet-field contribution is again suppressed with respect to the doublet for the first

family, whereas it is the opposite for the second family and there is no relative suppression

for the third. For example, in D-D̄ mixing the operators [OQQ]12, [O(1)
Qu]12 and [Ouu]12 are

all suppressed by the same factor λ10.

In the following we discuss the stronger bounds that can be derived from low-energy

observables on the parameters of the clockwork model.
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3.3.1 Weak boson decays

The couplings of weak gauge bosons to the SM quarks can be appreciably affected by

the gears. Rates and angular asymmetries of the weak boson hadronic decays have been

measured with a relative precision below the permille level in e+e− collisions [79], imposing

strong bounds on the couplings and masses of the clockwork chains. The Z interactions

with the quarks can be generally parametrized as

LZ ⊃
g

cos θw

∑
ij

[(
δij
2

+ [δgL]Zuij

)
ūiγ

µPLuj +

(
−δij

2
+ [δgL]Zdij

)
d̄iγ

µPLdj

+ [δgR]Zuij ūiγ
µPRuj + [δgR]Zdij d̄iγ

µPRdj

]
Zµ, (3.10)

where δg
Z(d,u)

L,R encode the corrections due to NP. In our case these are given by,

[δgL]Zdij = −v
2

2

[
Ld

(
w

(1)
HQ + w

(3)
HQ

)
L†d

]
ij

=
v2

4

[
LdFQYDM

−2
d Y †DFQL

†
d

]
ij
, (3.11a)

[δgL]Zuij = −v
2

2

[
Lu

(
w

(1)
HQ − w

(3)
HQ

)
L†u

]
ij

= −v
2

4

[
LuFQYUM

−2
u Y †UFQL

†
u

]
ij
, (3.11b)

[δgR]Zdij = −v
2

2

[
RdwHdR

†
d

]
ij

= −v
2

4

[
RdFdY

†
DM

−2
Q YDFdR

†
d

]
ij
, (3.11c)

[δgR]Zuij = −v
2

2

[
RuwHuR

†
u

]
ij

=
v2

4

[
RuFuY

†
UM

−2
Q YUFuR

†
u

]
ij
. (3.11d)

The hermiticity of LZ , eq. (3.10), implies that the above anomalous couplings are real

for i = j.

Experimental data on Z couplings to the left-handed SM fermions translate to con-

straints on the clockwork chains of the singlet fermions. Similarly, experimental ranges

on Z couplings to the right-handed SM fermions translate to constraints on the clockwork

chains of the doublet fermions. Of special interest is the coupling [δgL]Zd33 , measured in

Z → bb̄ decays. Since it does not receive suppression from the zero-mode overlap (which

needs to be large to give large enough top mass), it provides a strong bound on the Md(i)

masses. Couplings giving access to MQ(i) and Mu(i) are [δgR]Zu22 and [δgL]Zu33 , respectively.

The latter is restricted indirectly using SU(2)L symmetry from the t→ bW decay [80]. A

global fit to the electroweak and low-energy data gives [81],

[δgL]Zd33 = (−0.3± 0.7)× 10−3, (3.12a)

[δgL]Zu33 = (0.7± 3.8)× 10−2, (3.12b)

[δgR]Zu22 = (0.8± 2.3)× 10−3. (3.12c)

To obtain the above ranges we used the numerical likelihood provided in ref. [81]. The

measurements in eq. (3.12) correspond to lower bounds

Md(i) & 3.8 TeV, Mu(i) & 0.5 TeV, MQ(i) & 0.5 TeV, (3.13)
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at 90% C.L., assuming Yukawa couplings of order O(1).6

The gears also contribute to the charged-current interactions, modifying the W cou-

plings to quarks,

LW ⊃
gL√

2

(
Vij + [δgL]

Wq

ij

)
ūiγ

µPLdjW
+
µ +

gL√
2

[δgR]
Wq

ij ūiγ
µPRdjW

+
µ + h.c., (3.14)

where,

[δgL]
Wq

ij = v2
[
Luw

(3)
HqL

†
d

]
ij

= −v
2

4

[
LuFQ

(
YUM

−2
u Y †U + YDM

−2
d Y †D

)
FQL

†
d

]
ij
,

[δgR]
Wq

ij =
v2

2

[
RuwHudR

†
d

]
ij

=
v2

2

[
RuFuY

†
UM

−2
Q YDFdR

†
d

]
ij
. (3.15)

For tree-level processes, these contributions can be thought of as being absorbed in the

definition of the measured CKM matrix elements, but with a CKM matrix that is in

principle not unitary. In the numerical analysis we take for the SM inputs the CKM

elements that are determined from tree-level processes only, but nevertheless employ CKM

unitarity to recover the full CKM to be used in computing FCNC observables. As we

will see below, the most stringent constraints on the clockwork parameters come from

both tree-level and one-loop induced FCNCs. They restrict the phenomenologically viable

clockwork parameter space to only small deviations in the CKM unitarity tests, such as

|Vud|2 + |Vus|2 + |Vub|2 = 1 (see e.g. ref. [82]). In particular, the deviations we obtain

within the clockwork model are below current experimental precision of such measurements,

making our approach self-consistent and the use of CKM unitarity justified.

3.3.2 Rare meson decays

Important constraints on new physics generally arise from rare meson decays triggered by

the b → s``, b → sνν̄ and s → dνν̄ transitions. The contributions of the gears to these

processes enjoy a flavor suppression from the overlaps of the external fields equivalent to

the GIM mechanism in the SM, but they occur at tree level from the diagrams in figure 10

where the external Z or Higgs boson connects to a dilepton pair. The effective Hamiltonian

used to describe the “short-distance” contributions to these decays at low energies is,

Hew ⊃−
α

2πv2
λ

(t)
ij

[
C9

(
d̄iγ

µdLj
) (

¯̀γµ`
)

+ C10

(
d̄iγ

µdLj
) (

¯̀γµγ5`
)

+Cν
(
d̄iγ

µdLj
)

(ν̄γµ(1− γ5)ν)
]
,

(3.16)

where α is the electromagnetic structure constant, λ
(t)
ij = V ∗tiVtj , and CSM

9 (mb) = 4.32,

CSM
10 = −4.41 [83] and CSM

ν = −6.35 [84] are the Wilson coefficients of the LEEFT. The

scale-dependence of C9 is due to the substantial RGE effects in QCD. Other terms in

Hew, not displayed in eq. (3.16), do not receive important contributions from the gears.

For instance, the “primed operators” corresponding to the operators in eq. (3.16) with

dLi → dRi replacement are further suppressed by the zero-mode overlaps.

6The SMEFT breaks down for such small gear masses. Nonetheless, as discussed in section 4, direct

searches set lower limits of gear masses above 1 TeV, for which our treatment of low-energy observables

remains valid.
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The contributions of the gears to the C9,10,ν Wilson coefficients are due to the tree

level Z exchange and are, for a given dj → di process,

[δC10]ij = [δCν ]ij = − 1

1− 4s2
W

[δC9]ij = − 2π

αλ
(t)
ij

[δgL]Zdij , (3.17)

with the Zdidj coupling given in eq. (3.11a). These rare decays then set constraints on the

tower of gears of the dR(i) fields.

Branching fractions and angular distributions of different b → s`` decays were mea-

sured by a number of experiments. For instance, the Bs → µµ branching fraction has been

measured by LHCb, CMS and ATLAS [85–87]. Normalizing the experimental measure-

ments to the theoretical predictions [88] gives,

R =
BR(Bs → µµ)

BR(Bs → µµ)SM
=

∣∣∣∣ C10

CSM
10

∣∣∣∣2 = 0.83(16), (3.18)

which implies [δC10]23 = 0.39 ± 0.37. This is consistent with a tower of gears of mass

Md(i) ' 5.9 TeV, and excludes Md(i) & 3.5 TeV, at 90% C.L., barring cancellations and

taking Yukawa couplings to be O(1) in the sums in eq. (3.17). Taking Md(i) ' 5.9 TeV

then also leads to [δC9]23 ' −0.04±0.04, which is beyond the current sensitivity of ongoing

experiments. Similar bounds can also be extracted from a different flavor entry, [δC10]13,

using the current limits on Bd → µµ.

For qi → qjνν̄ transitions the experimental upper bounds have been set on the B →
K(∗)νν̄ branching ratio, while there is a measurement of the K+ → π+νν̄ rate [89]. Com-

paring the latter to the SM prediction [84] gives [δCν ]12 = 2.7+2.2
−3.2, which corresponds to

a generic bound Md(i) & 1.7 TeV. While this is worse than the bound we obtained from

[δC10]23, it corresponds to a different combination of Yukawa couplings in eq. (3.17). The

decay B → K(∗)νν̄, on the other hand, probes exactly the same combination of couplings

already constrained by Bs → µµ. Combining the experimental bounds with the SM predic-

tions in ref. [90], we obtain [Cν ]23 ∈ [−6.8, 19.5] at 90% C.L., which translates to a bound

Md(i) & 0.8 TeV.

Rare decays involving up-type quarks suffer severe GIM suppression of the penguin and

box diagrams in the SM. The corresponding top decays are extremely rare, with branching

ratios in the range O(10−12-10−15) [91–93] in the SM, while the rare D-meson decays are

dominated by the “long-distance” contributions that are difficult to quantify [94]. Current

experimental bounds on, e.g., BR(t → uZ) . 0.022% and BR(t → cZ) . 0.049% (at

95% C.L.) [95] are not strong enough yet to significantly constrain new physics with mass

scales larger than 1 TeV [96]. Experimental bounds on rare D meson decays, on the other

hand, have reached a considerable sensitivity in the D → µµ decay, BR(D → µµ)exp. <

6.2× 10−9 at 90% C.L. [97], while the SM prediction is estimated to lie below 10−10 [98].

The contributions of the clockwork chains to the decay rates are suppressed by at least λ10,

leading to only a very weak bound, with data still compatible with M & 0.1 TeV. Bounds

from the other charm quark decays such as D → πµµ lead to even weaker limits [98].

Finally, we comment on the experimental hints of non-standard contributions in b →
s`` transitions that could be solved by lepton-non-universal new-physics effects in C9,10 [99–
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Figure 12. Diagrams contributing to neutral-meson mixing at tree-level and O(v4/M4) induced

by two insertions of ψ2H2D operators.

105]. Although the gears can significantly contribute to these Wilson coefficients, the

couplings to the leptons are governed in our set-up by the SM couplings to the Z, which

are lepton flavor universal. This, for instance, explains the accidental suppression by

1 − 4s2
W ∼ 0.1 of the vectorial coupling to the charged leptons in eq. (3.17) compared

to the axial one. In our framework the lepton non-universal contributions to b → s``

only arises from the exchange of a Higgs in the diagram (c) in figure 10. Although this

is a (scalar) tree-level contribution it is further suppressed by the SM lepton Yukawas.

Extending the clockwork mechanism to the lepton sector could, in principle, explain the

simultaneous non-standard violations of quark and lepton flavor suggested by the data.

3.3.3 Neutral-meson mixing

The LEEFT for neutral meson mixing can be described by

Hew ⊃
∑

CαOijα , (3.19)

where the operators in the d-quark sector and in the so-called “chiral basis” are [78],

OijVLL = (d̄iγ
µPLdj)(d̄iγµPLdj), (3.20a)

OijLR,1 = (d̄iγ
µPLdj)(d̄iγµPRdj), OijLR,2 = (d̄iPLdj)(d̄iPRdj), (3.20b)

OijSLL,1 = (d̄iPLdj)(d̄iPLdj), OijSLL,2 = (d̄iσµνPLdj)(d̄iσ
µνPLdj), (3.20c)

and in addition the three operators OijV RR and OijSRR,1(2) obtained through the PL → PR

replacement from OijV LL and OijSLL,1(2), respectively. The SM interactions only generate

OijV LL, while other operators can mix under RG running in QCD.

For Bq − B̄q mixing meson oscilations, the leading contributions from clockwork gears

are to OVLL, while contributions to the other operators in eq. (3.20) are suppressed by

further powers of λ. Integrating out the gears, the gauge boson and the top quark at the
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electroweak scale µ = mW , gives

[CVLL]ij (mW ) =
2

v2

(
[δgL]Zdij

)2
− η2/7

6

[
(LdLd) ·

(
w

(1)
QQ(M) + w

(3)
QQ(M)

)
· (LdLd)†

]
ij

−
y2
t λ

(t)
ij

8π2v2

[
V δgZuL V †

]
ij

log
M

mW
+ [∆CVLL(mW )]ij ,

(3.21)

where we introduced the following notation[
(LdLd) ·

(
w

(1)
QQ + w

(3)
QQ

)
· (LdLd)†

]
ij
≡
∑
rstu

[Ld]ir[Ld]it[L
†
d]sj [L

†
d]uj [w

(1)
QQ + w

(3)
QQ]rstu, (3.22)

for the contraction of the indices of the unitary rotations with those of the Wilson coeffi-

cients. The SMEFT result in (3.21) was evolved from the heavy scale m ≈Mψ(i). The first

term in this equation is the O(v4/M4) tree-level contribution from the Z-boson exchange

in figure 12 (a) with a double insertion of the anomalous Z didj left-handed coupling,

eq. (3.11a). This term is thus sensitive to the same combination of masses and couplings

of the dR-type gears as the di → dj`` decays, discussed in section 3.3.2. The second

term encompasses the finite pieces of order (4π)−2 × O(v2/M2) obtained from the box

diagrams in figure 11 at µ = M . The dots denote matrix multiplication in the generation

indices, and the SMEFT Wilson coefficients w
(1,3)
QQ are given in eq. (B.2a). The prefactor

is the result of QCD running of the OVLL operator, performed with six dynamical flavors,

η6 = α
(6)
s (M)/α

(6)
s (mW ). This contribution is sensitive to the clockwork chains of both the

dR(i) and uR(i) quarks, cf. eq. (B.2a).

The first term in the second line of eq. (3.21) is due to the mixing of the O(1,3)
HQ operators

into O(1,3)
QQ [70–72]. It is of order (4π)−2 × O(v2/M2) but logarithmically enhanced by

log(M/mW ). It depends on the anomalous Z uiuj left-handed coupling, eq. (3.11b), and

is sensitive only to the gears of the uR(i) quarks. Finally, the last piece in eq. (3.21) is

a finite contribution that is due to the matching of SMEFT onto LEEFT at µ = mW ,

whose explicit expression was obtained in ref. [74] and that we reproduce in appendix B,

eq. (B.4a), adapted to our normalization of the operators. This contribution is sensitive to

the clockwork chains of both the dR(i) and uR(i) quarks.

For neutral-kaon mixing both the contributions to OijVLL, eq. (3.21), and to the other

operators in (3.20) are important. The additional O(λ2) suppression of gear contributions

to the operators OSRR,1 and OLR,1(2) is compensated by their large enhancements that is

a combination of QCD running and the chiral enhancement of the corresponding hadronic

matrix elements. The matching conditions for these operators at µ = mW are

[CVRR]ij(mW ) =
1

v2
([δgZdR ]ij)

2 − η2/7
6

[
RdRd · wdd(M) · (RdRd)†

]
ij
, (3.23)

[CLR,1]ij(mW ) =
1

v2
[δgZdL ]ij [δg

Zd
R ]ij − η1/7

6

[
LdRd · w(1)

Qd(M) · (LdRd)†
]
ij

−
y2
t λ

(t)
ij

8π2v2

[
δgZdR

]
ij

log
M

mW
+ [∆CLR,1(mW )]ij ,

(3.24)
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Process U D Q UQ DQ

Bs-B̄s λ4, ¤∗ λ4, × and ¤ λ7, ¤∗ λ7, ¤ λ6, ×
B-B̄ λ6, ¤∗ λ6, × and ¤ λ9, ¤∗ λ9, ¤ λ8, ×
K-K̄ λ10, ¤∗ λ10, × and ¤ λ12, ¤∗† λ12, ¤† λ12, ×† and ¤†

D-D̄ λ10, × and ¤ λ10, ¤ λ10, × and ¤ λ8, ×† λ10, ¤†

Table 2. Structure of the contributions of the clockwork model to neutral-meson mixing, where

the gears of a given type can appear alone (listed as U , D and Q) or in pairs (listed as UQ and

DQ). In each entry we show the order in λ at which the contribution starts. We also indicate by

the symbol “×” if the contributions is an O(v4/M4) tree-level contribution and by the symbol “¤”

if it is a O(v2/M2) loop contribution. A “ † ” superscript in either of the two symbols further

indicates that the given contribution receives a chiral enancement, and a “ * ” superscript in the

loop symbol indicates that the contribution is logarithmically enhanced. Entries in teal blue are

the leading contributions taken into account in the numerical analyses.

[CLR,2]ij(mW ) = −2

3
(η

1/7
6 − η−8/7

6 )
[
LdRd · w(1)

Qd(M) · (LdRd)†
]
ij
− 1

m2
h

[δyd]ij [δyd]
∗
ji,

(3.25)

[CSLL,1]ij(mW ) = −
([δyd]

†
ij)

2

2m2
h

, (3.26)

[CSRR,1]ij(mW ) = −([δyd]ij)
2

2m2
h

. (3.27)

Contributions to OSLL,2 and OSRR,2 are absent but generated by the renormalization of

OSLL,1 and OSRR,1 in QCD and the RG running [78]. The operator OVRR receives con-

tributions from the tree-level exchange of the Z-boson in figure 12 (a) and from the loop

contribution in figure 11 evaluated at µ = M . On the other hand, the structure of the con-

tributions to CLR,1 is similar to the one of CVLL in eq. (3.21). The first term in eq. (3.24)

is due to the tree-level Z exchange, the second is the finite part from the loops, the third

is the contribution induced by electroweak mixing from the ψ2H2D operators, while the

last term is the finite part from the matching between SMEFT and LEEFT at µ = mW ,

eq. (B.4b). These contributions depend on δgZdR and w
(1)
Qd and are due to clockwork towers

of the doublet quarks.

In CLR,2 the first term is the one that is produced by the box diagrams, while the

second term is the O(v4/M4) contributions from tree-level diagram in figure 12 (b) with

a Higgs-boson exchanged and a double insertion of the anomalous Yukawa couplings in

eq. (3.9). Finally, the contributions to CLR,1, CSRR,1 and CSLL,1 are due to the tree level

diagrams in figure 12 (b). These chirally-enhanced operators contribute to kaon mixing with

a suppression O(λ12) and are sensitive mainly to the QL(i)-gears and to a combination of

QL(i)- and dR(i)-gears.

For D0 − D̄0 mixing the same operators as in eq. (3.20) are relevant, but with di- and

dj-quarks replaced by u- and c-quarks. One obtains similar expressions for the diagrams

in figure 12, now with modified couplings to the up-quarks, and for the contributions from
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the box diagrams in figure 11, replacing the rotation matrices and using wuu and w
(1)
Qu in

eqs. (3.23) and (3.24), (3.25), respectively. In this case the contributions of the electroweak

mixing from ψ2H2D operators and the finite contributions in the matching between the

SMEFT and LEEFT are negligible because the flavor mixing comes suppressed by the

square of SM down-type quark Yukawas. The structure of the clockwork suppression is

now different, with the leading contributions due to OSRR,1 at O(λ8) that translates to

bounds on a combination of gear masses of type QL(i) and uR(i). Contributions to OLR,1,

OLR,2 and OVRR are further suppressed by λ10.

In table 2 we summarize concisely the sensitivity of neutral meson-mixings to different

gear species, specifiying the structure of the dominant contributions, which are taken into

account in the numerical analysis.

The experimental data we use are the observables CBq and φBq for Bq - B̄q, CεK and

C∆mK for K - K̄ and |M12| and Φ12 for D - D̄ mixing, as defined in ref. [106] and reported

in the latest results of the UTfit collaboration [107, 108]. For the predictions we use the

masses and CKM mixing parameters in table 3 as the fundamental input parameters,

whereas for the hadronic matrix-elements (bag parameters) we use results of lattice QCD

calculations. In particular, for the neutral K-meson system we use the calculation of the

SWME collaboration [109] (for other similar calculations see refs. [110, 111]). For D - D̄

mixing, we use the calculation of the ETMC [111], while for the Bq neutral meson system

the leading gear contributions to Bq - B̄q mixing have the same structure as the SM one (see

section 3.3.3), and the bag-parameter factors out from CBq and φBq . Finally, to connect

the contributions to the operators at the electroweak scale to the ones at the low-energy

scales, we use the master formulas for the RG running in QCD up to LL accuracy as given

in ref. [78].

3.4 Numerical scan

In order to investigate the impact of different low-energy constraints we perform a numerical

scan over Yukawa matrices and gear masses. We start by inverting the relations between

diagonal quark mass matrices and Yukawa couplings YU,D, whereby we factor out the flavor

suppression induced by the clockwork zero-mode overlaps,

YU = F−1
Q L†u diag(mu)Ru F

−1
u , YD = F−1

Q L†d diag(md)Rd F
−1
d . (3.28)

For the overlaps we take

FQ = diag(λ3, λ2, 1), Fu = diag(λ4, λ, 1), Fd = diag(λ4, λ3, λ2), (3.29)

where in the scan the exact relations are used. The numerical scan is set-up in such a way

that all the generated YU,D matrices give the central values of the measured CKM matrix

elements and the light quark masses.

Provided the entries of YU and YD are anarchical, the flavor hierarchies in Y SM
U and

Y SM
D manifest itself in the structure of the rotation matrices,

Lu ≈ Ld ≈ VCKM ≈

 1 λ λ3

λ 1 λ2

λ3 λ2 1

 , (3.30a)
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Figure 13. Distribution of the lower-mass bounds (in TeV) for a million pairs of randomly gener-

ated anarchic Yukawa matrices, YU,D, such that the SM quark masses and CKM matrix elements

are at their experimental values. The lower bounds on the Mu,d,Q masses follow from low-energy

observables assuming that only one type of gear is active at a time.

mu mc mt md ms mb |Vus| |Vub| |Vcb| γ

0.0010 0.47 135 0.0021 0.043 2.3 0.22508 3.73 · 10−3 4.17 · 10−2 72.1o

Table 3. Inputs to the numerical scan, with masses given in GeV. The MS masses from ref. [57]

are evolved up to µ = 2 TeV using 3 loop QCD RGE. The CKM entries and the angle γ are taken

from measurements of tree-level processes as averaged by the PDG.

Ru ≈

 1 λ3 λ4

λ3 1 λ

λ4 λ 1

 , Rd ≈

 1 λ λ2

λ 1 λ

λ2 λ 1

 . (3.30b)

In the scan we randomly generate the three unitary matrices Ru, Rd and Ld, while

preserving their parametric structure, eq. (3.30). The Lu matrix is then obtained from

Lu = VCKM Ld. Each of the three matrices, Ru,d and Ld, is parametrized by three angles

and six complex phases (see e.g. ref. [112]). The scans are over flat priors in angles and weak

phases. The angles are restricted to be in the region [π/10, π/2] · λn with the appropriate

power of n, while the phases are left unconstrained.

The values of the CKM matrix elements and the quark masses used in the scan are

given in table 3. The MS quark masses were RG evolved to the typical gear mass scale,

which we take to be µ = 2 TeV. We ensure the unitarity of CKM matrix through the

use of Wolfenstein parametrization including up to O(λ5) corrections. The four required

experimental inputs are taken exclusively from tree-level processes. The resulting CKM

matrix elements are polluted by the gear contributions but not at a level that is detectable

at the current precision of the CKM-unitarity tests, as discussed in section 3.3.1.

To the generated Yukawa matrices we apply all the low-energy constrains described

in section 3.3, giving the lower bound on the masses of the gears. For simplicity, we take
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Figure 14. Distribution of the combined lower bounds on the masses of the lightest gears of up

and down type, Md, Mu, due to low-energy observables for a million pairs of anarchic Yukawa

matrices, holding MQ fixed to 1.5 TeV.

these to be generation independent and neglect O(1/q) and O(v2/M2) terms, so that,

Mu = Mk
u(i) , Md = Mk

d(i) , MQ = Mk
Q(i) . (3.31)

Since the neutral-mixing amplitudes receive several different contributions, as summa-

rized in table 2, we perform the scan in two steps. We start with an exploratory scan in

which we assume that only one of the gear species is active at a time, either Q-, u- or d- type

gears, and then decouple the other two. We generate a million pairs of anarchic Yukawa

matrices, YU,D. For each such pair we find the most stringent bound on the masses Mu, Md

and MQ by demanding that the observables are within the 1σ experimental band.7 The

results are plotted in figure 13. The strongest bound is on the mass of d-type gears, Md,

and is due to the experimental bound on NP corrections in Z → bLb̄L decay. The strongest

bounds on Mu are either due to Bs-B̄s, Bd-B̄d mixing observables or due to εK , depending

on the actual values of the Yukawa couplings, while the constraint on the deviations of the

Z couplings typically still allow gear masses below 1 TeV. Finally, the least constrained are

the Q-type gears, with lower bounds on the masses never stronger than ∼ 1.5 TeV, given

by εK .

The exploratory scan neglects the potentially important Higgs-mediated contributions

to K-K̄ and to D-D̄ oscillations that involve two types of gears, d- and q-type or u-

and q-type, respectively. These contributions are parametrically the dominant ones for

the two mixing amplitudes. In order to perform a more realistic study we start by fixing

MQ = 1.5 TeV, which is in the range of direct searches for vector-like quarks at ATLAS and

7To be more precise, we center the SM prediction on the experimental central value and determine the

bound on the given mass by saturating the 1σ range by the clockwork contribution.
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CMS. We repeat the scan including the Higgs-mediated contributions and obtain bounds

on Mu and Md for each pair of randomly generated YU,D matrices, demanding again a

1σ consistency with the data. Given the additive nature of these contributions to the

observables, our procedure guarantees that our results will be, at worse, within the 2σ

range of the measured values. The resulting distribution of the lower bounds on Md, Mu

are shown in figure 14, which shows that most of the viable points is consistent with uR-

and dR-gear masses below 5 TeV.

Among the viable points we choose two representative examples on which we perform

the collider study in the next section. In both benchmark models we take

YU =

 0.275− 0.215 i 0.167 + 0.179 i 0.282− 0.076 i

0.081− 0.154 i 0.287− 0.133 i −0.105− 0.057 i

−0.016− 0.123 i −0.417− 0.333 i 0.046 + 0.765 i

 ,

YD =

−0.094− 0.010 i 0.193− 0.051 i 0.140− 0.125 i

0.426 + 0.288 i 0.271 + 0.247 i 0.094− 0.141 i

0.118− 0.004 i 0.035− 0.073 i 0.258− 0.040 i

 . (3.32)

For the above YU and YD Yukawa matrices we obtain βλ/(4π)2 = −0.0692, that leads

to ΛHefl ≡ ΛDecay = 41.6 ×Mgear. Setting MQ = 1.5 TeV, the bounds from low-energy

observables require

Mu & 1.21 TeV, Md & 1.38 TeV. (3.33)

The values of Nψ(i) are those leading to the overlaps in eq. (3.29) for q = 1/λ, i.e.,

NQ(1) = 3, NQ(2) = 2, NQ(3) = 0,

Nu(1) = 4, Nu(2) = 1, Nu(3) = 0,

Nd(1) = 4, Nd(2) = 3, Nd(3) = 2.

(3.34)

The two benchmark models used in the collider study are defined as follows:

Benchmark 1: we take

mQ ≡ mQ(1) = mQ(2) = 400 GeV,

mu ≡ mu(1) = mu(2) = 367 GeV, (3.35)

md ≡ md(1) = md(2) = md(3) � mQ,mu,

which corresponds, e.g., to M
(1)
Q,1 = 1.50 TeV and M

(1)
u,1 = 1.33 TeV and decoupled

d-type gears.

Benchmark 2: in this case we choose

mQ ≡ mQ(1) = mQ(2) = 400 GeV,

mu ≡ mu(1) = mu(2) = 367 GeV, (3.36)

md ≡ md(1) = md(2) = md(3) = 418 GeV,

which corresponds. e.g., to M
(1)
Q,1 = 1.50 TeV, M

(1)
u,1 = 1.33 TeV andM

(1)
d,1 = 1.52 TeV.
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Note that we have chosen our scalings in eq. (2.27) such that the entries of the proto-

Yukawas are anarchic but of O(λ) yet one of the eigenvalues is O(1). Were we to change the

scalings for some of the singlet-fields, q
−Nu(1)

u(1) = q
−Nd(1)

d(1) = λ5, q
−Nu(2)

u(2) = λ2 and q
−Nd(3)

d(3) =

λ3, the SM fermion spectrum would then be reproduced with all Yukawa entries of O(1).

However, this would also increase drastically the loop contributions to the Higgs self-

coupling β-function making ΛDecay effectively of the same order as the masses of the gears.

Even with our choice of scalings, only a subset of models in the scan (about 600 out of

a million) give a contribution to the Higgs quartic such that ΛDecay > 10 Mgear, since YU
must contain a large eigenvalue corresponding to the mass of the top. This turns out to be

an especially accute problem for the “universal N” limit of clockwork flavor model. The

latter requires clockworking the third generation doublet and top-singlet fields, which in

turn implies that each of the two corresponding zero modes will receive at least an overlap

suppression of ∼ 1/2 from the q → 1 limit, cf. eq. (3.20). The corresponding increase of

some of the proto-Yukawa entries needed to reproduce mt unavoidably leads to the problem

with the running of the Higgs quartic. The only way to realize the “universal N” limit

scenario, seems to require identifying the UV-cut off of the theory with the mass of the

heavier gears in the setup.

4 Collider phenomenology

4.1 Gear spectrum and decay patterns

Gears with TeV scale masses, as allowed by the present low energy constraints, can be

searched for at the LHC and at future high energy colliders. The main production channel

for the gears is the QCD pair production with the corresponding cross sections precisely

calculable [113]. The collider signatures, on the other hand, do depend on the details of the

gear decay patterns. The gears decay predominantly through their coupling to the Higgs

doublet, cf. eq. (3.1), into gears from a different-chirality chain. The lightest gears decay

directly to SM fermions via the emission of W,Z or h as do heavier gears for which these

are the only kinematicaly allowed channels. Given the overlap suppression the decays are

predominantly to t and b. To illustrate these features we represent in figure 15 the spectrum

and decay patterns of the gears for the two benchmarks introduced in the last section.

4.2 Existing collider constraints

The main existing collider constraints on clockwork flavor models are expected to arise from

searches for pair production of vector-like quarks, in final states involving third generation

SM quarks. In particular, we find the searches for down-like gears decaying to the tW

channel, as well as searches for up-like gears decaying to the tH and tZ final states, to be

most sensitive. We tested our benchmarks with CheckMate 2.0.26 [114] and found that

they are consistent with all 13 TeV searches implemented therein.

To perform a more detailed analysis, we recast the recent ATLAS search for vector-

like quarks decaying into tW final states [115] as well as the analogous search employing

the tZ and tH final states [116], both using 35 fb−1 of LHC data at 13 TeV. To this
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Figure 15. Spectrum and decay patterns of gears for benchmarks 1 (left plot) and 2 (right plot).

The collider accessible gears, along with the SM b and t quarks, are drawn in a mass ordered counter-

clockwise spiral, where Q
(i)
L,k = (u

(i)
L,k, d

(i)
L,k) are the mass eigenstates of the vector-like quark SU(2)L

doublet chain, and u
(i)
R,k, d

(i)
R,k for the singlet chains. The distance from the center is logarithmically

proportional to particle’s mass, ∝ log(M/1 GeV), while the symbol’s diameter is proportional to

particle’s width, ∝ log(1 + Γ/1GeV). The main decay channels are denoted by black lines, with

the width of the lines proportional to the respective branching ratios (the decays have in addition

Z,W , or H in the final state, not shown above, and for neutral current transition we sum over the

final states with Z and H).

end we implemented the benchmarks into a Feynrules [117] model and simulated gear

production and decays using aMC@NLO [118]. The resulting cross-sections obtained at LO

in QCD were rescaled to match the full NNLO+NNLL results using K-factors computed

with top++ [119].

While the experimental searches [115, 116] target pair production of a single vector-

like quark state, in the two clockwork benchmarks several of the lightest gears contribute

significantly to the signal cross section. Fortunately, the sensitivities of both searches,

refs. [115, 116], have a plato in the interesting mass range M ∈ [1.2, 1.8] TeV. To obtain

the predicted signal we are thus able to simply sum the individual contributions of the

lowest lying gears, which fall into this mass range, and compare the resulting total signal

cross-section, σ ·Br, with the reported upper bounds. In the case of the combined tZ and

tH search, we only use the so-called 1-lepton channel which (partly due to an apparent

downwards fluctuation in the background) exhibits the best sensitivity overall and targets

specifically the tH channel. Since all gears have comparable branching ratios into tH and

tZ final states, we do not consider the significantly weaker limits on the later mode. The

results for both benchmarks are shown in figure 16.

Since several lightest gears give significant contributions to the total signal cross-

sections, the lightest gears need to have masses that are appreciably above the reported
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Figure 16. The total gear pair production cross-sections in the final states tW + X, tH + X

and tZ + X for benchmarks 1 (left plot) and 2 (right plot). The contributions of individual gears

are shown stacked and ordered top down by their increasing mass (decreasing cross-section). The

currently most stringent upper bounds, obtained by recasting of searches for vector-like quarks in

the tW + X [115] and tH + X (the 1-lepton channel) [116] final states, are denoted with dashed

lines. The corresponding bound on the tZ + X [116] final state is much weaker and is not shown

(it is outside the figure bounds).

mass limits on the individual vector-like quarks with the same quantum numbers and decay

channels. For instance, ref. [116] puts a lower bound on an up-like SU(2)L singlet vector-

like quark mass of 1.2 TeV. Both of the benchmarks almost saturate the corresponding

upper bound for the tH final state cross-section even though the lightest gear, u
(1)
R,1, in

both cases has a mass of 1.33 TeV.

4.3 Reconstructing the gear spectrum at colliders

The dense spectrum of gears and the potentially complex pattern of gear decays poses

a challenge also in the case a signal is discovered. In the conventional vector-like quark

searches the clockwork signal will appear as an excess of events with high transverse energies

or HT , but without a dominant single peak in the invariant mass of any particular final

state, such as tH or tW .

In the following we propose a novel reconstruction strategy targeting pair production of

heavy quarks with a-priori unknown but potentially long decay chains resulting in a single

heavy flavored quark, t or b, plus any number of massive weak or Higgs bosons per decay

chain. Our procedure is based on the so-called hemisphere clustering algorithm, defined in

section 13.4 of ref. [120], and already used by several existing experimental analyses in the

context of searches for production of new particles at the LHC (see e.g. refs. [121, 122]).

All the visible objects, i.e., jets, as well as isolated leptons and photons, are clustered into

exactly two pseudojets, where the clustering is performed by minimizing the Lund distance

measure [123]. The original hemisphere algorithm is seeded by the two objects with the

largest combined invariant mass. Since each gear decay chain results in exactly one heavy
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Figure 17. Invariant mass spectrum of individual pseudojets clustered using the hemisphere algo-

rithm applied to partonic gear pair production and decay at the 13 TeV LHC for model benchmarks

1 (left plot) and 2 (right plot). The original hemisphere clustering results, using the two highest

invariant mass objects as seeds, are shown in light gray. Our modified hemisphere clustering re-

sults, which use two heavy flavored quarks as seeds, are shown in mid-gray. Finally, the modified

hemisphere clustering results, where in addition the masses of the two pseudojets are required to

differ by less than 30%, are shown in dark gray. The spectral lines corresponding to the actual gear

masses are ovelaid in the same colors as in figures 15 and 16 with a subset of gear labels printed on

the top. See main text for details.

flavored quark (t or b) we instead seed our algorithm with t- and b-tagged jets. The idea

is that, at least for the moderately boosted pair produced gears, the two pseudojets will

predominatly capture the decay products of the individual gears. Finally, we select events,

where the invariant masses of the two pseudojets are comparable.

We demonstrate the usefulness of our procedure by simulating gear production and

decay for the two model benchmarks at parton level, using the same inputs as in the

previous subsection. We do not decay tops, b-quarks, W , Z and the Higgs, but rather use

these directly as objects in our clustering procedure. The results are shown in figure 17,

where we plot the invariant mass distributions of individual pseudojets and overlay the

spectral lines of the gears in the two benchmark models.

The original hemisphere clustering results, obtained by using the two highest invariant

mass objects as seeds, are shown in light gray in figure 17. The resulting spectrum does not

exhibit any sharp features, with the bulk of the invariant mass distribution lying well below

the mass of the lightest gear. The results of modified hemisphere clustering, obtained using

two heavy flavored quarks as seeds, but for putting no restrictions on the pseudojet masses,

are shown in mid-gray in figure 17. The invariant mass distribution already exhibits clear

spectral line features. The pseudojets with masses of the top and b-quarks are abundantly

identified, but also those of a few lowest lying gears. Finally, we show in dark gray the

results of modified hemisphere clustering, but keeping only the events for which the masses

of the two pseudojets differ by less than 30%. The low invariant mass peaks corresponding

to the pseudojets containing only a single top or b-quark are rejected by this requirement.

In addition, the gear peaks are even more pronounced after this cut, with little loss in the

number of signal events in the peaks. It would be interesting to see how many of these
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features survives a more realistic analysis using the b-, top-, or mass-drop tagged jets, either

narrow or wide, as well as the leptons, as the relevant objects in the clustering procedure.

We defer such a more detailed study, which would also need to include backgrounds and

detector effects, to a future publication.

4.4 Indirect probes at colliders

The large multiplicity of colored particles expected in these scenarios motivates also their

indirect probes at the LHC. In particular, Higgs physics provide two well known examples

of loop induced processes exhibiting a large sensitivity to the virtual exchange of new

resonances: gluon fusion and h → γγ. In the case of new fermionic resonances, the

discussion is almost the same for both observables, so we will focus in the following on

gg → h for the sake of simplicity.

Assuming real Yukawa couplings, the leading order partonic gluon-fusion cross section

is given by [124]

σ(gg → H) =
α2
sm

2
h

576π

∣∣∣∣∣∣
∑
f

yf
mf

A1/2(τf )

∣∣∣∣∣∣
2

δ(ŝ−m2
H) (4.1)

where τf = 4(mf )2/m2
h,

A 1
2
(τ) =

3τ

2
[1 + (1− τ) f(τ)] , (4.2)

and

f(τ) =


(

arcsin
1√
τ

)2

; for τ ≥ 1 ,

−1

4

(
ln

(
1 +
√

1− τ
1−
√

1− τ

)
− iπ

)2

; for τ < 1 .

(4.3)

In the above equations, mf and yf are defined in the physical mass basis after EWSB, i.e.

L ⊃ −∑f mf ψ̄fψf −
∑

f yf ψ̄fψfh = −∑f mf (1 + yf/mfh)ψ̄fψf .

Generically, the contribution of the heavy gears to the above cross-section is twofold.

First of all, they modify the top contribution to the process, which is the leading one in

the SM, by changing the top Yukawa coupling via dimension 6 operators, see eq. (3.8). On

the other hand, they also provide an extra contribution through their virtual exchange in

the loop giving rise to the process. In the limit τf � 1, A1/2(τf )→ 1, which simplifies the

discussion greatly. Indeed, this is a good approximation even for the top quark, leading to

an amplitude [125],

A(gg → h) ∝
∑
f

yf
mf

A1/2(τf ) ≈
∑
f

yf
mf

= Tr
[
Y · M−1

]
= Tr

[
∂M
∂v
· M−1

]

= (detM)−1∂ det(M)

∂v
=

∂

∂v
log(detM) =

1

2

∂

∂v
log(det(M†M)), (4.4)

whereM(v) is just the mass matrix containing all the mass terms for the heavy gears and

the top quark. This well-known result is just the manifestation of the Higgs low-energy
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theorem (LET) [124, 126, 127] which tells us that in order to compute gg → hn in zero-

momentum limit, we just need to consider the Higgs as a background field and take the

Higgs-dependent mass of each field as threshold for the running of αs. For the case of

fermionic degrees of freedom, this leads to

Lhngg =
αs

24π
Ga,µνGaµν

∑
f

logm2
f (h) =

αs
24π

Ga,µνGaµν log
[
det
(
M†(h)M(h)

)]
. (4.5)

Expanding in powers of h around v, one gets

Lhngg =
αs

24π
Ga,µνGaµν

(
A1h+

1

2
A2h

2 + . . .

)
, (4.6)

where

An =
∂n

∂vn
log
[
det
(
M†(v)M(v)

)]
. (4.7)

We can see that for the case of A1 we recover the result of eq. (4.4), as expected.

As an example of how this applies to clockwork we consider first the basic scenario of

one clockworked generation of light doublet Q and singlet u quarks, with the Higgs field

coupled to the zeroth site mixing the two chains. We write the masses and q factors for each

chain as qQ,U and mQ,U and for demonstration purposes we assume that each chain has

length N = 3. The masses for the up-type quarks and gears are then written as Ψ̄LMΨR

with

M(v) =



yv 0 0 0 −qUmU 0 0

−qQmQ mQ 0 0 0 0 0

0 −qmQ mQ 0 0 0 0

0 0 −qmQ mQ 0 0 0

0 0 0 0 mU −qUmU 0

0 0 0 0 0 mU −qUmU

0 0 0 0 0 0 mU


(4.8)

and

ΨL = (QL,0, QL,1, . . . , QL,N , UL,1, . . . , UL,N )T

ΨR = (UR,0, QR,1 . . . , QR,N , UR,1, . . . , UR,N )T . (4.9)

Note that the coefficients in eq. (4.7) are invariant under unitary rotations of M so we

can write the mass matrix in any basis we like. Due to the structure of the mass matrix

and its dependence on v the determinant scales quadratically with v, and thus we find

A1 = 2
v . This is indeed the factor that arises due to the presence of chiral quarks with

masses generated solely from the Higgs mechanism, i.e. the zero modes of the clockwork

chains. Therefore the presence of the gears does not generate corrections to the effective

Higgs-gluon vertex at one-loop. Extending this to two or thee generations does not change

the conclusions. Say, for example, we add another generation with a doublet and an up-

type right-handed quark, both of which are clockworked and have a Yukawa mixing via

the Higgs at the zeroth site, the determinant of M†M is ∼ v4 and A1 = 4
v . We obtain

a factor of 2
v for each pair of clockwork chains coupled via a Yukawa coupling to Higgs
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that we integrate out, which is the same as the result when we integrate out two pairs of

chiral quarks which get their mass from the Higgs mechanism. Therefore even with more

than one generation the presence of the gears does not generate corrections to the effective

Higgs-gluon vertex. For three generations the same conclusions hold, and since other An
couplings are simply derivatives of A1, these also do not receive contributions from the

presence of gears. The same applies for the fermionic contribution to h → γγ in such a

way that both loop induced processes reduce to the SM expectation in the model at hand.

A similar cancellation to the one present here, between the modification of the top

Yukawa coupling — induced from the dimension 6 operators generated after integrating

out the heavy gears — and the direct contribution of the gears, was observed in the context

of composite Higgs models, see e.g. refs. [125, 128–130], since quite generically

det(M†(v)M(v)) = F (v)× ξ(. . .) (4.10)

where F (v) is some generic function carrying all the dependance of the determinant on the

Higgs vev, and the dots inside ξ refer to other parameters of the particular model. One

possible way of breaking this degeneracy that was put forward consisted in looking rather

to gg → hg [131–134], since for large pT , the large virtuality of the additional gluon will

allow to probe much shorter distances than the original process. One could do something

similar in this case, to probe for the presence of the heavy gears indirectly. In particular,

the gg → hg cross-section is expected to be resonantly enhanced at gear pair production

thresholds. Two potentially interesting observables sensitive to this behavior are the Higgs-

jet invariant mass as well as their pT . A detailed study of this is however beyond the scope

of this paper.

5 Conclusions

In this paper we explored the possibility that the clockwork mechanism solves the SM

flavor puzzle. In clockwork models of flavor the mass hierarchies arise from SM chiral

fermions coupling to chains of vector-like fermions. There are several important parameters

that determine the phenomenology of the clockwork models: the lengths of the individual

clockwork chains, Nψ(i), the clockworking factors qψ(i), and the mass scale for the gears,

qψ(i)m. The clockwork models are reminiscent of the two other common ways of generating

the quark mass hierarchies, the FN and the RS models, but retain only the bare minimum

of ingredients needed to generate the flavor hierarchies.

The FN models most easily match onto clockwork models in the limit where the FN

flavons are much heavier than the gears, taking qψ(i) to be the same for all fermions, while

Nψ(i) are generation and flavor dependent. Then the most natural realization of clockwork

is when the chiral fermions in the FN models do not carry the horizontal charge, which is

not the usual choice that has been made in the FN models. The traditional FN models,

where the SM chiral fermions do carry horizontal charges and/or when the FN flavons are

lighter than the gears, also match onto clockwork at the low energies. The two realizations

differ above the flavon mass scale and in the fact that the clockworked FN has an anomaly-

free horizontal symmetry.

– 36 –



J
H
E
P
1
0
(
2
0
1
8
)
0
9
9

The connection between the RS models of flavor and a particular limit of clockwork

— flavor universal Nψ(i) and generation and flavor dependent qψ(i) — is just approximate.

Typically the gears will form a band roughly m above the zero mode, while RS has well

separated fermionic KK modes. The clockwork also does not contain excitations of the

gauge bosons. Furthermore, while the solutions to flavor puzzle and hierarchy problem are

intertwined in RS, they are orthogonal in clockwork. All the SM fields and the clockwork

chains that solve the flavor puzzle would have to have gravity clockworked in the same

way. Finally, while the “universal N” limit of clockwork would appear to be a natural

candidate to be UV completed in the framework of the linear dilaton model, this is not the

case — the continuous 5D limit leads to phenomenologically unacceptable exponentially

small gauge couplings.

In this paper we also studied in detail the phenomenological consequences of the clock-

work flavor models. The lengths of clockwork chains are constrained by the impact they

have on the running of QCD and the Higgs quartic, which both have important impli-

cations for the viability of the models. We settled on a representative clockwork model

with 19 gears (3.34). Integrating out all the new heavy particles — the gears — we first

matched onto the SM effective field theory, which we used to analyze the constraints from

low-energy experiments: from weak boson decays, rare meson decays and neutral meson

mixings. Similarly to what happens in the RS models [51, 52], the clockwork models of fla-

vor are endowed with a powerful flavor protection against flavor-changing neutral currents

(FCNCs). The FCNCs with light quarks on the external legs are suppressed by the small

overlaps of the zero-modes, which is the same suppression that gives rise to hierarchies

between the SM quark masses. This CW-GIM mechanism, along with the requirements

arising from the stability of the Higgs potential, suffices to alleviate the flavor constraints

to the level that TeV scale gear masses are compatible with experimental bounds.

We performed a complete numerical study of the low-energy constraints, using which

we singled out two benchmark models. Their phenomenology at the LHC was then studied

in detail using Monte-Carlo simulations, recasting existing searches for vector-like quarks at

the LHC. Due to the rich spectrum present in these setups, with several gears contributing

simultaneously to the tH, tZ and tW final states, the bounds on the gear masses are

somewhat stronger than on the individual vector-like quarks, in the 1.2 TeV and 1.4 TeV

regime for up-quark and down-type quark gears, respectively. Using a modified hemisphere

clustering algorithm, that we propose, there are good prospects of discrimination between

contributions from different gears, in case an excess is observed in one of these searches.

Finding such a multiple peak structure would be a smoking gun for flavor clockwork.

The analysis we performed is not the most general one. We assumed that each of

the SM chiral fermions is clockworked separately. In principle, the clockworking itself

could mix different generations, by either having the clockworking factors q or the gear

mass terms m promoted to 3 × 3 matrices. The connection with FN suggests a way to

prevent this from happening and keeping the gears from different generations separate —

introducing a horizontal symmetry for each generation (U(1)H , φ) → ((U(1)H)3, φi). On

the other hand it would be interesting to explore the implications of flavor non-diagonal

clockworking for the natural generation of hierarchy in the SM Yukawa couplings and the

CW-GIM suppression of new physics effects.
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A A continuum description?

In this appendix we give the details of the continuum limit of the clockwork and discuss the

difficulties in using it to generate hierarchies among Yukawa couplings for the SM fermions.

The difficulty arises because having fermions living in the 5D bulk necessarily means that

the SM gauge bosons must also live in the bulk, which in turn means that the 4D gauge

coupling is exponentially suppressed with respect to the 5D gauge coupling. Generating a

realistic 4D gauge coupling from a perturbative 5D theory is therefore not possible. The

suppression occurs because having a bulk field in the continuum limit is equivalent to

having that field clockworked in the 4D model.

We now give the derivations that lead us to the above conclusion. We start with the

ansatz for the metric [15],

ds2 = e2σ
(
ηµνdx

µdxν − e−6`σdy2
)
, (A.1)

where σ(y) = 2k|y|/3. This metric can interpolate between the clockwork case, ` = 0; the

RS models of flavor, ` = 1/3, k = 3/(2R) = 3k̂/2, where R is the compactification radius;

and the flat space, k = 0. Note that we are using the metric ηµν = diag(+,−,−,−), which

is opposite to the one in ref. [15]. The coordinate in the 5th dimension is chosen such that

y = 0 corresponds to the IR brane, and y = πR to the UV brane. In order to solve the

hierarchy problem, one has [15]

kR ' 10, or, equivalently, σ′R ' 7. (A.2)

A.1 Fermions

We assume that the clockwork stabilization mechanism is provided by the dilaton, S [15].

The action for a fermion Ψ in a warped space is given in the Jordan frame by (see, e.g.,

refs. [2, 20, 22, 135])

SJ =

∫
d4x

∫ πR

−πR
dy
√
GeS

{
i

2
EAa

[
Ψ̄γa(∂A + ωA)Ψ− Ψ̄(

←
∂A −ωA)γaΨ

]
−mΨΨ̄Ψ

}
, (A.3)
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where G = det(GAB) is the determinant of the metric, and the two derivatives are written

in such a way that they act only on fermions. We use AB for indices in the curved space,

a, b for the indices in the tangent space, EAa is the inverse vielbein, ωA the spin connection,

while the gamma matrices are γa = (γµ, iγ5). The mass term mΨ is understood to be

odd under the orbifolding Z2, y → −y. The fermions can be either even or odd under the

orbifolding, Ψ±(−y) = ±Ψ±(y). The Ψ+(−) will lead to right-handed (left-handed) zero

modes.

Going to the Einstein frame is achieved through the metric transformation, gMN →
exp(−2S/3)gMN , giving

SE =

∫
d4x

∫ πR

−πR
dy
√
Ge−S/3

{
i

2
EAa

[
Ψ̄γa(∂A+ ωA)Ψ− Ψ̄(

←
∂A−ωA)γaΨ

]
−mΨe

−S/3Ψ̄Ψ

}
.

(A.4)

The metric in the Einstein frame is given by eq. (A.1). The resulting spin con-

nection is ωA = 1
2e

3`σσ′(iγµγ5, 0), while the inverse vielbein is given by EAa =

diag(e−σ, e−σ, e−σ, e−σ, e(3`−1)σ). We are not interested in the dilaton dynamics, so that

we can set it to its background profile, S = 3σ = 2k|y| [15]. After integrating by parts

we get

S =

∫
d4x

∫
dy e3(1−`)σΨ̄

{
i�∂ − γ5e

3`σ

(
∂y +

3

2
σ′
)
−mΨ

}
Ψ, (A.5)

where, in particular, the spin connection has cancelled out. Defining ΨL,R = 1
2(1 ∓ γ5)Ψ

and using

ΨL(x, y) =
e−

3
2
σ

√
2πR

∑
n

f
(n)
L (y)ψ

(n)
L (x), ΨR(x, y) =

e−
3
2
σ

√
2πR

∑
n

f
(n)
R (y)ψ

(n)
R (x), (A.6)

together with the four dimensional equations of motion

i�∂ψ
(n)
L (x)−mnψ

(n)
R (x) = 0, i�∂ψ

(n)
R (x)−mnψ

(n)
L (x) = 0, (A.7)

we get (
±e3`σ∂y +mΨ

)
f

(n)
R,L = mnf

(n)
L,R. (A.8)

Iterating the two equations we obtain[
−e3`σ∂ye

3`σ∂y ∓ e3`σm′Ψ +m2
Ψ −m2

n

]
f

(n)
R,L = 0. (A.9)

The Kaluza-Klein modes f
(n)
L,R(y) obey separate orthonormal conditions

1

πR

∫ πR

0
dye−3`σf

(n)
L,R(y)f

(m)
L,R(y) = δnm . (A.10)

They also need to satisfy proper boundary conditions at y = 0, πR. For odd solutions the

Dirichlet boundary conditions apply,

f
(n)
R,L(y)

∣∣∣
y=0,πR

= 0 . (A.11)
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Even solutions, including zero modes, are subject to a different boundary condition,(
∂y ±mΨe

−3`σ
)
f

(n)
R,L(y)

∣∣∣
y=0,πR

= 0 . (A.12)

For clockwork, ` = 0, the zero mode profile is given by

f
(0)
R,L(y) = N0 exp

(
− cR,L y

πR

)
, (A.13)

where cR,L = ±mΨπR. For c > 0 the zero mode is localized near the IR brane, y = 0,

while for c < 0 the zero mode is localized near the UV brane, y = πR. The overlaps with

the IR brane are given by the normalization factors,

f
(0)
R,L(0) = N0 =

√
2c

(1− e−2c)1/2
'
√

2c, c > 0, (A.14)

f
(0)
R,L(0) = N0 =

√
2c

(1− e−2c)1/2
'
√

2|c| e−|c|, c < 0, (A.15)

where we suppressed the L,R indices on the coefficients cR,L, as well as generation indices,

in order to shorten the expressions. The last approximate equalities on the right hand side

are valid for |c| & 1.

For a Higgs boson localized on the IR brane (at y = 0), the effective 4D Yukawas of

SM fermions are proportional to f
(0)
R (0)f

(0)
L (0), giving the hierarchy among the SM quark

masses. The suppression of the light quarks comes from the exponential suppression of the

zero mode overlaps with the IR brane, very similar to the RS. There are also a number of

difference with respect to the RS. The inclusion of the dilaton was essential in clockwork

in order to obtain the necessary zero mode profiles. In particular, the y dependence due

to the dilaton multiplying the mass term, mΨΨ̄Ψ, in eq. (A.4), exactly matches the y

dependence in the four-dimensional part of the kinetic term. This is the reason that the

mΨΨ̄Ψ and Ψ̄i/∂Ψ in eq. (A.5) come with the same prefactor. For ` = 0 the mass term

and the derivative then have no additional y dependence in eq. (A.8) (for constant mΨ),

leading to exponential zero mode profiles. Without the dilaton the zero mode profiles

would be given by double exponentials, f
(0)
R,L(y) ∝ exp

[
∓3mΨe

(1−3`)σ/2k(1− 3`)
]
, giving,

for mΨ/k ∼ O(1), phenomenologically unacceptable quark masses. The RS case, ` = 1/3,

represents a special choice which does lead to simple exponential profiles (and vice versa,

introducing the 5D dilation in the RS would lead to double exponential zero mode profiles).

We discuss next the KK excitations. Specializing to the case of clockwork, ` = 0,

eq. (A.9) reads

f
(n)′′
R,L (y) + (m2

n −m2
Ψ)f

(n)
R,L(y) = 0. (A.16)

The general solutions to the above equations, assuming mn > |mΨ|, are given by,8

fR,L(y) = An cos

(√
m2
n −m2

Ψy

)
+Bn sin

(√
m2
n −m2

Ψy

)
. (A.17)

8For mn ≤ |mΨ| there is only one possible solution corresponding to the zero mode, mn = 0.
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The boundary conditions (A.11), (A.12), then give for odd and even KK modes

fodd
R,L(y) =

√
2 sin

(
ny

R

)
, (A.18)

f even
R,L (y) =

√
2
mΨ

mn

[
sin

(
ny

R

)
∓ n

mΨR
cos

(
ny

R

)]
, (A.19)

with n ∈ N = {1, 2, . . .}. The mass of the n-th KK mode is given by

m2
n = m2

Ψ +
n2

R2
. (A.20)

A.2 Gauge bosons

For simplicity we consider the example of an abelian U(1) gauge group. The action in the

Jordan frame is

SJ =

∫
d4x

∫ πR

−πR
dy
√
GeS

(
−1

4
FMNFPQG

MPGNQ
)

+ SJ,0 + SJ,1, (A.21)

where,

SJ,k = 2

∫
d4x

∫ πR

−πR
dy
√
|Gk|eS

[
− θk

4
RFµνFρσG

µρGνσ
]
δ(y − yk), k = 0, 1, (A.22)

with y0 = 0, y1 = πR, and G0,1 = detGµν |y=0,πR the determinants of the two induced 4D

metrics required to assure 5D general covariance. The dimensionless parameters θ0R and

θ1R control the size of the localized gauge kinetic terms, that we include for generality.

In the Einstein frame the action is given by

SE =

∫
d4x

∫ πR

−πR
dy
√
Ge

2
3
S

(
−1

4
FMNFPQG

MPGNQ
)

+ SE,0 + SE,1, (A.23)

SE,k = 2

∫
d4x

∫ πR

−πR
dy
√
|Gk|eS

[
− θk

4
RFµνFρσG

µρGνσ
]
δ(y − yk), (A.24)

which, after integrating by parts and setting S to its background value, S = 3σ, leads to

SE = − 1

4

∫
d4x

∫
dy e3(1−`)σ

(
FµνF

µν − 2e6`σ∂µA5∂
µA5

)
+
∑
k

SE,k (A.25)

−
∫
d4x

∫
dy e3(1−`)σ

[
∂µA

µe−3(1−`)σ∂y
(
e3(1+`)σA5

)
+

1

2
Aµe

−3(1−`)σ∂y
(
e3(1+`)σ∂yA

µ
)]

SE,k = 2

∫
d4x

∫
dy e3σ

[
− θk

4
RFµνF

µν

]
δ(y − yk), (A.26)

where lowering and raising of the 4D indices are, here and below, performed using

Minkowski metric, so that, e.g., Aµ = Aνη
µν , ∂µ = ∂µη

µν , . . .. To cancel the mixing

between Aµ and the scalar A5 we add the gauge-fixing term

SGF =− 1

2ξ

∫
d4x

∫ πR

−πR
dy e3(1−`)σ

[
∂µA

µ − ξe−3(1−`)σ∂y(e
3(1+`)σA5)

]2
(A.27)
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which, after some algebra, leads to the following bulk equation of motion[(
∂2
(

1 + 2θ0Re
3`σδ(y) + 2θ1Re

3`σδ(y − πR)
)
− e−3(1−`)σ∂ye

3(1+`)σ∂y

)
ηµν

−∂µ∂ν
(

1 + 2θ0Re
3`σδ(y) + 2θ1Re

3`σδ(y − πR)− 1

ξ

)]
Aν = 0. (A.28)

Expanding in KK modes for the clockwork case ` = 0

Aµ(x, y) =
1√
2πR

e−
3
2
σ
∞∑
k=0

f
(n)
A (y)A(n)

µ (x), (A.29)

and using the 4D equations of motion in the unitary gauge ξ →∞[(
∂2 +m2

n

)
ηµν − ∂µ∂ν

]
A(n)
ν (x) = 0, (A.30)

gives the following differential equations for the 5D profiles(
∂2
y +m2

n −
9

2
σ′2
)
f

(n)
A (y) = 0. (A.31)

as well as boundary conditions

f
(n)
A (y)

∣∣∣
y=yk

= 0 (odd). (A.32)[
(−1)k+1∂y − θkRm2

n

]
e−3σ/2f

(n)
A (y)

∣∣∣
y=yk

= 0 (even). (A.33)

In addition, the vector KK modes satisfy orthonormality conditions

1

2πR

∫ πR

−πR
dy (1 + 2θ0Rδ(y − y0) + 2θ1Rδ(y − y1)) f

(n)
A (y)f

(m)
A (y) = δnm. (A.34)

The solution to eqs. (A.31) and (A.32) always contains a zero mode, m0 = 0, with

f
(0)
A (y) = e

3
2
yσ′
√

3πσ′R
[
e3σ′πR(1 + 3θ1σ

′R)− 1 + 3θ0σ
′R
]−1/2

. (A.35)

The higher KK modes are in general given by

fn(y) = An cos
(
y
√
m2
n − 9σ′2/4

)
+Bn sin

(
y
√
m2
n − 9σ′2/4

)
. (A.36)

This leads, in agreement with the results of ref. [28], to (for simplicity we set θ0 = 0),

fn(y) =
√

2 sin

(
ny

R

)
(odd), (A.37)

fn(y) = Bn

[
λn cos (λny) +

3

2
σ′ sin (λny)

]
(even), (A.38)

where the masses of the clockwork gears are given by

m2
n = λ2

n + 9
σ′2

4
=
n2

R2
(1 + ∆n)2 + 9

σ′2

4
, n = 1, 2, . . . , (A.39)
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with

∆n ≈
1/π + 1/θ1 + 3/2σ′R−

√
(1/π + 1/θ1 + 3/2σ′R)2 + 2n2

n2
. (A.40)

and

Bn =

√
2R√

n2
(

1 + 2θ1
π

)
+ 9

4σ
′2R2

+O(∆n). (A.41)

The coupling of any fermion zero-mode to a massless gauge boson, such as the photon,

will be given by

g4 =
g5√
R

√
3/2σ′R

[
e3σ′πR(1 + 3θ1σ

′R)− 1 + 3θ0σ
′R
]−1/2

, (A.42)

which leads to

g4 ≈
g5

√
3/2σ′R√

R(1 + 3θ1πσ′R)
e−3/2σ′πR, (A.43)

unless there is a truly enormous tuning, 1 + 3θ1σ
′R = O(e−3σ′πR) ≈ 10−29. Since the

dimensionless quantity g5/
√
R can not be taken to be arbitrary large, it becomes impossible

to have a O(1) 4D gauge coupling and solve the hierarchy problem at the same time.

Another possibility would be to make the warp factor irrelevant by choosing values of

σ′R ∼ O(1) or slightly smaller. In this case one could still have naturally k � M5 ≈
MPlanck, since k = 0 is technically natural by a dilaton shift symmetry. However, this limit

would just correspond to the well known flat extra-dimensional case.

B Matching onto SMEFT

In this appendix we perform the matching at µ ' M from the clockwork flavor model

to SMEFT, integrating out the gears. The tree-level exchanges of the gears, shown in

figure 10, give the following contributions to the SMEFT operators in table 1,

[w
(1)
HQ]ij =

fQ(i)fQ(j)

4

[
YUM

−2
u Y †U − YDM−2

d Y †D

]
ij
, (B.1a)

[w
(3)
HQ]ij = −

fQ(i)fQ(j)

4

[
YUM

−2
u Y †U + YDM

−2
d Y †D

]
ij
, (B.1b)

[wHud]ij = fu(i)fd(j)

[
Y †UM

−2
Q YD

]
ij
, (B.1c)

[wHu]ij = −
fu(i)fu(j)

2

[
Y †UM

−2
Q YU

]
ij
, (B.1d)

[wHd]ij =
fd(i)fd(j)

2

[
Y †DM

−2
Q YD

]
ij
, (B.1e)

[wuH ]ij =
fQ(i)

2

∑
r

[
YUM

−2
u Y †U

]
ir
fQ(r)

[
Y SM
u

]
rj

+
fu(j)

2

∑
r

[
Y SM
u

]
ir
fu(r)

[
Y †UM

−2
Q YU

]
rj

− fQ(i)fu(j)

[
YUM

−1
u Y †UM

−1
Q YU

]
ij
, (B.1f)
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[wdH ]ij =
fQ(i)

2

∑
r

[
YDM

−2
d Y †D

]
ir
fQ(r)

[
Y SM
d

]
rj

+
fd(j)

2

∑
r

[
Y SM
d

]
ir
fd(r)

[
Y †DM

−2
Q YD

]
rj

− fQ(i)fd(j)

[
YDM

−1
d Y †DM

−1
Q YD

]
ij
. (B.1g)

The loop contributions in figure 11 give the following contributions to the SMEFT

operators,

[w
(1,3)
QQ ]ijkl = −

fQ(i)fQ(j)fQ(k)fQ(l)

16(4π)2

∑
rr′

(
[YU ]ir[Y

†
U ]rj [YU ]kr′ [Y

†
U ]r′lf(Mu(r),Mu(r′))

+ [YD]ir[Y
†
D]rj [YD]kr′ [Y

†
D]r′lf(Md(r),Md(r′))

∓ [YU ]ir[Y
†
U ]rj [YD]kr′ [Y

†
D]r′lf(Mu(r),Md(r′))

)
∓ [YU ]kr[Y

†
U ]rl[YD]ir′ [Y

†
D]r′jf(Mu(r),Md(r′))

)
,

(B.2a)

[wuu]ijkl = −
fu(i)fu(j)fu(k)fu(l)

4(4π)2

∑
rr′

[Y †U ]ir[YU ]rj [Y
†
U ]kr′ [YU ]r′lf(MQ(r),MQ(r′)), (B.2b)

[wdd]ijkl = −
fd(i)fd(j)fd(k)fd(l)

4(4π)2

∑
rr′

[Y †D]ir[YD]rj [Y
†
D]kr′ [YD]r′lf(MQ(r),MQ(r′)), (B.2c)

[wQu]ijkl =
fQ(i)fQ(j)fu(k)fu(l)

4(4π)2

∑
rr′

(
[YU ]ir[Y

†
U ]rj [Y

†
U ]kr′ [YU ]r′lf(Mu(r),MQ(r′))

− [YD]ir[Y
†
D]rj [Y

†
U ]kr′ [YU ]r′lf(Md(r),MQ(r′))

)
,

(B.2d)

[wQd]ijkl =
fQ(i)fQ(j)fd(k)fd(l)

4(4π)2

∑
rr′

(
[YD]ir[Y

†
D]rj [Y

†
D]kr′ [YD]r′lf(Md(r),MQ(r′))

− [YU ]ir[Y
†
U ]rj [Y

†
D]kr′ [YD]r′lf(Mu(r),MQ(r′))

)
,

(B.2e)

[w
(1)
ud ]ijkl =−

fu(i)fu(j)fd(k)fd(l)

4(4π)2

(
4

Nc
[Y †U ]ir[YD]rl[Y

†
D]kr′ [YU ]r′j

− 2[Y †U ]ir[YU ]rj [Y
†
D]kr′ [YD]r′l

)
f(MQ(r),MQ(r′))

(B.2f)

[w
(8)
ud ]ijkl =−

2fu(i)fu(j)fd(k)fd(l)

(4π)2
[Y †U ]ir[YD]rl[Y

†
D]kr′ [YU ]r′jf(MQ(r),MQ(r′)) (B.2g)

where

f(ma,mb) =
log
(
m2
a

m2
b

)
m2
a −m2

b

, (B.3)

is a loop function with f(m,m) = 1/m2.

The finite parts in the matching between SMEFT and LEEFT operators that con-

tribute to meson oscillations with did̄j → dj d̄i transitions are, at µ = mW [74],

[∆CVLL]ij =
1

16π2
y2
t λ

(t)
ij

{[
Ldw

(1)
HQL

†
d

]
ij
H1(xt,mW )−

[
Ldw

(3)
HQL

†
d

]
ij
H2(xt,mW )

+
2S0(xt)

xt

∑
m

(
λ

(t)
im

[
Ldw

(3)
HQL

†
d

]
mj

+
[
Ldw

(3)†
HQL

†
d

]
im
λ

(t)
mj

)}
,

(B.4a)

[∆CLR,1]ij =
1

16π2
y2
t λ

(t)
ij

[
RdwHdR

†
d

]
ij
H1(xt,mW ), (B.4b)
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where xt = m2
t /m

2
W , S0(x) is the conventional Inami-Lim loop function [136] and H1,2(x, µ)

are the remaining loop functions [74]

H1(x, µ) = log
µ

mW
− x− 7

4(x− 1)
− x2 − 2x+ 4

2(x− 1)2
log x, (B.5a)

H2(x, µ) = log
µ

mW
+

7x− 25

4(x− 1)
− x2 − 14x+ 4

2(x− 1)2
log x. (B.5b)

The finite contribution to [∆CVLL]ij in the second line of eq. (B.4a) is from the top box

diagram of the SM calculation including the contributions of the gears to the CKM matrix

elements, eq. (3.14).

Our results agree with the tree level calculation in ref. [62] apart from a minus sign in

the contributions from diagram (c) in figure 10. The one loop results agree with the specific

cases of vector-like quarks calculated in ref. [64], i.e., for the box-diagrams in figure 11 for

gears of the QL- and dR-type, and with the contributions calculated in ref. [63] for gears

of the uR-type.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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