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1 Introduction

In the era of neutrino oscillation precision measurements, the standard three-neutrino

oscillation framework is being tested with increasing precision [1–3]. Hence it is important

to consider any new physics that could have significant effects on neutrino oscillations. One

particularly interesting possibility is provided by so-called Non-Standard Interactions (NSI)

of neutrinos, which has raised rather general interest in the literature (see, e.g., refs. [4–

7] for reviews on NSI). By introducing new flavor-changing neutral-current interactions

(ναγ
µνβψγµψ) of neutrinos (να, νβ) with other Standard Model fermions ψ, such NSI cause

via coherent forward scattering flavor transitions in matter, disturbing the determination

of the standard neutrino physics parameters. The effects of NSI in current and future

long-baseline experiments (T2K, NOνA, DUNE, etc.), especially on the determination of

δCP , have been extensively studied [8–14].

From the theoretical point of view, NSI of neutrinos are well motivated. Generally

speaking, neutrinos have long been considered as the portal of new physics, even more so

after they were found to be massive. It is reasonable to speculate that the new physics

related to neutrinos also brings new interactions to neutrinos. A well-known example is

the type II seesaw model [15–17]. In this model, a scalar triplet is introduced to the SM
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and acquires a small vacuum exception value to generate neutrino masses.1 Since the

triplet couples both to electrons and neutrinos, NSI of neutrinos with electrons can be

generated [19]. In addition to the type II seesaw model, other scalar extensions of the SM

can also generate NSI in the same way, including scalar singlet models [20–23] or two-Higgs-

doublet models [24, 25], etc. In all these scalar extensions, the approach of generating NSI

is to integrate out a charged scalar mediator to get scalar four-fermion interactions which

are then converted by a Fierz transformation to vector form (containing γµ). The mediator

must be charged due to the Fierz transformation rules (as we will demonstrate explicitly

later), which is potentially a problem of obtaining sizable NSI because charged Higgses

usually face stronger collider constraints than neutral ones.

In this paper, we propose a different way to generate NSI, namely loop-induced NSI.

The approach is also based on scalar extensions of the SM,2 but without using Fierz trans-

formations. Instead, as the name implies, the loop-induced NSI are generated by loop

diagrams. Although loop contributions are in general expected to be subdominant com-

pared with tree level contributions, in some models this way can produce fairly sizable

NSI which is absent at tree level. The advantage of loop-induced NSI compared to the

usual one obtained by the Fierz transformation and charged Higgses is that the source of

flavor violation can be confined to the neutrino sector with “hidden” scalar interactions.

Hence, large NSI can be obtained without causing problems in other well-measured pro-

cesses. Other scenarios can also give rise to neutrino-quark NSI, which are absent in the

previous models.

The remainder of this paper is organized as follows. In section 2, we first briefly review

how NSI can be generated in scalar models by Fierz transformations, and then introduce

our concept of generating NSI by loop diagrams, with some general results presented while

the detailed calculation is delegated to the appendices. Then we apply the results to

several explicit models in section 3.1 to 3.3. Confronting these models with experimental

constraints, we estimate the order of magnitude of the loop-induced NSI in these models

in section 4. Finally we conclude in section 5.

2 General analysis

In this section, we study the generation of NSI in a general framework which introduces

a new scalar boson φ. It has Yukawa interactions with neutrinos and probably other SM

fermions. Let us consider how the following NSI may be generated,

LNSI =
GF√

2
εψαβψγ

µψναγµPLνβ , (2.1)

Here PL ≡ (1−γ5)/2 and ψ stands for electrons or quarks which can be chiral (e.g. ψ = eL,

uR, dL, · · · ). Throughout the paper, we use α, β, · · · to denote the flavor indices.

1See [18] for a recent analysis on how to achieve this.
2Gauge extensions may also generate NSI of neutrinos, by integrating out a flavor-sensitive Z′, e.g., in

gauged Lµ − Lτ models [26]. One can also imagine scenarios in which Z′ models generate NSI via loops.

Here we focus on the scalar case, since the scalar sector is the least experimentally tested, leaving a larger

parameter space unexplored.
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In practice, NSI are usually expressed in terms of non-chiral neutrons (n), protons (p)

and electrons (e):

LNSI =
GF√

2
ναγµPLνβ

[
eγµ

(
εe,Vαβ + εe,Aαβ γ

5
)
e

+ nγµ
(
εn,Vαβ + εn,Aαβ γ

5
)
n+ pγµ

(
εp,Vαβ + εp,Aαβ γ

5
)
p
]
. (2.2)

The NSI couplings in eq. (2.2) can be connected to the chiral form in (2.1) by3

εe,Vαβ = εeLαβ + εeRαβ , εe,Aαβ = εeRαβ − ε
eL
αβ , (2.3)

εn,Vαβ = (εuLαβ + εuRαβ) + 2(εdLαβ + εdRαβ), εp,Vαβ = 2(εuLαβ + εuRαβ) + (εdLαβ + εdRαβ). (2.4)

Currently the experimental constraints on these NSI parameters, depending on the specific

channels, range from O(10−2) to O(1) — for a recent update, see ref. [7].

To obtain the operator in eq. (2.1), we need two essentials: one is flavor-sensitive

interactions of the new scalar boson and the other is the conversion of the scalar form4 to

vector form. More technically, the NSI operators contain γµ while the new scalar boson

only introduces interactions which do not contain γµ. Here we introduce two approaches to

achieve the conversion, by the Fierz transformation and by loop corrections. We will refer

to the corresponding NSI as Fierz-transformed NSI and loop-induced NSI respectively.

2.1 Fierz-transformed NSI

Applying the Fierz transformations in some scalar extensions of the SM (e.g. the type II

seesaw model) to obtain NSI has been considered in the literature [19, 21, 24, 27]. Generally,

if a heavy scalar boson φ has Yukawa interactions ψ1ψ2φ and ψ3ψ4φ, integrating it out

will lead to the four-fermion effective operator ψ1ψ2ψ3ψ4. The Fierz transformation (see,

e.g., [28]) of this operator gives

ψ1ψ2ψ3ψ4 = − 1

4
ψ1ψ4ψ3ψ2 −

1

4
ψ1γ

5ψ4ψ3γ
5ψ2 −

1

4
ψ1γ

µψ4ψ3γµψ2

+
1

4
ψ1γ

µγ5ψ4ψ3γµγ
5ψ2 −

1

8
ψ1σ

µνψ4ψ3σµνψ2, (2.5)

where the third term on the right-hand-side is a vector form interaction. Recall that only

the vector form interaction leads to NSI effects in terrestrial matter [29]. In the SM and

many extensions, the Yukawa interactions are based on chiral fermions. So it is also useful

to provide the Fierz transformations of chiral fermions:

ψ1PLψ2ψ3PLψ4 = ψ1Rψ2Lψ3Rψ4L = −1

2
ψ1PLψ4ψ3PLψ2 −

1

8
ψ1σ

µνPLψ4ψ3σµνPLψ2,

(2.6)

ψ1PLψ2ψ3PRψ4 = ψ1Rψ2Lψ3Lψ4R = −1

2
ψ1γ

µPRψ4ψ3γµPLψ2, (2.7)

3Axial NSI of nucleons or electrons are not important in neutrino oscillations, we hence ignore this part

in this paper.
4In this paper, we refer to fermion interactions with the Dirac matrices 1, γ5, γµ, γµγ5, and σµν between

the fermion fields as scalar, pseudo-scalar, vector, axial-vector, and tensor forms, respectively. For example,

ψγµψAµ and ψγµψψγµψ are vector form interactions; ψψφ and ψψψψ are scalar form interactions.
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which can be obtained by replacing (ψ1, ψ2, ψ3, ψ4) in eq. (2.5) with (ψ1R, ψ2L, ψ3R, ψ4L)

and (ψ1R, ψ2L, ψ3L, ψ4R). It is noteworthy that eq. (2.6) produces only scalar and tensor

form interactions while eq. (2.7) produces only vector form interactions. Therefore, in a

chiral theory only when the effective operator has a chirality structure as in eq. (2.7), the

vector form NSI can be obtained.

If eq. (2.5) or eq. (2.7) is used to generate NSI, we should identify ψ2 and ψ3 with

neutrinos, and ψ4 and ψ1 with electrons or quarks. Note that ψ1 and ψ4 need to be

identical to generate NSI terms from coherent forward scattering in matter. This is clear

from comparing eqs. (2.5), (2.7) with eq. (2.1). In addition, limits from flavor physics

strongly contrains cases with ψ1 6= ψ4. Hence we can infer that the effective operator before

the Fierz transformation should be ψνLνLψ, where ψ stands for charged fermions. Since

ψνL and νLψ have nonzero electric charges, the new scalar boson must be charged. If ψ is a

quark, then the scalar boson has to be colored. Such leptoquarks are severely constrained.

In conclusion, the Fierz transformation approach requires a charged scalar boson to

generate NSI. If the boson is a singlet under SU(3)c, then neutrino-quark NSI can not

be generated. Note further that since strong limits on additional charged scalars exist,

the particle responsible for the Fierz-transformed NSI can not be light (MeV-scale), which

is often discussed (see e.g. [30, 31]) in the context of matter-induced NSI by coherent

forward scattering.

2.2 Loop-induced NSI

We will demonstrate now that if neutrinos have Yukawa interactions with a new scalar

boson, then NSI can be generated at the loop level.5 Both neutral and charged Higgses

can generate such terms. Here we discuss two possible diagrams for loop-induced NSI,

as shown in figure 1. The first one is based on loop corrections to the neutrino-Z vertex

(left panel) which we will refer to as the triangle diagram. The other is a box diagram,

which consists of pure Yukawa interactions and does not involve any gauge interactions.

The external fermion lines are two neutrinos of different flavor, and two charged fermions,

which can be either electrons or quarks. The internal fermion lines can be charged or

neutral fermions and do not need to be identical, depending on the models. As discussed

above, the two external charged fermions should be identical.

As we have mentioned, the flavor violation is introduced by the scalar-neutrino inter-

actions and needs to be converted to vector form interactions. In the triangle diagram, this

is achieved by the fact that the triangle loop generates an effective flavor-changing vertex

ZµνLαγ
µνLβ . In the box diagram, the effective four-fermion operator also has γµ’s between

the fermion fields because of the internal fermion propagator.

In computing the loop-induced NSI, we need to consider the UV divergences. By

simple power counting, one can see that the triangle diagram contains a logarithmic UV

divergence
∫ Λ

d4k 1
k4
∼ log Λ while the box diagram is not divergent because

∫
d4k 1

k6
is

finite. In a renormalizable model, the UV divergence in any physical process should be

5Note that in the SM loop-induced and flavor-diagonal NSI are present. Their magnitude can be esti-

mated to be of order ε ∼ m2
τ/(16π2m2

W ) ∼ 10−6, hence completely negligible.
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Zµ

ψ = e, u, d

ψ = e, u, d

νβ

να

ψint

ψint

φ

ψ = e, u, d

ψ = e, u, d

νβ

να

ψ′

y∗ψ

yψ

φ

φ

Figure 1. Triangle and box diagrams which generate the NSI in eq. (2.18).
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Figure 2. Numerical values of the functions f(r) and h(r) in eq. (2.8) with r ≡ m2
Z/m

2
φ.

canceled by adding all relevant diagrams and counterterms together. For the triangle

diagram considered here, because at tree level the neutral current interactions are flavor

conserving, there is no corresponding counter term. Therefore in a renormalizable and

complete model, one simply needs to sum over the relevant diagrams to obtain a finite

result. In one of the models considered below, the cancellation of divergences is ensured

by the conservation of the gauge charges.

Triangle diagrams: in appendix A, we compute the triangle diagram and the result is

presented as follows. If the UV divergences cancel out, the effective flavor changing Z − ν
vertex in figure 1 is

Leff = g
(1)
αβZµναγ

µPLνβ , (no sum over α, β),

with g
(1)
αβ =

y∗αyβ
16π2

g

cW

m2
Z

m2
φ

[
f(r)Q

(νL)
Z + h(r)Q

(ψint)
Z

]
. (2.8)

Note that this result is derived under the assumption that the masses of the fermions

involved are all negligibly small, which implies that in the limit mφ → 0, eq. (2.8) does not

give a valid result. The notations in eq. (2.8) are explained as follows:

• ψint is the internal fermion appearing in the triangle loop. The Yukawa vertices are

formulated as

L ⊃ yαψintφνLα + yβψintφνLβ + h.c., (2.9)
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νL eL eR uL uR dL dR e n p

QZ
1
2 −1

2 + s2
W s2

W
1
2 −

2
3s

2
W −2

3s
2
W −1

2 + 1
3s

2
W

1
3s

2
W −1

2 + 2s2
W −1

2
1
2 − 2s2

W

Table 1. Z charges of Standard Model fermions.

which defines the Yukawa couplings yα and yβ . In the triangle diagram, ψint can be

any SM fermion that couples to the Z boson. In the loop calculation, we assume the

fermion masses are all negligibly small compared to the boson masses (both φ and

Z). This is fine as long as only leptons are coupling to the scalar, but one could also

accomodate more exotic models where quarks including the top couple to scalars and

neutrinos.

• g/cW is the gauge coupling attached to the Z boson, and QZ is the corresponding Z

charge of a fermion. Both are defined by the covariant derivative

Dµ = ∂µ − i
g

cW
ZµQZ . (2.10)

For convenience we list the Z charges of the SM fermions in table 1.

• The scalar boson φ in the triangle loop has mass mφ. Depending on models, it

may also have a Z-charge Q
(φ)
Z . In appendix A, we show that if the Z charges are

conserved in the model, then the UV divergences cancel. In eq. (2.9), the Z charge

conservation requires

Q
(φ)
Z = Q

(ψint)
Z −Q(νL)

Z . (2.11)

Any renormalizable model satisfies eq. (2.11), as we demonstrate explicitely in In

section 3.1.

• f(r) and h(r) are two finite functions of the mass ratio

r ≡ m2
Z/m

2
φ. (2.12)

The explicit forms of f(r) and h(r) are rather complicated and can be found in

appendix A. These functions have simple limits for r � 1 and r � 1:

r � 1 : f(r) ≈ 5

4
− log r

2
+
π

2
i, h(r) ≈ −1− log r

r
, (2.13)

r � 1 : f(r) ≈ r

18
, h(r) ≈ r

18
(1− 6 log r + 6iπ). (2.14)

For general values of r, we numerically evaluate them and show the results in figure 2.

Given the effective Zνν vertex in eq. (2.8), the corresponding low-energy four-fermion

interaction is

L.NSI = −GF√
2

8g
(1)
αβ

g
Q

(ψ)
Z cWψγ

µψναγµPLνβ , (2.15)

where GF =
√

2g2/(8m2
Zc

2
W ).
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Box diagrams: the box diagram is always finite. After computing the loop integral (see

appendix B), we obtain the effective Lagrangian generated by the box NSI:

L�
NSI =

1

16π2

y∗αyβ |yψ|2

4m2
φ

ψγµψναγµPLνβ . (2.16)

Here we adopt the same definition of yα and yβ as in eq. (2.8). Similar to the triangle

diagram, the result is valid only if mφ is well above the fermion masses. In addition, yψ
is the Yukawa vertex marked in the box diagram in figure 1. The corresponding Yukawa

interaction is

L ⊃ yψψ′φψ + h.c., (2.17)

where ψ and ψ′ are the external and internal fermion lines (left part of the box diagram).

To summarize, we combine the above loop-induced NSI as

LNSI =
(
ε.αβ + ε�αβ

) GF√
2
ψγµψναγµPLνβ , (ψ = eL, eR, uL, uR, · · · ), (2.18)

with the individual contributions

ε.αβ = −
8g

(1)
αβ

g
Q

(ψ)
Z cW , ε�αβ =

1

16π2

√
2y∗αyβ |yψ|2

4m2
φGF

. (2.19)

Here ε.αβ and ε�αβ denote the contributions of the triangle and box diagrams respectively;

Q
(ψ)
Z is the Z charge of ψ (electrons/quarks) as listed in table 1, g

(1)
αβ is given by eq. (2.8).

Note that the fermions considered here are chiral. The usually considered vector NSI, cf.

eqs. (2.3), (2.4) can be obtained by summing for the triangle diagram their corresponding

QZ charges from table 1. The box diagram needs to be multiplied by 2. We stress here

that since Yukawa couplings can be complex, the various ε can also be complex. This is in

contrast to typical models in which integrating out a gauge boson generates NSI.

3 Application to Models

We will apply the above general results now to explicit models.

3.1 Model A: the minimal charged Higgs model

The first model we consider is a very simple extension of the SM by adding only a scalar

singlet φ with hypercharge Yφ = 1 to the SM. After electroweak symmetry breaking, φ will

eventually obtain one unit of electric charge. For this reason, we will refer to the model as

the minimal charged Higgs model. The model has been studied in, e.g., refs. [20–22] (the

latter two discuss tree-level NSI effects), and has also been considered as a part of larger

SM extensions such as the Zee model [32].

Because the hypercharge is Yφ = 1, the only new Yukawa interaction allowed by

symmetry is Lciσ2Lφ, where L = (νL, eL)T is a SM lepton doublet with hypercharge

YL = −1/2; Lc is the charge conjugate of L so Lc has the same hypercharge as L; iσ2 is

necessary to form an SU(2)L invariant. Note that for any two Dirac spinors ψ1 and ψ2,

– 7 –
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the combination ψc1ψ2 = ψc2ψ1 is symmetric under the interchange of 1↔ 2 (similar to the

well-known fact that a Majorana mass matrix is always symmetric). On the other hand,

the SU(2)L product with iσ2 is anti-symmetric. As a result, Lciσ2Lφ vanishes if the two

lepton doublets are of the same flavor: the Yukawa interactions of φ can be non-vanishing

only when there are at least two different flavors. Adding the new Yukawa interactions to

the SM, the Lagrangian of this model is

L = LSM + |Dµφ|2 −m2
φφφ

∗ − V (φ, H) (3.1)

+

∑
α, β

yαβLcαiσ2Lβφ+ h.c.

 , (3.2)

where the Yukawa matrix yαβ is anti-symmetric. The SM Higgs doublet is denoted as H

and V (φ, H) denotes all quartic terms involving φ and H together or φ only. The scalar

mass m2
φ is assumed to be larger than the electroweak scale to avoid direct constraints from

collider searches. For convenience of later use, we explicitly expand the new Yukawa terms:∑
α, β

yαβLcαiσ2Lβφ = 2yeµ
(
νcePLµ− νcµPLe

)
φ+ 2yµτ

(
νcµPLτ − νcτPLµ

)
φ

+ 2yτe (νcτPLe− νcePLτ)φ+ h.c. (3.3)

The covariant derivative is

Dµφ = ∂µφ− ig′BµYφφ, (3.4)

where Bµ is the U(1)Y gauge boson. After the Weinberg rotation,(
W 3
µ

Bµ

)
=

(
cW sW
−sW cW

)(
Zµ
Aµ

)
, (sW , cW ) ≡ (g′, g)√

g′2 + g2
, (3.5)

we obtain

Dµφ = ∂µφ− i
g

cW
ZµQ

(φ)
Z φ− igsWAµQ(φ)

A φ, (3.6)

with the Z- and electric charges

(Q
(φ)
Z , Q

(φ)
A ) = (−s2

W , 1). (3.7)

Here Q
(φ)
A = 1 implies that φ has the same electric charge as the proton, Q

(φ)
Z is the Z

charge of φ. The Z charges of the SM fermions have already been defined in eq. (2.10) and

listed in table 1. It is important to notice that the Z charges in the Yukawa term (3.3)

are conserved

Q
(φ)
Z +Q

(νL)
Z +Q

(eL)
Z = 0, (3.8)

which is crucial for the UV divergences in the relevant loops to cancel. Eq. (3.8) is not an

accidental result because the model here is renormalizable and UV divergences should not

appear in any physical processes.

Next, we shall discuss the neutrino NSI in this model, using the general results which

have been obtained in section 2.
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Fierz-transformed NSI: we first integrate out φ, which generates the scalar form ef-

fective operator

L ⊃ 1

m2
φ

2yβe

(
νcβPLe

)
2y∗αe (ePRν

c
α) . (3.9)

Because yαβ is anti-symmetric, β and α can only be µ or τ , but not e. So eq. (3.9)

can not generate NSI between νe and e. According to eq. (2.7), with the replacement

(ψ1R, ψ2L, ψ3L, ψ4R)→ (νcβL, eL, eL, ν
c
αL), we obtain

L ⊃
4yβey

∗
αe

m2
φ

[
−1

2
νcβLγ

µνcαLeLγµeL

]
=

4yβey
∗
αe

m2
φ

[
1

2
ναLγ

µνβLeLγµeL

]
, (3.10)

where in the second step we have used the identity (C.10). Eq. (3.10) is the Fierz-

transformed NSI in this model, which is only possible for coupling to electrons. We stress

the known fact that only εµτ , εµµ and εττ can be generated in this model via Fierz transfor-

mation, and that its magnitude is constrained to be rather small [21, 22], typically around

O(10−3). The strongest constraints are from the variation of GF extracted from µ and

τ lifetimes, which are affected because the SM charged current interactions of µ and τ

are directly modified by the charged Higgs introduced in this model — see ref. [21] for

more detailed analyses. We will show next that loop-induced NSI terms can generate all

flavor terms, though later it turns out that those terms are also constrained to be small.

Nevertheless, the analysis illustrates the potential importance of loop effects.

Loop-induced NSI: without loss of generality, let us first focus on how g
(1)
µe can be

generated according to the results in section 2.2 and eq. (3.3). The relevant terms in

eq. (3.3) are

2yµτνcµPLτφ− 2yτeνcePLτφ = 2yµττ cPLνµφ− 2yτeτ cPLνeφ. (3.11)

By comparing this expression to eq. (2.9), we have the mapping

να → νµ, νβ → νe, ψint → τ c; y∗α → 2y∗µτ , yβ → −2yτe. (3.12)

Using eq. (2.8) and assuming
m2
Z

m2
φ
� 1, we obtain the effective Z-νe-νµ vertex

g(1)
µe = −

y∗µτyτe

16π2

g

cW

m2
Z

m2
φ

2

3

[
c2
W

3
− (1− 2s2

W )

(
log

m2
Z

m2
φ

− iπ

)]
. (3.13)

For other flavors, one can straightforward derive similar results accordingly. The general

result is

g
(1)
αβ =

∑
δ=e,µ,τ

y∗αδyβδ
16π2

g

cW

m2
Z

m2
φ

2

3

[
c2
W

3
− (1− 2s2

W )

(
log

m2
Z

m2
φ

− iπ

)]
. (3.14)

Eq. (3.14) combined with eq. (2.19) gives the triangle NSI in this model:

ε.αβ = −8cW
g
Q

(ψ)
Z

∑
δ

y∗αδyβδ
16π2

g

cW

m2
Z

m2
φ

2

3

[
c2
W

3
− (1− 2s2

W )

(
log

m2
Z

m2
φ

− iπ

)]
. (3.15)
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The box NSI in this model also exists, but only for electron-neutrino NSI because ψ in the

right panel of figure 1 can only be an electron. The box NSI parameter ε�αβ can be directly

obtained from eq. (2.19) with the Yukawa couplings replaced by

y∗αyβ →
∑

δ=e,µ,τ

4y∗αδyβδ, |yψ|2 → 4
(
|yeµ|2 + |yeτ |2

)
, (3.16)

which leads to

ε�αβ =
1

16π2

4
√

2
∑

δ y
∗
αδyβδ

m2
φGF

(
|yeµ|2 + |yeτ |2

)
. (3.17)

Recall that the usually considered vector form for ε is twice the value of eq. (3.17). It is

noteworthy that all flavor terms εαβ can be generated, while the Fierz-transformed NSI

was only possible for the µτ case.

3.2 Model B: secret neutrino interactions

Secret neutrino interactions are a type of interactions that only exist among neutrinos.

They are generally difficult to be tested in terrestrial experiments because electrons and

quarks are not involved in such interactions. However, secret neutrino interactions could

have interesting cosmological and astrophysical effects, in supernova dynamics, cosmic neu-

trino propagation, Big Bang Nucleosynthesis (BBN), etc. Therefore it has been considered

in many references [33–38]. The simplest secret neutrino interaction is a scalar boson inter-

acting with the left-handed neutrinos φνLνL where νL is in the Weyl spinor notation.6 In

the Dirac notation, and including the flavor indices, the interaction should be formulated as

L ⊃ yαβφνcαLνβL + h.c. (3.18)

We demonstrate now that the secret neutrino interaction in eq. (3.18) leads to loop-induced

NSI. No NSI are generated when the scalar is integrated out. Because φ does not couple to

charged fermions in this model, the Fierz-transformed NSI and the loop-induced NSI from

the box diagram are absent. Only the triangle diagram can generate NSI.

By comparing eq. (3.18) to eq. (2.9), we can use the mapping

y∗αyβ →
∑
δ

y∗δαyδβ , ψint → νcαL, Q
(ψint)
Z → −Q(νL)

Z , (3.19)

to find [cf. eq. (2.8)]:

g
(1)
αβ =

1

16π2

g

cW
Q

(νL)
Z

m2
Z

m2
φ

∑
δ

y∗δαyδβ [f(r)− h(r)] .

Then the corresponding triangle NSI parameter in eq. (2.19) is:

ε.αβ = − 4

16π2
Q

(ψ)
Z

m2
Z

m2
φ

∑
δ

y∗δαyδβ [f(r)− h(r)] . (3.20)

6The secret scalar boson could also couple right-handed and left-handed neutrinos together (φνRνL),

which has different phenomenological consequences in cosmological and astrophysical processes. In this

case, due to the absence of Z coupling to νR, there is no loop-induced NSI.
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Note that the internal fermions in the triangle diagram are left-handed neutrinos, and

recall that r = m2
Z/m

2
φ. However, one should note that eq. (3.18) is not a complete

model so the UV divergences cannot be fully canceled without introducing new particles

or new interaction terms. Consequently there is a UV divergence, explicitly shown in

eq. (A.14) and not given here. In a complete and renormalizable model containing the secret

neutrino interaction (3.18), this UV divergence will be canceled by additional diagrams,

potentially modifying the result (3.20). Since this depends on the details of the complete

model, we refrain from going further into detail and keep eq. (3.20), which should be order-

of-magnitude wise correct. Regarding eq. (3.18) there is not necessarily lepton number

violation because φ could carry two units of lepton number. However, if the lepton number

is violated by, e.g., non-zero 〈φ〉, then such a secret interaction can also be responsible for

a Majorana neutrino mass. If this term is the only term responsible for neutrino mass, it

is interesting to note that ε.αβ ∝ (mνm
†
ν)αβ , which would result in ε.eµ ' ε.eτ � ε.µτ , where

the proportionality factor between ε.eµ and ε.µτ is about ∆m2
21/|∆m2

31| [39].

It should be noticed that in the UV complete models containing the secret neutrino in-

teractions, φ may or may not be accompanied with a charged Higgs, depending on whether

φ is the neutral component of an SU(2)L multiplet or not. The former case usually suffers

from stringent constraints due to its connection with the charged Higgs — see, e.g., [25].

In the latter case, the secret neutrino interactions are usually obtained by mass mixing of

left-handed neutrinos with other singlet fermions such as the right-handed neutrinos, which

happens in the Majoron model [40] and its variants [41]. For such models, one needs to

check whether the sizable mixing would lead to correct light neutrino masses or not. Since

all these details are very model-dependent, we would refrain here from further discussions

on the UV complete models of secret neutrino interactions.

Due to a lack of very stringent terrestrial constraints on the secret neutrino interactions,

the loop-induced NSI in this model can be in principle much larger than in the previous

model. We will discuss possible sizes of the NSI later in section 4.

3.3 Model C: neutral scalar boson

Neutrinos could also have new scalar interactions with the charged fermions mediated by

a neutral scalar, which can be expressed by the following Lagrangian:

L ⊃ yναβφνανβ + yψφψψ + h.c. (ψ = e, u, d). (3.21)

Since neutrino-electron and coherent elastic neutrino-nucleus scattering are induced,

eq. (3.21) has interesting phenomenological impact on experiments such as COHER-

ENT [42], CONUS [43], CHARM II [44, 45], LSND [46], TEXONO [47], GEMMA [48, 49],

etc., see e.g. refs. [50–52].

In this model, because the scalar boson is neutral, there is no Fierz-transformed NSI. In

the triangle diagram (figure 1), since the external neutrino lines are left-handed neutrinos,

the internal fermion lines can only be right-handed neutrinos7 because φνανβ = φναRνβL+

7One may also consider another type of φ-ν interaction similar to eq. (3.18). In this case, the loop-

induced NSI is a combination of model B and model C — it has the same ε.αβ as model B and the same

ε�αβ as model C.
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εFe ε.e ε.n ε.p ε�e ε�n ε�p

model A O(10−3) O(10−5) O(10−4) O(10−5) O(10−3) 0 0

model B 0 O(10−1) O(1) O(10−1) 0 0 0

model C 0 0 0 0 O(10−2) O(10−2) O(10−2)

Table 2. Reachable magnitude of the Fierz and loop-induced NSI in the three models under study.

Here εF , ε. and ε� are generated by Fierz transformations, triangle and box diagrams respectively.

φναLνβR. Since right-handed neutrinos do not couple to the Z boson there is no triangle

NSI in this model, i.e.

ε.αβ = 0. (3.22)

However, since left- and right-handed elecrons and quarks do exist, this model leads to

triangle diagrams correcting their couplings to the Z boson. Therefore, the model is con-

strained by the partial decay widths of Z. We will discuss this issue in section 4.

On the other hand, this model has loop-induced NSI from the box diagram. By

comparing eq. (3.21) to eq. (2.9) and (2.17), we have the mapping

y∗αyβ →
∑

δ=e,µ,τ

yναδy
ν
δβ , |yψ|2 → |yψ|2, (3.23)

which gives the box NSI parameter:

ε�αβ =
1

16π2

√
2|yψ|2

4m2
φGF

∑
δ=e,µ,τ

yναδy
ν
δβ . (3.24)

Although eq. (3.21) is not a complete model, in contrast to model B, there is no UV

divergence in computing the loop-induced NSI because the box diagram is always finite.

4 How large can loop-induced NSI be?

Now that we have derived loop-induced NSI both in the general framework and in sev-

eral specific models, a natural question to ask is how large they can be. The answer of

course depends on the models as well as the experimental constraints. In this section, we

summarize some experimental constraints on the three models and estimate the allowed

magnitude of loop-induced vector NSI for couplings to electrons, protons and neutrons,

whose definition is given in eqs. (2.3), (2.4). We selectively consider three most relevant

experimental constraints, namely the invisible Z decay width, elastic neutrino scattering

and charged lepton flavor violation. When all these constraints are taken into considera-

tion, we find that loop-induced NSI in the three models can reach the magnitude listed in

table 2.

Invisible Z decay width: since in the triangle diagram the Zνν vertices are modified

in models A and B, it is necessary to consider the effect on the invisible Z decay width

which has been measured precisely [53]:

ΓZ,inv = NνΓZ→νν , Nν = 2.9840± 0.0082. (4.1)
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Adding eq. (2.8) to the SM Zνν terms, we have the following Zνν interactions

LZνν =
gQ

(νL)
Z

cW
Zµλαβναγ

µPLνβ , with λαβ =
g

(1)
αβ

g

cW

Q
(νL)
Z

+ δαβ . (4.2)

For one generation of neutrinos, the decay width ΓZ→νν is proportional to the absolute

square of the vertex coupling. Generalizing to three generations, it holds that ΓZ,inv ∝
tr[λλ†], from which we can infer

Nν = tr[λλ†] =
∑
α,β

|λαβ |2. (4.3)

Therefore, the invisible Z decay width should give a strong constraint on tr[λλ†]. However,

one should note that even when tr[λλ†] is fixed at 3, large values of g
(1)
αβ are still allowed due

to cancellations in the matrix product. The constraint from invisible Z decay is only useful

when it is combined with the elastic neutrino scattering constraints to be introduced next.

Elastic neutrino scattering. New neutrino interactions can be directly constrained

by elastic neutrino scattering experiments [50–52, 54]. Some neutrino-electron scattering

experiments (e.g. CHARM II [44, 45], LSND [46], TEXONO [47]) already have preci-

sion measurement of the SM process and most recently coherent elastic neutrino-nucleus

scattering has been successfully observed and will also be precisely measured in the near

future [42, 43].

In general when there are new neutrino interactions, elastic neutrino scattering is

sensitive to the ratio between the new and SM cross sections (ignoring spectral effects):

Rα ≡
σnew(να + ψ → ν + ψ)

σSM(να + ψ → να + ψ)
, (4.4)

where the final neutrino state in the numerator can be of any flavor and the cross section

σnew is a sum over all possible flavors. The target particle ψ can be either an electron or

a nucleus.

Considering the specific models in this paper, the Zνν vertices are modified in model A

and model B, while in model A and model C the scalar bosons make tree-level contributions

to neutrino-electron/nucleus scattering.

Given the modified Zνν vertices in eq. (4.2), it is straightforward to derive8

Rα =
∑
β

|λαβ |2. (4.5)

It is interesting to note that eq. (4.3) can be expressed in terms of the ratios Rα:

Nν = tr[λλ†] = Re +Rµ +Rτ . (4.6)

8For νe + e scattering, there are also W± (charged current) contributions, which can be taken into

account by replacing Q
(νL)
Z in eq. (4.2) with an effective value. For simplicity, in this paper we do not

consider this part of contributions in our estimation of experimental constraints.
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According to the νµ and νe elastic scattering data [44, 46, 47], Re and Rµ cannot have

large deviations from 1:

δRe ≡ |Re − 1| . 20%, δRµ ≡ |Rµ − 1| . 3%. (4.7)

This combined with the Z decay observation |Nν − 3| � 1 implies that Rτ should also be

close to 1:

δRτ ≡ |Rτ − 1| . 20%. (4.8)

Using eq. (4.2), we can convert9 the constraints on Rα to constraints on g
(1)
αβ :∣∣∣∣∣∣g

(1)
αβ

g

cW

Q
(νL)
Z

∣∣∣∣∣∣ < δαβ +
√

1 + δRα. (4.9)

Thus, using eq. (2.19), the corresponding constraints on ε.αβ are

|ε.αβ | < 4(δαβ +
√

1 + δRα)|Q(ψ)
Z | =

{
O(0.1) (ψ = e or p)

O(1) (ψ = n)
, (4.10)

where for ψ = e or p the result is suppressed by their small Z charges |Q(e)
Z | = |Q(p)

Z | ∝
1−4s2

W . To obtain the O(1) NSI in model B referred to in table 2, we can take, for example,

mφ = 100 MeV and y = 10−2, which according to eq. (3.20) should lead to ε.αβ = O(1).

Model A, as we discuss below, cannot induce such large NSI due to further constraints

from charged lepton flavor violation.

The tree-level contribution of the scalar boson in model C is roughly

δRα '
∑
β

(
yναβy

ψ

m2
φ

)2

/

(
g2

m2
Zc

2
W

)2

. (4.11)

Assuming yναβy
ψ is O(1), the box NSI in model C could reach

ε�αβ '
1

8π2

√
3δRα '

{
1.0× 10−2 (if δRα = 20%)

3.8× 10−3 (if δRα = 3%)
. (4.12)

We mentioned before that model C is also constrained by the partial decay widths of Z to

e, u, and d. Here we can check that the constraint in eq. (4.12) is consistent with current

uncertainties of the partial decay widths. Still assuming Yukawa couplings to be one, with

eq. (3.24), we obtain
3
√

2

8m2
φGF

= 3
c2
W

g2

m2
Z

m2
φ

'
√

3δRα. (4.13)

This implies
m2
Z

m2
φ

' 0.14 , m2
φ ' 5.9× 104 GeV, (4.14)

9More explicitly, we first substitute the expression of λαβ in eq. (4.2) into eq. (4.5) and then check the

maximally allowed value of each |λαβ − δαβ | individually with Rα varying in [1− δRα, 1 + δRα].
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which can be used to study the corrected Z couplings of ψ = e, u, d from triangle diagrams.

We slightly modify eq. (2.8) to describe the correction to the left-handed coupling QψLZ to

Z by

Leff = g
(1)
ψL
Zµψγ

µPLψ, with g
(1)
ψL

=
y∗ψyψ

16π2

g3

3c3
W

√
3δRα

[
f(r)Q

(ψL)
Z + h(r)Q

(ψR)
Z

]
, (4.15)

and likewise for the right-handed coupling. Estimating orders of magnitude,

1/48π2 ≈ 3× 10−3, g/cW ≈ 1,
√

3δRα ≈ 10−1, |f(r)| ≈ 8× 10−3, |h(r)| ≈ 0.2,

(4.16)

we get an order 10−5 correction to the coupling in the case of the h(r) term. We conclude

that the SM couplings to Z get corrected at the order of 10−5, which would also be the

order of corrections to decay amplitudes. The partial decay widths of Z are known to about

3-digit accuracy [55], such that the bounds from neutrino-electron scattering are slightly

more stringent.

Similar constraints also exist for model A, which should be approximately of the same

magnitude. However, as we will see, the constraints from charged lepton decay are much

more stringent than those from elastic neutrino scattering in model A.

Charged lepton flavor violation. Charged lepton flavor violation (CLFV) could cause

rare lepton decays such as µ → eγ, µ → 3e, τ → µγ, etc. Currently all lepton flavor

violating decays have not been observed, which yields very strong constraints on models

containing CLFV. In this paper, we only need to consider CLFV in model A because the

other two models only have flavor violations limited to the neutrino sector. Here we would

like to refer to ref. [21] which has studied these decay processes in model A. We present

the results in ref. [21] with the experimental bounds updated.

The CLFV decay widths in model A are given by

Γ(`α → `βγ) =
1

16π2

g2s2
W

12

∣∣∣∣∣
∑

δ yαδy
∗
βδ

m2
φGF

∣∣∣∣∣
2

Γ(`α → να`βνβ), (4.17)

Γ(`α → `β`β′`β′) =
c2
W

g2

∣∣∣2g(1)
αβQ

(eL)
Z

∣∣∣2 Γ(`α → να`βνβ), (4.18)

where `α → να`βνβ is a SM charged current process. For example, the following branching

ratios have been precisely measured [56]:

Br(µ→ νµeνe) ≈ 100%, Br(τ → ντeνe) = (17.82± 0.04)%,

Br(τ → ντµνµ) = (17.39± 0.04)%. (4.19)

The branching ratios with CLFV are highly suppressed, the following limits at 90% CL

exist [56]:

Br(µ→ eγ) < 5.7× 10−13, Br(τ → eγ) < 3.3× 10−8, Br(τ → µγ) < 4.4× 10−8,

(4.20)

Br(µ→ 3e) < 1.0× 10−12, Br(τ → 3e) < 2.7× 10−8, Br(τ → 3µ) < 2.1× 10−8.

(4.21)

– 15 –



J
H
E
P
1
0
(
2
0
1
8
)
0
9
6

From the above data, we can derive the corresponding constraints on g
(1)
αβ according to

eqs. (4.17), (4.18), and (3.14):

|g(1)
µe | < 8.9× 10−8 (µ→ eγ), |g(1)

τe | < 5.0× 10−5 (τ → eγ),

|g(1)
τµ | < 6.0× 10−5 (τ → µγ), (4.22)

|g(1)
µe | < 1.3× 10−6, (µ→ 3e), |g(1)

τe | < 5.1× 10−4 (τ → 3e),

|g(1)
τµ | < 4.5× 10−4 (τ → 3µ). (4.23)

Note that those bounds have a weak dependence on m2
φ due to the log

m2
Z

m2
φ

term in eq. (3.14).

For simplicity, we have set mφ = 500 GeV. As one can see, the constraints in eq. (4.23)

are weaker than eq. (4.22). Taking the values in eq. (4.22), we get

|ε.µe| < 1.0× 10−6Q
(ψ)
Z , |ε.τe| < 5.5× 10−4Q

(ψ)
Z , |ε.τµ| < 6.5× 10−4Q

(ψ)
Z , (4.24)

where Q
(ψ)
Z = s2

W −
1
4 , −1

4 , or 1
4 − s

2
W , for ψ = e, or n, or p respectively.

Similar to ε.µe, the CLFV constraints on ε�αβ from `α → `βγ are also more stringent

than those from `α → `β`β′`β′ . According to eq. (4.17) and eq. (3.17), the bounds in

eq. (4.20) cannot be directly converted to the bounds on ε�αβ without known bounds on

|yeµ|2 + |yeτ |2. So for simplicity, we set |yeµ|2, |yeτ |2 < 1, and get

ε�µe < 7.8× 10−6, ε�τe < 4.4× 10−3, ε�τµ < 5.2× 10−3. (4.25)

Combining all the constraints discussed above, the strongest constraints on the loop-

induced NSI parameters come from CLFV for model A, and elastic neutrino scattering for

modela B and C. The results are summarized in table 2.

5 Conclusion

In scalar extensions of the SM, complex NSI can be generated at the loop level, denoted

here loop-induced NSI. There are two types of loop diagrams that are responsible for loop-

induced NSI, triangle diagrams and box diagrams shown in figure 1. We computed the loop

diagrams and derived general formulae for loop-induced NSI, given by eqs. (2.8) and (2.19).

To be more concrete, we applied our results to three specific and frequently discussed

models, which contain charged or neutral scalar bosons. With the experimental constraints

on these models taken into consideration, we estimated how large the loop-induced NSI

can be, which is summarized in table 2. Testable NSI are possible.

Our calculations were performed in the limit of heavy scalars (heavier than the fermion

masses in loops), though a similar analysis could also be performed for light particles. Loop-

induced NSI are not neccesarily obtainable by scalar particles only, but also by vector

bosons, leptoquarks etc. The relevant phenomenology will differ and deserves future study.
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A The triangle diagrams

In this appendix, we compute the triangle diagrams in a general U(1) model. The result

can be directly applied to more complicated models such as the SM extended by various

scalar particles. Various useful identities and relations necessary for our calculations can

be found in appendix C.

The U(1) model being considered here contains a massive scalar φ and three massless

fermions ψ1, ψ2 and ψ3. They are all charged under the U(1) gauge symmetry so the

Lagrangian is

L =

3∑
i=1

ψii /Dµψi + |Dµφ|2 −m2
φφφ

∗ +
(
y21ψ2φψ1 + y23ψ2φψ3 + h.c.

)
, (A.1)

where

Dµ = ∂µ − igQAµ, Q =

{
Qφ for φ

Qi for ψi
. (A.2)

In eq. (A.1) we have included only two Yukawa couplings y12 and y23 because this is the

minimal requirement to obtain the effective flavor-changing operator Aµψ1γ
µψ3 at the 1-

loop level, as indicated in figure 3. Including other Yukawa terms (ψ1φψ3 or ψ1φ
∗ψ3) would

only complicate the scenario and may not allowed by the U(1) charges.10 Due to the U(1)

charge conservation, the Yukawa interactions in eq. (A.1) are allowed when

Qφ −Q2 +Q1 = Qφ −Q2 +Q3 = 0, (A.3)

which further implies

Q1 = Q3.

There are two potential problems when applying the above U(1) model to SM extensions.

First, the Z boson in the SM is massive while here the U(1) gauge boson is massless if the

gauge symmetry is unbroken. To make the result in this appendix applicable to massive

gauge bosons, we manually introduce a mass mA for the gauge boson. The gauge boson

mass could be generated by introduce another scalar field with spontaneous symmetry

breaking but we would rather refrain from involving such details.

Another problem is about the chiral fermions. The SM, as a chiral theory of fermions,

has different gauge interactions for left–handed and right-handed fermions. For example, eL
and eR have different Z-vertices. The U(1) model considered here is parity conserving, i.e.

both the left-handed and right-handed components of ψi are equally coupled to the gauge

and scalar bosons. This problem can be easily solved if the Dirac spinors are decomposed

into Weyl spinors. In the U(1) model, the two sets of Weyl components (ψL1, ψR2, ψL3)

and (ψR1, ψL2, ψR3) do not couple to each other directly because

ψii /Dµψi = ψLii /DµψLi + ψRii /DµψRi, (A.4)

ψ2φψ1 = ψR2φψL1 + ψL2φψR1, (A.5)

ψ2φψ3 = ψR2φψL3 + ψL2φψR3. (A.6)

10For example, if |Qφ| 6= Q1−Q3, the 1-3 Yukawa mixing terms can be forbidden by the U(1) symmetry.
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(a)
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ψ1

ψ3

ψ2

ψ1

Figure 3. Triangle diagrams that give rise to the effective flavor-changing operator. The UV

divergences of these diagrams should cancel in the summation due to gauge invariance.

Therefore, in the diagrams in figure 3, all the fermion lines can also be regarded as either

(ψL1, ψR2, ψL3) or (ψR1, ψL2, ψR3). At the end of this section, we will also present the

result for a chiral U(1).

It is important to notice that the sum of all the four diagrams in figure 3 is finite,

as pointed out in ref. [20]. The UV divergences necessarily cancel out if the model is

renormalizable, otherwise there is no corresponding counter term to cancel the infinity. We

will show the cancellation explicitly in the following calculation.

Now let us compute the four diagrams (a)–(d) in figure 3. The relevant interactions are

L ⊃ y21ψ2φψ1 + y∗23ψ3φ
∗ψ2 + g

∑
i

QiAµψiγ
µψi + igQφA

µφ∗
←→
∂ µφ, (A.7)

where φ∗
←→
∂ µφ ≡ φ∗∂µφ− φ∂µφ∗. Then it is straightforward to write down the amplitudes

iMa =

∫
d4k

(2π)4
u(p3)iy∗23

i

(p3 − k) · γ
igQ2γ

µεµ(q)
i

(p1 − k) · γ
iy21

i

k2 −m2
φ

u(p1), (A.8)

iMb =

∫
d4k

(2π)4
u(p3)iy∗23

i

/k
iy21

i

(p3 − k)2 −m2
φ

× [−igQφ(p1 + p3 − 2k)µ] εµ(q)
i

(p1 − k)2 −m2
φ

u(p1), (A.9)

– 18 –



J
H
E
P
1
0
(
2
0
1
8
)
0
9
6

iMc =

∫
d4k

(2π)4
u(p3)igQ3γ

µεµ(q)
i

/p1
−m3

iy∗23

i

(p1 − k) · γ
iy21

i

k2 −m2
φ

u(p1), (A.10)

iMd =

∫
d4k

(2π)4
u(p3)iy∗23

i

(p3 − k) · γ
i

k2 −m2
φ

iy21
i

/p3
−m1

igQ1γ
µεµ(q)u(p1). (A.11)

Here we assume that the fermions ψ1, 3 have very small masses m1, 3 so that the standard

technique of extracting form factors can be applied. After that, we will take the limit

m1,3 → 0. For simplicity, we evaluate the amplitudes with all external momenta on shell

so that amplitudes can be organized by three form factors F1, F2 and F3 as follows

iMa + iMb + iMc + iMd

= u(p3)

[(
γµ − /qqµ

q2

)
F1(q2) +

iσµνqν
m1 +m3

F2(q2) +
2qµ

m1 +m3
F3(q2)

]
u(p1)εµ(q).

(A.12)

Since /q = /p3
− /p1

and /p1
u(p1) = m1, u(p3)/p3

= m3, the F1 term actually reduces to

γµF1(q2) in the zero mass limit (m1,3 → 0). We use the computer program Package-X [57]

to compute the loop integrals in dimensional regularization. The form factors can be

directly extracted by using the corresponding projectors in Package-X. In this paper, we

are only interested in the F1 form factor. Let us first check the UV divergence in F1.

Since we are using dimensional regularization, the UV divergent part is proportional to

1/ε ≡ 2/(d− 4):

F
(divergent)
1 =

gy∗23y21

2ε

(
Q2 −Qφ +

−Q3m1

m1 −m3
+

Q1m3

m1 −m3

)
, (A.13)

where the terms proportional to Q2, Qφ, Q3, and Q1 correspond to the contributions

of diagrams (a), (b), (c), and (d), respectively (note that each of these diagrams has a

distinct gauge interaction vertex and a characteristic U(1) charge). Eq. (A.13) can also be

written as

F
(divergent)
1 =

gy∗23y21

2ε

m3(Qφ −Q2 +Q1)−m1(Qφ −Q2 +Q3)

m1 −m3
, (A.14)

which, according to eq. (A.3), implies that the UV divergence vanishes if the U(1) charges

are conserved.

Taking Q3 = Q1, Qφ = Q2 −Q1 and (m1, m3)→ 0, the finite part of F1 is

F
(finite)
1 =

igy∗23y21 (f(r)Q1 + h(r)Q2)

16π2
, (A.15)

with

r ≡
m2
A

m2
φ

, (A.16)

ω ≡ −r − i0+, (A.17)

f(r) =
1

4ω
[−4C101(ω) + 2(ω + 2)B0Λ(ω) + 5ω + 4] , (A.18)

h(r) =
1

4ω

[
4C010(ω) + 4C101(ω) + 2(ω + 2)

(
log

1

ω
−B0Λ(ω)

)
− 4ω

]
. (A.19)
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Here B0Λ, C101, C010 are parts of the scalar Passarino-Veltman functions, with the explicit

forms given below:

B0Λ(ω) = − 1

ω

√
ω(ω + 4) log

(
ω +

√
ω(ω + 4) + 2

2

)
, (A.20)

C101(ω) =
π2

6ω
+

1

2ω

[
log2

(
ω −

√
ω(ω + 4)

2ω

)
− log2

(
ω +

√
ω(ω + 4) + 2√

ω(ω + 4)− ω

)]

− 1

ω
Li2(ω + 1)− 1

ω
Li2

(
2(ω + 1)

ω −
√
ω(ω + 4)

)
+

1

ω
Li2

(
2√

ω(ω + 4)− ω

)

− 1

ω
Li2

(
2

ω +
√
ω(ω + 4) + 2

)
+

1

ω
Li2

(
1

2
(ω + 1)

(
ω +

√
ω(ω + 4) + 2

))
,

(A.21)

C010(ω) = −
6Li2

(
ω−1
ω

)
+ 3 log2

(
1
ω

)
+ π2

6ω
. (A.22)

Using the identities of the dilogarithm function (C.12)–(C.14), we can make a series ex-

pansion in r and obtain eq. (2.13) and eq. (2.14).

In summary, the triangle diagrams can generate the following effective vector vertex

Leff = g
(1)
31 Aµψ3γ

µψ1, (A.23)

where

g
(1)
31 =

gy∗23y21

16π2
(f(r)Q1 + h(r)Q2) . (A.24)

Note that the result is applicable only when the U(1) charges are conserved—see eq. (A.3).

For a chiral U(1) theory, we can still use the above result by simply replacing the Dirac

spinors with the chiral spinors. For example, if only (ψL1, ψR2, ψL3) are present in the

model, then we have

Leff = g
(1)
31 AµψL3γ

µψL1 = g
(1)
31 Aµψ3γ

µPLψ1, (A.25)

where g
(1)
31 is the same as eq. (A.24), and (Q1, Q2, Q3) should be the U(1) charges of

(ψL1, ψR2, ψL3) respectively.

B The box diagram

This appendix computes the box diagram in a general model with six fermions ψi (i =

1, 2, · · · , 6) and one complex scalar field φ, with the following Yukawa interactions:

L ⊃ y21ψ2φψ1 + y23ψ2φψ3 + y45ψ4φψ5 + y65ψ6φψ5

+ y∗21ψ1φ
∗ψ2 + y∗23ψ3φ

∗ψ2 + y∗45ψ5φ
∗ψ4 + y∗65ψ5φ

∗ψ6. (B.1)

The second line is just the hermitian conjugate of the first line. For convenience of later

use, we write the hermitian conjugate terms explicitly.
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ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

k2

k5

kL kR

p1 p3

p4 p6

Figure 4. Box diagram that generates the effective four-fermion operator ψ3γ
µψ1ψ6γµψ4.

The box diagram we will compute is shown in figure 4, according to which we can

straightforwardly write down the amplitude

iMbox =

∫
d4k

(2π)4
u(p3)iy∗23

i

/k2

iy21u(p1)
i

k2
L −m2

φ

i

k2
R −m2

φ

u(p6)iy65
i

/k5

iy∗45u(p4). (B.2)

where the fermions are all massless and the scalar has mass m2
φ.

The amplitude is finite and can be computed directly. Since we are inter-

ested in the heavy scalar mass limit, let us take the zero external momentum limit

(p1, p3, p4, p6)/mφ → 0:

iMbox = u(p3)iy∗23γ
µiy21u(p1)u(p6)iy65γ

νiy∗45u(p4)I(m2
φ, m

2
φ), (B.3)

where we define the integral

I(m2
a, m

2
b) =

∫
d4k

(2π)4

i(−kµ)

k2

i(kν)

k2

i

k2 −m2
a

i

k2 −m2
b

. (B.4)

It can be evaluated straightforwardly:

I(m2
a, m

2
b) =

i

16π2

log
(
m2
a

m2
b

)
gµν

4
(
m2
a −m2

b

) . (B.5)

In the equal mass limit (m2
a = m2

b = m2
φ), it is

I(m2
φ, m

2
φ) =

i

16π2

1

4m2
φ

gµν . (B.6)

In summary, the box diagram generates the following four-fermion effect operator

Leff =
1

16π2

y∗23y21y65y
∗
45

4m2
φ

ψ3γ
µψ1ψ6γµψ4 (B.7)

=
1

16π2

y∗23y21y65y
∗
45

4m2
φ

ψ3γ
µψ1ψc4(−γµ)ψc6. (B.8)
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C Some useful identities and transformations

In this work, we need to frequently transform Dirac matrices and spinor products from one

to another. Besides, in the loop calculation, we also need some useful identities about the

dilogarithm functions. Therefore, we compile them in this appendix.

The left- and right-handed projectors are defined as

PL ≡
1− γ5

2
, PR ≡

1 + γ5

2
. (C.1)

Products of PL/R with the Dirac matrices can be transformed using

γ5PL = PLγ
5 = −PL, PRγ

5 = γ5PR = PR, (C.2)

γµγ
5 = −γ5γµ, γµPL = PRγ

µ, γµPR = PLγ
µ. (C.3)

Defining

σµν ≡
i

2
[γµ, γν ], (C.4)

we also have

PLσµν = σµνPL, PRσµν = σµνPR.

The left- and right-handed components of a Dirac spinor ψ are defined as

ψL ≡ PLψ, ψR ≡ PRψ. (C.5)

The charge conjugate of ψ is defined as

ψc ≡ −iγ2ψ∗. (C.6)

The left- and right-handed projections and the charge conjugation are related by

ψL = ψPR, ψR = ψPL, (C.7)

ψcL ≡ (ψL)c = −iγ2PLψ
∗ = PRψ

c. (C.8)

For two different Dirac spinors ψ1 and ψ2, we have

ψc1ψ2 = ψc2ψ1, ψ1ψ
c
2 = ψ2ψ

c
1, ψc1ψ

c
2 = ψ2ψ1, (C.9)

ψc1γ
µψc2 = −ψ2γ

µψ1. (C.10)

Turning to loop-functions needed in this study, the dilogarithm Li2(z) can be defined by

Li2(z) =

∞∑
k=1

zk

k2
=

∫ 0

z

log(1− t)
t

dt. (C.11)

It has a branch cut at z > 1, so in many cases we need the following identities

Li2

(
1

z

)
= −Li2(z)− 1

2
log2(−z)− π2

6
, (C.12)

Li2

(
1− 1

z

)
= Li2(z)− 1

2
log2(z) + log(1− z) log(z)− π2

6
, (C.13)

Li2(1− z) = −Li2(z)− log(1− z) log(z) +
π2

6
, (C.14)

to transform some dilogarithmic singularities to logarithmic singularities which are easier

to handle.
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