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1 Introduction

By the end of the year 2013, following the LHC pPb run at
√
sNN = 5 TeV, the CMS

collaboration probably reported the most unexpected observation of the LHC heavy-ion

programme: the excited Υ(2S) and Υ(3S) states were experiencing more suppression than

the lower Υ(1S) state [1]. At low collision energies, such a relative suppression would

naturally follow from final -state interactions with the remnants of the colliding lead nucleus

since the excited states have a larger size than the ground state.

However, for pPb collisions at the LHC, the quarkonium-formation time in the beam-

nucleus rest frame is expected to be larger than the nucleus radius because of the large

rapidity difference1 between the nucleus beam and the produced bb̄ pair. As such, it has

not evolved into any physical nS or nP state when it passes through the nuclear matter

contained in the nucleus. Consequently, one cannot invoke the interaction with the nucleon

in the nucleus to explain the relative suppression observed by CMS, neither can one invoke

initial -state effects such as the modification of parton distribution functions (PDFs) [2–6]

or coherent energy loss [7], which are known to have a similar impact on the different

bottomonia [8]. Very recently, the ATLAS collaboration confirmed [9] the observation of

these relative suppressions with very similar magnitudes.

Not only was this result totally unforeseen, but it casted serious doubts on the conven-

tional interpretation of the relative suppression of bottomonium earlier observed by CMS

in lead-lead collisions [10, 11]: the excited Υ(2S) and Υ(3S) states are larger, less tightly

bound and thus suffer more from the colour screening and related effects in the quark-gluon

plasma (QGP).

Assuming that the phenomena responsible for the suppression observed in a pPb col-

lision remains similar in a PbPb collision, one is entitled to factorise the effects coming

1Always above 4.
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from each Pb nucleus and thus, at central rapidities, to square the measured suppression

factor [12] in pPb collisions to extrapolate to PbPb collisions. This is, for instance, what

is done if one assumes that such a suppression comes from the nuclear modification of

PDFs [8, 13–18]. Although it does not rely on any theorem, it remains the most realistic

assumption if one considers that these effects are not enhanced in a nucleus-nucleus col-

lision. By the same token, one can extrapolate the relative suppression factor2 for PbPb

collisions by squaring the pPb ones. As such, one respectively obtains

R
Υ(2S)/Υ(1S)
PbPb from pPb ' 0.65 and R

Υ(3S)/Υ(1S)
PbPb from pPb ' 0.5 (1.1)

to be compared with the experimental ratios reported by CMS in PbPb collisions at

5.02 TeV [19], namely

R
Υ(2S)/Υ(1S)
PbPb ' 0.3 and R

Υ(3S)/Υ(1S)
PbPb compatible with 0. (1.2)

Clearly the extrapolated pPb effects are significant and need to be understood for a proper

interpretation of the PbPb results.

In this work, we attempt to explain these relative suppression in pPb and PbPb colli-

sions altogether by assuming that the bottomonia are broken by collisions with comoving

particles — i.e. particles with similar rapidities — and whose density is directly connected to

the particle-multiplicity measured at that rapidity for the corresponding colliding system.

In such a scenario, an increase in the colliding energy has the opposite effect than for the

suppression by the nucleus remnants. Instead of decreasing because of color transparency,

or because the propagating pair can only interact with the remnants in the very early

phase of its formation, the suppression by these comovers increases because the number

of the produced particles from a given pPb collision increases with energy. So does the

number of comoving particles along with the heavy-quark pair. Another important feature

of this assumption is that the heavy-quark pairs have reached — in their rest frame — a

physical state after a fraction of a femtometer. The Υ(1S), Υ(2S) and Υ(3S) states then

interact with very different probabilities with these comoving particles, which provides a

very natural explanation for the observed relative suppression.

As aforementioned, nobody expected this relative suppression in pPb collisions and,

as for now, no other effect have been proposed to explain it apart from suggesting the

creation of a “hot” medium in these high-energy proton-nucleus (pA) collisions. None of

the known “cold” nuclear-matter effects generate a relative suppresion. It is thus in fact

the ideal observable to fix the comover-bottomonium cross sections, which are the only

new phenomenological quantities entering our study. Surprisingly, the CIM has never been

applied to the bottomonia.

We in fact go one step further by proposing an improved version of the well-established

comover interaction model (CIM) [20–27], already successfully applied to explain a similar

2For the record, the (absolute) nuclear modification factor (NMF) for AB collisions is defined as

R
Υ(nS)
AB = dN

Υ(nS)
AB /(〈Ncoll〉dNΥ(nS)

pp where dNΥ
AB(pp)(nS)) is the Υ(nS) yield per AB (pp) collisions (in

the corresponding centrality class) and 〈Ncoll〉 is the average number of binary nucleon-nucleon collisions

per AB collisions (in the same centrality class). Beside, the relative nuclear-modification factors (or double

ratios) are simply their ratios such that R
Υ(mS)/Υ(nS)
AB ≡ R

Υ(mS)
AB /R

Υ(nS)
AB .
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unexpected suppression of excited charmonia [28]. Indeed, instead of independently fixing

the cross sections state by state, we propose a generic formula for all the quarkonium states

and suggest a connection with the momentum (or energy) distribution of the comovers in

the transverse plane, thus with an effective temperature (Teff) of the comovers. With such

an approach, we are able to propose a clear benchmark between pA and AA collisions

under the CIM paradigm.

As we shall see, the approach is particularly successful:

(i) the interaction strengths between the bottomonia and the comovers needed to repro-

duce the pPb data follow a simple pattern in terms of the size and the binding energy

— both calculable with a simple Schrödinger equation — of all the bottomonium

states, which renders our set-up predictive;

(ii) even more striking, the entire relative suppression observed in PbPb collisions is

accounted for by scatterings with comovers with remarkably similar interaction

strengths as for the pPb data;

(iii) the absolute magnitude of the Υ suppression in pPb and PbPb collisions is also well

reproduced up to the uncertainties in the nuclear modification of PDFs.

Overall, as we will show, all the LHC pPb and PbPb data can be reproduced with

merely two parameters.

2 The comover interaction model

Within this model, the quarkonia are suppressed by the interaction with the comoving

medium, constituted by particles with similar rapidities. At a time τ , the rate equation

that governs the density of quarkonium at a given transverse coordinate s and rapidity y

for a collision of impact parameter b, ρΥ(b, s, y), obeys the expression

τ
dρΥ

dτ
(b, s, y) = −〈σco−Υ〉 × ρco(b, s, y)× ρΥ(b, s, y) , (2.1)

where 〈σco−Υ〉 is the (energy averaged) cross section of bottomonium dissociation due to

interactions with the comoving medium characterised by the transverse density ρco(b, s, y)

at τi. We consider the medium to be Bjorken-like and the dilution of the comover densities

as a function of time due to a longitudinal expansion is taken into account. On the contrary,

we neglect any possible dilution in the transverse plane. By integrating this equation from

τi to τf , one obtains the survival probability Sco
Υ (b, s, y) of a Υ interacting with comovers:

Sco
Υ (b, s, y) = exp

{
−〈σco−Υ〉 × ρco(b, s, y)× ln

(
ρco(b, s, y)

ρco
pp(y)

)}
. (2.2)

The argument of the logarithm comes from τf/τi converted in ratios of comover densities

assuming that the interaction stops when the comover density has diluted down to that

reached in a pp collision at the same energy and rapidity (ρco
pp(y)).
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When computing Sco
Υ (b, s, y), the density of comovers ρco is considered as a controlled

input which we assume to satisfy the following condition:

ρco(b, s, y) = Fco
shadowing(b, s)× 3

2

dNpp
ch

dy
× dNcoll(b)

d2s
, (2.3)

where

(i) Fco
shadowing is a suppression factor accounting for the shadowing of the parton flux in

a nucleus affecting the charged-particle multiplicity, and thus that of the comovers;

it should not be confused with the shadowing factor applicable to hard scatterings;

(ii)
dNpp

ch
dy is the (measured) rapidity-differential charged-particle multiplicity in pp colli-

sions;

(iii) the factor 3/2 accounts for the neutral comovers;

(iv) Ncoll(b) is the number of binary nucleon-nucleon collisions at a given impact param-

eter b. It is computed with a Glauber-model Monte Carlo.

For the parametrisation of Fco
shadowing used in ref. [29], a good description of the cen-

trality dependence of charged multiplicities in nuclear collisions is obtained both at RHIC

and LHC energies. We thefore adopt it here as well.

For pA collisions, it is most natural to take the medium as made of pions. Nevertheless,

we will show later that the nature of this medium — partonic or hadronic — does not

qualitatively change our results which is one of the important findings of our study.

As can be seen from eq. (2.1), the main ingredient driving the abundance of a given

bottomonium is its interaction cross section with the comovers, 〈σco−Υ〉. In our previous

works on charmonia, these were obtained from fits to low-energy AA data [21], 〈σco−J/ψ〉 =

0.65 mb and 〈σco−ψ(2S)〉 = 6 mb. Such — purely phenomenological — cross sections in fact

would result from the convolution of the comover-energy distribution in the transverse

plane and the energy-dependent comover-quarkonium cross section. As such they may

slightly depend on the collision energy via a change of the comover-energy distribution.

Yet, these values were successfully applied at higher energies to reproduce [28] J/ψ and

ψ(2S) pA data at RHIC and the LHC as well as AA data accounting for the recombination

of charm quarks [26, 27].

One can not follow the same approach for Υ(nS) since no AA relative-suppression bot-

tomonium data exist at low energies and, in fact, the CIM was never applied to bottomonia

before. In addition, the bottomonium family is richer with at least 6 phenomelogical cross

sections to be considered in a full computation. We have thus adopted another strategy

by going to a slightly more microscopic level accounting for the energy distribution of the

comover-quarkonium cross section and that of the comovers in the transverse plane. This

in fact allowed us to reduce the degrees of freedom of our modeling to the introduction of

essentially 2 parameters, yet applicable to the entire bottomonium family and allowing us

to investigate the nature the comovers (gluons or pions).
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To do so we assumed that:

(i) the thresholds, EQthr, approximately follow from the mass differences between the

quarkonium, Q, and the lightest open beauty hadron pair, taking into account the

comover mass;

(ii) away from the thresholds, the cross section should scale like the geometrical cross

section, σQgeo ' πr2
Q, where rQ is the quarkonium Bohr radius. It can be evaluated

by solving the Schrödinger equation with a well-choosen potential reproducing the

quarkonium spectroscopy [30].

Our parametrisation of the energy dependence thus simply amounts to interpolating

from σco−Q(Eco = EQthr) = 0 at threshold up to σco−Q(Eco � EQthr) = σQgeo away from

threshold but with the same dependence for all the states. It reads

σco−Q(Eco) = σQgeo ×

(
1−

EQthr

Eco

)n
(2.4)

where EQthr = MQ + mco − 2MB is the threshold energy to break the quarkonium bound

state and Eco =
√
p2 +m2

co is the energy of the comover in the quarkonium rest frame.

In the case of a hadronic medium (made of pions), mco = 0.140 GeV, while it is zero for

gluons. The geometrical cross sections σQgeo which we used are shown in table 1, together

with the threshold energies EQthr and the bottomonium radii. The first free parameter of

our modeling, n, characterises how quickly the cross section approaches the geometrical

cross section. Attempts to compute this energy dependence, using the multipole expansion

in perturbative QCD at LO [30–32], would suggest that n is close to 4 for pion comovers

by making the strong assumption that the scattering is initiated by gluons inside these

pions. Hadronic models which take into account non-perturbative effects and thus most

likely provide a better description of the physics at work [33] show a different energy

dependence. It effectively corresponds to smaller n [34]. As such, we will consider n

varying from 0.5 to 2. In fact, the discrepancies existing between the aforementioned LO

QCD results and these hadronic calculations are partly due to large higher order correction

near the threshold [35].

As for the energy distribution of the comovers in the transverse plane, we simply take

a Bose-Einstein distribution

P(Eco;Teff) ∝ 1

eEco/Teff − 1
(2.5)

which introduces our second parameters, namely an effective temperature of these co-

movers.

Having P(Eco;Teff) and σco−Q(Eco), we derive the energy-averaged quarkonium-

comover-interaction cross section

〈σco−Q〉(Teff , n) =

∫∞
0 dEco P(Eco;Teff)σco−Q(Eco)∫∞

0 dEco P(Eco;Teff)
, (2.6)

from which we can compute the (relative) NMFs. Our fits will thus simply amount to

determine the best value Teff for fixed values of n in the aforementioned ranges reproducing

the selected experimental data.
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EQthr rQ σQgeo

Υ(1S) 1100 MeV 0.14 fm 0.62 mb

χb(1P ) 670 MeV 0.22 fm 1.52 mb

Υ(2S) 540 MeV 0.28 fm 2.46 mb

χb(2P ) 300 MeV 0.34 fm 3.63 mb

Υ(3S) 200 MeV 0.40 fm 5.03 mb

χb(3P ) 50 MeV 0.55 fm 10.21 mb

Table 1. Different fixed parameters used in our parametrisation of the Υ-comover cross sections.

The values of EQthr correspond to mco = 0.

3 Fitting the data

In order to proceed with the fit, it is mandatory to take into account the feed-down (FD)

contributions. The observed Υ(nS) yields indeed contain contributions from decays of

heavier bottomonium states and, thus, the measured suppression can be affected by the

dissociation of these states. This feed-down contribution to the Υ(1S) state is usually

asumed to be on the order of 50%, according to the CDF measurements [36] at pT > 8 GeV.

However, this assumption needs to be revisited, in particular for pT -integrated results,

following the more recent LHCb data extending to lower pT [37]. We refer to [38] for more

details. We have reported the corresponding expected FD on the 3 first lines of table 2.

Note that for the Υ(3S), the LHCb measurement is the only existing one and was done

for pT > 20 GeV.

Since these fractions remain partly extrapolated, one should consider them with some

conservative uncertainties. We have thus varied the FD fractions used in our computations

between two limiting cases: 80% of direct Υ(1S) and 50% of direct Υ(3S) — limiting

case I —, 60% of direct Υ(1S) and 70% of direct Υ(3S) — limiting case II —, leaving the

other ones unchanged. All the corresponding values are collected on line 4–9 of table 2.

This however induces changes which are not significant in view of the current experimental

uncertainties.

As announced, we performed our fit on relative — minimum bias — NMFs. For pPb

collisions, we have used the CMS [1] and ATLAS [9] data. For PbPb collisions, we have used

the CMS data at 2.76 TeV [11] and at 5.02 TeV [19]. For both these pPb and PbPb cases,

we performed the fit of Teff for different values of n with both gluon or pion comovers. Our

results are depicted on figure 1. The resulting uncertainty on Teff is from the experimental

uncertainty. Up to this uncertainty, all the combinations yield to the same couple (n, Teff)

with Teff in the range 200 to 300 MeV for our assumed range for n. Our fits are equally

good with χ2
d.o.f. ranging, for pPb data, from 1.0 to 1.4 and, for PbPb data, from 1.4 to 2.0.

Thus, we are confronted to the following quasi equiprobable possibilities:

Case I: the medium is of hadronic nature in pPb collisions, while it is gluonic in PbPb

collisions.

Case II: both in pPb and PbPb collisions, the medium is made of hadrons, i.e. the comovers

can be identified with pions.
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direct χb(1P ) FD Υ(2S) FD χb(2P ) FD Υ(3S) FD χb(3P ) FD

From the

LHCb data

Υ(1S) 70% 15% 8% 5% 1% 1%

Υ(2S) 63% — — 30% 4% 3%

Υ(3S) 60% — — — — 40%

Limiting

Case I

Υ(1S) 80% 10% 5.3% 3.3% 0.7% 0.7%

Υ(2S) 63% — — 30% 4% 3%

Υ(3S) 50% — — — — 50%

Limiting

Case II

Υ(1S) 60% 20% 10.7% 6.7% 1.3% 1.3%

Υ(2S) 63% — — 30% 4% 3%

Υ(3S) 70% — — — — 30%

Table 2. Expected Υ FD contributions.

0

100

200

300

400

500

600

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25
n

T
e

ff
 (

M
e

V
)

pPb   with gluon comovers
PbPb with gluon comovers
pPb   with pion comovers
PbPb with pion comovers

Figure 1. Resulting Teff for pion (triangles) or gluon (circles) comovers from our fits to pPb (empty

blue) and PbPb (filled red) data for different n from 0.5 to 2. [The points have been horizontally

shifted for readibility.]
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Case III: both in pPb and PbPb collisions, the medium is made of partons, i.e. the

comovers can be identified with gluons.

Case IV: the medium is of gluonic nature in pPb collisions, while it is hadronic in PbPb

collisions.

Case I is the most common expectation. The relevant d.o.f. are hadrons in pPb collisions

where the QGP is not produced whereas the gluons become relevant in the hotter PbPb

environment with the presence of QGP. Case II is the usual interpretation of historical

CIM studies for which the gluon d.o.f. do not appear to be relevant. At SPS energies, it is

a reasonable assumption. At the LHC, it is more thought-provoking, yet compatible with

the observed bottomonium suppression at the LHC. It can also be understood in the sense

that the melting temperature of the Υ(1S) and Υ(2S) is too high to be observed and the

Υ(3S) is fragile enough to be entirely broken by hadrons. Case III amounts to say that

gluons are the relevant d.o.f. to account for bottomonium suppression in both pPb and

in PbPb collisions. One could thus say that a QGP-like medium is formed following pPb

collisions at LHC energies. Case IV is admittedly an unexpected situation.

In what follows, our results for the NMFs will be shown for n = 1 and Teff =

250 ± 50 MeV. Choosing different couples of n and Teff yield to very similar results since

the variation of n is compensated by that of Teff . Showing them for each of the tested

hypothesis would not bring in any additional information in view of the current experi-

mental uncertainties and of the uncertainties from the nuclear PDFs — in the case of the

absolute NMFs.

As what regards their specific values, for an exponent n = 1, 〈σco−Υ(1S)〉 is 0.02+0.02
−0.01 mb

for the most tightly bound state Υ(1S), compatible with no suppression of the direct Υ(1S),

while 〈σco−χb(3P)〉 = 9.2+1.0
−1.4 mb for the loosely bound χb(3P ) states in the hadronic case.

The quoted uncertainty comes from that on the temperature, i.e. Teff = 250± 50 MeV for

n = 1, which is generated by the experimental uncertainties via the χ2 minimisation.

Looking at these cross sections allows us to better understand the small impact of

considering gluon or pion comovers. In fact, the mass effects only matter for χb(3P )

states altering their interaction cross section by 10%. They however does not induce any

visible difference. Indeed, for such large cross sections, the obtained suppression is already

maximal for minimum bias collisions.

4 Relative NMFs

The resulting relative NMFs of the excited bottomonium states to their ground state in

pPb collisions at 5.02 TeV are presented in table 3 along with the CMS [1] and ATLAS [9]

experimental data. We note that the central values of the data tend to indicate a slightly

stronger suppression that our results. We however recall that so far no other model could

explain this relative suppression in pPb collisions.

In PbPb collisions, besides the minimum-bias values which we used in our fits, CMS

reported on the centrality dependence of the relative suppression of Υ(nS) at 2.76 and

– 8 –
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CIM fit Experimental values

−1.93 < y < 1.93 CMS data

Υ(2S)/Υ(1S) 0.91 ± 0.03 0.83 ± 0.05 (stat.) ± 0.05 (syst.)

Υ(3S)/Υ(1S) 0.72 ± 0.02 0.71 ± 0.08 (stat.) ± 0.09 (syst.)

−2.0 < y < 1.5 ATLAS data

Υ(2S)/Υ(1S) 0.90 ± 0.03 0.76 ± 0.07 (stat.) ± 0.05 (syst.)

Υ(3S)/Υ(1S) 0.71 ± 0.02 0.64 ± 0.14 (stat.) ± 0.06 (syst.)

Table 3. Measured and fit R
Υ(mS)/Υ(nS)
pPb at 5.02 TeV.

partN

pp
/ [
ϒ

(n
S)

/ϒ
(1S

)]
Pb

Pb
[ϒ

(n
S)

/ϒ
(1S

)]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

partN
50 100 150 200 250 300 350 400

0-
10

0%

partN
0 50 100 150 200 250 300 350 400

0.4

0 50 100 150 200 250 300 350 400

0-
10

0%

ϒ(2S)/ϒ(1S) ϒ(2S)/ϒ(1S) ϒ(3S)/ϒ(1S)PbPb 2.76 TeV
|y| < 2.4

PbPb 5.02 TeV
|y| < 2.4

PbPb 5.02 TeV
|y| < 2.4

Figure 2. The double ratio (R
Υ(mS)/Υ(nS)
PbPb ) for Υ(2S) over Υ(1S) at 2.76 and 5.02 TeV and Υ(3S)

over Υ(1S) at 5.02 TeV as a function of Npart obtained from the CIM with the CMS data at

2.76 TeV [11] and 5.02 TeV [19]. The dashed line depicts the uncertainty from the fit of σco−Υ.

5.02 TeV [11, 19]. Figure 2 shows our results along with the CMS points. The agreement

is very good at 2.76 TeV, a bit less for Υ(2S)/Υ(1S) at 5.02 TeV.

5 Absolute NMFs

Having fixed the parameters of our approach with the relative suppression measurements,

we can now address the absolute suppression of each measured states. However, when

addressing the absolute Υ suppression, other nuclear effects, which cancel in the double

ratio of the excited-to-ground state suppression, do not cancel anymore. At LHC energies,

the main one seems to be [39] the nuclear modification of PDFs. It is easily accounted for

by using available global nPDF fits with uncertainties [2, 4, 5, 40].

In particular, we used nCTEQ15 which describes very well the suppression of open

charm in pPb collisions at the LHC [39, 43]. We also note that the central value of the

nCTEQ15 fit is compatible with the one of EPS09LO [5] previously used in [28].

Let us first start with the Υ(1S) case in pPb collisions. Figure 3 shows R
Υ(1S)
pPb vs

rapidity at
√
s = 5.02 TeV compared to the available experimental data [9, 41, 42] from

ALICE, ATLAS and LHCb. The agreement is overall very good and the additional effect

of the CIM is to damp down the antishadowing peak in the backward rapidity region which

brings the theory closer to the central value of ALICE.

– 9 –
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4 y4− 2− 0 2

p
P

b
R

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ATLAS,ϒ(1S)

LHCb, ϒ(1S) 

ALICE, ϒ(1S) 

c.m.s.

p Pb 5.02 TeV

Figure 3. The R
Υ(1S)
pPb vs rapidity compared to the LHC data [9, 41, 42]. The uncertainty from

the σco−Υ fit (dashed line) and from the nCTEQ15 shadowing (dotted line along with the colored

band) are shown separately.

Figure 4. R
Υ(nS)
PbPb vs. Npart from the CIM with the CMS data at 2.76 TeV [44] and 5.02 TeV [45].

The uncertainty from the fit of σco−Υ (dashed line) and from the nCTEQ15 shadowing (dotted

line) are shown separately.

We then compare our results to PbPb data whose centrality dependence has also been

measured. To address this dependence, we parameterised the impact-parameter depen-

dence of the nPDF as in [28]. Our results for the 3 Υ states at 2.76 (5.02) TeV are shown

in figure 4 left (right) with the CMS data [44, 45]. A good agreement is obtained in the 3

cases with the same parameters used to reproduce the relative suppression.

6 Conclusions

In this work, we have addressed the puzzle of the relative suppression of the excited bot-

tomonium states as compared to their ground state in pPb collisions. In the absence of

any other explanation, we have assumed that the reinteraction with comovers explains it

– 10 –
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all. This motivated us to revisit the CIM and to propose a generic formula for all the

bottomonium states interpolating from the absence of interaction at threshold up to the

geometrical one for increasing comover-quarkonium relative momenta in the transverse

plane. Taking into account the energy distribution of the comovers with a Bose-Einstein

distribution, we could further study the impact of considering either massive pion or mass-

less gluon comovers and investigate an effective temperature of the comovers as probed by

the quarkonia. This allowed us to fit the CMS and ATLAS pPb double ratios with only 2

parameters accounting for all the comover-bottomonium interaction cross sections. With

the same setup, an independent fit of the corresponding PbPb CMS data yielded similar

fit parameter values, thus hinting at a similar momentum distribution of these comovers in

the environment created by pA and AA collisions. This is admittedly an unexpected and

very interesting observation.

We further backed up our investigations by noting that our approach correctly pre-

dicted the absolute Υ suppression in both pPb and PbPb collisions when combined with

the nCTEQ15 shadowing without the need to invoke any other phenomena.
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