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Abstract: Modern machine learning techniques, such as convolutional, recurrent and

recursive neural networks, have shown promise for jet substructure at the Large Hadron

Collider. For example, they have demonstrated effectiveness at boosted top or W boson

identification or for quark/gluon discrimination. We explore these methods for the purpose

of classifying jets according to their electric charge. We find that both neural networks

that incorporate distance within the jet as an input and boosted decision trees including

radial distance information can provide significant improvement in jet charge extraction

over current methods. Specifically, convolutional, recurrent, and recursive networks can

provide the largest improvement over traditional methods, in part by effectively utilizing

distance within the jet or clustering history. The advantages of using a fixed-size input

representation (as with the CNN) or a small input representation (as with the RNN) suggest

that both convolutional and recurrent networks will be essential to the future of modern

machine learning at colliders.
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1 Introduction

As the Large Hadron Collider, currently running at CERN, increases in luminosity, it be-

comes sensitive to signals of beyond-the-standard model physics with ever smaller cross

sections. These signals, particularly if they involve hadronic final states known as jets, are

often buried in enormous backgrounds, so any tools that help reduce those backgrounds

will be invaluable. In addition, increased clarity on jet properties and substructure will

constrain and test the Standard Model. Over the last decade or so there has been tremen-

dous progress in understanding jets and measuring their properties, from finding boosted

top quark or W -jets [1–4], to looking at jet substructure [5, 6]. Recently, new methods

from computer science involving modern machine learning are starting to be adapted to

jet physics, with remarkable early progress [7–20].

In this paper, we consider how modern machine learning might help in measuring

the electric charge of a jet. Doing so accurately would allow us to differentiate up-quark

initiated jets (Q = 2
3) from anti-up-quark (Q = −2

3), down-quark (Q = −1
3), anti-down

quark (Q = 1
3) and gluon-initiated jets (Q = 0). This is clearly an ambitious goal, but there

is already evidence that relatively simple observables, such as the pT -weighted jet charge

Qκ =
1(

pjetT

)κ ∑
j∈jet

Qj

(
pjT

)κ
(1.1)
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can help. This observable, adapted from early work of Feynman and Field [21], was shown

in [22, 23] to have appealing theoretical properties, such as a calculable scale-dependence.

Measurements of Qκ by both ATLAS and CMS [24–30] confirmed its utility and demon-

strated that, on average, positive and negative electrically charged jets can be distinguished.

Moreover, the scale-dependence predicted in [22, 23] was confirmed experimentally [24].

Thus, considering that jet charge can already be measured to some extent, it is natural to

ask if we can do better using deep learning or other modern machine-learning ideas.

The challenge of extracting the jet electric charge is not unlike the challenge of extract-

ing the jet color charge, namely whether a jet is quark- or gluon initiated. Quark/gluon

jet discrimination also has a long history [31–34]. Some Monte-Carlo studies showed good

potential for the LHC [35, 36], and experimental studies showed feasibility while also un-

covering some challenges (such as the untrustworthiness of the simulations particularly

for gluon jets, though some studies have avoided this issue by developing methods to

train the network directly on data) [19, 37]. One of the first modern-machine-learning

jet physics papers [8] showed, using convolutional neural networks (CNNs) and jet im-

ages [38, 39], a significant improvement over previous quark-gluon discrimination bench-

marks (see also [16, 39–41]). Work on testing this method in experiment is ongoing [42].

While the jet images approach is powerful, it involves embedding the jet data in a

very high dimensional representation. For example, a jet may have 50 particles, so it is

characterized by 50 three-momenta, or 150 degrees of freedom. A 33 × 33 jet image has

1089 degrees of freedom. Alternatives to jet images are methods such as recursive and

recurrent neural networks. Thus besides developing a powerful jet charge discriminator,

one goal of this paper is to compare the performance of different network architectures on

jet charge extraction and quark/gluon discrimination.

Recurrent neural networks have been considered for collider physics applications in [13,

17]. In particular [13] considered the application of a particular recurrent framework for

top-tagging and found comparable performance to a jet-images based approach [16]. A

challenge with recurrent networks is how to sort and process the inputs. One option

is to use 4-vectors, as in [13, 17]. In [13] the 4-vectors were processed with a network

constructed to respect their Lorentz structure. We will instead consider recurrent network

inputs containing various distillations of the 4-vector input, such as into the energy of the

jet, or the clustering distance to the jet axis.

The paper is divided into two parts: a discussion of the networks in section 2 and a

discussion of the results in section 3. A summary and broader conclusions are in section 4.

2 Methods

For this study, we simulated quark and gluon jets using pythia 8.226 [43] with the default

tune. Although simulations may not be completely trustworthy, the relative efficacy of

different methods can still be tested using Monte-Carlo. For concreteness, we focused on

discriminating up-quark-initiated jets from down-quark-initiated jets, though in principle

we’d expect similar results for anti-down versus anti-up discrimination. These jets were

selected as the hardest jet in uu → uu or dd → dd dijet events in pp collisions with
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√
s = 13 TeV. For quark/gluon discrimination, the processes pp → qq and pp → gg were

used and again the hardest jet taken. Jets were clustered with the anti-kT algorithm with

R = 0.4, and only jets with pT between 100–120 GeV and 1000–1200 GeV were selected.

Final state particles with |η| > 2.5 and neutrinos were discarded. 100,000 of each type of

event were generated and 80% were used for training, 10% were used for validation, and

10% were used for testing.

We consider a number of different machine learning methods and compare them to

jet charge.

2.1 Convolutional networks (jet images)

From each event we constructed a jet image, following the procedure of [8]. We considered

two-channel jet images, where each channel encodes different input information. Each

channel of the image is constructed by putting a ∆φ×∆η = 33×33 pixel box around each

jet. For the first channel, the pixel intensity is given by the sum of the transverse momenta

of all particles entering that pixel. For the second channel, the pixel intensity is given by

the pT -weighted jet charge, as in eq. (1.1), for a given κ. During image generation, the

image is centered and the momentum channel is normalized by the sum of the momenta of

all the particles in the jet. The same preprocessing and data augmentation as [8] was used

on the images. This preprocessing includes zero centering and dividing by the standard

deviation, and data augmentation includes translations by one pixel in each direction and

reflections. A random rotation was tested but did not improve performance.

The images are processed with a convolutional neural network, as in [8]. Our basic

CNN consisted of three layers of convolutional filters, one dense layer with 64 neurons, and

a final dense layer with 2 neurons. Each convolutional layer is followed by a maxpooling

layer and a dropout layer and the first dense layer is followed by a dropout layer. The

dropout was 0.18 for the first layer and 0.35 for the other layers. The convolutional layers

and the first dense layer have ReLU activations, while the second dense layer has a softmax

activation. The network was trained in batches of 512 for 35 epochs with an early stopping

patience of 5 epochs, using the Adam algorithm and categorical crossentropy loss function.

Each layer had 64 filters. The filter size was 8 × 8 pixels for the first layer and 4 × 4 pixels

for the other layers.

Other network parameters were also tested. For two-channel images, we considered

the effect of modifying the step size and decay within optimization, batch size, the dropout

after each layer, filter size, number of filters, size of the maxpooling layer, activation func-

tion for the convolutional layers (selu), early stopping patience, and optimizer (SGD, RMS

Prop, Adagrad). We also experimented with modifying network structure by adding ad-

ditional convolutional layers at the beginning of the network and extra dense layers after

the convolutional layers. The configuration detailed above was the most effective.

In addition to modifying network structure, we tried modifying the content of the

channels of the network by adding a third channel with more information. Adding a third

channel with the number of neutral particles did not improve results. Adding a third

channel with jet charge per pixel for a second κ value did improve training speed, but not

results (see figure 3a). Furthermore, with a second κ value the dropout value needed to be
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higher to avoid over training. We also tested the results with only a single input channel

(also displayed in figure 3a for a single jet charge channel). We also tested the network

with only a pT-input channel, but this network was unable to distinguish the up quark

initiated versus down quark initiated jets.

We also tested another CNN configuration (known as a residual CNN), modeled on [44],

which won the ILSVRC 2015 image recognition challenge. Although the residual CNN uses

the same physical inputs as our basic CNN, in other applications residual CNNs have been

shown to train faster and more consistently than more basic CNNs on the same data

set. What distinguishes the residual CNN from our basic CNN is that it uses shortcut

connections that connect a given layer to some previous layers while skipping one or more

intermediate layers. We use the identity mapping as our shortcut connection, so that the

output of each convolutional layer except the first is added to the input of that layer before

it is passed to the next layer, which in [44] was shown to improve classification in previous

image recognition challenges. Following the observation in [44] that residual CNNs show

more improvement for deeper networks, we use a deeper network than our other CNN. We

use seven layers each with 64 filters of size 2 × 2. We use smaller filters than our other

CNN because of memory constraints for the deeper network. There is a maxpooling layer

of size 4 after the fourth and eighth layers, and a maxpooling layer with size two after

the seventh layer. As with the shallower CNN, the convolutional layers are immediately

followed by two dense layers, the first with 64 nodes and the second with 2 nodes. Dropout

of 0.2 was used after each maxpooling layer, and dropout of 0.1 was used after the first

dense layer. These parameters were determined by a scan of selection of parameters. Other

hyperparameters are the same as in the shallower network.

2.2 Recurrent networks

We also tested a recurrent network (RNN) with various different inputs. In an RNN, each

layer consists of multiple nodes with a set of hidden weights. Both the input and output

of each layer is an ordered sequence of vectors, where each vector in the sequence has fixed

length but the length of the sequence itself is arbitrary. In particular, for the input layer

of our RNN, each vector corresponds to a single particle in the jet, and the sequence of

vectors corresponds to the list of particles in the jet. Network performance is sensitive to

the order of the input vectors.

We implemented a recurrent network using keras [45] with a Theano backend. It

consists of 11 gated recurrent unit layers (GRUs), followed by a dense layer with 64 nodes

and a dense layer with two output nodes. The number of nodes in each GRU layer decreases

from 100 to 5, where the number of nodes in each of the first ten layers decreases by ten

from the previous layer. Each GRU layer except the last returns a sequence of vectors,

and the last returns the average of the sequence of vectors. The number and size of the

GRU layers were determined by trail and error. An additional dense layer of 64 units

was tested but decreased classification effectiveness. Long short-term memory (LSTM)

layers were also tested and performed similarly to GRU layers. Additionally, we tested

various different input representations. We considered combinations of azimuthal angle φ,
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pseudorapidity η, pT , charge Q and various distance measures, which is discussed more

thoroughly in the results section.

A batch size of 6000 was used for training with step size of 0.005. Other batch sizes

were tested. We found that for small batch sizes training was very slow and non-convergent

(batch sizes less than about 4000 are unable to distinguish the two samples). Training

improved with larger batch size up to 6000. A step size of 0.001 was also tested but training

was more consistent with a smaller step size. Optimization was performed using the Adam

algorithm with a categorical cross entropy loss function and early stopping patience of 3

and a maximum of 100 epochs. In order to use keras a maximum sequence length must

be set for the input layer. We set this to 40 particles for 100 GeV and 120 particles for

1000 GeV, so that it would include enough particles not to affect training.

Additionally, we tested another configuration which is discussed below for complete-

ness. This modification to the RNN had a last dense layer with a single output node

attempting to predict charge itself (instead of classification). Here we used mean squared

error as the loss function (as categorical cross entropy only makes sense for classification)

and a linear activation function (instead of a ReLU) for the second of the two dense layers

(because we wanted to be able to predict negative values). This network performed so

similarly to the classification case that we do not discuss it further in the results section.

2.3 Recursive network

A recursive network (RecNN) is similar a recurrent network (RNN), with the key difference

that the order of the inputs is different in the two cases. In a recurrent network, the vectors

for each input particle in a jet are ordered in a sequence (for example, the particles in the jet

might be ordered by decreasing pT or increasing distance from the jet axis). In particular,

each computation depends directly only on the input vector (the particle itself) to that step

and the internal hidden state after the previous particle in the jet. In contrast, recursive

networks can have more complicated dependency structures. Rather than applying the

same set of weights to every vector in a sequence, particles are fed to the recursive network

in an order given by a more complicated data structure, such as a tree (in our network,

this tree is determined by clustering history).

The architecture of our recursive network is modeled after [17]. A recursive embedding,

given by eqs. (2) through (4) of [17], with vi(k) consisting of pT ,φ, η and charge Q, is fed

into a classifier consisting of a dense layer with 64 nodes followed by a dense layer of 2

nodes. The recursive embedding consists of a single vector given by the embedding at

the root node. Clustering is performed prior to passing the information to the network

following the C/A, anti-kT , and kT algorithms (in all cases, our jets are the same collection

of particles identified with anti-kT ). For the input to the leaf nodes the charge Q is the

charge of the particle corresponding to the leaf. For the input to the interior nodes, we

find the best performance when the charge Q is taken to be the pT -weighted jet charges

of the left and right children with κ = 0.2 at 100 GeV and κ = 0.1 at 1000 GeV. A batch

size of 500 was used for training; larger batch sizes increased performance and this was the

maximum possible with given memory constraints on the GPU.
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We also tested a simpler recursive structure inspired by jet charge, referred to as the

trainable κ NN throughout this paper. The first half of this network is recursively computed

jet charge with trainable κ values, while the second half is a dense layer with two nodes.

Which κ to use to compute the value at each node is determined by the distance from the

root node in the clustering tree. For the plots in this paper, we used five κ values, and

the recursively computed jet charge of all nodes with distance greater than or equal to five

from the root node were computed using the last κ. The other hyperparameters for this

network were similar to those for the other recursive network.

2.4 Other classifiers

In order to understand the improved performance of our machine learning methods, we

implemented several boosted decision trees (BDTs) for comparison. We also implemented

two dense neural networks (DNNs). The input to our BDTs are observables similar to jet

electric charge, but also weighted by radial distance to the jet axis, which are of the form

Qκ,λ =
1(

pjetT

)κ ∑
j∈jet

Qj

(
pjT

)κ
(∆Rj)

λ (2.1)

We use these observables to construct three different BDTs. The first, with λ = 0, just

includes 8 different values of jet electric charge where κ runs from 0 to 0.35 in increments of

0.05. The second BDT takes κ = 0 and weights charge only by radial distance, with λ from

0 to 0.5 in increments of 0.1. The third BDT varies both κ and λ over the ranges given

above, including a total of 40 observables. Our implementation of BDTs is with scikitlearn

using AdaBoostClassifier with 500 samples per leaf minimum, 10 estimators, and learning

rate 0.1 (based on a scan of a selection of parameters).

We also implemented a DNN taking the 40 Qκ,λ observables implemented in the pre-

vious section as inputs. This network, also implemented with keras, had 5 layers each with

100 nodes and ReLU activations. The final layer of the network has two nodes with soft-

max activations. It was trained for 35 epochs with an early stopping patience of 5 epochs,

batch sizes of 1000, and with the Adam algorithm with a step size of 0.005 (parameters

were again selected based on a scan of the selection of parameters). In addition, we tested

another DNN with a variety of filter configurations and similar parameters to the RNN in

the previous section that used the pT , η, φ and Q of the hardest N particles as input, with

N ranging from 5 to 10, with 8 particles appearing optimal. This did not even perform as

well as pT -weighted jet charge alone, so we omit it from the results section.

3 Results

In this section we present our results. The figures below include displays of the standard

Receiver-Operator Characteristic (ROC) curve of the down-quark (signal) efficiency εs ver-

sus up-quark (background) efficiency εs and of the Significance Improvement Characteristic

(SIC) curve of εs/
√
εb [46]. The SIC curves indicate approximately the improvement on

discrimination significance and their peak values, SIC gives an objective uniform quanti-

tative measure of performance. ROC curves and SIC curves convey the same information.
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Figure 1. ROC and SIC curves for pT -weighted jet charge for various κ.

Figure 2. ROC and SIC curves for jet-image based CNNs using two input images: the total pT
and the pT -weighted jet charge, for various κ as listed.

The beginning of the results section discusses jets with pT between 100–120 GeV, and the

energy dependence section studies jets with 1000–1200 GeV pT.

3.1 pT -weighted jet charge

We first evaluate the effectiveness of the pT -weighted jet charge in eq. (1.1) for various

values of κ. The result is shown in figure 1. These results are consistent with those in [22],

showing optimal performance at κ = 0.4 with SIC = 1.5.

3.2 Jet images

Next, we look at the performance of our CNN using 2-channel jet images on the same

samples. The results are shown in figure 2 for various κ values. We see that the optimal

κ value for jet images is κ = 0.2, which is lower than for pT -weighted jet charge. The

performance of the CNN is also better with SIC = 1.8, a notable improvement.

Figure 3a compares the performance of the CNN with 1-channel images (no pT chan-

nel), 2-channel images (one value of κ), and 3-channel images (with the 3rd channel being
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(a) (b)

Figure 3. (a) Comparison of 1, 2 and 3-input channel CNNs. Two κ values are used for the 3

channel images, in addition to the total momentum input channel. (b) Comparison of pT -weighted

jet charge, CNN using two-channel jet images, several BDTs of multiple Qκ,λ (including cases with

κ = 0 or λ = 0), and a DNN with Qκ,λ observables as inputs.

the pT -weighted jet change with a different value of κ). We see that adding the third

layer does not improve performance. We also see that the images with a single jet charge

channel are able to improve upon the observable jet charge, but do not quite match the

performance of the two channel network.

Figure 3b compares the traditional pT -weighted jet charge with κ = 0.4 to the two-

channel CNN with κ = 0.2. The three BDTs of Qκ,λ described in section 2.4 are also

included in this figure. The multiple κ BDT takes jet charges as inputs (λ = 0) with κ

from 0 to 0.35 in intervals in 0.05. The multiple λ BDT takes Qκ,λ with κ = 0 and λ from

0 to 0.4 in increments of 0.1 as inputs. The κ and λ BDT and DNN also take Qκ,λ as

input, with both κ and λ varied over the same intervals as described above, for a total of

40 observables.

We see that the CNN outperforms both the single κ observable and the multiple κ or

multiple λ value BDT. The BDT and DNN ranging over both κ and λ performs similarly

to the CNN at high signal efficiency but does not display the same improvement at lower

signal efficiency.

3.3 Recurrent network results

Next we explore the performance of a recurrent neural network with a variety of differ-

ent input vectors associated to each input momentum. We considered combinations of

azimuthal angle φ, pseudorapidity η, pT , charge Q and various distance measures. The

configurations we tried were

1. (η, φ, pT , Q)

2. (η, φ, pT , Q, d1, . . . , dn) where the di are the distances to the hardest N anti-kT subjets

using C/A, kT , or anti-kT distance measures

3. (η, φ, pT , Q, d) where d is the clustering-tree distance to root node

– 8 –



J
H
E
P
1
0
(
2
0
1
8
)
0
9
3

(a) (b)

Figure 4. (a) Comparison of different RNN inputs to jet charge. Configuration 2 uses N = 1.

Configurations which include distance to the jet axis or hardest subjets perform better than those

that do not. (b) Performance of recurrent neural networks in configuration 4 using pT , charge Q

and distance to jet axis as inputs.

4. (η, φ, pT , Q, d) where d is the distance to the jet axis using C/A, kT , or anti-kT
distance measures

5. (px, py, pz, E, Q)

A comparison of the different RNN inputs is displayed in figure 4a. All networks that

take distance as input in figure 4a use the C/A distance. All configurations discussed above

show slight improvement over jet charge. Configurations 1 and 5 perform only slightly

better than jet charge, while the other RNNs perform noticeably better. We believe this

is because configurations 2 through 4 all incorporate a measure of distance within the jet,

similar to the CNN and RecNN displayed in figure 5.

Performance of configuration 4 for the different distance measures is explored further

in figure 4b. For configuration 2 the best performance was achieved for N = 1 with a

subjet radius of 0.1.

We find that at low jet pT training is noticeably faster with the recurrent network

than with jet images. At high jet pT the reverse is true. Additionally, the training and

performance of the recurrent network is sensitive to the ordering of the inputs and does

not train unless they are sorted (for example, when inputs are ordered randomly the RNN

is unable to distinguish the two samples). For the plots displayed in this paper, inputs are

sorted in order of decreasing pT , but we found that sorting by increasing distance from

the jet axis is equally effective (which we expect since most jets have hardest particles

toward the middle). We also found that including other extra information, in addition to

the inputs of configuration 1, inhibit training, sometimes to the point where the network

is unable to reach an acceptance better than fifty percent. This suggests that including

extra information in the RNN can actually hurt its performance. Various normalization

configurations were tested, including zero centering and dividing by the standard deviation

– 9 –
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Figure 5. Comparison of the pT -weighted jet charge to the best performing recurrent (RNN),

recursive (RecNN), and convolutional (CNN) neural networks for 100 GeV jets. The κ and λ BDT

and trainable κ NN are also displayed. The CNN is a two-input channel CNN with κ = 0.2. The

RNN is of type 4 using the C/A distance. Both CNNs and the RNN noticeably outperform the

pT weighted jet charge. The RecNN performs slightly worse than the RNN and CNNs, while the

trainable κ network only slightly outperforms jet charge. The Qκ,λ BDT outperforms jet charge

and the trainable κ NN but does not match the performance of the other NNs, particularly at low

signal efficiency.

for a single jet, and zero centering and normalizing all channels across jets. Normalizing

only the pT channel across jets was the only configuration that performed better than

the raw vectors at 100 GeV. At 1000 GeV, this normalization was required to achieve an

acceptance of better than fifty percent.

3.4 Recursive network results

The recursive network (RecNN) performed slightly worse than both the CNN and RNN for

100 GeV up versus down quark jets. Additionally, the embedding size required for effective

training in this case was 25 parameters per particle, which is a larger embedding than

the RNN. While our implementation of the RecNN was slower than the CNN or RNN,

optimization measures such as dynamic batching implemented in [17] have been shown

train faster than other implementations and make RecNNs feasible. However, the RecNN

(like the CNN) can train with a small training set (16,000 events instead of 160,000), while

the RNN does not achieve an acceptance of better than fifty percent for such a small

training set.

A comparison of the top performing convolutional, recurrent and recursive networks

is shown in figure 5. The area-under-the-ROC-curve (AUC) metric and the up quark

efficiency at 50% down quark efficiency are displayed in table 1.

3.5 Energy dependence

The results discussed above were all based on 100 GeV jets. The analysis was repeated

for 1000 GeV jets. More precisely, up and down quark events were regenerated with pT
between 1000 GeV and 1200 GeV, with all other parameters being the same. We found
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Network
100 GeV

Up Quark Efficiency

100 GeV

AUC

1000 GeV

Up Quark Efficiency

1000 GeV

AUC

RecNN 0.085 0.834 0.049 0.876

CNN 0.080 0.837 0.048 0.879

RNN 0.079 0.841 0.054 0.874

Residual CNN 0.078 0.840 0.053 0.877

κ and λ BDT 0.090 0.830 0.068 0.859

Trainable κ NN 0.104 0.815 0.080 0.841

Jet Charge 0.109 0.810 0.090 0.832

Table 1. Up quark efficiency at 50% down quark efficiency and area-under-the-ROC-curve (AUC)

at 100 and 1000 GeV. Jet charge has κ = 0.4 at 100 GeV and κ = 0.3 at 1000 GeV. All NNs except

the trainable κ network noticeably outperform pT weighted jet charge, as does the BDT. In the

100 GeV case, both CNNs and the RNN perform about equally well while the RecNN performs

slightly worse. In the 1000 GeV case, the CNNs and RecNN give the best results, while the RNN

performs slightly worse.

Figure 6. Comparison of best performing recurrent (RNN), recursive (RecNN), and convolutional

(CNN) neural networks with pT -weighted jet charge at 1000 GeV. The κ and λ BDT and trainable

κ NN are also displayed. The improvement between the RNN, CNN or the RecNN and jet charge

or the Qκ,λ BDT was larger than at 100 GeV.

discrimination power improves for all methods at higher pT . This is of course expected

and consistent with previous results [22–24]. Results are shown in figure 6. There was

improvement in all methods, but the relative improvement of the RNN, CNN and RecNN

over the pT -weighted jet charge is larger at 1000 GeV than at 100 GeV. We also see that at

1000 GeV the RecNN and CNNs perform better than the RNN, in contrast to at 100 GeV

where the RNN was best. Additionally, the improvement of the NNs over the Qκ,λ BDT

is larger at 1000 GEV than at 100 GEV.

Figures 7a and 7b try different values of κ for the pT weighted jet charge and for the

two-input-layer CNN. We see that the optimal κ for both jet charge and the CNN decreases

with energy. At 1000 GeV, the optimal κ for the CNN is still smaller than the optimal κ

for jet charge.

– 11 –



J
H
E
P
1
0
(
2
0
1
8
)
0
9
3

(a) (b)

Figure 7. (a) Comparison of jet charge for various κ values at 1000 GeV. (b) Comparison of CNN

performance for various κ values at 1000 GeV.

3.6 Quark/gluon discrimination

Finally, we examine how the network architectures that we have used for jet charge work

for quark/gluon discrimination. We compare our networks to each other as well as to the

three-channel images used in [8] (which does not include jet charge), where one channel is

total pT , one is charged particle pT and the third is particle multiplicity. For completeness,

we also consider four-channel images with three channels as in [8] and a fourth having

pT -weighted jet change with κ = 0.2 at 100 GeV and κ = 0.1 at 1000 GeV (the same values

as the best performing κ in the up versus down quark case). We look at both 100 GeV and

1000 GeV jets.

Figure 8a is a comparison plot of the different methods. We see that most methods

have comparable performance, with the exception of the recursive neural network that

performs worse. At 1000 GeV, the comparison is shown in figure 8b. We find in this case

that the recurrent network does noticeably better than the jet images network.

4 Conclusions

In this paper we have applied techniques of modern machine learning to the problem of

measuring the electric charge of a jet. In particular, we have used these networks to

discriminate jets initiated by up-quarks (charge Q = 2
3) from those initiated by down-

quarks (charge Q = −1
3). The reference discriminator is the pT -weighted jet charge [22]

which has optimal performance for κ ≈ 0.4 at 100 GeV and optimal performance for κ ≈ 0.3

at 1000 GeV. The network architectures we considered include convolutional, residual

convolutional, recurrent and recursive networks. We also studied boosted decision trees of

pT and ∆R weighted jet electric charge.

The CNNs are used to process jet images, with 2, 3 or 4 “colors” (input channels)

modeled after the quark/gluon study in [8]. We find these CNNs perform significantly

better than the pT -weighted jet charge. We also studied residual CNNs, which performed

– 12 –
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Figure 8. (a) Comparison of various network architectures for quark/gluon discrimination at

100 GeV. (b) Comparison of various network architectures for quark/gluon discrimination at

1000 GeV.

similarly to our other CNN (while there is some improvement in quark versus gluon dis-

crimination at high energy and small signal efficiency, the improvement is not consistent

across samples). For the recurrent networks we considered a variety of different inputs.

Recurrent networks take as input a list of variables associated with each particle, such as

the 4-momenta or charge. We tried a number of different input sets and found that taking

η, φ, pT , charge Q, and the C/A clustering distance to the jet axis works the best. The

performance of the recurrent network depends on its inputs: we find it is important to

reduce the inputs from the raw 4-vectors to the energy and some distance measure. In

principle, the network should learn this reduction, but doing so may require a very large

network or enormously long training times. By processing the RNN inputs in this way,

training is much faster and performance better. The improvement of RNNs with the inclu-

sion of distance motivated a BDT study that used observables constructed from both pT
and ∆R weighted electric charge as input, which improved performance over pT weighted

jet charge alone. We also studied a recursive network with inputs ordered by clustering

history, which performed similarly to the RNN and CNNs. Additionally, we tested a recur-

sive network with multiple trainable κ’s, but this network barely outperformed jet charge.

With the exception of this last network, all of our networks noticeably perform better than

pT -weighted jet change. While the BDT of Qκ,λ observables also outperforms jet charge,

it does not match the performance of our neural networks, especially at high energy.

Our best networks can distinguish up and down quark jets significantly better than

previous methods. At a 50% down-quark efficiency working point, the networks allow us

to reject all but 8% of up-quark jets at 100 GeV (with a CNN or RNN) and all but 5%

of up-quark jets at 1000 GeV (with a CNN or a RecNN). This rejection rates improve on

previous methods by almost a factor of 2 at high energy.

Generally, discriminants that are useful for jet charge measurement are not infrared

or collinear safe. For example, the pT -weighted jet charge has this property, as do the

– 13 –



J
H
E
P
1
0
(
2
0
1
8
)
0
9
3

multivariate methods we use to study charge. These discriminants can still be measured,

and some have been measured [24–30], with good agreement with theory. The importance

of IRC safety in NN design and application is an interesting question that merits further

investigation.

There are a few general lessons we have learned about networks from this study. At

high signal efficiency, the neural networks that explicitly incorporate distance information

(e.g. ∆R from the jet axis, pixel location in images, or distance from the jet’s clustering

history) perform about equally well. On the one hand, this may imply that there exist

simple observables incorporating distance which perform as well as our neural networks.

This motivated us to study some elementary attempts to include ∆R in observables, such

as Qκ,λ (defined in eq. (2.1)). Although Qκ,λ alone performs optimally for λ = 0 (which

is just pT -weighted jet charge), a BDT of such Qκ,λ observables with multiple values of

λ outperforms a BDT that only contains jet charge. This BDT study and the improved

performance of the recurrent network when C/A jet distance is explicitly included show that

jet substructure can be more effectively used in jet electric charge classification. Specifically,

distance information can be utilized to improve upon pT -weighted jet charge in jet flavor

classification, in both machine learning and more traditional observables. On the other

hand, even our Qκ,λ BDT does not perform as well as the neural networks we studied,

especially at higher pT . This suggests that neural networks are able to fit a better function

of distance than we can easily design, and/or that they are able to also utilize other

information for performance gains. Therefore, we might conclude that searching for simple

observables may not be worthwhile as the neural networks already perform well, have

distance information, and can be used directly on data.

At low signal efficiency, which network performs best is dependent on what particle

the jet is initiated by and the jet’s energy. We found that with effective tuning of hy-

perparameters and normalization conventions all networks had similar performance. This

suggests that while it is important to customize the size and parameters of a network to

the specific application, in the case of up versus down jet identification neural networks

that encode distances effectively should perform close to optimal. We see similar results in

the quark gluon case. Since the networks perform equivalently, the difficulty of training the

network should be an important consideration and should be customized to the particular

application. An advantage of the CNN architecture is that it requires less modification

with energy scale because the input representation size is fixed. An advantage of the RNN

is that the input representation is smaller which can improve training time or memory

usage, depending on implementation.

In conclusion, we have shown that machine learning can produce significant improve-

ment in distinguishing up and down quark jets over traditional approaches. Our studies

show that radial distance to the jet axis is one piece of information that can be utilized

to contribute to this improvement. Our summary plots are in figures 5 and 6. Neural

networks that explicitly incorporate distance or clustering history are the most effective.

Convolutional networks (like those used in [8]), recurrent neural networks, and recursive

neural networks (like those used in [17]) perform very well.
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[10] H. Lüo, M.-x. Luo, K. Wang, T. Xu and G. Zhu, Quark jet versus gluon jet: deep neural

networks with high-level features, arXiv:1712.03634 [INSPIRE].

[11] T. Cheng, Recursive Neural Networks in Quark/Gluon Tagging, Comput. Softw. Big Sci. 2

(2018) 3 [arXiv:1711.02633] [INSPIRE].

[12] E.M. Metodiev, B. Nachman and J. Thaler, Classification without labels: Learning from

mixed samples in high energy physics, JHEP 10 (2017) 174 [arXiv:1708.02949] [INSPIRE].

– 15 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.101.142001
https://arxiv.org/abs/0806.0848
https://inspirehep.net/search?p=find+EPRINT+arXiv:0806.0848
https://doi.org/10.1103/PhysRevD.79.074017
https://arxiv.org/abs/0807.0234
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0234
https://doi.org/10.1103/PhysRevD.83.074023
https://arxiv.org/abs/1012.2077
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.2077
https://doi.org/10.1007/JHEP02(2012)093
https://arxiv.org/abs/1108.2701
https://inspirehep.net/search?p=find+EPRINT+arXiv:1108.2701
https://doi.org/10.1140/epjc/s10052-010-1314-6
https://arxiv.org/abs/0906.1833
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.1833
https://doi.org/10.1088/0954-3899/39/6/063001
https://arxiv.org/abs/1201.0008
https://inspirehep.net/search?p=find+EPRINT+arXiv:1201.0008
https://doi.org/10.1007/JHEP07(2016)069
https://arxiv.org/abs/1511.05190
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.05190
https://doi.org/10.1007/JHEP01(2017)110
https://arxiv.org/abs/1612.01551
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.01551
https://doi.org/10.1007/JHEP12(2017)051
https://arxiv.org/abs/1707.08600
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.08600
https://arxiv.org/abs/1712.03634
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.03634
https://doi.org/10.1007/s41781-018-0007-y
https://doi.org/10.1007/s41781-018-0007-y
https://arxiv.org/abs/1711.02633
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.02633
https://doi.org/10.1007/JHEP10(2017)174
https://arxiv.org/abs/1708.02949
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.02949


J
H
E
P
1
0
(
2
0
1
8
)
0
9
3

[13] A. Butter, G. Kasieczka, T. Plehn and M. Russell, Deep-learned Top Tagging with a Lorentz

Layer, SciPost Phys. 5 (2018) 028 [arXiv:1707.08966] [INSPIRE].

[14] T. Cohen, M. Freytsis and B. Ostdiek, (Machine) Learning to Do More with Less, JHEP 02

(2018) 034 [arXiv:1706.09451] [INSPIRE].

[15] J. Pearkes, W. Fedorko, A. Lister and C. Gay, Jet Constituents for Deep Neural Network

Based Top Quark Tagging, arXiv:1704.02124 [INSPIRE].

[16] G. Kasieczka, T. Plehn, M. Russell and T. Schell, Deep-learning Top Taggers or The End of

QCD?, JHEP 05 (2017) 006 [arXiv:1701.08784] [INSPIRE].

[17] G. Louppe, K. Cho, C. Becot and K. Cranmer, QCD-Aware Recursive Neural Networks for

Jet Physics, arXiv:1702.00748 [INSPIRE].

[18] A.J. Larkoski, I. Moult and B. Nachman, Jet Substructure at the Large Hadron Collider: A

Review of Recent Advances in Theory and Machine Learning, arXiv:1709.04464 [INSPIRE].

[19] P.T. Komiske, E.M. Metodiev, B. Nachman and M.D. Schwartz, Learning to classify from

impure samples with high-dimensional data, Phys. Rev. D 98 (2018) 011502

[arXiv:1801.10158] [INSPIRE].

[20] S. Macaluso and D. Shih, Pulling Out All the Tops with Computer Vision and Deep

Learning, arXiv:1803.00107 [INSPIRE].

[21] R.D. Field and R.P. Feynman, A Parametrization of the Properties of Quark Jets, Nucl.

Phys. B 136 (1978) 1 [INSPIRE].

[22] D. Krohn, M.D. Schwartz, T. Lin and W.J. Waalewijn, Jet Charge at the LHC, Phys. Rev.

Lett. 110 (2013) 212001 [arXiv:1209.2421] [INSPIRE].

[23] W.J. Waalewijn, Calculating the Charge of a Jet, Phys. Rev. D 86 (2012) 094030

[arXiv:1209.3019] [INSPIRE].

[24] ATLAS collaboration, Jet Charge Studies with the ATLAS Detector Using
√
s = 8 TeV

Proton-Proton Collision Data, ATLAS-CONF-2013-086.

[25] ATLAS collaboration, B. Nachman, Jet Charge with the ATLAS Detector using
√
s = 8 TeV

pp Collision Data, in proceedings of 2nd Conference on Large Hadron Collider Physics

Conference (LHCP 2014), New York, USA, 2–7 June 2014, arXiv:1409.0318,

http://www.slac.stanford.edu/econf/C140602.2/papers/1409.0318v1.pdf [INSPIRE].

[26] ATLAS collaboration, Measurement of jet charge in dijet events from
√
s = 8 TeV pp

collisions with the ATLAS detector, ATLAS-CONF-2015-025.

[27] ATLAS collaboration, Measurement of jet charge in dijet events from
√
s = 8 TeV pp

collisions with the ATLAS detector, Phys. Rev. D 93 (2016) 052003 [arXiv:1509.05190]

[INSPIRE].

[28] CMS collaboration, Measurement of jet charge observables in dijet events at
√
s = 8 TeV,

CMS-PAS-SMP-15-003.

[29] CMS collaboration, Measurements of jet charge with dijet events in pp collisions at
√
s = 8

TeV, JHEP 10 (2017) 131 [arXiv:1706.05868] [INSPIRE].

[30] ATLAS, CMS collaborations, Jet charge determination at the LHC, in proceedings of

Parton Radiation and Fragmentation from LHC to FCC-ee, CERN, Geneva, Switzerland,

22–23 November 2016, pp. 79–84,

https://inspirehep.net/record/1512998/files/1512294 79-84.pdf.

– 16 –

https://doi.org/10.21468/SciPostPhys.5.3.028
https://arxiv.org/abs/1707.08966
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.08966
https://doi.org/10.1007/JHEP02(2018)034
https://doi.org/10.1007/JHEP02(2018)034
https://arxiv.org/abs/1706.09451
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.09451
https://arxiv.org/abs/1704.02124
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.02124
https://doi.org/10.1007/JHEP05(2017)006
https://arxiv.org/abs/1701.08784
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.08784
https://arxiv.org/abs/1702.00748
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.00748
https://arxiv.org/abs/1709.04464
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.04464
https://doi.org/10.1103/PhysRevD.98.011502
https://arxiv.org/abs/1801.10158
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.10158
https://arxiv.org/abs/1803.00107
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.00107
https://doi.org/10.1016/0550-3213(78)90015-9
https://doi.org/10.1016/0550-3213(78)90015-9
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B136,1%22
https://doi.org/10.1103/PhysRevLett.110.212001
https://doi.org/10.1103/PhysRevLett.110.212001
https://arxiv.org/abs/1209.2421
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.2421
https://doi.org/10.1103/PhysRevD.86.094030
https://arxiv.org/abs/1209.3019
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.3019
http://cdsweb.cern.ch/record/1572980
https://arxiv.org/abs/1409.0318
http://www.slac.stanford.edu/econf/C140602.2/papers/1409.0318v1.pdf
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.0318
http://cdsweb.cern.ch/record/2037618
https://doi.org/10.1103/PhysRevD.93.052003
https://arxiv.org/abs/1509.05190
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.05190
http://cdsweb.cern.ch/record/2157072
https://doi.org/10.1007/JHEP10(2017)131
https://arxiv.org/abs/1706.05868
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.05868
https://inspirehep.net/record/1512998/files/1512294_79-84.pdf


J
H
E
P
1
0
(
2
0
1
8
)
0
9
3

[31] J. Pumplin, How to tell quark jets from gluon jets, Phys. Rev. D 44 (1991) 2025 [INSPIRE].

[32] L. Lönnblad, C. Peterson and T. Rognvaldsson, Finding Gluon Jets With a Neural Trigger,

Phys. Rev. Lett. 65 (1990) 1321 [INSPIRE].

[33] OPAL collaboration, P.D. Acton et al., A Study of differences between quark and gluon jets

using vertex tagging of quark jets, Z. Phys. C 58 (1993) 387 [INSPIRE].

[34] OPAL collaboration, G. Alexander et al., A Direct observation of quark-gluon jet differences

at LEP, Phys. Lett. B 265 (1991) 462 [INSPIRE].

[35] J. Gallicchio and M.D. Schwartz, Quark and Gluon Jet Substructure, JHEP 04 (2013) 090

[arXiv:1211.7038] [INSPIRE].

[36] J. Gallicchio and M.D. Schwartz, Quark and Gluon Tagging at the LHC, Phys. Rev. Lett.

107 (2011) 172001 [arXiv:1106.3076] [INSPIRE].

[37] ATLAS collaboration, Light-quark and gluon jet discrimination in pp collisions at√
s = 7 TeV with the ATLAS detector, Eur. Phys. J. C 74 (2014) 3023 [arXiv:1405.6583]

[INSPIRE].

[38] J. Cogan, M. Kagan, E. Strauss and A. Schwarztman, Jet-Images: Computer Vision Inspired

Techniques for Jet Tagging, JHEP 02 (2015) 118 [arXiv:1407.5675] [INSPIRE].
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